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Mode-localized accelerometer in the nonlinear
Duffing regime with 75 ng bias instability and
95 ng/√Hz noise floor
Hemin Zhang 1, Milind Pandit2, Guillermo Sobreviela2, Madan Parajuli 1, Dongyang Chen1, Jiangkun Sun 1,

Chun Zhao3 and Ashwin A. Seshia1✉

Abstract

Mode-localized sensors have attracted attention because of their high parametric sensitivity and first-order

common-mode rejection to temperature drift. The high-fidelity detection of resonator amplitude is critical to

determining the resolution of mode-localized sensors where the measured amplitude ratio in a system of coupled

resonators represents the output metric. Operation at specific bifurcation points in a nonlinear regime can

potentially improve the amplitude bias stability; however, the amplitude ratio scale factor to the input measurand in

a nonlinear regime has not been fully investigated. This paper theoretically and experimentally elucidates the

operation of mode-localized sensors with respect to stiffness perturbations (or an external acceleration field) in a

nonlinear Duffing regime. The operation of a mode-localized accelerometer is optimized with the benefit of the

insights gained from theoretical analysis with operation in the nonlinear regime close to the top critical bifurcation

point. The phase portraits of the amplitudes of the two resonators under different drive forces are recorded to

support the experimentally observed improvements for velocity random walk. Employing temperature control to

suppress the phase and amplitude variations induced by the temperature drift, 1/f noise at the operation frequency

is significantly reduced. A prototype accelerometer device demonstrates a noise floor of 95 ng/√Hz and a bias

instability of 75 ng, establishing a new benchmark for accelerometers employing vibration mode localization as a

sensing paradigm. A mode-localized accelerometer is first employed to record microseismic noise in a university

laboratory environment.

Introduction

Coupled microelectromechanical resonators have been

extensively researched1–4 and integrated into devices for

various engineering applications5,6. In the sensing field, a

technical approach to high parametric sensitivity has been

realized by employing the principle of vibration mode

localization in coupled resonators7–13. Principally, for

mode-localized sensors based on two weakly coupled

resonators with structurally symmetric parameters, a

symmetry-breaking perturbation introduced to one of the

coupled subcomponents will result in drastic shifts in the

mode shape, which can be monitored by measuring the

amplitude ratio (AR) of the resonators. Thus, the external

measurand that induces the perturbation can be sensed. In

contrast with the conventional resonant sensing method of

monitoring the frequency readout, the AR readout method

has been experimentally shown to provide improvement in

parametric sensitivity by over two orders of magnitude in

comparison7,11. Furthermore, mode-localized sensors have

exhibited benefits with respect to intrinsic first-order

immunity to environmental temperature drift14,15. Based

on this promising transduction approach, various mode-

localized microelectromechanical system (MEMS) sensors
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have been developed, such as mass sensors7, electro-

meters10, accelerometers15–19, and magnetic field sensors20.

Mode-localized accelerometers have demonstrated applic-

ability for seismic monitoring13. Further improvements in

the noise floor and stability of mode-localized accel-

erometers are expected to enable further applications,

including MEMS gravimetry21,22.

Optimization of the amplitude noise floor and stability

are critical for the resolution of mode-localized sensors.

The sensor output metric can be defined by a motional

amplitude ratio for the two resonators. Therefore, in

contrast to frequency-modulated sensors, the amplitude

signal-to-noise ratio (SNR) of each resonator is of more

specific interest for mode-localized sensors. It is known

that frequency and amplitude stabilities are highly sensi-

tive to the oscillation amplitude23–25, and an increased

actuation force can improve the SNR, whereas there is a

high possibility that the resonator is driven into a non-

linear Duffing regime. In the nonlinear regime, the fre-

quency response is reshaped by conservative or dissipative

nonlinearities, and the vibration amplitude of the reso-

nator at a specific frequency is determined by the previous

state, resulting in nonidentical forward and backward

frequency responses26. Consequently, the amplitude-to-

frequency effect is evident in the nonlinear regime. The

so-called bifurcation points (top or bottom bifurcation

points) where the frequency (f) and phase (φ) fulfill the

criterion of ∂f/∂φ= 027 result in reduced sensitivity to

phase noise. Consequently, the bias instability can be

improved, which has been experimentally demon-

strated28,29. Experimental studies have indicated that the

input-referred AR noise floor can be improved by oper-

ating in this regime to a certain extent30.

