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Abstract
1.	 Size is a biological characteristic that drives ecological processes from micro-
scopic to geographic spatial scales, influencing cellular energetics, species fit-
ness, population dynamics, and ecological interactions. Methods to measure size 
from images (e.g., proxies of body size, leaf area, and cell area) occur along a 
gradient from manual approaches to fully automated technologies (e.g., machine 
learning). These methods differ in terms of time investment, expertise required, 
and data or resource availability. While manual methods can improve accuracy 
through human recognition, they can be labor intensive, highlighting the need 
for semi-automated, and user-friendly software or workflows to increase the 
efficiency of manual techniques.

2.	 Here, we present SizeExtractR, an open-source workflow that enables faster 
extraction of size metrics from scaled images (e.g., each image includes a ruler) 
using semi-automated protocols. It comprises a set of ImageJ macros to speed 
up size extraction and annotation, and an R-package for the quality control of 
annotations, data collation, calibration, and visualization.

3.	 SizeExtractR extracts seven common size dimensions, including planar area, min/
max diameter, and perimeter. Users can record additional categorical variables 
relating to their own study, for example species ID, by simply adding alphanu-
meric annotations to individual objects when prompted. Using a population size 
structure case study for hard corals as an example, we show how SizeExtractR 
was used to quantify the impact of mass coral bleaching on coral population 
dynamics. Lastly, the time saving benefit of using SizeExtractR was quantified 
during a series of timed image analyses, revealing up to a 49% reduction in image 
analysis time compared to a fully manual approach.

4.	 SizeExtractR automatically archives results, allowing re-analysis of size extrac-
tion and promoting quality control and reproducibility. It has already been em-
ployed in marine and terrestrial sciences to assess population dynamics and 
demography, energy investment in eggs, and growth of nursery reared corals, 
with potential to be applied to a wide range of other research fields.
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1  |  INTRODUC TION

As a biological feature, size has a fundamental influence on the ecol-
ogy and evolution of all organisms (Tan et al., 2021), yet our ability to 
quantify size rapidly, consistently, and accurately from images across 
disciplines remains limited (Edmunds & Riegl, 2020; Weinstein, 
2018). The importance of size extends to all scales of biological and 
ecological organization: cell size can indicate resource availability 
(Paxton et al., 2016); organ/body-part size can be used as a proxy 
for somatic and reproductive investment (Stevens et al., 2000); and 
body size can influence fitness and competitive success (Dickerson 
et al., 2002; White et al., 2018). Quantification of size can elucidate 
vital rates, such as recruitment, growth, reproduction, and senes-
cence (Cant et al., 2020) and can reveal the size structure of species 
populations (Lachs et al., 2021), which ultimately define population 
proliferation or demise. As such, size is the focus of a vast literature 
on ecological theory, such as the Island Rule (increasing body size 
with island size), and is a central component of contemporary eco-
logical and demographic research (Edmunds & Riegl, 2020). We con-
sider ‘size’ as an umbrella term for numerous ecologically meaningful 
measurements (e.g., proxies of body size, leaf area, fish/shell length, 
cell area, or maximum and minimum diameters). There is a growing 
reliance on measuring size from scaled imagery (i.e., images contain-
ing objects of known length) (Beaudouin et al., 2015; Benton et al., 
2008; Precoda et al., 2018). This has improved sampling efficiency 
greatly (Lachs et al., 2021; Sommer et al., 2014), and highlights the 
growing demand for reliable, user-friendly software or workflows to 
rapidly quantify size from scaled images.

