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Deletion-restriction for sheaf homology of graded atomic lattices

Brent Everitt and Paul Turner

Dedicated to Marcia Everitt (1932-2018) and Ken Turner (1927-2014)

Abstract. We give a long exact sequence for the homology of a graded atomic lattice equipped with a sheaf of

modules, in terms of the deleted and restricted lattices. This is then used to compute the homology of the arrangement

lattice of a hyperplane arrangement equipped with the natural sheaf. This generalises an old result of Lusztig.

Introduction

This paper is about graded atomic lattices, equipped with sheaves of modules, and their homol-

ogy. Important examples in nature are the face lattices of polytopes, the intersection lattices of

hyperplane arrangements, and the lattices of flats of matroids. This last family comprises pre-

cisely the geometric lattices. When studying lattices a key role is played by deletion-restriction,

where the lattice L may be decomposed into two pieces with respect to some atom a: the deletion

La and the restriction La. For example, the characteristic polynomial χL(t) of a geometric lattice

L may be expressed in terms of the characteristic polynomials of the deletion and restriction.

When L is equipped with constant coefficients – that is, the sheaf is the constant sheaf – then

the homology reduces to the ordinary simplicial homology of the order complex |L| of L, and

one can avail oneself of standard topological tools. For example, an argument using a Mayer-

Vietoris sequence is enough to fully compute the homology of a geometric lattice [Fol66,Bjö82].

The long exact sequence used in the calculation is another manifestation of deletion-restriction,

relating the homology of L with that of La and La; see [OT92, §4.5] for details.

If the sheaf is non-constant then the topology of |L| can play a relatively minor role in ho-

mology – the space |L| can be contractible for example, but the sheaf homology may be highly

non-trivial. This makes the calculation of homology for arbitrary sheaves less straightforward,

and the techniques used for constant coefficients do not simply generalise.

Nevertheless, for an arbitrary sheaf it turns out there is a deletion-restriction long exact se-

quence, and this is the first main result of the paper:

Main Theorem. Let L be a graded atomic lattice equipped with a sheaf F. Then for any atom

a ∈ L there is a long exact sequence

· · · → Hi(L
a \a; F)→ Hi(La \0; F)→ Hi(L \0; F)→ Hi−1(La \a; F)→ Hi−1(La \0; F)

· · · → H1(L \0; F)→ H̃0(La \a; F)→ H0(La \0; F)→ H0(L \0; F)→ coker(ǫ∗)→ 0→
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where ǫ∗ : H0(La \ a; F) = lim
−−→

La\a F → F(a) is the map induced by the Fx
a : F(x) → F(a), for

x ≥ a, and the universality of the colimit.

Each lattice has had its minimum element 0 removed, a necessary requirement for a lattice

when considering its sheaf homology. If minima are not removed then, for general reasons,

the homology will be concentrated in degree zero. When the coefficients are constant, both the

minimum and the maximum 1 have to be removed to avoid the homology completely collapsing.

When the sheaf is non-constant there is no a priori reason to remove the maximum. We also warn

the reader that at the generality of graded atomic lattices L, the restriction La is not itself atomic.

To make inductive arguments therefore, one must start with an L carrying more structure: for

example the face lattice of a polytope or a geometric lattice – see §§1.1-1.2.

In the case of a linear hyperplane arrangement, the associated arrangement lattice has ele-

ments the intersections of hyperplanes. As these intersections are again linear spaces this gives

rise to a canonical sheaf on the lattice of intersections. We refer to this as the natural sheaf. Our

main application of the deletion-restriction long exact sequence gives a complete calculation of

the reduced homology in this case:

Main Application. Let L be the intersection lattice of a hyperplane arrangement with rk(L) ≥

2 and let F be the natural sheaf on L. Then H̃i(L \0; F) is trivial when i , rk(L) − 2 and

dim H̃rk(L)−2(L \0; F) = (−1)rk(L)−1 d

dt
χ(t)

t=1

where χ(t) is the characteristic polynomial of L.

The quantity appearing on the right-hand side is known (in the more general context of

matroids) as the beta-invariant (see [Zas87, §7.3]). We note that Yuzvinsky [Yuz91] formulated

the notion of a local sheaf to generate similar vanishing homology results, but these ideas are

not readily applicable to the situation above.

Our original motivation was a result of Lusztig [Lus74, Theorem 1.12], where he proved

that if V is a space over a finite field, A is the hyperplane arrangement consisting of all the

hyperplanes in V , and F is the natural sheaf, then Hi(L \ {0, 1}; F) vanishes in degrees 0 < i <

rk(L) − 2. Lusztig’s interest in natural sheaves on arrangement lattices arose in his study of the

discrete series representations of GLnk for k a finite field. As a corollary to our main application

we extend Lusztig’s result to any arrangement:

Corollary. Let L be the intersection lattice of a hyperplane arrangement A in the vector space

V and let U =
⋂

a∈A a. Suppose that rk(L) ≥ 3 and let F be the natural sheaf on L. Then

Hi(L \ {0, 1}; F) vanishes in degrees 0 < i < rk(L) − 2 with H0(L \ {0, 1}; F) � V ⊕ U and

dim Hrk(L)−2(L \ {0, 1}; F) = (−1)rk(L)−1 d

dt
χ(t)

t=1
+ |µ(0, 1)| dim U,

where µ is the Möbius function of L.

