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Abstract 12 

Crystallographic distortions in the alternating aluminium and silicon tetrahedral framework of sodalite 13 
(Na8Al6Si6O24Cl2), and beryllium and silicon in helvite (Mn8Be6Si6O24S2), (framework designated 14 
SOD) are described in terms of a set of condensed normal mode amplitudes and phases derived from 15 
an ideal tetrahedron of a theoretical aristotype phase. For a sodalite-structured hettotype phase in 16 

space group 43P n , these normal modes transform as the irreducible representations A1, E(), T1(z) of 17 

point group 43m , where to a good approximation A1 acts as a pure breathing mode, E() as a 18 

polyhedral distortive mode and T1(z) as a rigid unit rotation about the unique 4 axis of the T-site under 19 
consideration. Parameterisation of the mode amplitudes in terms of low-order polynomials as a 20 
function of thermodynamic variable permits the crystal structure of sodalite-structured phases to be 21 
accurately interpolated at intermediate values of the thermodynamic variable. Published data for the 22 
high temperature behaviour of sodalite have been re-analysed in terms of mode amplitudes which 23 
accurately reproduce the temperature dependence of the bond lengths, bond angles and the Al - O - Si 24 
inter-polyhedral angle. Full expressions for these derived structural parameters in terms of mode 25 
amplitudes and the lattice parameter are tabulated and agree with experimental results to within one 26 
estimated standard deviation of the experimental parameter. The potential for mode decomposition in 27 
lower symmetry SOD framework crystal structures is illustrated by deriving an aristotype structure for 28 

tugtupite (Na8Al2Be2Si8O24Cl2) at room temperature in space group 4I . 29 

 30 

Keywords: sodalite, danalite, SOD framework, crystal structure, mode decomposition 31 

 32 

Introduction 33 

The crystal structure of  sodalite (Na8Al6Si6O24Cl2) and the isostructural mineral helvine 34 
(Mn8Be6Si6O24S2) were first solved by Pauling (1930) following earlier determinations of the space 35 

group 43P n by Barth (1926) and Gottfried (1927), and comparisons of the X-ray powder diffraction 36 
patterns of haüyne ((Na, Ca, K)4-8Al6Si6(O,S)24(SO4, Cl)1-2), nosean ((Na8Al6Si6O24(SO4)H2O), 37 
sodalite and lazurite ((Na, Ca)7-8Al6Si6O24(SO4, S, Cl)2H2O) with synthetic ultramarine (Jaeger et al. 38 
1927, Jaeger 1929). More recently, refinement of the crystal structure of sodalite at ambient 39 
temperature has been reported by Löns and Schulz (1967) and Hassan and Grundy (1984), and at high 40 
temperatures, by McMullan et al. (1996) using neutron single crystal diffraction, and by Hassan et al. 41 
(2004), using synchrotron powder diffraction. Other mineral species such as danalite (Fe8Be6Si6O24S2) 42 
were recognised to be isostructural with sodalite and helvine and the crystal structure of danalite was 43 
refined at ambient temperature by Hassan and Grundy (1985), and at high temperatures, by Antao et 44 
al. (2003). 45 

 The sodalite structure type is characterised by an ordered alternating framework of AlO4 and 46 
SiO4 tetrahedra consistent with Loewenstein’s rules (Loewenstein, 1954), whose nodes lie at the 47 
vertices of a close-packed truncated octahedra (Pauling, 1930; Deer et al. 2004; Smith, 1982; 48 
O’Keeffe and Hyde, 1996; Fischer and Bauer, 2009). The cubo-octahedral cages are bounded by six 49 
rings of four tetrahedra parallel to {100} and eight rings of six tetrahedra parallel to {111}. The 50 
sodium ions lie on three-fold axes adjacent to the six-membered rings and may be considered to be 51 
four-fold coordinated to one chlorine ion and three oxygen atoms, or seven-fold coordinated to a 52 
further set of three oxygen atoms. This latter set is at a distance not always considered to be a bonded 53 



interaction (~3.1 Å), but have been deemed to play an important role in the thermal evolution on the 54 
sodalite crystal structure (Hassan et al., 2004). The chlorine anions are sited at the centre of the 55 
truncated octahedra and are bonded to four sodium cations in a tetrahedral coordination. The crystal 56 
structure of sodalite at ambient temperature (Hassan and Grundy, 1984) is illustrated in Figure 1: the 57 
topology of the framework has been designated SOD in the database of zeolite structures 58 
(http://www.iza-structure.org/databases/). 59 

 Pauling (1930) recognised the inherent three-dimensional flexibility of the sodalite 60 
framework structure, with the rigid corner-shared tetrahedra having the ability to tilt (rotate) against 61 
each other through the bridging oxygen atoms. In a manner similar to the well-studied perovskite-62 
structured family (Howard and Stokes, 2004), the flexibility of the SOD framework coupled with the 63 
potential to order chemically distinct cations on the tetrahedral sites permits a wide variety of 64 
symmetry descents from the most symmetric topology. These have recently been reviewed by Fischer 65 
and Bauer (2009) using group theory with the concept of Bärnighausen trees (Bärnighausen, 1975; 66 
Müller, 2013); a similar, more rigorous analysis using isotropy subgroups (Stokes and Hatch, 1988) 67 
has yet to be attempted. 68 

 The highest symmetry that can be exhibited by the SOD framework topology with a single 69 

tetrahedral site (T-site) can be described in space group 3Im m and this was believed to be shown by 70 
the crystal structure of pure silica sodalite (Richardson et al., 1988), although subsequent work has 71 

shown this phase to be rhombohedral in space group 3R (King et al., 2009). In space group 3Im m the 72 
T-sites are not permitted to tilt relative to each other, and providing the T-sites remain close to 73 
tetrahedral geometry, it represents the fully expanded SOD topology (Taylor, 1983, 1984). Reduction 74 

in space group symmetry via condensation of a mode with irreducible representation 2
  (Stokes and 75 

Hatch, 1988) results in a denser arrangement in space group 43I m with a single T-site and where 76 

tetrahedral tilting is permitted. The transformation from 3Im m to 43I m does not involve either a 77 
change in lattice basis nor an associated translation of the space group origin and the SOD topology is 78 
retained. Alternatively, an ordering of the twelve T-sites into two groups of six mediated by the scalar 79 

irreducible representation 2H
 (Stokes and Hatch, 1988) reduces the space group symmetry from 3Im m80 

to 3Pm n with no lattice basis change or origin translation. Tilting of the constituent tetrahedra is not 81 

permitted in this symmetry lowering of the SOD framework. Consideration of the space group 3Im m82 

shows that the space group of the sodalite structure-type, 43P n , is not an isotropy subgroup of 3Im m , 83 

however, 43P n  is an isotropy subgroup of 43I m associated with the condensation of a mode with 84 

irreducible representation 2H (Stokes and Hatch, 1988). This mode is associated with the loss of body-85 

centring translations (Bradley and Cracknell, 1972), and, as a result, there are two symmetry-86 

independent T-sites as in space group 3Pm n . Furthermore, space group 43P n is an isotropy subgroup 87 

of 3Pm n via the condensation of a mode with symmetry 2
 . Once again, these transformations are 88 

associated without origin shift or change in lattice basis. Under the Landau and Lifschitz conditions 89 

(Stokes and Hatch, 1988), hypothetical structural phase transitions from 3Im m - 43I m , 3Im m - 3Pm n ,90 

43I m - 43P n  and 3Pm n - 43P n are all permitted to be second order.  91 

Further theoretical evidence for the intrinsic flexibility of the SOD framework has been 92 
afforded by the analysis of the rigid unit modes (RUMs) supported by the sodalite-structure 93 

(Hammonds et al. 1996; Dove et al., 2007). For the SOD topology in space groups 3Im m and 43I m94 



there is at least one RUM per wave vector in reciprocal space. However, in the sodalite-structured 95 

phase in space group 43P n , this is no longer found to be the case (Dove et al., 2007), however high 96 

densities of RUMs exist in this space group. RUMs in the SOD framework in space group 3Pm n97 
remain to be evaluated. 98 