A theoretical study on the nonlinear sensitivities of the

amplitude ratio of the coupled resonators was previously

shown31 for the special condition of AR~1, i.e., around the

veering point. However, the AR sensitivity13,32 with

respect to the stiffness perturbation and its resolution33

vary with changes in amplitude ratio (or stiffness pertur-

bation). Further analysis is thus necessary to provide

expressions applicable for operation in linear and non-

linear regimes. Moreover, the assumptions in ref. 31 did

not support the scenario of ultraweak coupling (cases

where the quality factor is not high enough to be ignored),

which is specifically needed for high-resolution mode-

localized sensors33,34, and further work, including

experimental verification, is necessary to probe the con-

clusion that the resolution will be improved by con-

tinuously increasing the vibration amplitude.

In this paper, we discuss the AR scale factor for large

vibration amplitudes in linear and nonlinear Duffing

regimes. A general expression of the backbone nature (fre-

quency-amplitude effect) and the AR scale factor of the

coupled resonators suitable for both linear and nonlinear

cases are derived and experimentally demonstrated. The AR

scale factor remains relatively constant in the linear regime,

whereas it drops considerably when the resonator enters the

nonlinear regime. The optimal operation amplitude is

shown to be close to the critical amplitude, where the sensor

demonstrates the best noise floor and stability. A further

increase in the drive amplitude in the nonlinear regime will

not result in continuous improvement of the noise floor and

stability. This insight enables optimization of device per-

formance with a prototype demonstrating a noise floor of

95 ng/√Hz and a bias instability of 75 ng, allowing for the

first recording of a low-frequency microseismic background

using a mode-localized MEMS accelerometer.

Results and discussion

Device description

The mechanical element of the mode-localized accel-

erometer consists of two spring-supported masses and

two structurally symmetric double-ended-tuning-fork

(DETF) resonators fixed to the same center anchor, as

shown in Fig. 1a. The proof mass is mechanically con-

nected to one end of the DETF resonator through a lever

mechanism for inertial force amplification. An optical

image of the coupled resonators is shown in Fig. 1b, and

the fabrication cross-section can be found in ref. 21.

Dimensions of the device are provided in Supplementary

Table I. For the lower-order vibration modes (i) and (ii) in

Fig. 1c and the higher-order modes (v) and (vi) in Fig. 1e,

the two DETF tines move in a parallel direction, and the

coupling forces arising from the DETF vibrations are

transmitted to the anchor as shear forces, resulting in

small in-plane deformations of the coupler, which is three

orders of magnitude smaller than that of the tines. Energy

transfer (mode coupling) between Res 1 and Res 2 is thus

realized through coupler in-plane deformation35. In con-

trast, when the two tines move in opposite directions, the

shear force at the end of the tines is largely reduced so

that the two resonators cannot be effectively coupled

together, as shown by modes (iii) and (iv) in Fig. 1d, in

which only one resonator is in obvious vibration so that

these two modes are not of interest. The degree of modal

coupling (coupling factor) can be set practically by

adjusting the diameter of the anchor coupler. The reso-

nators are capacitively actuated and sensed through the

electrodes on either side of the DETF tines. A 10 V DC

voltage is applied to the central anchor as the bias voltage.

The motional current is translated to a voltage via trans-

impedance amplifiers. A variable voltage is applied to the

tuning electrode integrated with Res 2 to provide elec-

trostatic negative stiffness perturbations to Res 2 so that

the AR operation point can be manually adjusted. The test

setup can be found in Supplementary Material Fig. S1.