We note that while our calculations involving hyperplane arrangements have homology van-

ishing in all but top degree, this behaviour is the exception rather than the rule. One can readily

find lattices and sheaves whose homology is highly non-trivial. One example is the the Khovanov

homology of a link diagram [Kho00] which may be interpreted in terms of sheaf homology (see
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[ET15, ET14]). In this case there are many non-vanishing intermediate degrees, despite the un-

derlying lattice being contractible. Even when the sheaf structure maps are all injections one

easily finds non-trivial homology in intermediate degrees. A natural example is in the context

of “sheaves on buildings”. Indeed, Lusztig’s result can be viewed as the case of the building of

GLn equipped with the fixed point sheaf of the natural representation, for which the structure

maps are all inclusions. There are similar situations – the building of Spn for example – where

the homology is non-vanishing in some intermediate degrees (see [RS85]).

The paper is organised as follows. In Section 1 we set down the basics on lattices, and in

particular discuss the notion of a dependent atom, that will play a key role in inductive argu-

ments. In Section 2 we remind the reader about the basics of sheaf homology on posets – both

unreduced and reduced. We also present the Leray-Serre spectral sequence arising from a poset

map, which plays a key role. In Section 3 we present a deletion-restriction long exact sequence

for arbitrary sheaves (Theorem 2) and also give a version using reduced homology (Corollary

3). In Section 4 we calculate, as an application, the sheaf homology of a hyperplane arrangement

equipped with the natural sheaf (Theorem 3) and put this in a form which makes direct compari-

son to Lusztig’s result (Theorem 5). We end with a few remarks about the reduced broken circuit

complex, whose homology also features the beta-invariant.

We are grateful to the referee for pointing out to us the literature concerning broken circuits

and the beta-invariant.

1. Lattices

In §§1.1-1.2 we recall basic facts about posets, lattices, geometric lattices and arrangement lat-

tices. Standard references for this material are [Bir79, Sta12, Sta07, OT92]. In §1.3 we set down

facts about dependent atoms from [EF13] that will be useful in the inductive arguments of §4.

1.1. Basics

Let P = (P,≤) be a finite poset. If x ≤ y ∈ P and for any x ≤ z ≤ y we have either z = x or z = y,

then y is said to cover x, and we write x ≺ y. P is graded if there exists a function rk : P → Z

such that (i) x < y implies rk(x) < rk(y), and (ii) x ≺ y implies rk(y) = rk(x) + 1. A minimum

is an element 0 ∈ P such that 0 ≤ x for all x ∈ P and a maximum is an element 1 ∈ P such that

x ≤ 1 for all x ∈ P. If P has a minimum 0, then the standard grading on P is defined by taking

rk(x) to be the supremum of the lengths of all poset chains from 0 to x. All the posets in this

paper will be graded with the standard grading. The elements covering 0 – those of rank 1 – are

called atoms. A poset map f : Q→ P is a set map such that f x ≤ f y ∈ P if x ≤ y ∈ Q.

A subset K ⊂ P is upper convex if x ∈ K and x ≤ y implies that y ∈ K. If x ≤ y, the interval

[x, y] consists of those z ∈ P such that x ≤ z ≤ y; if x ∈ P the interval P≥x consists of those z ∈ P

such that z ≥ x; one defines P≤x, P>x and P<x similarly.

A lattice is a poset such that any two elements x and y have a unique supremum (or join)

x ∨ y and a unique infimum (or meet) x ∧ y. A finite lattice has minimum 0 equal to the meet of

all its elements and maximum 1 equal to the join of all its elements. A graded lattice is atomic

if every element can be expressed – not necessarily uniquely – as a join of atoms, and with the

empty join taken to be 0. The rank, rk(L), of a graded lattice L is rk(L) := rk(1).

Examples of graded atomic lattices abound:
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– If A is a (finite) set then the free, or Boolean, lattice B = B(A) has elements the subsets

of A ordered by inclusion. It is a graded atomic lattice with rk(x) = |x |, rk(B) = |A|, join

x∨ y = x∪ y, meet x∧ y = x∩ y, minimum 0 = ∅, maximum 1 = A and atoms the singletons

– which we identify with A. Any element has a unique expression as a join of atoms.

– A (convex) polytope P in a real vector space V is the convex hull of a finite set of points

– see [Grü03, Zie95]. The face lattice F(P) has elements the faces of P ordered by reverse

inclusion. This is a graded a atomic lattice (graded by rk( f ) = dim P− dim f ) with atoms the

dim P − 1 faces, join f1 ∨ f2 = f1 ∩ f2, meet f1 ∧ f2 the smallest face containing f1 and f2,

minimum P and maximum ∅ (hence rkF(P) = dim P).

– The partition lattice Π = Π(A) on the set A consists of all partitions {X1, X2 . . . , Xn} of A

ordered by refinement: {X1, X2 . . . , Xn} ≤ {Y1,Y2, . . . ,Ym} if each Xi is contained in some Y j.

The result is a graded lattice with rk{X1, X2 . . . , Xn} =
∑

(|Xi| − 1); rk(Π) = |A| − 1, minimum

the partition with all blocks singletons, maximum {A}, and atoms the partitions with just one

block {a, b} not having size one.

– The intersections of a collection of hyperplanes ordered by reverse inclusion gives an ar-

rangement lattice – see §1.2.

If L is a graded atomic lattice with atoms A, then for a ∈ A, define the deletion lattice La to

be the elements of L that can be expressed as a join of the elements of A \ {a} (with the empty

join taken to be 0), and the restriction lattice La to be the interval L≥a. The deletion La is graded

atomic with atoms Aa = A \ {a}, minimum 0a = 0, maximum 1a =
∨

Aa and rank function

rka = rk. The restriction La is graded but not in general atomic; if however L is the face lattice

of a polytope [Zie95, Theorem 2.7] or an arrangement lattice (which includes the Boolean and

partition examples) then La is atomic.

