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Abstract: Stroke is one of the leading causes of death and disability worldwide. However, treatment

options for ischemic stroke remain limited. Matrix-metalloproteinases (MMPs) contribute to brain

damage during ischemic strokes by disrupting the blood-brain barrier (BBB) and causing brain

edemas. Carnosine, an endogenous dipeptide, was found by us and others to be protective against

ischemic brain injury. In this study, we investigated whether carnosine influences MMP activity.

Brain MMP levels and activity were measured by gelatin zymography after permanent occlusion

of the middle cerebral artery (pMCAO) in rats and in vitro enzyme assays. Carnosine significantly

reduced infarct volume and edema. Gelatin zymography and in vitro enzyme assays showed that

carnosine inhibited brain MMPs. We showed that carnosine inhibited both MMP-2 and MMP-9

activity by chelating zinc. Carnosine also reduced the ischemia-mediated degradation of the tight

junction proteins that comprise the BBB. In summary, our findings show that carnosine inhibits MMP

activity by chelating zinc, an essential MMP co-factor, resulting in the reduction of edema and brain

injury. We believe that our findings shed new light on the neuroprotective mechanism of carnosine

against ischemic brain damage.

Keywords: ischemic stroke; matrix-metalloproteinases; carnosine; brain edema; tight junction

1. Introduction

Ischemic stroke is associated with high morbidity and mortality [1–3]. It also con-
tributes to the social burden of disability that persists after strokes. Tissue-type plasmino-
gen activator (tPA) and intra-arterial thrombectomy have been used to treat ischemic
stroke [4–6]. However, these approaches have limitations due to a narrow therapeutic
time window of several hours and side effects such as bleeding [7–10]. There is an ur-
gent need for the development of a novel therapeutic agent for ischemic stroke. Cerebral
edema can be a complication of cerebral infarction. The incidence of cerebral edema has
been reported to range from 10–54% in stroke patients and can contribute significantly
to irreversible injury [11,12]. Not all stroke patients develop significant edema. In those
that do, usually large strokes, edema contributes significantly to morbidity and mortal-
ity [13–15]. Reducing edema has been proposed as an important therapeutic maneuver
that may reduce morbidity and mortality and in severe cases, it may also reduce the
utilization of surgical treatments, such ventricular drains and hemicraniectomy. Tissue
change caused by edema-induced compression results in neurological deterioration [15].
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Cell swelling may not occur in mild (non-disabling) strokes, and the reduction in cerebral
blood flow required to induce cell swelling is thought to be more severe than that required
to produce acute neurological symptoms [16–18]. An imbalance of ions, such as sodium,
leads to intracellular osmosis and can cause water to accumulate and cause the cells to
swell [19]. Vascular permeability increases due to the destruction of cells constituting the
blood-brain barrier, and a consequent increase in osmotic pressure in the extracellular
space induces brain edema [20,21]. Furthermore, brain edema caused by capillary endothe-
lial dysfunction leads to the breakdown of the blood-brain barrier (BBB) [22,23]. Tight
junction (TJ) proteins, a major component of the BBB, play an important role in sealing
the extracellular space. TJ proteins are mainly composed of transmembrane proteins such
as claudins, and multiprotein junctional complexes such as zonula occludens (ZOs). TJ
proteins contribute significantly to the overall integrity of the BBB [24,25]. TJ proteins of the
BBB can be disrupted during ischemic stroke, allowing more vascular-derived substances
into the brain [26–28]. TJ proteins were also found to be decreased and degraded in brain
endothelial cells following ischemic insult of oxygen-glucose deprivation (OGD) [29,30].