While manual approaches to extract size from images are com-
monly used in science (Weinstein, 2018), automated image analysis 
technologies are undergoing rapid advancements (Hagendorff & 
Wezel, 2020). For example, in ecology, machine learning technol-
ogies can automatically measure object sizes (size of any irregular 
2D region in an image) from vast image datasets, given enough 
training data and appropriate standardization of images (Alonso 
et al., 2019; Kloster et al., 2014; Monkman et al., 2019; Wäldchen 
& Mäder, 2018; Weinstein, 2018). However, for some research 
projects, such techniques are not applicable and better returns-on-
investment can be achieved from using manual methods (e.g., for 
small image datasets, or low quality or high complexity images). At 
the center of the manual–automatic gradient, generic particle ana-
lyzers, such as the BioVoxxel Toolbox (Brocher, 2014), can be used 
to batch process particle size extraction. However, such approaches 
are often designed for standardized microscopy images, and are 

not appropriate for complex ecological imagery with chaotic back-
grounds (e.g., forest floor). The advantage of fully manual image 
analysis methods is rooted in the accuracy of human recognition in 
tasks like species identification, boundary delineation, and the abil-
ity to record ad hoc observations (e.g., health status) without having 
to hard-code them into identification algorithms. Human recognition 
and manual extraction of size measures have proven fundamental 
to building size datasets for ecology research. For example, man-
ual extraction of size metrics has recently been used in assessments 
of population dynamics for marine and terrestrial fauna (Beaudouin 
et al., 2015; Benton et al., 2008; Bogdan et al., 2021), estimation of 
size-dependent disease susceptibility (Bruno et al., 2011), measure-
ment of growth to run integral projection models (Cant et al., 2020; 
Precoda et al., 2018), and testing the inter-generational effects on 
reproductive effort (Plaistow et al., 2006).

Manual image analysis methods (e.g., size extraction, or measure-
ment of RGB color as red, green, and blue), such as those conducted 
using ImageJ (Schneider et al., 2012), typically require protocols that 
can be slow, labor-intensive, and prone to human error in data han-
dling. Thus, there is an urgent need for robust software or work-
flows that focus researchers’ efforts on complex tasks that require 
human recognition, while automating monotonous tasks that are 
easily programmed (e.g., exporting results to spreadsheets). Such 
semi-automated image annotation options would improve scien-
tific reproducibility and support ecologists and biologists when ma-
chine learning methods are unsuitable. To address these problems 
and gaps, we present a semi-automated, free-to-use image analysis 
workflow called SizeExtractR, built using ImageJ and R.

2  |  SizeE x trac tR GET TING STARTED

SizeExtractR is an open source workflow that enables fast ex-
traction of object sizes from scaled images (i.e., images contain-
ing a size reference scale), combining the accuracy of human 
recognition with the speed of semi-automated protocols. The 
SizeExtractR workflow is completed using both ImageJ and R, 
but no prior knowledge of either software is a prerequisite for 
usage. A full methodology including installation instructions, a 
step-by-step guide, and a worked example are provided in the 
Supplementary User Guide. First, images should be manually or-
ganized by the user either within a single folder, or in a directory 
tree where folders relate to some consistent categorical hierar-
chy (e.g., site-folders within year-folders). Second, a set of custom 
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ImageJ macros (referred to as SizeExtractR-macros, programs that 
automate processes) are used to facilitate manual outlining and 
annotation of objects and saving of size data and reference data 
files (Figure 1). These semi-automated macros are initiated using 
keyboard shortcuts and prompt the user for input where necessary 
(i.e., outlining and annotating). By removing the need for users to 
search through drop-down menus to set tools in ImageJ and navi-
gate pop-up boxes to save output files, this workflow saves con-
siderable time. Users manually outline regions of interest (ROIs) 

with the freehand tool using a mouse or touchpad hardware. 
Importantly, each image must include a scale of known length 
(e.g., ruler) for calibration later. Finally, an R-package (referred to 
as the SizeExtractR-package, see supplementary user guide for 
install instructions) is used to check for human errors made dur-
ing image annotation, perform size calibrations, collate all data to 
build a single size dataset, and plot size frequency distributions 
(Figure 1). Together, the SizeExtractR ImageJ macros and R pack-
age considerably improves transparency and traceability (in terms 