The amplitude-frequency responses of Res 1 (the pri-

mary resonator that is directly driven) in the lower-order

Zhang et al. Microsystems & Nanoengineering            (2022) 8:17 Page 2 of 11



and higher-order modes of interest with different drive

AC amplitudes are shown in Fig. 1f, g, respectively. Modes

(i) and (ii) indicate linear resonant frequencies of f1 ≈

122,703 Hz and f2 ≈ 122712 Hz. A frequency split

of ~9 Hz is observed, demonstrating a coupling factor36 of

κ ≈ (f2 – f1)⧸f1= 7.4 × 10−5) and a Qκ value of ~3.0, as the

Q factor is estimated to be 39 k. For the higher-order

modes, the coupling factor is 10.3 × 10−5. With the

increase in the drive AC signal, the response magnitudes

will increase and enter a nonlinear Duffing regime if the

AC signal is higher than a critical value. The responses of

Res 2 can be found in Supplementary Material Fig. S2. To

explore the optimized operation amplitude of the coupled

resonators, the AR scale factor expression with respect to

the stiffness perturbation will be theoretically derived in

the following section.

Theoretical model

For a two-degree-of-freedom weakly coupled resonating

system, it is normally assumed that the two resonators

have identical initial structural parameters, i.e., identical

mass: m1=m2=m:, stiffness: k1= k2= k and damping:

c1= c2= c in a lumped mechanical model36,37, and only

one resonator is driven by the harmonic force. The dis-

sipative nonlinearity and the cubic nonlinearity of the

coupler can be ignored because no significant amplitude-

dependent damping is observed for our device, and the

deformation of the coupler is very small. The nonlinear

springs for the two resonators are defined as k1 ¼
k 1þ γx21
� �

, and k2 ¼ k 1þ γx22
� �

, where γ is the cubic

nonlinear coefficient, which is assumed to be identical for

the two resonators. The nonlinear dynamic equations of

the coupled resonators are given by:

€x1 þ
ω0

Q
€x1 þ ω2

0 1þ κ þ γx21
� �

x1 � κω2
0x2 ¼ f =m

ð1aÞ

€x2 þ
ω0

Q
€x2 þ ω2

0 1þ κ þ δ þ γx22
� �

x2 � κω2
0x1 ¼ 0

ð1bÞ
where x1and x2 are the displacements of the two

resonators, ω0 ¼
ffiffiffiffiffiffiffiffiffi

k=m
p

is the initial natural frequency,

δ=Δk/k is the stiffness perturbation to Res 2, Q ¼ mω0=c
is the quality factor, and f ¼ Fsin ωdt þ θð Þ is the force

applied to Res 1. The displacements are written as:

x1 ¼ X1ðtÞsinðωtÞ ð2aÞ

x2 ¼ X2ðtÞsinðωt þΦðtÞÞ ð2bÞ

where X1(t), X2(t), and Φ(t) are slow variables with time

scales much slower than 2π/ω. According to (2a) and (2b),

we have the following expressions:

_x1 ¼ ωX1cos ωtð Þ þ _X1sinðωtÞ ð3aÞ

€x1 ¼ �ω2X1sin ωtð Þ þ 2ω _X1cos ωtð Þ þ €X1sin ωtð Þ
ð3bÞ

x31 ¼ X3
1 sin

3 ωtð Þ ¼ X3
1

4
3sin ωtð Þ � sin 3ωtð Þ½ � ð3cÞ
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Fig. 1 Device description and characterization. a Schematic of the mode-localized accelerometer. b Optical image of the coupled resonators.

c–e The simulated vibration modes of the two resonators. Modes in c and e are of interests in this paper. f Frequency responses of Res 1 (the primary

resonator that is directly driven) in the lower-order and g the higher-order modes of interests with different drive AC signals, with the initial AR value

in the linear regime close to the veering point (AR~1)
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_x2 ¼ ωþ _Φ
� �

X2cos ωt þΦð Þ þ _X2sinðωt þΦÞ ð4aÞ

€x2 ¼ � ωþ _Φ
� �2

X2sin ωt þΦð Þ þ 2 ωþ _Φ
� �

_X2cos ωt þΦð Þ
þ €X2sinðωt þΦÞ

ð4bÞ
x32 ¼ X3

2 sin
3 ωt þΦðtÞð Þ

¼ X3
2

4 3sin ωt þΦðtÞð Þ � sin 3 ωt þΦðtÞð Þð Þ½ �
ð4cÞ

By substituting (3a) to (4c) into the dynamic Eqs. (1a) and

(1b), ignoring the higher-order term (3ωt) and using the

harmonic balance principle8,31, the following equations

are trivially obtained:

€X1 þ ω0

Q
_X1 þ X1 �ω2 þ 1þ κð Þω2

0 þ 3
4
ω2
0γX

2
1

� �

� κω2
0X2cosΦ ¼ F

m
cosθ

ð5aÞ

2ω _X1 þ
ω0

Q
ωX1 � κω2

0X2sinΦ ¼ F

m
sinθ ð5bÞ

€X2 þ
ω0

Q
_X2 þ X2 � ωþ _Φ

� �2þω2
0 1þ κ þ δð Þ

h i

� κω2
0X1cosΦþ 3

4
γω2

0X
3
2 ¼ 0

ð5cÞ

2 ωþ _Φ
� �

_X2 þ
ω0

Q
ωX2 þ κω2

0X1sinΦ ¼ 0 ð5dÞ

The first-order ( _X1, _X2) and second-order (€X1, €X2)

differential terms have little influence on the steady-

status amplitudes and thus can be ignored. According to

(5b) and (5d) and by ignoring _Φ in the steady-state (X1, X2

and _Φ changes very slowly compared to the resonant

frequency), the phase difference is given by:

sinΦ ¼ ±
ω

κQω0

1

AR
� ±

1

AR
� 1

κQ
ð6aÞ

cosΦ � ± 1� 1

2

1

AR
� 1

κQ

� �2
 !

ð6bÞ

where AR is defined as X1/X2. The phase difference

between resonators is inversely proportional to the

amplitude ratio and the value of κQ. Normally, Φ= 0

indicates the in-phase mode and Φ ¼ π indicates the out-

of-phase mode. The weakly coupled resonators operate in

the exact in-phase mode or out-of-phase mode only in the

case of AR >> 1. Otherwise, the coupled resonators will

demonstrate specific phase delays compared to the

standard in-phase or out-of-phase mode. Equations (5a)

and (5c) can be rearranged as:

�ω2

ω2
0

þ 1þ κð Þ þ 3γX2
1

4
� κX2cosΦ

X1
¼ Fcosθ

ω2
0mX1

ð7aÞ

�ω2

ω2
0

þ 1þ κ þ δð Þ þ 3γX2
2

4
� κX1cosΦ

X2
¼ 0 ð7bÞ

According to (7a) and (7b), giving θ a value of 90° so

that the resonator vibrates at the top bifurcation point of

the 1st mode30, a comprehensive expression between the

resonant frequency (ω), stiffness perturbation (δ), ampli-

tude (X1), and amplitude ratio (AR= X1/X2) is obtained:

ω2

ω2
0

¼ 1þ κ þ δ
2

� �

þ 3γX2
1

8
1þ 1=AR2
� �

� κ
2

1� 1
2

1
AR

� 1
κQ

	 
2
� �

1
AR

þ AR
� �

ð8Þ

Based on (8), the backbone nature (frequency-amplitude

response) of the nonlinear resonance is also dependent on

the amplitude ratio. Furthermore, the AR expression can

be derived from (7a) and (8):

AR� 1

AR

� �

1� 1

2

1

AR
� 1

κQ

� �2
 !