Activities of matrix metalloproteinase-2 and -9 (MMP-2 and MMP-9) significantly
increased during ischemic stroke in both animal models and patients [31–33]. MMP-2
and MMP-9 are calcium-dependent zinc-containing endopeptidases that belong to the
MMP family. MMPs are thought to play an important role in cell behavior, such as
proliferation, migration (adhesion or dispersion), differentiation, angiogenesis, apoptosis,
and host defense [33–37]. MMPs are involved in the disruption of the extracellular matrix in
ischemic strokes, which leads to changes in the blood vessel wall and may loosen the matrix
around cells, facilitating cellular swelling [38]. High MMP levels in the blood during the
acute phase of an ischemic stroke raises the risk of secondary bleeding, which contributes
to hemorrhagic transformation [39]. Furthermore, increased MMP expression has been
linked to disruption of BBB permeability and the formation of brain edema following
focal cerebral ischemia [40]. A previous study found that pharmacological inhibition of
MMPs reduces brain edema after focal cerebral ischemia in rats [41]. Increased MMP
activity in strokes results in cleavage and disruption of TJ proteins, contributing to brain
damage. The loss of TJ protein was reduced when MMP activity was inhibited after focal
ischemia [42–44].

Since ischemic stroke injury has been associated with multiple simultaneous and
sequential pathological processes, there have been considerable efforts to develop drug
candidates that have multiple mechanistic targets. For example, biphalin, a non-selective
opioid receptor agonist, has exhibited protective effects against ischemic stroke by reducing
cerebral infarct volume, cerebral edema, and neurological deficits in animal models. It
also reduces protein kinase C-mediated neuronal cell volume increase [45–49]. We and
others have previously shown that carnosine, an endogenous dipeptide composed of
alanine and histidine, has a protective effect against ischemic brain injury using animal
and cellular models of stroke. Improvement in behavioral and histological outcomes in
rat/mouse models of ischemic stroke, direct protection against ischemic injury in pri-
mary neurons and astrocytes, and modulation of ischemic cell death mechanisms such
as excessive autophagy supports a neuroprotective function of carnosine in ischemic
stroke [29,31,50–52]. Carnosine is known to have pleiotropic biological activities, such as
antioxidant, anti-inflammatory, improving muscle function, and reducing neurological
impairment. Carnosine administered intravenously alleviated brain injury in both perma-
nent and transient ischemic rat models [50]. Furthermore, carnosine has been shown to
have a clinically broad treatment period, with no significant side effects or toxicity [29].
We previously found that pre-treated carnosine inhibits MMPs in a mouse model of focal
ischemia [31]. However, no studies have been conducted to determine the mechanism by
which carnosine inhibits MMPs or whether it has a direct effect on edema.

The purpose of this study was to investigate if carnosine treatment could reduce in-
farct volume and brain edema caused by ischemic stroke. The effect of carnosine on MMP
activity, which contributes to edema formation, was investigated using brain homogenate
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zymography and in vitro enzyme assays. The inhibition of tight junction protein degrada-
tion in brain endothelial cells by carnosine following ischemic stimuli was also studied.

2. Results

2.1. Reduction of Infarct Volume in Ischemic Brain

We used middle cerebral artery occlusion (MCAO) to induce ischemic stroke in a rat
model to confirm the effect of carnosine on cerebral infarction (Figure 1). During induction
of ischemic stroke, cerebral blood flow, temperature, and body weight were monitored
and maintained in a recommended range. Rats received carnosine (1000 mg/kg) or saline
(control group) intravenously 3 h after MCAO by tail vein. Infarct volume was measured
using triphenyltetrazolium chloride (TTC) staining at 24 h. Carnosine treatment at 3 h after
ischemic onset significantly reduced cerebral infarction in ischemic stroke, consistent with
our previous observations [36,38].

Figure 1. Protective effect of carnosine on infarct volume after focal cerebral ischemic injury in

rats. After 3 h of MCAO, rats were administered saline (CON) and carnosine (CAR) intravenously.

Cerebral infarct size was identified by TTC staining after ischemic injury in a permanent ischemic

model during 24 h and was analyzed by the Image J software program. The ischemic stroke-induced

cerebral infarct volume in CON groups (n = 15) was reduced in the group treated with CAR (n = 15).