We finish our review of the basics with an important object in the theory of enumeration. If

k is a field, then the Möbius function µ = µL of L is the k-valued function on the intervals [x, y]

defined by

µ(x, y) = −
∑

x≤z<y

µ(x, z), for all x < y in L

and µ(x, x) = 1 for all x ∈ L.

1.2. Geometric and arrangement lattices

A graded atomic lattice is geometric if the rank function satisfies

rk(x ∨ y) + rk(x ∧ y) ≤ rk(x) + rk(y) (1)

for all x and y. The Boolean, partition and arrangement lattices above are geometric; the face

lattices of polytopes are usually not. If L is geometric then for a given atom a, both La and La are

again geometric lattices. The restriction La has atoms Aa = {a ∨ b : b ∈ Aa}, minimum 0a = a,

maximum 1a = 1 and rank function rka = rk − 1.

Our main supply of geometric lattices will come from (linear) hyperplane arrangements. Let

V be a finite dimensional vector space over a field k; then an arrangement in V is a finite set

A = {ai} of linear hyperplanes in V . The arrangement lattice L = L(A) has elements all possible
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B(1)
B(2)

B(3)
Π(3)

Fig. 1. The arrangement lattices L(A) where |A| ≤ 3: the Booleans B(n) for n = 1, 2, 3 and the partition lattice Π(3).

intersections of hyperplanes in A – with the empty intersection taken to be V – and is ordered by

reverse inclusion. Then L is a geometric lattice with atoms the hyperplanes A, and

0 = V, 1 =
⋂

a∈A

a, rk(x) = codim x, x ∨ y = x ∩ y, and x ∧ y =
⋂
{z ∈ L : x ∪ y ⊆ z}

Given a ∈ A, the deletion lattice La is the arrangement lattice L(Aa), and similarly the restriction

lattice La is the arrangement lattice L(Aa).

Some examples:

– Let v1, v2, . . . , vn be a basis for V with corresponding coordinate functions x1, x2, . . . , xn.

The coordinate arrangement A consists of the hyperplanes having equations xi = 0, for

1 ≤ i ≤ n. The arrangement lattice L(A) is isomorphic to the Boolean lattice B(A) via the

map x ∈ B(A) 7→
⋂

i∈x{xi = 0} ∈ L(A).

– The symmetric group Sn acts on V by permuting basis vectors: π · vi = vπ·i for π ∈ Sn. This

realises Sn as a reflection group where the reflecting hyperplanes are those with equations

xi − x j = 0 for all 1 ≤ i , j ≤ n. Collectively they form the braid arrangement A – so called,

when k = C, as the space V \
⋃

a∈A a has fundamental group the (pure) braid group on n

strands. The arrangement lattice L(A) is isomorphic to the partition lattice Π(A) via the map

induced by xi − x j = 0 ∈ L(A) maps to the partition with just one block {i, j} not having size

one.

– More generally, if W ⊂ GL(V) is any finite reflection group, then the reflecting hyperplanes

of W form a reflectional arrangement.

When |A| = 1 or 2, the only possibility for L is that it be Boolean of rank |A|. The arrangement

lattices with 3 or fewer hyperplanes are shown in Figure 1. The first three are Boolean and the

last is the partition lattice of a 3-element set. An arrangement lattice of rank 2 has the form

shown in Figure 2, arising from an arrangement of lines in the plane.

An arrangement A in the space V is essential when rk(L) = dim V , or equivalently,
⋂

a∈A a is

the zero space. The characteristic polynomial χ = χA of the arrangement A is defined by

χ(t) =
∑

x∈L

µ(x)tdim x

where µ(x) is the value of the Möbius function of the associated arrangement lattice L on the

interval [0, x], i.e. µ(x) = µ(0, x).
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Fig. 2. An arrangement lattice of rank 2 arising from an arrangement of lines in the plane.

1.3. Dependence

There is a notion of independence in a lattice that mimics linear algebra. Let L be a graded

atomic lattice with atoms A and write
∨

S for the join of the elements in a subset S ⊆ A. A

set S ⊂ A of atoms is independent if
∨

T <
∨

S for all proper subsets T of S , and dependent

otherwise. An atom a in a dependent set of atoms S with the property that
∨

S \ {a} =
∨

S is

called a dependent atom. It is easy to show [EF13, §1.1] that if S is dependent then there is an

independent T ⊂ S with
∨

T =
∨

S , and that any subset of an independent set is independent.

Proposition 1. Let L be a graded atomic lattice with independent atoms A. Then L is isomorphic

to the Boolean lattice B(A).

Birkhoff [Bir79, IV.4, Theorem 5] proves this for L a geometric lattice.

Proof. In B = B(A) any element has a unique expression as a join of atoms. Since B and L

share the same set of atoms and each element in L may be written as a join of atoms, there is a

canonical surjection f : B→ L given by

f :
∨

B ai 7→
∨

L ai.

We show that f is injective and that f −1 is a poset map, hence f is an isomorphism. Both

follow from the following claim: if x, y ∈ L and x = a1 ∨ · · · ∨ ak, y = a′
1
∨ · · · ∨ a′

ℓ
are any

expressions as joins of atoms, then x ≤ y if and only if {a1, . . . , ak} ⊆ {a
′
1
, . . . , a′

ℓ
}. To prove the

“only if”’ part of the claim, let x ≤ y and suppose that ai < {a
′
1
, . . . , a′

ℓ
} for some i. Then

a1 ∨ · · · ∨ ak ∨ a′1 ∨ · · · a
′
ℓ = x ∨ y = y = a′1 ∨ · · · ∨ a′ℓ,

and after removing redundancies on the left (as joins commute and a ∨ a = a for all a) the right

hand join of atoms is a proper subset of the left hand join of atoms. Taking the join of both sides

with those atoms that are not any of the a j or a′
j

gives
∨

A on the left and
∨

A′ on the right, for

some A′ a proper subset of A. This contradicts the independence of A. The “if” part of the claim

is obvious.