F I G U R E  1 Conceptual diagram of the SizeExtractR workflow, highlighting the automated (A), interactive (I, green), and manual (M) steps. 
(1) Preparation: Images from field or laboratory work that each include a scale of known length (e.g., 10cm banded stick), are either put in 
a single folder (not shown) or organized among multiple folders with a nested directory structure that will later define optional categorical 
database variables (e.g., Year subfolders [categories: 1, 2], within Site subfolders [categories: 1, 2, 3], within a root folder). (2) ImageJ macros: 
The images are annotated using SizeExtractR-macros and default ImageJ tools (e.g., freehand tool) to outline all regions of Interest (ROIs) and 
label them according to a user-defined labeling system (e.g., to record user-defined categorical variables, see Figure 2). Three output files are 
produced per image: a text file containing uncalibrated ROI size measurements and alphanumeric ROI annotations; a zip folder containing 
ROI files; and a reference image showing all ROI outlines and annotations. (3) R-package: SizeExtractR-package is then used to (a) conduct 
quality control and check ROI annotations; (b) calibrate size measurements, extract user-defined categorical variables from folder names and 
ROI annotation labels and collate all data; and (c) plot size frequency distributions among categorical grouping variables
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of fully documenting work), and image analysis time, whilst reduc-
ing the chance of human error (specifically in allocating the correct 
user-defined categorical variables and naming of data files).

2.1  |  ImageJ-macros

The SizeExtractR-macros are designed to improve the reproduc-
ibility and speed of manually outlining and annotating objects to 
measure their size and other categorical features (e.g., species ID). 
SizeExtractR-macros measure seven common size metrics that de-
scribe the dimensions of irregular-shaped objects (saved in ImageJ as 
ROIs): area, circular equivalent diameter, extruded spherical volume, 
max/min Feret's diameter, geometric mean diameter, and perimeter 
length (Figure 2). Scale length is also recorded (e.g., of a ruler), and 
is used later in R to calibrate the size measurements from pixels to 
case-specific units (e.g., cm and cm2).

SizeExtractR is also used to facilitate the recording of user-
defined categorical variables that relate to individual ROIs (e.g., spe-
cies identity or health status category), referred to as ‘ROI Variables’. 
After outlining a ROI, an automated prompt requests users to manu-
ally enter an alphanumeric annotation, or ‘ROI name label’. This label 
is composed of three sections (Figure 2): Section 1—the alphabetical 
ROI Type, which either classifies objects of interest (e.g., the study 
species) or measurement scales in each image (e.g., a ruler); Section 
2—the numerical ROI Replicate, which is a unique number given to 
each ROI within a specific image (see M1-M4 in Figure 2), facilitating 
post-hoc quality control and ROI re-analysis; Section 3—the alpha-
betical ROI Label Code, which is optional and can be used to record 
any additional notes relating to specific ROIs (e.g., a damaged sam-
ple, or different morphology).

In contrast to categorical ROI Variables which differ per 
ROI, users can also choose to incorporate categorical ‘Directory 
Variables’ which are instead held constant across groups of ROIs 
(e.g., a group of images from a single site or timepoint). The catego-
ries of Directory Variables are derived from folder names and the 
directory structure in which the images are stored (Figure 2, where 
Directory Variable 1 and 2 could be site and year, respectively, with 
consistently named folders).

To permit SizeExtractR to work properly, it is fundamental to set 
up a consistent system for labeling ROIs, naming folders, and struc-
turing the folder directory (Figure 1). This can be achieved by follow-
ing three simple steps in preparation for a study using SizeExtractR. 
(1) If you wish to include Directory Variables, then organize the im-
ages in a nested folder directory, and name folders consistently (e.g., 
Figure 1). (2) Decide on the alphabetical characters you will use to 
label the different ROI Types for your study (e.g., taxon abbrevia-
tions, Figure 2). (3) If you wish to include additional categorical vari-
ables, then decide on the alphabetical ROI Label Codes to be used 
during annotation. This preparation should only take a few minutes.