¼ AR� 1

AR
� 1

2 κQð Þ2AR
þ 1

2 κQð Þ2AR3

ð9Þ

The generalized AR scale factor to the stiffness per-

turbation (δ) in both the linear and nonlinear regimes is

thus given by:

∂AR

∂δ
¼ 1

κ 1þ
1þ 1

2 κQð Þ2

	 


AR2 � 3
2 κQð Þ2AR4

0

@

1

Aþ 3γX2
1

2AR3

ð10Þ

In some special cases where κQ≫ 1, which is normal for

researchers pursuing mode-localized sensors, the term

1
2

1
AR

� 1
κQ

	 
2

in (9) is negligible, i.e., Φ ≈ 0; thus, the AR

sensitivity with respect to δ is simplified as:

∂AR

∂δ

�

�

�

�

nonlinear

¼ 1

κ 1þ 1
AR2

	 


þ 3γX2
1

2AR3

ð11Þ

Expression (11) provides a simplified expression for AR

sensitivity to stiffness perturbation. As our device shows a

value of κQ~3, there would be a slight estimation error

between the simplified expressions (11) and (10). How-

ever, the estimation error is small and is on the order of

<3% if AR > 2, which is an acceptable approximation.

Therefore, the simplified expression (11) is considered in
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the following numerical analysis. In a linear regime, the

cubic nonlinear parameter can be set as γ= 0, which

trivially leads to an expression of the AR sensitivity in the

linear regime:

∂AR

∂δ

�

�

�

�

linear

¼ 1

κ 1þ 1
AR2

	 
 ð12Þ

which is in good alignment with our previous theoretical

work on mode-localized sensors operating in a linear

regime33.

According to (10), the AR scale factor with respect to the

stiffness perturbation in a nonlinear regime is determined

by the coupling factor κ, the vibration amplitude of Res 1

(X1), and the amplitude ratio. The contour plot of the AR

scale factor with different X1 and κ values can be seen in

Fig. 2a. The AR operation regime can be separated into two

regimes, i.e., a coupling factor dictated zone (the blue

dashed block) and an amplitude-determined zone (the

violet dashed block). In the coupling factor dictated zone, it

is evident that a lower coupling factor results in a higher

scale factor. However, in the amplitude-determined zone,

the AR scale factors are similar to various κ values. This

indicates that too large a vibration amplitude in the non-

linear regime could result in a reduced performance for the

scale factor of mode-localized sensors.

Once the coupling factor is confirmed, which is the

normal case for mechanically coupled resonators10–13, the

AR scale factor will only be defined by the vibration

amplitude of the driven resonator (X1) and the amplitude

ratio. The contour plot in Fig. 2b shows that there is a

higher AR scale factor with a larger amplitude ratio, in

good correspondence with previously reported cases in

the linear regime13. Again, the scale factor drops con-

siderably when the vibration amplitude is higher than a

threshold value. If we set decreasing to 95% of the initial

AR scale factor as the threshold, this vibration amplitude

can be derived based on (11):

X2
threshold ¼

2ð
ffiffiffi

2
p

� 1Þ AR3 þ AR
� �

κ

3γ
ð13Þ

Nonlinear characterization in an open-loop configuration

The detailed amplitude-frequency responses (sweep-

up) of Res 1 in the lower-order vibration modes (i) and

(ii) with variable drive AC signals at different initial AR

values were recorded (Fig. 3a, b) to investigate the

critical amplitude and backbone nature. The linear and

nonlinear regimes can be clearly differentiated. The

backbone curve is shown by the dashed line. In Fig. 3a,

the initial amplitude ratio is 1.1, and Res 1 goes into the

nonlinear regime when the drive AC is higher than

3 mV. When the initial amplitude ratio is much higher

than 1, for instance, AR= 4.2, which can be obtained

by tuning the voltage applied to Res 2, as shown in

Fig. 3b, it can be seen that the resonator goes into the

nonlinear regime when the drive AC is higher than

2 mV (not 3 mV as when AR= 1.1 in Fig. 3a). Note that

the vibration energy of the coupled resonators is more

likely confined in Res 1 when the system is asymmetric

(AR >>1). Correspondingly, both mode (i) and mode

(ii) in Fig. 3a illustrate backbone characteristics, while

only mode (i) in Fig. 3b demonstrates similar

amplitude-to-frequency dependence. It can also be
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line in b indicates the amplitude threshold that the AR scale factor