Now let S = {si} and T = {ti} be subsets of atoms with
∨

f si =
∨

f ti. Then by the claim we

have { f si} = { f ti} and hence S = T as f is the identity map on A. Thus, f is injective. A similar

argument shows that f −1 is a poset map. ⊓⊔

In a geometric lattice L with atom set A we have rk(L) = rk(
∨

A) ≤ |A|. Moreover, A is

independent if and only if rk(
∨

A) = |A|, so the above shows that rk(L) = |A| if and only if L is

Boolean.
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Corollary 1. Let L be a non-Boolean geometric lattice with |A| hyperplanes. Then there exists a

dependent atom a such that

– the deletion La has |A| − 1 atoms and rk(La) = rk(L);

– the restriction La has at most |A| − 1 atoms and rk(La) = rk(L) − 1.

2. Sheaf homology

In §§2.1-2.2 we recall the basics of sheaves on posets and the resulting homologies – standard

references are [GZ67, God73, Qui78, Qui73]. In §2.3 we recall a convenient tool for calculating

homology: a Leray-Serre spectral sequence for which we reference [GZ67, Appendix II]. In §2.4

we recall the notion of reduced homology.

2.1. Sheaves

Let R be a commutative ring with 1. A sheaf 1 on a poset P is a contravariant functor

F : P→ RMod

to the category of R-modules, where P is interpreted as a category in the usual way. The category

of sheaves on P has objects the sheaves F and morphisms the natural transformations of functors

κ : F → G. We write F
y
x for the homomorphism, or structure map, of the sheaf given by

F(x ≤ y) : F(y)→ F(x). Two important examples of sheaves are:

– For M ∈ RMod the constant sheaf ∆M is defined by ∆M(x) = M for every x ∈ P and

(∆M)
y
x = 1 for every x ≤ y in P.

– If L = L(A) is the intersection lattice of a hyperplane arrangement A, then the natural sheaf

on L has F(x) just the space x itself, and for x ≤ y in L, the structure map F
y
x is the inclusion

of spaces y ֒→ x.

If f : Q → P is a map of posets and F is a sheaf on P, then there is an induced sheaf on Q

given by f ∗F := F ◦ f .

2.2. Homology

For any sheaf F on P the colimit lim
−−→

P F is constructed by taking the quotient of
⊕

x∈P
F(x) by

the submodule generated by all elements of the form ay − F
y
x(ay) where x ≤ y and ay ∈ F(y).

Taking colimits is right but not left exact, which earns them the privilege of left derived functors.

These are called higher colimits and are denoted

lim
−−→

P
∗ := L∗ lim

−−→
P .

If 0 → F → G → H → 0 is a short exact sequence of sheaves then there is a long exact

sequence of modules:

· · · → lim
−−→

P
i

F → lim
−−→

P
i
G → lim

−−→
P
i

H → · · · → lim
−−→

PF → lim
−−→

PG → lim
−−→

PH → 0 (2)

1 Strictly speaking we should say presheaf rather than sheaf, but as our posets are discrete (if one wishes to view

them as topological objects) there is essentially no difference between presheaves and sheaves.
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The homology of P with coefficients in the sheaf F are the higher colimits evaluated at the

sheaf F.

Homology can be computed using an explicit chain complex in the following way (details

may be found in [GZ67, Appendix II]). Recall that the order complex (or nerve) |P | of the poset

P is the simplicial complex whose vertices are the elements of P and whose n-simplices are the

chains

σ = xn ≤ · · · ≤ x0. (3)

Let S∗(P; F) be the chain complex whose group of n-chains is

Sn(P; F) =
⊕

σ

F(x0)

the direct sum over the n-simplices (3) of |P |. If σ is an n-simplex and s ∈ F(x0), then we will

write sσ for the element of Sn that has value s in the component indexed by σ and value 0 in all

other components. The differential in S∗(P; F) is defined as follows. If

diσ = xn ≤ · · · ≤ x̂i ≤ · · · ≤ x0 and siσ = xn ≤ · · · ≤ xi ≤ xi ≤ · · · ≤ x0 (4)

for 0 ≤ i ≤ n, then d : Sn(P; F)→ Sn−1(P; F) is given by

dsσ = F
x0
x1

(s)d0σ +

n∑

i=1

(−1)isdiσ. (5)

The higher colimits may be computed as the homology of this complex:

H∗(P; F) = lim
−−→

P
∗ F � H(S∗(P; F)).

In the special case of the constant sheaf F = ∆M, the homology is just the ordinary simplicial

homology of |P |:

H∗(P;∆M) � H∗(|P |,M). (6)

If f : Q→ P is a map of posets and F is a sheaf on P, then there is a chain map S∗(Q; f ∗F)→

S∗(P; F) induced by sσ 7→ s fσ. In particular, if f : Q ֒→ P is an inclusion, then f ∗F is just the

restriction of the sheaf F to the subposet Q (in which case we will simply write F for the

restricted sheaf too) and S∗(Q; F) is a subcomplex of S∗(P; F).

There is a variation on the complex S∗ which uses only non-degenerate simplices. The group

of n-chains is

Tn(P; F) =
⊕

σ

F(x0)

where this time the sum is over non-degenerate simplices σ = xn < · · · < x0, and the differential

is once again given by formula (5). Then T∗(P; F) is a subcomplex of S∗. If g : T∗ → S ∗ is the

inclusion and f : S ∗ → T∗ the map with f (aσ) = aσ when σ is non-degenerate, and f (aσ) = 0

otherwise, then f g is the identity on T∗. Let h : S n → S n+1 be defined by

h(aσ) =

{
(−1)paspσ, when σ = xn . . . xp+ℓxp . . . xpxp−1 . . . x0

0, else

where there are ℓ ≥ 2 copies of xp in the first case and spσ is given by (4). Then a standard

check shows that h is a (chain) homotopy between g f and the identity on S ∗. The complexes S ∗
and T∗ are thus homotopy equivalent.