Finally, the workflow in ImageJ automatically saves three out-
put files per image: a data file with uncalibrated size metrics and 
ROI name labels, a ROI zip folder to allow later reanalyses, and a 

reference image showing the annotations to view ROIs quickly and 
easily (Figure 1).

2.2  |  R-package

The SizeExtractR-package contains a series of interactive tools that 
are used to (1) conduct quality control of image annotations and ROI 
labeling; (2) add categorical variables (Figure 2) to the size dataset by 
reading and converting folder names and ROI name labels; (3) cali-
brate and calculate size metrics; and (4) create a single size dataset 
for the entire image set, to be saved for further analyses. The func-
tions required to build the size database must be run in a specific 
sequence. Therefore, to avoid any coding mistakes by the user, an 
additional R function, Full_SizeExtractR_Workflow(), is in-
cluded that runs through this entire sequence automatically and re-
quests interactive user input where necessary. The plotting function 
Plot_Size_Frequency() aids data exploration and presentation. 
This plotting function can be used to compare size frequency distri-
butions arising directly from the data among different categorical 
grouping variables (up to three categorical variables implemented). 
Further size analysis of ROI files can be achieved using the new R-
package: RImageJROI (Sterratt & Vihtakari, 2021).

3  |  C A SE STUDIES AND WORKED 
E X AMPLE

SizeExtractR has been developed and used in several research and 
teaching projects across marine and terrestrial ecology since 2018. 
These include published studies such as the examination of coral 
population size structure, heat stress and mass coral bleaching 
(Lachs et al., 2021), and the determination of size spectra and in-
ferred growth of nursery-reared and field-planted corals (Humanes 
et al., 2021). Several ongoing projects are utilizing SizeExtractR to 
assess reproductive effort by measuring egg size from microscopy 
images, quantifying population size structure of coral and sea ur-
chins across large-scale latitudinal gradients and estimating growth 
in Drosophila flies to assess evolutionary potential under tempera-
ture stress. Here we explain the value of SizeExtractR and describe 
a worked example of the method for the Lachs et al. (2021) case 
study. A full step-by-step example is provided with R-code in the 
User Guide (covering both ImageJ and R-package usage) and as a 
vignette to the R-package (covering only the R-package usage) 
(Supplementary Materials).

Lachs et al. (2021) used SizeExtractR to link population size 
structure, heat stress, and coral bleaching in a regional endemic 
coral (Pocillopora aliciae) in the Solitary Islands Marine Park, eastern 
Australia. The image dataset comprised of scaled seafloor images 
(Figure 2—note the calibration stick with multiple 10cm bands) along 
replicate transects from 2010 until 2019 that encompassed an in-
tense marine heatwave in 2016 with associated mass coral bleach-
ing and mortality (Figure 3a). In planning the image analysis and ROI 
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labeling system for this study, it was important to consider which 
variables were to be recorded. The size metric of interest was planar 
area (cm2), easily captured using SizeExtractR-macros. The categor-
ical Directory Variables of interest were year (6 years), site (4 sites/
year), and transect (3 transects/site/year). Thus, the folders were 
named consistently and placed in a nested structure (images within 
transect folders, within site folders, within year folders, within a sin-
gle root directory). Finally, the categorical ROI Variables of interest 
were bleaching status (healthy, moderately bleached, and severely 
bleached), and partial mortality, given that partial mortality of colonial 
organisms can occlude size-age relationships (Figure 3a). Accordingly, 
the ROI labelling system used for annotations reflected these user-
defined categorical variables with simple codes (Figure 3b). Note, 
these labelling codes would be different for every study.