 Before high temperature determinations of the crystal structure of minerals became 99 
commonplace, attempts were made to predict the thermodynamic evolution of the crystal structure of 100 
framework compounds using geometric methods, pioneered in particular by Taylor and co-workers 101 
(Taylor, 1968; Taylor, 1972; Taylor, 1975; Taylor and Henderson, 1978; Dempsey and Taylor, 1980; 102 
Beagley et al., 1982; Taylor, 1983; Taylor, 1984). For the sodalite-structured phases, the O – O edges 103 

from the two symmetry independent tetrahedra that are bisected by the 4 axes of the tetrahedra lie in 104 
the same plane as two reciprocal lattice vectors. The smaller angle that each of these edges makes 105 
with a coplanar reciprocal lattice vector is averaged and has been used geometrically with the average 106 
edge distance to predict the lattice parameter (Taylor, 1972). This basic model for has been extended 107 
by Hassan and Grundy (1984) to utilise the independent edge lengths and angles, and once calibrated 108 
against a known structure, can be used predictively for other sodalite-structured phases.  109 

If the thermodynamic-dependence of the lattice parameter of a sodalite-structured phase is 110 
known, the crystal structure at each thermodynamic state may in theory be deduced from distance 111 
least squares (DLS) modelling (Meier and Villiger, 1969), subject to weighted constraints for bond 112 
lengths and bond angles (Dempsey and Taylor, 1980). Taylor and Henderson (1978) developed a 113 
computer model that permitted the effects of changing cavity cation and anion radii on the unit cell 114 
parameter, tetrahedral tilt angles and the intra-polyhedral rotation angle to be predicted. Neither DLS 115 
nor the models of Taylor and Henderson (1978) or the later work of Beagley et al. (1982) appear to 116 
have been tested against experimental results collected at high temperature, high pressure or 117 
composition in a solid solution. In recent years, structural crystallographic data have been determined 118 
on a number of sodalite-structured phases as a function of composition in the helvine group (Antao et 119 
al., 2021),  in temperature in sodalite (Hassan et al., 2004), danalite (Antao et al., 2004a) and synthetic 120 
chromate aluminate sodalite (Antao et al., 2003), and in pressure in helvine (Kudoh and Takéuchi, 121 
1985). These data have all been interpreted in terms of conventional crystallographic analysis. 122 

 In this paper an alternative method for characterising and parameterising the SOD framework 123 

in space group 43P n is proposed in which the crystallographic coordination of the two symmetry 124 
independent T-sites is analysed in terms of condensed normal modes derived from an ideal aristotype 125 
SOD framework. The hypothesis of an aristotype as representing the highest crystallographic 126 
symmetry that can be attained, either theoretically or experimentally, from a lower symmetry phase 127 
has underpinned many studies of structural phase transitions (Buerger, 1947, 1961; Megaw, 1973). 128 
The lower symmetry phase(s), the hettotype(s) (Megaw, 1973) are related as isotropy subgroups of 129 
the aristotype space group (Stokes and Hatch, 1988). Applying the concept of an aristotype within a 130 
single phase with crystallographic degrees of freedom is significantly less common, and is predicated 131 
upon the structural degrees of freedom permitting an ideal polyhedral geometry. Examples where this 132 
has been successfully carried out are the framework structure of leucite (Knight and Henderson, 2019) 133 
and the crystal structure of cubic garnets (Knight, 2019). In the former case, the crystal structure may 134 
be thought of as a true aristotype in the sense of Megaw (1973), in the latter case the crystal structure 135 
should be considered to be prototypic, as the deduced crystal structure, whilst topologically correct, is 136 
crystal-chemically implausible (Knight, 2019). Despite this apparent setback, the normal mode 137 
decomposition derives correct bond lengths and angles and has shown, for the first time, that the 138 
octahedral site as well as the tetrahedral site in garnet undergoes a rigid body rotation. For the SOD 139 



topology a set of oxygen fractional coordinates are sought that permit ideal tetrahedral geometry to 140 
define the aristotype phase. Displacement vectors from the aristotype to the hettotype phase are 141 
decomposed into normal mode amplitudes and phases for a set of symmetry adapted basis vectors that 142 
are consistent with the point group symmetry of the hettotype T-sites. The methodology is 143 

demonstrated using a crystal structure in space group 43P n  at a fixed thermodynamic state before 144 
being extended to crystal structures in the same space group that vary as a function of thermodynamic 145 
variable. The results of sodalite at high temperature (Hassan et al., 2004) are re-evaluated to illustrate 146 
the procedure. 147 

 148 

Defining aristotype crystal structures in space groups 3Im m , 3Pm n , 43I m and 43P n  149 

In the discussion developed below, symmetry descent to the space groups that permit two tetrahedral 150 

sites ( 3Pm n and 43P n ) is treated as if these sites were fully ordered. This argument is used for 151 
simplicity but it should be noted that any degree of partial order that differentiates the two tetrahedral 152 
sites would be equally acceptable. The subsequent section that deals with the methodology of mode 153 

decomposition of the two tetrahedral sites in the SOD framework in space group 43P n  is also treated 154 
in the same manner, but again, the analysis is equally valid for partially ordered tetrahedral sites. 155 

Space group 3Im m  156 

Fischer and Bauer (2009) considered the SOD framework in space group 3Im m to represent the 157 
aristotype phase of a sodalite-structured phase, however, this ignores the fact that the oxygen 158 
coordinate has a single degree of freedom (x, x, 1/2) that permits non-ideal tetrahedral bond angle 159 

geometry. The tetrahedral site in space group 3Im m  in Wyckoff position 12d exhibits point group 160 

symmetry 4 2m , and as a result of the tetragonal point group symmetry, the four T-site - anion bond 161 
lengths are constrained to have equal magnitudes. This point group symmetry also permits two 162 
independent tetrahedral bond angles of multiplicities two and four, with the unique roto-inversion axis 163 
of the point group bisecting the bond angles of multiplicity two. For the T-site at (1/4, 0, 1/2) the roto-164 
inversion axis is directed along [-1 0 0] (or equivalently [1 0 0]) as illustrated in Figure 2a. The 165 
bonded anions lie on Wyckoff positions 24h with point group symmetry mm2 and a single degree of 166 
structural freedom (x) as detailed in Table 1. To derive the true aristotype crystal structure it is 167 
necessary to find a real value of x that results in the two independent bond angles becoming equal. 168 

The point group symmetry of the T-site is therefore raised from 4 2m  to 43m , and ideal tetrahedral 169 
geometry is therefore realised. This can be determined by equating the inner products of the bond 170 
vectors r1.r2 with r1.r3 and solving the resultant quadratic equation x2 - x + 1/8 = 0. Of the two 171 
possible solutions, only the solution x = 1/2 - 1/8 (~0.14645) results in a crystallographically 172 
acceptable bond length. The fractional coordinates of the anion with x = 1/2 - 1/8 defines the true 173 

aristotype SOD framework structure in this space group with a T – O bond length of 
3 8

1
4 3
a

 Å , 174 

intra-polyhedral angle (T – O – T) cos-1(-8/3) (~160.529) and tetrahedral volume of (a3/24)(3 - 175 
8)1.5 Å3 (where a is the lattice parameter). 176 