Data are presented as the mean ± SEM. * p < 0.05 vs. CON.

2.2. Reduction of Edema

We observed that carnosine was protective against brain edema (Figure 2A). In is-
chemic strokes, brain volume is larger where edema occurs compared to normal brain, as
the water content increases and the cells swell [53]. After MCAO, we observed that the
ipsilateral hemisphere was more swollen than the contralateral one using TTC staining.
Edema ratio was calculated as the ratio of ipsilateral and contralateral hemisphere volume.
Edema was significantly reduced in carnosine-treated rats, compared with controls.

2.3. Effect of Carnosine on Brain Water Content

Formation of edema with increased brain water content was observed in the early
stages of cerebral ischemia in animal models of ischemic stroke and some stroke pa-
tients [12,19]. To measure the water content, the brain was isolated and weighed following
MCAO. After drying for 24 h, the weight of the brain was measured again, and the water
content was calculated (Figure 2B). In both groups, the ipsilateral area showed higher water
content than the contralateral area, reflecting the ischemic injury. The water content of the
ipsilateral, compared to the contralateral hemisphere, was significantly decreased in the
carnosine-treated rats.
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Figure 2. Reduction of cerebral edema and water content in the ischemic brain by carnosine. (A) After 24 h of ischemic

stroke, the edema ratio of the isolated brain was compared between control and carnosine-treated rats (n = 10). Edema

ratio was calculated as ischemic hemisphere (ipsilateral)/non-ischemic hemisphere (contralateral). The ratio of edema in

the group treated with carnosine (CAR) was decreased, compared to the control group (CON). (B) The water content of

each hemisphere was also measured 24 h after induction of ischemic stroke (n = 5). Each hemisphere was initially weighed

immediately after isolation (wet weight). After drying at 95 ◦C for 24 h, the hemispheres were re-weighed (dry weight).

Water content was calculated as ((wet weight − dry weight)/wet weight) × 100 (%). The water content of the ipsilateral

area (IPS) in the control group was significantly increased, compared to the contralateral area (CNT). Data are presented as

the mean ± SEM. * p < 0.05 vs. CON (A) and CNT of CON (B), # p < 0.05 vs. IPS of CON.

2.4. Suppression of MMP Activity by Carnosine in Ischemic Brain

The activity of MMP-2 and MMP-9 increased in the ischemic brain. It was also
associated with edema and destruction of the BBB [40,41]. To measure the MMP activity,
we conducted gelatin zymography using brain homogenates following ischemia (Figure 3).
Gelatin zymography showed that both MMP-2 and MMP-9 activities were significantly
increased in the ipsilateral hemisphere following ischemic stroke. However, post-treatment
of carnosine at 3 h after MCAO significantly reduced the activity of MMP-2 in the ipsilateral
area compared with the control groups. The activity of MMP-9 was found to increase in
the ipsilateral area, but there was no significant difference between the carnosine-treated
and the control groups.
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Figure 3. Ex vivo inhibition of MMP activity by carnosine. After the ischemic brain was separated,

gelatin zymography was performed to confirm the activity of MMP-2 and MMP-9 (n = 5). We

measured the activity of MMPs via a non-stained region. The band (non-stained region) was

analyzed by the Image J software program. MMP-2 showed significantly increased activity in the

ipsilateral area (IPS), compared to the contralateral area (CNT). MMP-2 activity in the ipsilateral area

of the carnosine treated group (CAR) was reduced compared to the control group (CON). MMP-9

activity increased in the ipsilateral area in both groups. Data are presented as the mean ± SEM.

* p < 0.05 vs. CNT of each group, ** p < 0.01 vs. CNT of each group, ## p < 0.01 vs. IPS of CON.