In this example, the SizeExtractR plotting function, Plot_Size_
Frequency(), was used to compare size frequency distributions 
through time quantitatively (Figure 3c). A spike in the abundance of 
small P. aliciae colonies occurred in 2010, which increased through 
the size classes until 2016 representing cohort growth, without ad-
ditional recruitment in other years (Lachs et al., 2021). The statisti-
cal significance of these trends was then tested further in R using 
generalized linear mixed effects models. Such size datasets can be 
used for numerous other analyses including timeseries analysis, or 
growth estimation (multiple size surveys of individuals through time) 
and population projections (e.g., integral projection modelling).

4  |  TIME SAVING WITH SizeE x trac tR

To quantify the time saving benefits of using SizeExtractR-macros, 
we conducted an image analysis time trial on a subset of benthic 
images (N = 40) from Lachs et al. (2021), compared to a fully manual 
method using default ImageJ tools. Briefly, the manual method in-
volves opening an image in ImageJ, selecting the outline tool, outlin-
ing a coral, adding the outline to the ROI manager, renaming the ROI, 
and repeating for each coral in the image, switching between ImageJ 
tools each time by navigating through dropdown menus. Once each 
ROI is named correctly, the size metrics are chosen from a drop-
down menu, results are exported to a text file, ROIs saved to a zip 
file, and a reference image is formatted and saved, with all output file 
names typed in manually. Each image was analyzed using both meth-
ods, all corals per image were annotated, and the image analysis time 
per image was recorded (see data in Supplementary Materials). Data 
were analyzed using general linear models (see full methodology in 
the Supplementary Materials).

Time spent per image was found to increase linearly with the 
number of corals per image for both analysis methods (Figure 4). 
Importantly, the SizeExtractR method was up to 49% faster than 
the manual method, whereby the amount of time saved increased 
with the number of objects per image (i.e., significant interaction 
term, Table A1). The additional time saving for densely packed im-
ages (i.e., many objects of interest) when using SizeExtractR was 

F I G U R E  2 Illustration showing the 
variables that can be measured and 
recorded using SizeExtractR. (a) Seven size 
metrics are automatically measured with 
SizeExtractR-macros, once ROIs are fully 
annotated. (b) An example annotation 
shows how categorical ROI Variables 
are recorded based a simple labeling 
system. (c) Optional categorical Directory 
Variables can also be included in analyses 
to record additional notes on each ROI 
and are derived from folder names
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most likely due to additional observer fatigue for manual meth-
ods. Specifically, the manual method requires users to search 
through drop-down menus to set tools in ImageJ and navigate 
pop-up boxes to save output files; steps that are automated in 
SizeExtractR-macros. Together, our results show the SizeExtractR 
method took approximately half the time of the manual method 

with default ImageJ tools, for a given number of corals per image. 
Moreover, human errors in annotating ROIs and saving output files 
(e.g., spelling mistakes or overwriting data files) were common 
using the manual method (~15 min of careful quality control was 
needed after ~2 h of annotation), but near non-existent when using 
Size Extract R.

F I G U R E  3 Using SizeExtractR to assess population size structure for hard coral from scaled seafloor photographs of the benthos (Lachs 
et al., 2021; Sommer et al., 2014). (a) The process of coral bleaching from a healthy state until mortality is shown for Pocillopora aliciae. The 
user-defined ROI Label Code for recording moderately and severely bleached colonies was b and bb, respectively, for colonies with partial 
mortality was pm, no ROI Label Code denoted a healthy colony, and dead colonies were not analyzed. (b) Example ROI name labels from 
this case study are shown with descriptions, including the automatically produced codes for calibration lengths (M) and calibration points 
(Cali_Pts). (c) Temporal change in population size frequency distributions for P. aliciae are shown as the direct output of the SizeExtractR 
plotting function, Plot_Size_Frequency(). Notably, all surveys occurred in Austral winter, except for the 2016 bleaching survey in 
Austral summer
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5  |  SUMMARY