 177 

Space group 3Pm n  178 



The loss of mirror plane lying at x, x, z and the reduction in symmetry associated with the four-fold 179 

rotation axis along 0, 0, z becoming a two-fold rotation axis (and symmetry equivalents under 3 point 180 

group symmetry) reduces the space group symmetry from 3Im m to 3Pm n . The descent in symmetry 181 

results in the single T-site in 3Im m in Wyckoff site 12d becoming two tetrahedral sites with Wyckoff 182 

positions 6c (1/4, 0, 1/2) and 6d (1/2, 0, 3/4) but retaining the site point group symmetry 4 2m (noting 183 

that the Wyckoff notation for the two sites is the reverse of that designated for space group 43P n ). 184 
The unique roto-inversion axis lies parallel to [-1 0 0] (equivalently [1 0 0]) for the site 6c at (1/4, 0, 185 
1/2), and parallel to [0 0 -1] (equivalently [0 0 1]) for site 6d at (1/2, 0, 3/4). The coordinating anions 186 
lie on a mirror plane with Wyckoff position 24 k (x, y, 1/2) as listed in Table 1, with the difference in 187 
x and y permitting different bond lengths to be associated with the two independent T-sites. The 188 
identical, tetragonal point group symmetry for both T-sites ensures that the four bond lengths 189 
associated with either site are identical in length and have two sets of bond angles of multiplicities 190 
two and four. The unique roto-inversion axis bisects the bond angles of multiplicity two and the local 191 
geometry is illustrated in Figure 2b. Defining the aristotype sodalite structure for this space group as 192 
the fractional coordinate of the anion that results in ideal tetrahedral bond angles at both T-sites, a 193 
solution is sought where r1.r2/|r1.r2| = r1.r3/|r1.r3|, r5.r6/|r5.r6|, r5.r7/|r5.r7| = -1/3. Equating 194 
r1.r2/|r1.r2| = r5.r6/|r5.r6| finds the single acceptable solution x = y, and equating r1.r2/|r1.r2| = 195 
r1.r3/|r1.r3| results in the quadratic equation x2 - x + 1/8 = 0 with solution x = 1/2 - 1/8. The 196 

aristotype structure is therefore identical to that derived for space group 3Im m  with a single T – O 197 

bond length of 
3 8

1
4 3
a

 Å , intra-polyhedral angle cos-1(-8/3) and tetrahedral volume of (a3/24)(3 198 

- 8)1.5 Å3. 199 

 200 

Space group 43I m  201 

The tetrahedral site in space group 43I m in Wyckoff position 12d exhibits point group symmetry 4 , 202 

and as in space group 3Im m , the four T-site - anion bond lengths are constrained by the tetragonal 203 
symmetry to have equal magnitudes. The point group symmetry permits two independent tetrahedral 204 
bond angles of multiplicities two and four with the unique roto-inversion axis bisecting the bond 205 
angles of multiplicity two. The orientation of the roto-inversion axis associated with the T-site at (1/4, 206 

0, 1/2)  is unchanged from that in space group 3Im m , as illustrated in Figure 2c. The bonded anions lie 207 
on a mirror plane in Wyckoff positions 24g and two degrees of structural freedom (x, x, z) as detailed 208 
in Table 1. To derive an aristotype structure, values of x and z are therefore sought that result in the 209 
two independent bond angles becoming equal. The point group symmetry of the T-site is then raised 210 

from 4  to 43m and ideal tetrahedral geometry is realised. Equating the inner products of the bond 211 
vectors r1.r2 with r1.r3 results in the polynomial equation x2 - x - z2 + z - 1/8 = 0 indicating that an 212 
infinite set of solutions are possible. The range of solutions is clearly reduced by the constraint of an 213 
acceptable bond length for the T-site and anion under consideration, but despite this constraint, there 214 

is not a unique aristotype framework structure in space group 43I m . For chosen z and calculated x, 215 
the aristotype T – O bond length is 3a( - 1/4), intra-polyhedral angle cos-1((5/4 + 3z2 – 3z – 3/2)/( 216 
21/16 + 3z2 – 3z – 3/2)) and tetrahedral volume ((8a3)/(93))( 21/16 + 3z2 – 3z – 3/2)3/2 with  217 
defined as (3/8 - z + z2)1/2. Analysis of the intra-polyhedral angle function shows it to exhibit a single 218 

maximum at z = 0.5 for acceptable values of z. The solution derived for space group 3Im m , x = 1/2 - 219 



1/8, z = 1/2, satisfies the polynomial equation above and therefore represents one of the many 220 

aristotype framework structures for space group 43I m . A mineralogical example of the SOD 221 
framework within this space group is afforded by the phase bicchulite (Ca8Al8Si4O24(OH)8) (Sahl, 222 
1980). 223 

 224 

Space group 43P n  225 

The symmetry lowering in space group 43P n  from space group 43I m associated with the loss of 226 
body-centring translations gives rise to two tetrahedral sites with 6-fold multiplicity and point group 227 

symmetry 4 , as shown in Figure 2d. The Wyckoff site 6d at (1/4, 0, 1/2) is identical in character to the 228 

position (1/4, 0, 1/2) in Wyckoff site 12d associated with space groups 3Im m and 43I m , and 6c in 229 

space group 3Pm n . In an identical manner to Wyckoff site 6d in space group 3Pm n , the symmetry 230 
independent T-site at Wyckoff position 6c (1/2, 0, 3/4) is associated with the roto-inversion axis 231 
directed along [0 0 -1] (or equivalently [0 0 1]), and, as in position 6d, bisects the bond angle with 232 
two-fold multiplicity. Anion fractional coordinates are in the general equivalent position in Wyckoff 233 
site 24i as listed in Table 1. Making the definition that the aristotype in this space group is the 234 
framework structure in which both T-sites are ideal tetrahedra with identical bond lengths, there are 235 
additional simultaneous constraints that have to be applied to determine any possible solution. Firstly, 236 
the bond length equivalence implies r1.r1 = r5.r5, and secondly, the bond angle equivalence requires 237 
that r1.r2/|r1.r2| = r1.r3/|r1.r3|, r5.r6/|r5.r6|, r5.r7/|r5.r7|. Expanding and equating the first and 238 
second inner product shows the bond length equivalence results in the equality 1/2(y - x) = 0 i.e. x = y, 239 
and substituting this solution into the bond angle constraints results in the identical polynomial 240 

equation as found for the space group 43I m ; x2 - x - z2 + z - 1/8 = 0. Hence, there are an infinite set of 241 
solutions (x, x, z), the valid solutions being constrained by the bond length requirement. The 242 
expressions for the T – O bond length, T – O – T intra-polyhedral angle and tetrahedral volume that 243 

were derived for space group 43I m are identical for the potential aristotype phases of space group244 

43P n . The solution derived for space groups 3Im m , 3Pm n and 43I m , x = y = 1/2 - 1/8, z = 1/2, 245 
satisfies the polynomial equation above and therefore represents one of the many potential aristotype 246 

framework structures for space group 43P n . 247 

 248 

Mode decomposition in space group 43P n  249 

The methodology to be applied to the SOD framework is to compare the observed framework 250 
structure (hettotype) with an associated aristotype framework structure, and to analyse the distortions 251 
therefrom (the displacement vectors between identically labelled atoms in the two crystal structures) 252 
in terms of condensed normal modes of the ideal tetrahedral isolated TO4 ‘molecule’. To achieve this 253 
it is necessary to define a local orthonormal basis (i, j, k) that brings the aristotype tetrahedron in 254 
absolute coordinates into an orientation that matches the basis to the constituent symmetry elements 255 

of the point group 43m . In this case, the orthonormal basis is parallel to the three four-fold roto-256 
inversion axes of the ideal tetrahedron, with the T-site translated to the origin, as shown in Figure 3. 257 

The basis is chosen such that the unique 4  axis derived from the hettotype is parallel to k. In this 258 



basis, for a cube of side 2l, the absolute coordinates of the TO4 tetrahedron in the aristotype are T (0, 259 
0, 0), O1 (-l, -l, l), O2 (l, l, l), O3 (l, -l, -l) and O4 (-l, l, -l). 260 

The normal modes that are active in the parameterisation of the observed SOD framework are 261 

those of point group 43m that are consistent with the point group symmetry of the hettotype phase, 4 . 262 
It should be noted that, in general, the zero frequency modes of rigid body rotation and translation, 263 
that are discounted in normal mode analysis for free molecules (Bishop, 1972; Decius and Hexter, 264 
1977), may be present as frozen modes in a static crystal structure mode decomposition. 265 