2.5. Carnosine-Inhibition of MMPs in Enzymatic Assays

We observed that carnosine significantly inhibited the activity of MMPs in rat brain
homogenates isolated following ischemic stroke. Next, we investigated the direct effect of
carnosine on MMP activity using a fluorescent enzymatic assay with recombinant mouse
MMP-9 and MMP-2. In both MMP-2 and MMP-9, the carnosine-treated group showed
lower fluorescence intensity than the control groups, reflecting that carnosine significantly
inhibited the enzyme activity in a dose-dependent manner (Figure 4A).

2.6. Inhibitory Effect of Carnosine on Zinc-Mediated MMP Activity

MMPs are calcium-dependent endopeptidases, containing zinc atoms in the catalytic
site [54]. Interestingly, carnosine is known to chelate zinc and copper ions [55]. To in-
vestigate if carnosine inhibition of MMP activity was mediated by zinc chelation, we
added an excessive amount of zinc and measured the enzyme activity (Figure 4B). The
reduction of activities of MMP-2 and MMP-9 in carnosine-treated groups (CAR 30 mg/mL
and 60 mg/mL) was significantly restored by the addition of excessive zinc, regardless
of the source (ZnSO4 and ZnCl2), suggesting that carnosine may inhibit MMP activity by
chelating zinc required for the enzymatic reaction.
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Figure 4. Inhibition of MMP activity by zinc chelation of carnosine. The gelatinase/collagenase assay was used to confirm

inhibition of MMP activity by carnosine. (A) The activity of MMP-2 and MMP-9 was measured by fluorescence (n = 3).

In the group treated with carnosine (CAR), the activity decreased compared to the control group (CON) depending on

the concentration. Control samples without enzyme were used to determine fluorescence. (B) Excessive zinc was added

to confirm that carnosine inhibits activity because carnosine is a chelator of zinc (n = 5). It was observed that the activity

of MMPs significantly reduced by carnosine was increased by the addition of zinc, so carnosine was found to inhibit the

activity of MMPs during chelation of zinc. Data are presented as the mean ± SEM. ** p < 0.01 vs. control group. # p < 0.05

vs. corresponding carnosine-treated group in the absence of excessive amount of zinc.

2.7. Protective Effect of TJ Proteins by Carnosine in OGD Exposure

We observed decreased activity of MMPs in carnosine treated rats after MCAO. In
ischemic stroke, TJ proteins of endothelial cells were disrupted by increased activity of
MMPs. In vitro ischemic stimuli of 6 h-OGD significantly reduced the level of TJ proteins,
such as ZO-1 and claudin-5 in brain endothelial cells (bEnd.3 cells), as found in confocal
microscopy (Figure 5). Of note, when the cells were treated with carnosine (5 mM) for
18 h and then exposed to OGD for 6 h in the presence of carnosine, the extents of ischemic
degradation of TJ proteins were significantly reduced.
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Figure 5. Effect of carnosine on the injury of TJ proteins by OGD exposure in brain endothelial cells. bEnd.3 cells were

pretreated with carnosine (CAR) for 18 h before OGD exposure of 6 h. Control cells (CON) were treated with PBS instead of

carnosine. The degree of damage to TJ protein after OGD was measured using the ImageJ software program. OGD-exposed

bEnd.3 cells were immunostained with an antibody (red) for ZO-1 (A) and claudin-5 (B) and visualized by confocal

microscopy (n = 3). Cell nuclei were stained with DAPI (blue). Scale bar: 50 µm. Representative images are shown. Data are

presented as mean ± SEM. ** p < 0.01 and *** p < 0.001 vs. CON of PBS. # p < 0.05 vs. OGD of PBS.

3. Discussion

In the current study, we demonstrated the beneficial effect of carnosine on edema
and MMP activation in ischemic stroke. Intravenous administration of carnosine 3 h
after MCAO in rats significantly reduced cerebral infarct volume, edema, and brain water
content. Carnosine also suppressed MMP activity, which was restored after the addition
of excess zinc. Carnosine protects against ischemia induced TJ protein degradation in
brain endothelial cells (bEnd.3 cells), indicating that carnosine may protect the BBB from
ischemia-induced damage.