The following lemma gathers together some small results needed later.
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Lemma 1. 1. If P is a finite graded poset, then Hi(P; F) , 0 only if 0 ≤ i ≤ rk(P).

2. If P has a minimum or maximum, and ∆M is a constant sheaf, then H0(P;∆M) = A and

Hi(P;∆M) vanishes for i > 0.

3. If P has a minimum 0, and F is any sheaf, then H0(P; F) = F(0) and Hi(P; F) vanishes for

i > 0.

4. If P has a maximum 1, and F is a sheaf on P such that F(1) = 0, then H∗(P; F) is isomorphic

to H∗(P \ 1; F).

Proof. Part 1 follows immediately from the existence of T∗; part 2 follows from (6) and the

fact that |P | is contractible, as it is a cone on |P \ x |, where x is the maximum or minimum. In

the presence of a minimum the colimit functor is naturally isomorphic to the evaluation functor

F 7→ F(0), which is exact, hence part 3. Finally, the complexes S∗(P \ 1; F) and S∗(P; F) are

identical when F(1) = 0, hence part 4. ⊓⊔

Remark: If P has a maximum but no minimum then, according to the Lemma, homology with

constant coefficients H∗(P;∆M) still vanishes in every non-zero degree. However, this is far

from the case when one allows more interesting sheaves F. In general H∗(P; F) can be almost

arbitrarily complicated.

2.3. The Leray-Serre spectral sequence

There is a spectral sequence for higher colimits given in [GZ67, Appendix II, Theorem 3.6]; the

following is the specialisation of this result from small categories to posets.

Let f : P → Q be a poset map and let F be a sheaf on P. For each q ≥ 0 define a sheaf Hfib
q

on Q by

Hfib
q (x) = Hq( f −1Q≥x; F)

where the sheaf denoted F on the right is the restriction of F to f −1Q≥x ⊂ P. If x ≤ y in Q then

the structure map Hfib
q (y)→ Hfib

q (x) is induced by the inclusion Q≥y ֒→ Q≥x.

Theorem 1 (Leray-Serre). There is a spectral sequence

E2
p,q = Hp(Q; H

fib
q )⇒ Hp+q(P; F)

We warn the reader that the sheaves in [GZ67, Appendix II] are covariant, so the translation

requires a number of headstands. The sequence is a special case of the results in [Gro57], where

Grothendieck gives a spectral sequence that converges to the derived functors of a composite of

two functors.

The following corollary is a homological version of the Quillen fibre lemma [Qui78], which

states that if f : P → Q is a poset map such that for all x ∈ Q, the fiber f −1Q≥x is contractible,

then f is a homotopy equivalence.

Corollary 2. Let f : P → Q be a surjective poset map, let G be a sheaf on Q and let F = f ∗G

be the induced sheaf on P. Suppose that for all x ∈ Q the homology H∗( f −1Q≥x; F) vanishes

outside degree 0 and H0( f −1Q≥x; F) � G(x). Then there is an isomorphism

H∗(P; F) � H∗(Q; G)
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Proof. We have Hfib
q = 0 for q > 0 and Hfib

0
(x) = G(x), with structure maps Hfib

0
(x ≤ y) identified

with G
y
x. Thus Hfib

0
= G and the spectral sequence of Theorem 1 collapses on the E2 page with

H∗(Q; G) on the q = 0 line. The result then follows. ⊓⊔

The conditions of the corollary occur most commonly in nature when for all x ∈ Q the

subposet f −1Q≥x has a minimum z: for then by Lemma 1 part 3 the homology H∗( f −1Q≥x; F)

is concentrated in degree 0. Moreover, by the surjectivity of f , we have f (z) = x, hence F(z) =

G(x).

2.4. Reduced homology for lattices

If a poset has a minimum, then by Lemma 1, part 3, the homology vanishes in every non-zero

degree. However there is a reduced version of homology which provides a way of remembering

the minimum without rendering the homology almost trivial.

Let P be a poset with minimum 0 and let F be a sheaf on P. We can augment the chain

complex S∗(P \ 0; F) by defining ǫ : S0(P \ 0; F) → F(0) to be the sum of the structure maps

Fx
0

over the x ∈ P \ 0. The reduced homology H̃∗(P \ 0; F) is the homology of this augmented

complex S̃∗(P\0; F). The map ǫ induces ǫ∗ : H0(P\0; F)→ F(0), which coincides with the map

lim
−−→

P\0 F → F(0) induced by the Fx
0
, using the universality of the colimit. We have

H̃i(P\0; F) =


Hi(P\0; F), i > 0

ker (ǫ∗ : H0(P\0; F)→ F(0)), i = 0

and H̃−1(P\0; F) = coker ǫ. One can also use the complex T∗(P\0; F) in all of the above.

3. The deletion-restriction long exact sequence

Given a graded atomic lattice L equipped with a sheaf F, then for an atom a ∈ L the deletion

and restriction lattices La and La (as defined in §1.1) may be equipped with F by restriction. The

homology of these three lattices are tied together by a long exact sequence which we establish in

this section. We remind the reader that at the generality of graded atomic lattices L, the restriction

La is not itself atomic. To make inductive arguments, one must start with an L carrying more

structure: for example the face lattice of a polytope or a geometric lattice.