The three components of molecular displacements from each atom of the isolated TO4 266 
tetrahedron form a fifteen-dimensional vector basis of a reducible fifteen-dimensional representation (267 

15 ) of point group 43m (Bishop, 1972; El-Betanouny and Wooten, 2008). This representation is 268 

reducible using standard group theoretical methods (Bishop, 1972; Ladd, 2014) to yield the direct sum 269 
of irreducible representations. 270 

15 1 2 13A E T T      (1) 271 

Consideration of the character table of point group 43m shows that only the displacements that 272 

transform as the irreducible representations A1, E and T1 are consistent with point group 4  (Bishop, 273 
1972; Ladd, 2014; El-Betanouny and Wooten, 2008), and furthermore, these only involve 274 
displacements of the anions. Symmetry-adapted basis-vectors were calculated for the (i, j, k) basis 275 
using standard projection operator methods (Ladd, 2014; El-Betanouny and Wooten, 2008), using 276 
results from the Bilbao Crystallographic Server (Aroyo et al., 2006), noting only one of the basis 277 
vectors that transform as the irreducible representations E and T1 is consistent with point group 278 

symmetry 4  with the unique roto-inversion axis parallel to k. These active modes are designated E() 279 
and T1(z) for convenience. The symmetry-adapted basis-vectors in the (i, j, k) basis are illustrated in 280 
Figure 3 where it can be seen that A1 is a breathing mode, E() is a tetrahedral distortion mode and 281 
T1(z) is effectively a rotation around k for small basis vector displacements. The symmetry-adapted 282 
basis-vectors for the four anion positions are listed in Table 2. The amplitude and phase (sign) of the 283 
symmetry-adapted basis-vectors are written d1 for A1, d2 for E() and d3 for T1(z). 284 

 285 

Mode displacements in a crystal structure in space group 43P n at a fixed thermodynamic state 286 

Without loss of generality, in the subsequent discussion, the aristotype SOD framework in space 287 

group 43P n is chosen to be that defined by the selection of the z coordinate ( 21/ 2 3 / 8x z z     288 

) . The methodology is equally valid for a given value of x, where the related z coordinate is calculated 289 

as 21/ 2 1/ 8x x   . The choice of which coordinate to use to define the aristotype crystal 290 

structure is arbitrary, however, using the z coordinate for the anion O1 at (~1/2 - 1/8, ~1/2 - 1/8, 291 
~1/2), or the average of the x and y coordinates of the same atom to define the aristotype x would be 292 

sensible options. For comparison with an actual or hypothetical crystal structure in space group 3Im m , 293 
setting z = 1/2 would be the best choice. In the subsequent analysis, the two tetrahedral sites are taken 294 
separately; site 6d is described in detail, site 6c simply follows in an analogous manner. 295 

Transformation of the aristotype at site 6d to the final orthonormal basis is achieved in three 296 
steps. Firstly, by a translation of the entire TO4 group by (1/4, 0, 1/2) bringing the site 6d to the origin 297 



of the orthonormal crystallographic space. Secondly, an intermediate basis ei is defined by the bond 298 

vectors illustrated in Figure 2d as
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, 3 1 2 e e e  thus bringing the unique 4  299 

axis parallel to e3; transformation matrix M1. For convenience and ease of subsequent matrix 300 

manipulations, the parameter S is defined as    2 21 2 1 2S z      ,  as defined earlier. 301 

1 2 1 2
0

1 2 1 2
0

1 0 0

z

S S

z

S S

    
 
 

     
   
 

M1  (2) 302 

The final basis (i, j, k) is derived from the intermediate basis with a passive rotation of /4 around e3; 303 
rotation matrix R.  304 
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As the both matrix M1 and the rotation matrix R are orthogonal, their product is therefore also 306 
orthogonal, and its inverse is the transpose of the product (Poole, 2014). The absolute coordinates of 307 
the aristotype (primed) in the i, j, k basis, in terms of its fractional coordinates in the orthonormal 308 
crystallographic basis, is therefore given by the product of the matrices (aT1 = aRM1) 309 
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 (4) 310 

where a is the lattice parameter of the hettotype. The coordinates of the aristotype in this basis are T 311 
(0, 0, 0), O1 (-l, -l, l), O2 (l, l, l), O3 (l, -l, -l) and O4 (-l, l, -l) where l = a( - 1/4). 312 

To determine the displacement vectors from the aristotype to the hettotype, the hettotype 313 
fractional coordinates are translated by (1/4, 0, 1/2) and then transformed by aT1 to the new basis. 314 
Subtracting the transformed aristotype coordinates from the corresponding transformed hettotype 315 
coordinates gives the four displacement vectors Oi i = 1 - 4. If the manipulations have been carried 316 

out correctly, the four displacement vectors obey the symmetry operations of point group 4 , for 317 

example, the displacements at O4 are related to those at O1 by the symmetry operation 4 + (0, 0, z). 318 



For the tetrahedral site 6c, the same sequence of operations is carried out, with the translation 319 

vector in this case being (1/2, 0, 3/4), and the intermediate vector basis being defined by '
1
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6 5
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 320 

, '
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r r
, ' ' '

3 1 2 e e e ; transformation matrix M2. The final basis (i, j, k) is derived from the 321 

intermediate basis with a passive rotation of /4 around '
3e . The absolute coordinates of the aristotype 322 

(primed) in the i, j, k basis, in terms of its coordinates in the orthonormal crystallographic basis, is 323 
therefore given by the product of the matrices (aT2 = aRM2) 324 
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 (5) 325 

where a is the lattice parameter of the hettotype. The coordinates of the aristotype in this basis are T 326 
(0, 0, 0), O4 (-l, -l, l), O6 (l, l, l), O7 (l, -l, -l) and O8 (-l, l, -l) where l = a(8 - 1/4). The displacement 327 
vectors Oi i = 4, 6 - 8 follow accordingly.  328 

 Consideration of Table 2 shows the displacement vector O1 is related to the amplitudes and 329 
phase of the symmetry-adapted basis-vectors di via the matrix DO1 where  330 
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and hence 332 
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. (7) 333 

Writing d1, d2 and d3 for the amplitude and phase of the displacements of the symmetry-adapted 334 
basis-vectors associated with the 6c site and noting O4 shown below is given in the (i, j, k) basis, 335 
then 336 
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. (8) 337 

 Furthermore, writing the deviation of the fractional coordinates of the hettotype anion O1 (xh, 338 
yh, zh) from the aristotype as u = xh - x, v = yh - x and w = zh - z and carrying these calculations through 339 
to completion gives di and di directly in terms of u, v, w: 340 
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 . (9) 341 

The absolute coordinates of the two tetrahedral sites for the i, j, k and i, j, k bases are listed in Table 342 
3. 343 

Using the normal mode amplitudes, the derived structural parameters are given by: 344 

(i) Tetrahedral bond lengths 345 
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(ii) Tetrahedral edge lengths of multiplicity two 348 
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(iii) Tetrahedral edge lengths of multiplicity four 351 
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(15) 353 

(iv) Bond angles of multiplicity two 354 
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(v) Bond angles of multiplicity four 357 
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(vi) The intra polyhedral angle by 360 
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. (20) 361 

Utilising crystallographic results from sodalite (Hassan and Grundy), a = 8.882 Å, Al (1/4, 0, 362 
1/2), Si (1/2, 0, 3/4) and O (0.1390, 0.1494, 0.4383), then with the aristotype z = 0.4383 (x = 0.14110, 363 
 = 0.3589), d1 = 0.03806 Å, d2 = 0.00969 Å, d3 = -0.02082 Å, d1 = -0.03263 Å, d2 = 0.02053 Å 364 
and d3 = 0.00529 Å. The observed (recalculated) bond lengths and bond angles are compared with 365 
the calculations from mode decomposition in Table 4 where the agreement is found to be close to 366 
exact.  367 