In ecology, there is a growing need for tools and workflows that 
allow for reproducible extraction of object sizes from scaled images 
(Weinstein, 2018). Despite advancements in flexibility and accessi-
bility in recent years, machine learning image analysis techniques are 
often unsuitable for specific image datasets, either due to difficul-
ties in adapting models to new purposes, budget, timeframe, or level 
of expertise required. Here, we present SizeExtractR as an adapt-
able workflow solution to these problems. SizeExtractR comprises 
a user-friendly ImageJ-macro and an R-package for measuring the 
dimensions of irregular shaped objects in scaled images using seven 
common size metrics. Combining the accuracy of human recogni-
tion with the speed of semi-automated protocols, SizeExtractR sits 
between fully manual image analysis methods (e.g., ImageJ default 
tools, Schneider et al., 2012) and automated machine learning image 
analysis methods (e.g., CoralSeg, Alonso et al., 2019). SizeExtractR 
offers high levels of transparency and traceability (in terms of fully 
documented outputs including ROI outline images) and quality con-
trol to researchers. By providing automated saving of output files, 
SizeExtractR can facilitate the scientific peer review process and 
allows researchers to re-check or add to their earlier image analy-
sis work. Future directions include the inclusion of additional size 
metrics and improving the user interface for the R-based portion of 

the workflow (e.g., an interactive Shiny App). SizeExtractR is open 
source, offers features that promote openness, and replicability in 
science, and has numerous potential applications across ecology, 
evolution, botany, and other scientific disciplines.
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APPENDIX 

TIME TRIAL ME THODS AND S TATIS TIC AL RE SULTS
We conducted an image analysis time trial on a subset of benthic images (N = 40) from Lachs et al. (2021) to quantify the timesaving benefits 
of using SizeExtractR-macros, compared to a fully manual method using default ImageJ tools. Each image was analyzed using both methods, 
all corals per image were annotated, and the image analysis time per image was recorded. Half of the images were analyzed with SizeExtractR 
first, while the other half were analyzed using the manual method first, to check for issues relating to recognition of an image previously ana-
lyzed. After collating the data using the SizeExtractR, the total number of coral colonies was computed per image. Notably, the image analysis 
workload was shared between two observers (L.L. and F.C.). The degree to which time spent on analysis (per photo) (continuous response) was 
affected by the analysis method (categorical predictor), the number of corals per photo (numerical predictor) was tested using a general linear 
model. Observer ID (categorical predictor) and Method First (categorical predictor) were additional potential sources of variation that were 
included in the full model. The predictors in this model were then reduced using backward selection of non-significant predictors one at a time.

TA B L E  A 1 Results of multiple regression relating to Figure 4 in the main manuscript, showing the relationship between time spent 
per image (continuous response) and various covariates: analysis method (categorical predictor), number of corals per image (continuous 
predictor), their interaction, and other sources of potential error observer ID (categorical predictor), and Method First (categorical predictor). 
The reduced and then final models were formed after backward selection removal of non-significant predictors starting from the full model

Model Predictor Estimate SE T value p Value

Full Intercept 2.29 0.39 5.86 <.001

Method-SizeExtractR 0.23 0.02 13.15 <.001

No. corals −1.13 0.45 −2.51 <.05

Observer.ID- L.L. −0.24 0.19 −1.28 >.05

Method. First-SizeExtractR 0.29 0.17 1.76 >.05

No. corals*Method-SizeExtractR −0.09 0.02 −4.12 <.001

Reduced Intercept 2.88 0.31 9.17 <.001

Method-SizeExtractR 0.20 0.01 14.53 <.001

No. corals −1.48 0.38 −3.93 <.001

Observer.ID-Lachs −0.26 0.16 −1.65 >.05

No. corals*Method-SizeExtractR −0.07 0.02 −3.64 <.001

Final Intercept 2.61 0.27 9.75 <.001

Method-SizeExtractR 0.21 0.01 15.96 <.001

No. corals −1.48 0.38 −3.91 <.001

No. corals*Method-SizeExtractR −0.07 0.02 −3.62 <.001

The p Values of significant predictors for on alpha level of .05 are shown in bold.