Theorem 2 (Deletion-Restriction Long Exact Sequence). Let L be a graded atomic lattice

equipped with a sheaf F. Then for any atom a ∈ L there is a long exact sequence

· · · → Hi(L
a \a; F)→ Hi(La \0; F)→ Hi(L \0; F)→ Hi−1(La \a; F)→ Hi−1(La \0; F)

· · · → H1(L \0; F)→ H̃0(La \a; F)→ H0(La \0; F)→ H0(L \0; F)→ coker(ǫ∗)→ 0→

where ǫ∗ : H0(La \ a; F) = lim
−−→

La\a F → F(a) is the map induced by the Fx
a : F(x) → F(a), for

x ≥ a, and the universality of the colimit.
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In the proof of Theorem 2 will use the sub-poset L1 of L defined by L1 = L\{0, a}. If A is the

set of atoms of L, then for x ∈ L \ 0, let Ax be those atoms ≤ x and let Bx = Ax ∩ (A \ {a}). When

x ∈ L1 we have Bx , ∅. Define a mapping t : L1 → La \ 0 by

t(x) =

{
x, x ∈ La∨

Bx, x < La.
(7)

Lemma 2. The map t is a poset map and for any x ∈ La \ 0, the pre-image t−1((La \ 0)≥x) has

minimum x.

Proof. Observe that for x ≤ y we have Bx ⊆ By. Moreover, as Bx ⊆ Ax, then for x < La we have

t(x) =
∨

Bx ≤
∨

Ax = x (if x ∈ La then trivially t(x) ≤ x). To show that t is a poset map, suppose

that x ≤ y in L1. It is easy to see that if x, y are both in La, or both not in La, then t(x) ≤ t(y). If

x ∈ La and y < La, then x =
∨

B for some B ⊆ Bx, hence t(x) = x =
∨

B ≤
∨

Bx ≤
∨

By = t(y).

Finally, if x < La and y ∈ La, then t(x) ≤ x ≤ y = t(y).

For the second claim, t(x) = x gives x ∈ t−1((La \ 0)≥x). If y is an element of t−1((La \ 0)≥x)

then t(y) ∈ (La\0)≥x, and in particular x ≤ t(y). If y is itself in La\0, then y = t(y) ≥ x. If y < La\0

then Ay = By ∪ {a} so that x ≤ t(y) ≤ a ∨ t(y) = a ∨
∨

By =
∨

Ay = y. ⊓⊔

Proof. (of the deletion-restriction long exact sequence). Equip L1 = L\{0, a} with the restriction

of F. There is an inclusion of complexes

T∗(L1; F)→ T∗(L \0; F)

with quotient Q∗ where

Qn =
⊕

σ

F(x0),

for n > 0 is the sum over the non-degenerate simplices σ = a < xn−1 < · · · < x0, and Q0 = F(a).

The differential d : Qn → Qn−1 is given by

dsσ = F
x0
x1

(s)d0σ +

n−1∑

i=1

(−1)isdiσ (8)

and d : Q1 → Q0 is the map sx 7→ Fx
a(sx) for x > a.

Notice that σ = a < xn−1 < · · · < x0 is a simplex in |L≥a|. There is an evident isomorphism

between Q∗ and the augmented complex T̃∗−1(L>a; F), and in homology

HiQ � Hi−1(L>a; F) = Hi−1(La \a; F),

for i > 1. We also have H1Q � H̃0(L>a; F) = H̃0(La \a; F) and H0Q = coker(ǫ∗).

The short exact sequence

0→ T∗(L1; F)→ T∗(L \0; F)→ Q∗ → 0

thus induces a long exact sequence

· · · → Hi(L
a \a; F)→ Hi(L1; F)→ Hi(L \0; F)→ Hi−1(La \a; F)→ Hi−1(L1; F)

· · · → H1(L \0; F)→ H̃0(La \a; F)→ H0(L1; F)→ H0(L \0; F)→ coker(ǫ∗)→ 0→

(*)
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We finish the proof by showing that Hi(L1; F) � Hi(La \0; F) for all i. For this we apply the

Leray-Serre spectral sequence to the map t : L1 → La \0 of Lemma 2. The spectral sequence is

of the form

E2
p,q = Hp(La \0; Hfib

q )⇒ Hp+q(L1; F)

where for x ∈ La \0,

Hfib
q (x) = Hq(t−1((La \0)≥x); F).

By Lemma 2, the poset t−1((La \0)≥x) has a minimum, so Lemma 1 part 3 then gives

Hfib
q (x) =


F(x) q = 0

0 otherwise.

Therefore the spectral sequence has a single row (q = 0) on which E2
p,0
= Hp(La \ 0; F). The

sequence thus collapses at the E2-page, and we conclude that Hp(La \0; F) � Hp(L1; F). ⊓⊔

The final step in the proof is a direct use of the Leray-Serre spectral sequence, rather than an

application of Corollary 2, because the induced sheaf t∗F on L1 is not the one we want.

We state as a corollary a special case that we will use on hyperplane arrangements in the next

section.

Corollary 3 (Reduced Deletion-Restriction Long Exact Sequence). Let L be a graded atomic

lattice equipped with a sheaf F. Let a ∈ L be an atom such that ǫ∗ : lim
−−→

La\a F → F(a) is a

surjection. Then, there is a long exact sequence

· · · → H̃i(L
a \a; F)→ H̃i(La \0; F)→ H̃i(L \0; F)→ H̃i−1(La \a; F)→ H̃i−1(La \0; F)

· · · → H̃1(L \0; F)→ H̃0(La \a; F)→ H̃0(La \0; F)→ H̃0(L \0; F)→ 0→

Proof. Consider the long exact sequence (∗) in the proof of Theorem 2, and let

f : H̃0(La \a; F)→ H0(L1; F) and g : H0(L1; F)→ H0(L \0; F).