decreases to 95% of the initial value in the initial linear regime
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derived by (8) that the nonlinear shift in resonant fre-

quency is influenced by the AR value. The contour

plots of the frequency responses of Res 2 are provided

in Supplementary Fig. S3.

Nonlinear scale factor characterization in closed-loop

configuration

To verify the proposed theory on AR sensitivity, we

manually tune the perturbation voltage applied to Res 2

in a closed-loop configuration to obtain electrostatic

stiffness perturbations while the sensor is mounted

horizontally, i.e., without any external acceleration

input. The closed-loop configuration is realized by

controlling Res 1 to vibrate at a specific phase through

the phase-lock-loop function integrated as part of the

Zurich MFLI lock-in amplifier (see Supplementary Fig.

S1 for more details). The vibration amplitudes of the

two resonators at resonance are demodulated and

recorded. The amplitude ratio is then calculated based

on the collected amplitudes. To obtain different

amplitude ratios, the voltage (Vpert) applied to Res 2 is

tuned from −4.7V to −5.7 V. The net stiffness pertur-

bation is kpert ¼ �ε0A Vpert � Vbias

� �2
=g3, and con-

sidering the initial softening effect from the bias voltage

kneg ¼ �ε0A Vbiasð Þ2=g3, the normalized stiffness per-

turbation is δ ¼ �ε0AVpert Vpert þ 2Vbias

� �

=g3=k, where

k is the stiffness of the DETF resonator, ε0 is the per-

mittivity, A is the electrode area, and g is the gap

between coupling electrodes. As expected, an increased

drive AC signal results in a lower AR scale factor, which

can be read from the curve slopes in Fig. 3c. The AR

scale factor for the stiffness perturbation is calculated

using the gradients of the AR fitting curves in Fig. 3c.

The contour plot of the AR scale factor versus the

amplitude ratio with different drive AC values is shown

in Fig. 3d, which perfectly reproduces the theoretical

prediction in Fig. 2b.
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The mode-localized accelerometer in the lower-order

mode

Previous theories and experiments have provided clear

evidence that continuously increasing the vibration

amplitude to move the resonator into the nonlinear

regime will result in AR scale factor reduction. However,

there are plenty of theoretical and experimental results

showing improvements in the amplitude and frequency

noise floor with a large drive amplitude in the nonlinear

regime28,38,39. In this section, we will explore the input-

referred AR noise floor and stability of the mode-localized

accelerometer in low- and large-amplitude operation

regimes to determine the optimal operation amplitude for

mode-localized sensors.

To test the AR sensitivity with respect to the external

acceleration, the device is placed on a high-precision

tilting platform40 so that there is a component of grav-

itational acceleration acting along the sensitive axis of the

accelerometer resulting in differential stiffness perturba-

tions to Res 1 and Res 2. The chip and the front-end

electronics are housed in a shielded box to prevent

external electromagnetic interference for the stability

measurement. The experiments are operated under two

conditions: (a) at room temperature without any tem-

perature control and (b) with temperature control.

Although mode-localized sensors have demonstrated the

property of common-mode rejection to the temperature

drift, temperature control employed here is to control the

stability of the electronics, such as the feedback resistors

of the trans-impedance amplifiers. Furthermore, as a

phase-locked loop is selected for realizing the closed-loop

configuration, the phase-locking precision is important

for the final resolution of the mode-localized sensors,

which performs better in a thermally stable environment.