The aristotype bond length is given by 3a( - 1/4) (1.6753 Å), the calculated quadratic 368 
elongation and tetrahedral angle variance (Robinson et al., 1971) of the AlO4 site (6d) in sodalite are 369 
1.0008 and 1.412 respectively. At the SiO4 site (6c), the corresponding parameters are 1.0025 and 370 
7.492. Approximating the ratio of the observed bond lengths to the aristotype bond length as a 371 
binomial expansion to first order, the dominant term in the expansion is found to be d1()/a( - 1/4). 372 



Hence, with the choice of the aristotype z fractional coordinate made in this analysis, the effect of the 373 
amplitude and phase of d1 and d1 is to increase the Al – O bond length from the aristotype value with 374 
the converse found for the Si – O bond length as d1 > 0 and d1 < 0. The bond length changes are in 375 
agreement with the observed Al – O and Si – O bond lengths in sodalite, and to a good approximation 376 
in this aristotype definition, d1() act as pure breathing modes. The polyhedral distortion that 377 
transforms as the irreducible representation E() is associated with the positive mode amplitudes d2 378 
and d2, where d2 > d2, consistent with the larger quadratic elongation and tetrahedral angle variance 379 
in the SiO4 group in sodalite. The AlO4 tetrahedron is rotated -0.44 away from the aristotype 380 
orientation around k, the SiO4 tetrahedron rotates in the opposite direction by 0.11 (381 

 
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tan ( )
1/ 4

d

a



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 
 ) as d3 < 0 and |d3| > d3. Note that this interpretation as a rotation about the 382 

unique axis is only valid in small displacements of d3 and d3 i.e. in this case, setting aristotype z to 383 
be the z fractional coordinate for the anion at (~1/2 - 1/8, ~1/2 - 1/8, ~1/2). 384 

 The analysis presented above is equally valid for the other three space groups discussed. For 385 

example, if the crystal structure of bicchulite (Sahl, 1980) in space group 43I m is analysed with the 386 
undifferentiated tetrahedral site (T) at (0.25, 0.50, 0.0) and the oxygen anion (O) at (0.1407, 0.1407, 387 
0.4220), mode decomposition yields d1() = 1.873  10-3 Å, d2() = 0.0131 Å, and d3() = -8.4631.873 388 
 10-3 Å, for aristotype z = 0.4220. The calculated and observed bond lengths and angles are T - O = 389 
1.7164 Å calc., 1.716(1) Å obs., O - T - O (multiplicity 2) = 111.615  calc., 111.6(1)  obs. 390 
(typographical error in Table 2 of Sahl (1980) reads 111.9 ), O - T - O (multiplicity 4) = 108.410  391 
calc., 108.4(1)  obs., T - O - T  = 130.712  calc. and obs.. See later section for discussion of mode 392 
and crystallographic degrees of freedom in this space group. 393 

Mode displacements in a crystal structure in space group 43P n as a function of thermodynamic 394 
variable 395 

The methodology detailed above is particularly advantageous in the study of the SOD framework as a 396 
function of thermodynamic variable such as temperature, pressure, or composition in a solid solution. 397 
In these cases, the aristotype is defined at a fixed value of the thermodynamic variable, and the 398 
evolving crystal structure as a function of this variable is derived in terms of the mode amplitudes. 399 

The basis of the analysis is the observation that an aristotype in space group 43P n may be defined for 400 
any set of fractional coordinates (x, x, z) where x and z satisfy the polynomial expression x2 - x - z2 + z 401 
- 1/8 = 0. In mode decomposition as a function of thermodynamic variable, the optimal choice of 402 
aristotype would be therefore be based on the z coordinate of the anion with fractional coordinates 403 
(~1/2 - 1/8, ~1/2 - 1/8, ~1/2) at ambient pressure, for a study in pressure, the lowest temperature, 404 
for a study in temperature, or an end member, for a study in composition. The aristotype is 405 
transformed to absolute coordinates, as shown in the previous section, with lattice parameter aa and 406 
the hettotype is transformed identically, but in this case using its own lattice parameter a. The 407 
displacement vectors from identically labelled anions in the aristotype and hettotype are mode 408 
decomposed using the matrices shown earlier. The expressions for the bond lengths and bond angles 409 
are unchanged from those listed earlier, only the lattice parameter a requires replacing with aa. The 410 
intra-polyhedral angle, however, is a more complex function than shown earlier, as the calculation 411 
involves taking into account the requirement that the site 6c has to be transformed into the i, j, k basis. 412 
Writing a = a - aa, the intra-polyhedral angle is given by: 413 
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. (21) 414 

For the aristotype, where a = 0, the expression reduces to that shown previously for mode 415 
decomposition at a fixed thermodynamic state. 416 

 Taylor (1972) has defined the polyhedral tilt angles (6c,d) for the two T-sites as the angle 417 
between a tetrahedral edge and the closest of the two reciprocal lattice vectors which are co-planar 418 
with the edge in question. The change in 6c,d is a fundamental structural response to a change in 419 
thermodynamic state, and since it is related to the anion fractional coordinates, it can be described as a 420 
function of condensed mode amplitudes and phases. For a hettotype phase, the two polyhedral tilt 421 
angles generally have different magnitudes, however, in the aristotype phase these angles are identical 422 
() and additional mode-related rotational term are required to be included to correctly evaluate the 423 
polyhedral tilt angles at the two T-sites.424 
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The sign for 6c,d is negative for 
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 , otherwise positive. 426 

 427 

The temperature dependence of the crystal structure of sodalite 428 

The methodology of mode decomposition with respect to a reference aristotype phase is illustrated 429 
using the temperature dependence of the crystal structure of sodalite derived from profile fitting of 430 
synchrotron X-ray diffraction data (Hassan et al., 2004). It should be noted that the tabulated bond 431 
lengths and bond angles are not consistent with the fractional coordinates and lattice parameters given 432 



in the publication, differing on average by one estimated standard deviation; the 28 C bond lengths 433 
and angles are particularly in error. For the analysis reported here, all bond lengths and angles were 434 
recalculated from the listed fractional coordinates and lattice parameters. The aristotype was defined 435 
from the 28 C data set, using the z fractional coordinate of 0.43895 and lattice parameter of 8.88696 436 
Å. The crystal structure at each of the 14 temperatures was mode decomposed by the method detailed 437 
in the earlier section. As an example, the matrices, absolute coordinates, displacement vectors, mode 438 
amplitudes and phases, and bond lengths and angles for the 982 C crystal structure are listed in Table 439 
5; observed (i.e. recalculated) bond lengths and angles shown in italics. The agreement between mode 440 
decomposition and calculation (observed) is excellent. 441 

The temperature dependences of the six modes are illustrated in Figures 4a and b, and, as 442 
expected for a phase that is evolving in the absence of a structural phase transition, all are found to 443 
vary monotonically with temperature. Percentage changes in the mode amplitudes are -13.2, 63.1, 444 
136.0, 10.9, 39.5, 216.8 for d1, d2, d3, d1, d2 and d3 respectively. The most significant changes are 445 
associated with the modes that rotate the two tetrahedral sites relative to the aristotype orientation (d3, 446 
d3). The percentage variation of the breathing modes (d1, d1) are unsurprisingly much smaller and 447 
hence show no evidence for disordering of the two tetrahedral sites. The full lines on these figures 448 
show quartic polynomial fits to the mode data, noting that extrapolation beyond the range of the fits is 449 
inadvisable in such high-order polynomials (Hahn, 1977). The dashed lines on the identical figures 450 

show the mode expansivity (
1 di( )

di( ) T
d

d




 ), with the exception of d3, as the magnitude of this mode 451 

passes through 0 at a temperature of T = ~82.18 C. In this case, the mode expansivity is 452 

approximated by 
1 d3

d3 (500 C) T
d

d


 