One can then show that im f ⊆ H̃0(L1; F) ⊂ H0(L1; F). Now restrict g to g̃ : H̃0(L1; F) →

H0(L \ 0; F). One then gets that im f = ker g̃ and so H0(L1; F) can be replaced by H̃0(L1; F) in

the long exact sequence. Similarly g̃ maps H̃0(L1; F) onto H̃0(L \ 0; F), so we can also replace

the last term in the sequence with its reduced version (the final coker(ǫ∗) is already 0 by the

assumption in the Corollary). Then continue as in the proof of Theorem 2, replacing H̃0(L1; F)

by H̃0(La \0; F). All the other terms in the sequence (*) are automatically equal to their reduced

versions. ⊓⊔

4. Application to hyperplane arrangements

In this section L = L(A) is the intersection lattice of a hyperplane arrangement A in the vector

space V , and F is the natural sheaf on L (see §2.1).
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4.1. Reduced homology

Our goal is to compute H̃i(L \ 0; F), and our main tool is Corollary 3, the reduced deletion-

restriction long exact sequence. To apply it we need the following small result.

Lemma 3. Let L be the intersection lattice of a hyperplane arrangement with rk(L) ≥ 2 and let F

be the natural sheaf on L. Then the map ǫ∗ : lim
−−→

L\0 F → F(0) induced by the Fx
0

: F(x) → F(0),

for x ∈ L \ 0, is surjective.

Proof. Since rk(L) ≥ 2, the arrangement has at least two distinct hyperplanes, whose vector

space sum is F(0). The result follows immediately from the definition of colimit. ⊓⊔

For any atom a in an arrangement lattice L, the restriction La is also an arrangement lattice

with minimum a; in particular La is graded atomic and ǫ∗ : lim
−−→

La\a F → F(a) is a surjection,

so we can use the long exact sequence of Corollary 3 to make inductive arguments. Throughout

this section we will therefore use reduced homology.

We begin with the special cases of rank 2 lattices and of Boolean lattices.

Proposition 2. Let L = L(A) be the intersection lattice of a hyperplane arrangement with

rk(L) = 2 and let F be the natural sheaf on L. Then H̃i(L \ 0; F) is trivial when i , 0 and

dim H̃0(L \0; F) = |A| − 2.

Proof. The homology is concentrated in degrees 0 and 1. The complex T∗ of §2.2 can be written

out explicitly, from which it is easily seen that d : T1 → T0 is injective, hence H1(T ) = 0.

Moreover

dim T0 = |A|(dim V − 1) + (dim V − 2) and dim T1 = |A|(dim V − 2)

so that

dim H0(T ) = dim T0 − dim(im d) = dim T0 − dim T1 = dim V + |A| − 2

The augmentation ǫ∗ : H0(T )→ V is surjective by Lemma 3, so that

dim H̃0 = dim ker ǫ∗ = dim H0(T )−dim V = |A|−2. ⊓⊔

Proposition 3. Let B be a Boolean lattice that is the intersection lattice of a hyperplane arrange-

ment with rk(B) ≥ 2, and let F be the natural sheaf on B. Then H̃∗(B \ 0; F) is trivial.

Proof. We use induction on the number |A| of hyperplanes, which in the Boolean case equals the

rank rk(B).

The base case, rk(B) = 2, follows from Proposition 2, so suppose rk(B) > 2. For any hyper-

plane a ∈ A the deletion Ba and restriction Ba are again Boolean, and of rank rk(B) − 1. Thus

H̃∗(Ba \0; F) = 0 and H̃∗(B
a \0; F) = 0 by induction. The result then follows from the reduced

deletion-restriction long exact sequence. ⊓⊔

We now state and prove our main application:

Theorem 3. Let L be the intersection lattice of a hyperplane arrangement with rk(L) ≥ 2 and

let F be the natural sheaf on L. Then H̃i(L \0; F) is trivial when i , rk(L) − 2 and

dim H̃rk(L)−2(L \0; F) = (−1)rk(L)−1 d

dt
χ(t)

t=1

where χ(t) is the characteristic polynomial of L.
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Proof. If L has rank 2 and dim V = n then the characteristic polynomial is

χ(t) =
∑

x∈L

µ(0, x)tdim x = tn − |A|tn−1 + (|A| − 1)tn−2

and we easily calculate

(−1)rk(L)−1 d

dt
χ(t)

t=1
= |A| − 2.

This, and Proposition 2, proves the theorem for rank 2 lattices.

If L is Boolean of rank r > 2 and dim V = n ≥ r, then the characteristic polynomial is

χ(t) = tn−r(t − 1)r.

The derivative of χ(t) vanishes at t = 1, so this and Proposition 3 prove the theorem for Boolean

lattices.

We now proceed by induction on the number |A| of hyperplanes, where we assume that

rk(L) ≥ 3. If |A| = 2 then rk(L) ≤ 2, so we take as our base case |A| = 3:

– The base case |A| = 3. As rk(L) ≥ 3, then §1.2 shows that the only possibility for L is that it

be Boolean of rank 3, and the theorem has already been proved in this case.

– The vanishing degrees when |A| > 3. We may assume that L is non-Boolean of rank ≥ 3 and

|A| > 3 – though being non-Boolean is not part of the inductive hypothesis.

Corollary 1 guarantees that the non-Boolean L has a dependent atom a ∈ A, so the deletion

La is an arrangement lattice with |A| −1 hyperplanes and rk(La) = rk(L) ≥ 3. Thus, the inductive

hypothesis, and hence the result, holds for La.