Although brain edema does not occur in all stroke patients, it may negatively impact
stroke recovery [11,56]. Edema may be initiated in the acute phase of an ischemic stroke
and can last for several days, influencing the degree of neurological deficit and extent of
recovery [57]. Increased activity of MMPs in ischemic stroke contributes to brain edema
and BBB damage [38]. In addition to previous evidence for multimodal protection of
carnosine against ischemic stroke, it has provided novel protection potential against brain
edema and MMP activation in ischemic conditions [29,31,50–52].

In the enzyme assay using recombinant MMPs, carnosine significantly inhibited both
MMP-2 and MMP-9 activity (Figure 4). While carnosine significantly reduced MMP-
2 activity post-ischemia in rat brain homogenates, there was no statistically significant
reduction in MMP-9 activity (Figure 3). This might be due to the relative contribution of
different MMPs during ischemic damage while we determined MMP activity at 24 h after
ischemic onset with 3 h-post-treatment of carnosine in our rat models. The actions and
phases of MMP-2 and MMP-9 differ in the case of an ischemic stroke. MMP-9 is linked
to ischemic stroke-induced inflammation and plays a significant role in BBB destruction.
MMP-9 activity is high in the acute phase of an ischemic stroke, which increases the risk of
bleeding. MMP-2, on the other hand, is important in the later stages of ischemia, during
the formation of glial scar within the damaged area [58–61]. MMP-2 is a constitutive
enzyme, whereas MMP-9 is an inducible enzyme. Inducible enzymes are dormant until
the neuroinflammation process starts. MMP-2 and MMP-9 play multiple roles due to the
complex nature of their interactions with tissues during development, injury, and repair.
They participate in the injury process early on and contribute to recovery at later stages.
Treatment strategy planning is complicated due to this dual role [62,63]. Our findings are
limited because we did not include the various phases of ischemic stroke; however, we
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observed that carnosine treatment at 3 h after ischemic onset significantly reduced MMP-2
activity, inhibiting edema and cerebral infarction determined at 24 h after ischemia. Further
study is warranted to determine the dynamics of inhibitory effects of carnosine on different
stages of MMP activation during ischemic stroke.

Carnosine significantly inhibited MMP activity in vitro, which was consistent with the
inhibitory effect of carnosine on MMP activity in vivo. As carnosine is known to be a metal
chelator, this inhibitory mechanism might be mediated by the chelation of catalytic zinc,
which is required for MMP activity [64,65]. The reduced enzymatic activities of MMPs
caused by carnosine were found to be restored by the addition of an excessive amount of
zinc. These findings suggest that carnosine chelates zinc and thus inhibits MMP activity.
Simultaneously, it was demonstrated that excessive zinc treatment had no effect on MMP
basal activity (Figure 4B). Given that zinc dysregulation was linked to cell damage and
neurotoxicity in a variety of pathological conditions [55], the regulatory effect of carnosine
on zinc levels may be beneficial in these circumstances.

Increased MMP activity in endothelial cells damages TJ proteins like ZO-1 and claudin-
5, causing BBB damage and brain edema [30,66]. TJ proteins are essential for proper BBB
function. However, when the TJ protein is damaged by factors such as ischemic stress and
xenobiotics, permeability increases and the brain may not be adequately protected [67–70].
We used sub-lethal ischemic stimuli of 6 h of OGD that did not significantly reduce cell
viability [26], and then observed the degradation of ZO-1 and claudin-5 with a confocal
microscope. Carnosine significantly inhibited ischemic TJ degradation while maintaining
cell viability, implying that carnosine may protect BBB function.

In conclusion, our findings indicate that carnosine reduces brain edema and MMP
activation and adds to the mounting experimental data that supports a robust protective
role of carnosine in brain ischemia.