. Over the entire temperature interval, the mean mode expansion 453 

coefficients are -1.43  10-4 C -1, 8.21  10-4 C -1, 19.22  10-4 C -1, 1.20  10-4 C -1, 4.89  10-4 C -1 454 
and 28.01  10-4 C -1 for d1, d2, d3, d1, d2 and d3 respectively. 455 

Using the polynomial parameterisation for the mode amplitudes and phases, and a quadratic 456 
fit to the lattice parameter variation with temperature, the derived structural parameters were 457 
calculated using the expressions shown earlier for the bond lengths/angles. The mode predicted 458 
variations are illustrated in Figures 5a, b and c as the full lines where they are compared with the 459 
observed results re-evaluated from the published fractional coordinates and lattice parameters. The 460 
agreement is excellent with the mode derived values less than 1 estimated standard deviation of the 461 
experimental values. The temperature invariance of the two T-site – O bond lengths is reproduced by 462 
mode decomposition; the apparent oscillatory behaviour of Al – O is within the scatter of the 463 
experimental results. Deducing a mechanism for the constant T-sites – O bond lengths with 464 

temperature, however, is not easy to determine as 
2

1 r
r T Tr

d d

d d


r r
, and this algebraic expansion is 465 

unfortunately too unwieldy to derive the dominant terms for either case. 466 

 With the exception of the temperature variations of the bond lengths and angles, structural 467 
distortions of the two tetrahedral sites in sodalite were not considered in detail by Hassan et al. (2004). 468 
Re-analysis of their published data shows that the volumes of the tetrahedral sites reduce in a linear 469 
manner with increasing temperature as illustrated in Figure 6 where the volume of the AlO4 470 
tetrahedron varies as (2.7105(1) – 9.6(2)  10-6 T) Å3 (T C) (r2 = 0.99375), and the SiO4 tetrahedron 471 
as (2.1738(3) -1.29(5)  10-5 T) Å3 (T C) (r2 = 0.97843). The polyhedral distortion parameters of 472 
quadratic elongation (QE) and tetrahedral angle variance (TAV) (Robinson et al., 1971) are found to 473 



vary linearly with temperature for both sites (QE Al - O = 1.00057 + 2.413  10-6 T (T C), r2 = 474 
0.99336; QE Si - O = 1.00249 + 4.031  10-6 T, r2 = 0.98836; TAV/degrees2 AlO4 = 2.2345 + 9.23  475 
10-3 T, r2 = 0.99327; TAV/degrees2 SiO4 = 9.6045 + 1.51  10-2 T, r2 = 0.98788) but also vary 476 
monotonically with the corresponding value of the mode amplitudes that transform as the irreducible 477 
representation E, thus providing further evidence for this mode being related to the tetrahedral 478 
distortion. These variations with the E mode amplitude are shown in Figure 7 where the full and 479 
dashed lines are guides to the eye based on quadratic fits to the calculated distortion parameters. It 480 
should be noted that whilst the quadratic elongation and tetrahedral angle variance of the two T-sites 481 
are well separated as a function of temperature, the variation of the individual distortion parameter for 482 
both sites is almost continuous in the E mode amplitude. The lack of high temperature 483 
crystallographic results for other sodalite-structured phases precludes making any conclusion on 484 
whether this is typical or atypical behaviour. 485 

Hassan et al. (2004) considered the structural basis for the thermal expansion of sodalite to be 486 
related to the temperature-induced weakening of the Na – Cl bonds. The migration of the Na ion 487 
towards the six-membered ring causes the tetrahedral sites to rotate relative to one another. Calculated 488 
bond valence sums (Brown, 2002) for the 7 coordinated NaO6Cl site show it to be slightly under-489 
bonded at room temperature, and significantly under-bonded at the highest temperatures measured. 490 
Manual adjustment of the R0 values by allowing them to have a temperature dependence (R0(T) = R0( 491 
25 C ) + cT) (T C) c ~ 9  10-3 pm C-1 for Na – O,  and c ~ 6  10-3 pm C-1 for Na – Cl) gives a 492 
slightly over-bonded, but constant bond valence sum for all temperatures. However, RUM analysis 493 
(Hammonds, 1996; Dove et al., 2007) has found the SOD framework to be intrinsically flexible with 494 
zero-frequency modes throughout much of the Brillouin zone. It therefore seems more plausible that 495 
the thermal expansion of sodalite is governed by the behaviour of these low frequency rigid unit 496 
modes which permit the tetrahedra to rotate relative to one another with the Na moving towards the 497 
six-membered ring to maintain bond valency. Low frequency external modes (< 300 cm-1) have been 498 
observed in the Raman spectrum of sodalite, with a single band measured as low as 59 cm-1, 499 
compared to the “free TO4” modes that lie in the range 350 - 1150 cm-1 (Arai and Smith, 1981). 500 

 501 

Discussion and conclusions 502 

Analysis of the anion fractional coordinates of the SOD framework for sodalite-structured phases in 503 

space group 43P n have shown that an aristotype phase can be derived for sets of fractional coordinates 504 
(x, x, z) for x2 - x - z2 + z - 1/8 = 0. The observed crystal structure of the SOD framework in sodalite-505 
structured phases has been shown to parameterisable in terms of normal mode amplitudes of the ideal 506 
tetrahedral “molecule” for this aristotype crystal structure. Modes consistent with the point group 507 

symmetry of the two symmetry-independent T-sites in sodalite ( 4 ) transform as the irreducible 508 
representations A1, E() and T1(z); a breathing mode, a tetrahedral distortion mode and a rigid body 509 
rotation. The methodology, demonstrated for a phase at a fixed thermodynamic state, is shown to be 510 
simply extended to variable thermodynamic conditions. Fitting the thermodynamic variation of the 511 
mode amplitudes to low order polynomial functions of the thermodynamic variable permit an accurate 512 
interpolation of the SOD framework at unmeasured values of the variable as illustrated in the analysis 513 
of high temperature sodalite data. Extrapolation of the polynomials beyond the fixed extrema of 514 
measured data is not to be recommended, however, it is possible that fitting mode amplitudes to sets 515 
of orthogonal polynomials rather than simple polynomials may permit some level of extrapolation. 516 



 The hierarchy of the SOD framework in space groups 3Im m , 43I m , 3Pm n and 43P n , with 517 
one, two, two and three free anion fractional coordinates respectively, however, illustrates a surprising 518 
result with the mode analysis. The expectation that the crystallographic degrees of freedom would 519 
equal the number of active modes initially does not appear to hold. In the body-centred space group520 

3Im m (x + u, x + u, 0.5) two modes are found (A1 and E) with one free fractional coordinate, and in521 

43I m (x + u, x + u, 0.5 + w) three modes are found (A1, E and T1) with two free fractional coordinates. 522 
The disagreement between crystallographic and mode degrees of freedom is, however, only 523 
superficial, as analysis of the ratio of A1/E mode amplitudes in the body-centred space groups shows 524 
them to be in a fixed ratio, for example setting the aristotype z = 0.5 this ratio is (2 - 2)/(1 + 2) 525 
(~0.2426) thus reducing the mode degrees of freedom by one. For other choices of aristotype z, the 526 
ratio will be different, for example setting the aristotype z = 0.4220, the z fractional coordinate of the 527 
anion in bicchulite at room temperature (Sahl, 1980), the ratio is ~0.1430. In the primitive space 528 

groups the mode degrees of freedom matches the crystallographic degrees of freedom; 3Pm n (x + u, x 529 
+ v, 0.5) two independent mode amplitudes are found (A1 and E()) for two free anion fractional 530 

coordinates, 43P n (x + u, x + v, 0.5 + w) three independent modes are found (A1, E() and T1(z)) for 531 
three free anion fractional coordinates. 532 