Two-level temperature control is implemented, i.e., a

chamber level that is used to control the temperature of

the surrounding environments in the shield within ±1mK

with a setpoint of 35 °C and a chip level to regulate the

chip/board temperature to ±5mK with a setpoint of 45 °C.

The measured AR values in the lower-order mode (i) as

a function of the external acceleration under different

drive AC voltages are shown in Fig. 4a, and the AR scale

factors are shown in Fig. 4b. The amplitudes of the two

resonators were collected for 2 h with a sampling rate of

209.3 Hz. The input-referred Allan deviation of the

accelerometer in the lower-order mode (i) under the

conditions of no temperature control and chamber-level

temperature control can be found in Fig. 4c, d. Each curve

is obtained with a fixed acceleration input, a constant

voltage perturbation to Res 2, and varying drive AC

amplitudes when the AR value is ~1.5. The dotted lines in

the Allan deviation curves with a slope of τ−1/2 indicate
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the net thermal noise38,41, which involves thermo-

mechanical noise and readout electronic noise.

The results under the condition of resonators working

at room temperature in the lower-order mode (i), shown

in Fig. 4c, suggest that white noise can be suppressed by

enlarging the drive amplitude. The results show sig-

nificant 1/f noise for integration times between 1 and 10 s,

setting a limit to the measured bias instability. Increasing

the drive amplitude results in an improvement in the bias

instability, and this behavior is consistent with previous

observations in MEMS gyroscopes42. The bias instability

is improved from 250 ng with a drive level of 200 μV to

130 ng with a drive level of 9 mV.

The results under the condition of the resonators

working in the lower-order mode (i) with chamber-level

temperature control, shown in Fig. 4d, again indicate the

effectiveness of enlarging the drive amplitude to suppress

the detection noise. There will be no further improvement

on the noise floor when the drive amplitude is higher than

3mV, which is the drive amplitude that results in the

critical vibration amplitude according to Fig. 3a. Although

1/f noise still appears within the integration time between

1 and 10 s, it is much lower than that in the condition of

no temperature control, and further enlarging the drive

amplitude does little to decrease the 1/f noise. Further-

more, it can be seen that the lower bound limit of the

Allan deviation cannot be much improved by increasing

the drive amplitude.

The two quadratures (Vx, Vy) of the voltage output of

Res 1 were extracted using a lock-in amplifier. The nor-

malized X and Y components with varying drive ampli-

tudes are calculated with the formulae Vx=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2
x
þ V2

y

q

and

Vy=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2
x
þ V2

y

q

, respectively, and are shown in Fig. 4e. The

area of this phase portrait represents the amplitude noise

level or SNR of the resonator38,42. In good correspon-

dence with what has been observed in the Allan deviation

curves, the noise level will decrease (phase portrait area)

as the drive amplitude increases. Furthermore, we can see

in Fig. 4f that the SNR almost linearly increases when the

drive amplitude is lower than 2mV and demonstrates no

obvious further improvement when the drive amplitude is

higher than 2mV, which can be used to explain the noise

characteristics in Fig. 4c, d.

Spectrally portraying the microseismic background in the

higher-order mode

Compared to the lower-order mode, the higher-order

mode shows a lower AR scale factor with respect to the

acceleration because of the higher coupling factor43, as

demonstrated in Fig. 1g. The measured AR scale factors in

mode (v) can be found in Fig. 5a, b. Board-level and

chamber-level temperature control were employed in this

measurement. The input-referred Allan deviation curves

under different drive amplitudes are shown in Fig. 5c. A

similar effect of improvement on the noise limit when

increasing the drive amplitude is observed in this higher-

order mode. Benefiting from the implementation of

board-level temperature control, 1/f noise is further sup-

pressed, and a bias instability of 75 ng is obtained when

the drive level is 5 mV. The input-referred noise power

spectral densities (NPSD) of the accelerometer in mode

(v) with varying drive amplitudes can be found in Fig. 5d.