4. Materials and Methods

4.1. Materials

Carnosine (L-carnosine), gelatin, and TTC (triphenyltetrazolium chloride) were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). Suture was purchased from Doccol
Corp (Redlands, CA, USA). Gelatin-sepharose bead (Gelatin Sepharose 4B) was purchased
from GE Healthcare (Chicago, IL, USA). Zymography renaturation buffer, zymography
development buffer, and Coomassie Brilliant Blue R-250 was purchased from Bio-Rad
(Hercules, CA, USA). Recombinant human MMP-2 was purchased from Merck Millipore
(Burlington, MA, USA). Recombinant mouse MMP-9 was purchased from R&D Systems
(Minneapolis, MC, USA). EnzChek Gelatinase/Collagenase Assay was purchased from In-
vitrogen (Carlsbad, CA, USA). Primary antibodies against ZO-1 and claudin-5, Alexa Fluor
555 donkey anti-rabbit, and Pierce BCA protein assay kit were purchased from Thermo
Fisher Scientific (Rockford, IL, USA).

4.2. Animal Treatment

Adult male Sprague-Dawley rats weighing 235 to 275 g (Harlan: Koatech, Pyeongtaek,
Korea) were used in the experiments, and surgical procedures were carried out with the
approval of Hanyang University’s Institutional Animal Care and Use Committee (IACUC
2018-0158A, approval date: 9 May 2018). Treatment groups were assigned in a randomized
order. The investigators were blind to treatment during surgeries and outcome evaluations.
Carnosine was dissolved in saline and administered intravenously (1000 mg/kg) to the
tail 3 h after ischemia induction. In the control group, saline was given intravenously to
the tail instead of carnosine. The animals were sacrificed, and samples were collected after
24 h of ischemia induction.

4.3. Permanent Middle Cerebral Artery Occlusion (pMCAO) in Rat

Intraluminal middle cerebral artery occlusion was used to induce permanent focal
ischemia in rats (MCAO). Isoflurane inhalation was used to induce anesthesia, which was
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maintained throughout the surgery. Rectal temperature was monitored and maintained,
both before and during surgery. Before and after the surgery, cerebrovascular blood flow
(CBF) was measured using a laser Doppler (Perimed, North Royalton, OH, USA). The left
common carotid artery (CCA) and the external carotid artery (ECA) were isolated and
sutured tightly. The internal carotid artery (ICA) was separated and the pterygium was
coagulated after the ECA branches were cauterized. A silicone-coated 4-0 monofilament
nylon suture was inserted into the CCA to induce the ischemia. The suture was advanced,
approximately 18 mm through the ICA from the CCA bifurcation to the origin of the MCA.

4.4. Triphenyltetrazolium Chloride (TTC) Staining

At 24 h post-MCAO, rats were anesthetized by isoflurane, decapitated, and the brains
were carefully and immediately isolated. Brains were cut into 2 mm sections, stained with
2% TTC, and fixed in 4% paraformaldehyde. Each section was used to create a digital
image, which was then analyzed using the software program, ImageJ. The hemisphere area
for each section was calculated by averaging the measured areas on each side of the section.
The ipsilateral/contralateral hemisphere area was used to calculate the edema ratio.

4.5. Determination of Water Retention

The percentage of water content in each hemisphere 24 h after induction of ischemic
stroke was used to assess edema formation. Hemispheres were initially weighed and
recorded as wet weights immediately after isolation. The hemispheres were weighed again
and recorded as dry weight after 24 h of desiccation at 95 ◦C. Water content was calculated
as ((wet weight − dry weight)/wet weight) × 100.