 The general applicability of mode decomposition to characterise the SOD framework in other 533 
sodalite-structured, lower symmetry phases than those discussed here requires further detailed 534 
analysis. However, a simple global optimisation strategy shows that the ambient temperature crystal 535 

structure of tugtupite (Na4AlBeSi4O12Cl) (Antao et al, 2004b) in space group 4I is amenable to this 536 
analysis with regular tetrahedra found for the 3 T-sites (Be, Al, Si) at the expense of crystal-537 
chemically implausible bond lengths. In this respect, this derived crystal structure is similar to that 538 
found for garnet (Knight, 2019) in that it is topologically consistent i.e. a prototypic crystal structure 539 
but not an aristotype crystal structure in the strict sense of Megaw (1973). Observed and optimised 540 
aristotype crystallographic parameters for tugtupite at 33 C are listed in Table 6. 541 

 The belief that pure silica sodalite represents the highest symmetry SOD framework in space 542 

group 3Im m  (Richardson et al., 1988, Fischer and Bauer, 2009) requires comment since there are no 543 

differences in the systematic absence conditions for space groups 3Im m and 43I m . Table 1 shows that 544 

in space group 3Im m the anion fractional coordinate is (x, x, 1/2) and in 43I m (x, x, z) (z ~ 1/2). The 545 
single crystal X-ray diffraction results found z = 0.505 (Richardson et al., 1988), however this 546 
fractional coordinate was set to zero despite an estimated standard deviation of 0.001 i.e. five standard 547 
deviations from zero. Justification for setting the fractional coordinate to zero was not given in the 548 
work of Richardson et al. (1988) and confirmation of their choice of space group is required. 549 
Providing data were collected at a suitable X-ray wavelength to excite anomalous scattering from 550 
silicon, the point group symmetry of a large volume of reciprocal space should provide evidence for 551 
the correct space group of pure silica sodalite due to the breakdown of Friedel’s/Bijvoet’s law. 552 
Despite the low atomic number of silicon, and hence the expectation that anomalous scattering effects 553 
will be small, Lang (1965) has shown however, that imaging of Brazil twins in quartz is possible 554 
using Co K or Cu K radiation due to strong anomalous dispersion associated with certain 555 
reflections. 556 

 The lack of a unique set of anion fractional coordinates for the aristotype phase for the 557 
sodalite structure probably renders distance least squares modelling unreliable to predict the evolution 558 
of the crystal structure when the input data is purely based on lattice parameter data. It is close to 559 



twenty years since sodalite has been studied crystallographically at high temperature and it would be 560 
timely to remeasure again, including a structural investigation of the bromine and iodine analogues in 561 
addition. The ease of bulk synthesis of sodalite (Stein et al., 1992) would permit samples suitable for 562 
neutron powder diffraction to be produced. Al and Si can be easily distinguished using neutron 563 
diffraction due to significantly different scattering lengths, whereas Si4+ and Al3+ are to first order 564 
isoelectronic form factors for X-ray diffraction. The use of time-of-flight neutron powder diffraction 565 
with simultaneous high-Q and low-Q coverage would allow any site occupancy variation at the T-566 
sites as a function of temperature to be decorrelated from the atomic displacement parameters, should 567 
any site disordering occur. Structural results from Na8[Si6Al6O24]I2 could then be compared with the 568 
results of distance least squares modelling (Dempsey and Taylor, 1980) to investigate the validity of 569 
the method for this particular structure type. 570 

The measurement of Cl-, Br-, I-sodalite as a function of temperature coupled with mode 571 
analysis may shed more light on the mechanisms underlying the thermal expansion behaviour of these 572 
materials. 573 
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Table 1. Fractional coordinates for the T-sites and coordinating anions of the SOD framework in 701 

space groups 3Im m , 43I m , 43P n and 3Pm n . 702 

Space group T-site Anion site Coordinating anions 

3Im m  12d 1/4, 0, 1/2 24h x, x, 1/2 O1 x, x, 1/2 

 4m2   x ~ 0.14 O2 x, -x, 1/2 
   O3 1/2-x, 0, 1/2-x 
   O4 1/2-x, 0, 1/2+x 
     

43I m  12d 1/4, 0, 1/2 24h x, x, z O1 x, x, z 

 4  x ~ 0.14 O2 x, -x, 1-z 
  z ~ 0.44 O3 1/2-x, -1/2+z, 1/2-x 
   O4 1/2-x, 1/2-z, 1/2+x 
     

43P n  6d 1/4, 0, 1/2 24i x, y, z O1 x, y, z 

 4  x ~ y ~ 0.14 O2 x, -y, 1-z 
  z ~ 0.44 O3 1/2-x, -1/2+z, 1/2-y 
   O4 1/2-x, 1/2-z, 1/2+y 
 6c 1/2, 0, 3/4  O4 1/2-x, 1/2-z, 1/2+y 
 4   O6 1/2+x, -1/2+z, 1/2+y 
   O7 1-z, x, 1-y 
   O8 z, -x, 1-y 
     

3Pm n  6c 1/4, 0, 1/2 24k x, y, 1/2 O1 x, y, 1/2 

 4m2  x ~ y ~ 0.14 O2 x, -y, 1/2 

   O3 1/2-x, 0, 1/2-y 

   O4 1/2-x, 0, 1/2+y 
 6d 1/2, 0, 3/4  O4 1/2-x, 0, 1/2+y 
 4m2   O6 1/2+x, 0, 1/2+y 
   O7 1/2, x, 1-y 
   O8 1/2, -x, 1-y 
     

 703 

 704 

  705 



Table 2. Symmetry-adapted basis-vector displacements for modes of point group 43m that are 706 

consistent with point group 4 2m (A1, E()) and 4  (A1, E(), T1(z)). 707 

Irreducible 
representation 

Displacement 

 i j k 
A1    
O1 -d1 -d1 d1 
O2 d1 d1 d1 
O3 d1 -d1 -d1 
O4 -d1 d1 -d1 

    
E()    
O1 -d2 -d2 -2d2 
O2 d2 d2 -2d2 
O3 d2 -d2 2d2 
O4 -d2 d2 2d2 

    
T1(z)    
O1 d3 -d3 0 
O2 -d3 d3 0 
O3 d3 d3 0 
O4 -d3 -d3 0 

    
  708 



Table 3. Absolute coordinates for the 6c, 6d tetrahedral sites in sodalite (T-sites at the origin). 709 

6d (i, j, k basis) 
    

O1 -x - d1 - d2 + d3 O2 x + d1 + d2 - d3 
 -x - d1 - d2 - d3  x + d1 + d2 + d3 
 x + d1 - 2d2  x + d1 - 2d2 
    
O3 x + d1 + d2 + d3 O4 -x - d1 - d2 - d3 
 -x - d1 - d2 + d3  x + d1 + d2 - d3 
 -x - d1 + 2d2  -x - d1 + 2d2 
    

6c (i, j, k basis) 
    

O4 -x - d1 - d2 + d3 O6 x + d1 + d2 - d3 
 -x - d1 - d2 - d3  x + d1 + d2 + d3 
 x + d1 - 2d2  x + d1 - 2d2 
    
O7 x + d1 + d2+ d3 O8 -x - d1 - d2 - d3 
 -x - d1 - d2 + d3  x + d1 + d2 - d3 
 -x - d1 + 2d2  -x - d1 + 2d2 

x = a(-0.25 + (0.375 - z + z2)0.5) 710 

 711 

 712 

Table 4. Comparison of derived structural parameters for sodalite based on crystal structure 713 
refinement and mode decomposition. 714 

 Hassan and Grundy (1984) Mode decomposition 
Al - O/Å 1.742 1.7416 
O - Al - O/degrees (mult. 2) 111.0 111.04 
O - Al - O/degrees (mult. 4) 108.7 108.69 
Si - O/Å 1.620 1.6196 
O - Si - O/degrees (mult. 2) 113.0 113.03 
O - Si - O/degrees (mult. 4) 107.7 107.72 
Al - O - Si/degrees 138.2 138.19 
   

 715 

716 



Table 5. Details of mode decomposition for the crystal structure of sodalite at 982 C (Hassan et al., 717 
2004). Bond lengths and angles recalculated from the published lattice parameter and fractional 718 
coordinates are shown in italics. 719 