Prominent peaks with a magnitude of ~300 ng√Hz at a

frequency of 0.1–0.3 Hz are observed when the drive

amplitude is higher than 3 mV, which is attributed to the

microseismic background21,44 in the university laboratory.

This measurement is a good reproduction of our previous

report (Fig. S10 in ref. 21) using a frequency-modulated

accelerometer. The best-collected NPSD is 95 ng√Hz at

1 Hz when the drive amplitude is 5 mV. In the nonlinear

regime with a drive amplitude higher than 5 mV, the noise

floor will not be further improved or degraded. The peaks

arising at frequencies between 20 and 30 Hz are coupled

from mode (vi)30, which limits the device bandwidth to

<10 Hz.

Linearity error in the nonlinear Duffing regime

Due to the variations in the AR sensitivity, as shown in

Figs. 4b and 5b, the AR readout is not constantly a linear

function of the external acceleration. There are lower

linearity errors when the amplitude ratio is far away from

the veering zone where AR~145; however, the resolution

and stability will drop in this relatively linear regime

(AR >> 1)33,35. In this paper, we set the working point at

AR ≈ 1.5 to approach the best resolution even associated

with the tradeoff of worse linearity. We take the higher-

order mode (v) as an example to evaluate the quasi-linear

sensing range around the working point, as shown in

Fig. 6. The quasi-linear sensing range (with maximum

linearity < 1%) around the working point is limited to

~2.15 mg regardless of whether the resonator is operating

in the nonlinear Duffing regime.

Although the mode-localized accelerometer reported in

this paper demonstrates a limited linear sensing range due

to the inherent characteristics, there are several ways to

realize an extended dynamic range. For instance, the

previous work13 has demonstrated an extended linear

sensing range using a differential amplitude ratio readout.

Discussion

This paper investigates the optimal operation ampli-

tude for mode-localized accelerometers. It is found that

increasing the drive amplitude can significantly improve

the noise floor and velocity random walk if the vibration

of the resonator is not higher than the critical Duffing

amplitude. In a nonlinear Duffing regime, the AR
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readout demonstrates a similar performance as that

around the critical amplitude regardless of the value of

the drive amplitude. By employing two-level temperature

control, the 1/f noise can be suppressed, and the bias

instability is improved by a factor of ~2. While working

in the higher-order mode, a bias instability of 75 ng and

noise floor of 95 ng/√Hz are obtained. These results are

the best-collected metrics for accelerometers employing

the mode-localization paradigm to date, and they are

also comparable with state-of-the-art frequency-

modulated resonant accelerometers21,46. Further work

on optimizing electronic noise, e.g., the power source

noise that contributes to the Lorentzian profile of the

resonator via bias and perturbation voltages, can be con-

ducted to approach the ultraprecise level for the applica-

tion of MEMS gravimeters47,48. This mode-localized

accelerometer is the first to practically display the micro-

seismic background in the frequency interval 0.1–0.5 Hz

with a level of 300 ng/√Hz.

However, as the frequency split between the two modes

of interest is very low <50Hz (~9Hz for the lower-order

mode and ~27Hz for the higher-order mode) to achieve a

lower coupling factor, the noise of the neighboring mode

will be coupled to the working mode, resulting in a rela-

tively low working bandwidth and higher short-term Allan

deviation. To solve this problem, one potential solution is to

increase the frequency split, which means that the natural

frequency should be enlarged to maintain a low coupling

factor. At the same time, the inertial force-induced stiffness

sensitivity should not be significantly decreased, thus

introducing a challenge for mechanical design. The other

solution is to use the noise of the neighboring mode to
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calibrate the noise of the working mode49. It should be

noted that the theory in this paper is limited by the

assumptions inherent in the model, and the mode-

localization phenomenon is still evident. In addition, there

is a possibility to design special resonator structures to

lower mechanical nonlinearity so that the operational

vibration amplitude can be enlarged and the sensor per-

formance can be consequently improved.
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