4.6. Gelatin Zymography

For zymography, hemispheres were homogenized with lysis buffer (50 mmol/L
Tris-HCl pH 7.6, 150 mmol/L NaCl, 5 mmol/L CaCl2, 0.05% Brij-35, 0.02% NaN3, and
1% Triton X-100), including protease inhibitors. The homogenates were centrifuged and
the supernatants were collected. The protein concentration in the homogenate was deter-
mined using BCA protein assay. Matrix metalloproteinase-2 and -9 in homogenates were
concentrated with gelatin-sepharose beads. Equal amounts of samples were electrophoreti-
cally separated on 7.5% sodium dodecyl sulfate-polyacrylamide gels with gelatin under
nonreducing conditions. The gels were incubated with zymography renaturation buffer
twice for 15 min at room temperature. After washing the gel, it was incubated for 30 min
at room temperature with zymography development buffer. Then, the gel was incubated
with zymography development buffer for 48 h at 37 ◦C. Following development, the gel
was stained for 2 h with Coomassie Brilliant Blue R-250 and then appropriately destained.
Proteolytic bands in zymography were measured by ImageJ software program.

4.7. In Vitro MMP Activity Assay

Recombinant human MMP-2 and recombinant mouse MMP-9 were activated with
p-aminophenylmercuric acetate (APMA), as recommended by the manufacturer. Enzyme
activity was measured using the EnzChek Gelatinase/Collagenase Assay following the
manufacturer’s protocol, with detection on a fluorescent plate reader. Control samples
without enzyme were used to determine background fluorescence.

4.8. Cell Culture

The bEnd.3 cell line, immortalized mouse brain endothelial cells, was obtained from
American Type Culture Collection (Manassas, VA, USA). bEnd.3 cells were grown in
DMEM (Dulbecco’s Modified Eagle’s Medium with 4500 mg/L d-glucose, 110 mg/L
sodium pyruvate, 1.5 g/L sodium bicarbonate, and l-glutamine; Welgene, Daegu, Korea),
supplemented with 10% fetal bovine serum (FBS; Mediatech Inc., Manassas, VA, USA),
100 units/mL of penicillin, and 100 µg/mL of streptomycin (Welgene, Gyeongsan, Korea).
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bEnd.3 cells were maintained in the incubator at 37 ◦C, with 5% CO2 and 95% air. All
experiments were carried out when the density was 90–100%.

4.9. Oxygen-Glucose Deprivation (OGD)

Before OGD, cells in the control and carnosine groups were pretreated for 18 h with
PBS or 5 mM carnosine, respectively. The OGD group was added to DMEM without
D-glucose and FBS, and the control group was washed twice with DMEM without FBS.
In addition, for OGD stimulation or control treatment, the media were replaced with
glucose-free DMEM or DMEM supplemented with 5.5 mM glucose and did not include
FBS. Cell plates were placed in a hypoxia chamber (Billups-Rothenberg Inc., San Diego, CA,
USA), and the air was replaced with OGD gas (95% N2 and 5% CO2). Cells were subjected
to the OGD condition for 6 h at 37 ◦C to measure the TJ proteins. Oxygen depletion in the
chamber was monitored using BD GasPak™ Dry Anaerobic Indicator Strips (BD, Franklin
Lakes, NJ, USA).

4.10. Immunofluorescence Staining

Cells were seeded into a Lab-Tek™ 8-well Chambered Coverglass (Thermo Fisher
Scientific). OGD was performed on the cells once they had reached confluency. Cells
were fixed and permeabilized with ice-cold methanol and acetone for 10 min and blocked
using 5% normal donkey serum (Sigma-Aldrich) in PBS for 1 h. The cells were incu-
bated with primary antibodies (anti-ZO-1 and anti-claudin-5 antibodies) diluted in 1%
normal donkey serum and then further incubated with secondary antibodies (Alexa Fluor
555-conjugated anti-rabbit) in 1% BSA. Fluorescence images were acquired and analyzed
with a K1-Fluo confocal laser scanning microscope (Nanoscope Systems, Daejeon, Korea).
To quantify the degree of TJs proteins, fluorescence images were analyzed with the software
program, ImageJ.

4.11. Statistics

All experimental values were expressed as the mean and standard error (SEM). Statis-
tical significance between groups was determined by the Student’s t-test. In all analyses, a
p value < 0.05 was considered statistically significant.
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