6d i, j, k basis 6c i, j, k basis 
M1 0 α β

0 β α
1 0 0

 
  
  

  

M2 α β 0
β α 0

0 0 1

 
   
  

 

R 1 1
0

2 2
1 1

0
2 2

0 0 1

 
 
 
 
 
 
 
 
 

  

R 1 1
0

2 2
1 1

0
2 2

0 0 1

 
 
 
 
 
 
 
 
 

  

O1 aristotype/Å 0.96677

0.96677

0.96677

 
  
 
 

  

O4 aristotype/Å 0.96677

0.96677

0.96677

 
  
 
 

 

O1 hettotype/Å 1.14188

0.90848

0.95150

 
  
 
 

 

O4 hettotype/Å 1.05737

0.87499

0.86059

 
  
 
 

 

O1/Å 0.17511

0.05829

0.01527

 
 
 
  

 

O4/Å 0.09060

0.09178

0.10618

 
 
 
  

 

    
d1/Å 0.03385 d1/Å -0.03579 
d2/Å 0.02456 d2/Å 0.035200 
d3/Å -0.11670 d3/Å -0.09119 
    
Al - O/Å 1.74200, 1.74201 Si - O/Å 1.61995, 1.61998 
O – Al – O/degrees (2) 113.785, 113.788 O – Si – O/degrees (2) 115.821, 115.823 
O – Al – O/degrees (4) 107.358, 107.357 O – Si – O/degrees (4) 106.393,106.392 
Si – O - Al 143.349, 143.347   
 = 0.917894,  = 0.396825, aa = 8.88696 Å, z = 0.43895 720 

  721 



Table 6. Comparison of the observed fractional coordinates in tugtupite at room temperature (Antao 722 
et al., 2004b) with an aristotype with ideal tetrahedral geometry at the three symmetry-independent T-723 
sites. 724 

  Observed structural 
parameters 

Optimised aristotype 
structural parameters 

Si (8g) x 0.7461 0.76531 
 y 0.0133 0.01675 
 z 0.5051 0.50229 
O1 (8g) x 0.1051 0.14403 
 y 0.1367 0.12393 
 z 0.4433 0.45296 
O2 (8g) x 0.1562 0.16452 
 y 0.4641 0.47504 
 z 0.1503 0.13540 
O3 (8g) x 0.4249 0.42813 
 y 0.1430 0.16470 
 z 0.1391 0.12624 
Be - O2/Å  1.640 1.7580 
Al - O3i/Å  1.705 1.8984 
Si - O2iii/Å  1.560 1.5083 
Si - O1i/Å  1.620 1.5083 
Si - O3iv/Å  1.645 1.5083 
Si - O1ii/Å  1.666 1.5083 
O2 - Be - O2i/ 4  106.84 109.471 
O2 - Be - O2ii/ 2  114.87 109.471 
O3i - Al - O3ii/ 4  109.39 109.471 
O3i - Al - O3iii/ 2  109.64 109.471 
O1i - Si - O2iii/   106.01 109.471 
O2iii - Si - O3iv/  117.34 109.471 
O1i - Si - O2iii/  109.06 109.471 
O1i - Si - O3iv/  108.69 109.471 
O1i - Si - O1ii/  108.85 109.471 
O1ii - Si - O3iv/  106.69 109.471 

Space group: 4I , a = 8.62597 Å, c = 8.8564 Å  725 

Al (2d): 0.00, 0.50, 0.75, Be (2c): 0.00, 0.50, 0.25 726 

O1i: 1 - y, x, 1 - z; O1ii: 1 - x, -y, z 727 

O2i: -x, 1 - y, z; O2ii: 1/2 - y, 1/2 + x, 1/2 - z; O2iii: 1/2 + x, -1/2 + y, 1/2 + z 728 

O3i: y, 1 - x, 1 - z; O3ii: -1/2 + x, 1/2 + y, 1/2 + z; O3iii: -y, x, 1 - z; O3iv: 1/2 + y, 1/2 - x, 1/2 - z 729 
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Figure Captions 731 

Fig. 1 732 

The crystal structure of sodalite at room temperature and pressure (Hassan and Grundy, 1984) viewed 733 
down [010] with [100] vertical. SiO4 tetrahedra are shown as crosses, AlO4 tetrahedra as orthogonal 734 
lines. Sodium cations are illustrated as plain circles, chlorine anions as straight lines and oxygen 735 
atoms as orthogonal lines. 736 

 737 

Fig. 2 738 

2a: The aristotype SOD topology in space group 3Im m with undifferentiated T-site (12 d) and the 739 

direction of the 4 axis shown as an arrow. 740 

2b: The structural topology of the hettotype phase in space group 3Pm n with differentiated T-sites (6 c 741 

and 6 d). The directions of the two 4 axes from the symmetry independent tetrahedra are shown as 742 
arrows. 743 

2c: The structural topology of the hettotype phase in space group 43I m with undifferentiated T-site 744 

(12 d) and the direction of the 4 axis shown as an arrow. 745 

2d: The structural topology of the hettotype phase in space group 43P n (the sodalite structure) with 746 

differentiated T-sites (6 c and 6 d). The directions of the two 4 axes from the symmetry independent 747 
tetrahedra are shown as arrows. 748 

For atom labelling see Table 1. The active irreducible representations relating two crystal structures 749 
are shown in Miller-Love notation (Stokes and Hatch, 1988) and designated by an arrow. 750 

 751 

Fig. 3 752 

Symmetry adapted basis vectors of the isolated TO4 group consistent with point group symmetry 4 . 753 
Upper left shows the orthonormal basis vectors used in the mode parameterisation with k 754 
perpendicular to the page. A1 is a breathing mode with displacement amplitude d1(), E() a 755 
tetrahedral distortion mode with displacement amplitude d2(), and T1(z) is a rigid body rotation 756 
around k for small basis vector displacements d3(). 757 

 758 

Fig. 4 759 

The temperature dependence of the mode displacement amplitudes and phases of the SOD framework 760 
of sodalite at high temperature derived from the crystallographic results of Hassan et al. (2004). 761 
Figure 4a illustrates the modes in the AlO4 tetrahedron, Figure 4b the modes in the SiO4 tetrahedron. 762 
In both cases, the calculated mode amplitudes are shown as circles, with the full lines on the figure 763 
showing quartic fits to these data. The mode expansion coefficients are shown as the dashed lines on 764 
the figure. 765 



 766 

Fig. 5 767 

Comparison of the observed, derived structural parameters of sodalite at high temperature (Hassan et 768 
al., 2004) (shown as circles) with those calculated by mode decomposition (as the full lines). In all 769 
cases the bond lengths and angles were recalculated from the published lattice parameters and 770 
fractional coordinates as the tabulated data were inconsistent with these results. Figure 5a shows the 771 
results from the AlO4 tetrahedron, Figure 5b the results from the SiO4 tetrahedron, whilst Figure 5c 772 
shows the intra-polyhedral rotation angle. The agreement between the observed data and the 773 
temperature variation calculated by mode parameterisation is excellent for all temperatures indicating 774 
the ability for mode decomposition to accurately interpolate the structural parameters at intermediate 775 
temperatures. 776 

 777 

Fig. 6 778 

The linear temperature dependences of the tetrahedral volumes of the AlO4 and SiO4 tetrahedra in 779 
sodalite. 780 

 781 

Fig. 7 782 

The correlation of the structural distortion parameters of quadratic elongation and tetrahedral angle 783 
variance (Robinson et al., 1971) with the amplitudes of the E() normal modes in sodalite at high 784 
temperatures (Hassan et al., 2004). Despite the magnitudes of the quadratic elongation and tetrahedral 785 
angle variance of the two tetrahedra being well separated in temperature, they follow identical trends 786 
in the E() normal mode amplitudes. Further work is necessary to determine whether this is a 787 
common structural response of sodalite-structured phases.  788 
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Figure 4b 803 
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