Corollary 1 again gives the restriction La is an arrangement lattice with at most |A| − 1 hy-

perplanes and rk(La) = rk(L) − 1. If rk(L) = 3 then the result holds for La by Proposition 2. If

rk(L) > 3 then rk(La) ≥ 3, and La must contain at least 3 hyperplanes; the result then holds for

La by induction.

The reduced deletion-restriction long exact sequence

· · · → H̃i(La \ 0; F)→ H̃i(L \ 0; F)→ H̃i−1(La \ a; F)→ · · ·

then has H̃i(La \ 0; F) trivial for i , rk(L) − 2 and H̃i−1(La \ 0; F) trivial for i − 1 , rk(La) − 2,

or equivalently, for i , rk(L) − 2. Thus, H̃i(L \ 0; F) = 0 for i , rk(L) − 2.

– The dimension in degree rk(L) − 2. Let θ be an integer-valued function, defined on arrange-

ment lattices of rank ≥ 2, that satisfies the following three properties:

(1) θ(L) = |A| − 2, if L is a rank 2 lattice with |A| atoms;

(2) θ(L) = 0, if L is Boolean;

(3) θ(L) = θ(La) + θ(La), where a is a dependent atom in L.

If such a function exists it is unique: indeed by Corollary 1 we may continue to apply the

recursive relation (3) until we find Boolean lattices – whose values are given by (2) – or rank 2

lattices, whose values are given by (1).

Let

Φ(L) = dim H̃rk(L)−2(L \0; F).
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We claim thatΦ satisfies (1), (2) and (3) above. Courtesy of Proposition 2, we haveΦ(L) = |A|−2

when L has rank 2 – hence (1) – and Proposition 3 gives Φ(L) = 0 for Booleans, so (2) is also

satisfied. The vanishing degrees above leaves only the short exact fragment:

0→ H̃rk(La)−2(La \ 0; F)→ H̃rk(L)−2(L \ 0; F)→ H̃rk(La)−2(La \ a; F)→ 0

of the deletion-restriction long exact sequence, where rk(La) = rk(L) and rk(La) = rk(L) − 1.

We immediately see that Φ satisfies (3).

Now define

Ψ (L) = (−1)rk(L)−1 d

dt
χ(t)

t=1

We have already calculated Ψ (L) at the beginning of the proof for rank two lattices and for

Booleans, showing Ψ satisfies (1) and (2) above. Furthermore, the characteristic polynomial

satisfies the relation:

χL(t) = χLa
(t) − χLa(t)

from which it follows that

(−1)rk(L)−1χL(t) = (−1)rk(La)−1χLa
(t) + (−1)rk(La)−1χLa(t).

Differentiating and specialising to t = 1 shows that Ψ also satisfies (3). By uniqueness we

conclude that Φ = Ψ , giving the dimension in degree rk(L) − 2 to be as claimed. ⊓⊔

4.2. Unreduced homology

It is easy to compute unreduced homology from the above. Reduced and unreduced only differ

in degree zero where we have a short exact sequence

0→ H̃0(L \0; F)→ H0(L \0; F)→ V → 0.

We immediately get

Proposition 4. Let L be the intersection lattice of a hyperplane arrangement with rk(L) ≥ 2 and

let F be the natural sheaf on L. Then Hi(L \0; F) is trivial when i , 0 or rk(L) − 2. Moreover,

– If rk(L) > 2 we have H0(L\0; F) � V and the potentially non-trivial group in degree rk(L)− 2

has the dimension given in Theorem 3.

– If rk(L) = 2 we have dim H0(L \0; F) = |A| − 2 + dim V.

4.3. Generalising a result of Lusztig

When using constant coefficients, the homology of a poset with a maximum is concentrated in

degree zero for general reasons (see Lemma 1). To avoid this collapse the maximum is normally

removed before taking homology. The same is true when the poset has a minimum. For a more

general sheaf the presence of a maximum does not a priori concentrate the homology in this

way. Nonetheless, for consistency it is tempting to remove the maximum in this case too, as in

the following celebrated result of Lusztig [Lus74, Theorem 1.12].
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Theorem 4. (Lusztig) Let V be a vector space over a finite field of dimension ≥ 3 and let A

be the arrangement consisting of all the hyperplanes in V. Let L = L(A) be the associated

arrangement lattice and F be the natural sheaf. Then Hi(L \ {0, 1}; F) vanishes in the degrees

0 < i < rk(L) − 2 and H0(L \ {0, 1}; F) � V.

In this section we make explicit the connection between our Theorem 3 and Lusztig’s result.

In particular we describe H∗(L\{0, 1}; F) for any arrangement lattice L equipped with the natural

sheaf F.

Recall §1.2 that an arrangement is essential when
⋂

a∈A a = 0. In particular, for F the natural

sheaf on L, we have F(1) = 0, and so by Lemma 1 part 4 we get H∗(L\{0, 1}; F) � H∗(L\0; F). As

the arrangement in Lusztig’s result is essential, Theorem 4 follows immediately from Theorem

3 and Proposition 4. In fact we get more than is claimed in Theorem 4 as we give the dimension

of the top degree homology as well.

We are also interested in non-essential hyperplane arrangements, where
⋂

a∈A a , 0. The

following recasts our Theorem 3 in a way that it can be directly seen as a generalisation of

Lusztig’s result.

Theorem 5. Let L be the intersection lattice of a hyperplane arrangement A in the vector space

V and let U =
⋂

a∈A a. Suppose that rk(L) ≥ 3 and let F be the natural sheaf on L. Then

Hi(L \ {0, 1}; F) vanishes in degrees 0 < i < rk(L) − 2 with H0(L \ {0, 1}; F) � V ⊕ U and

dim Hrk(L)−2(L \ {0, 1}; F) = (−1)rk(L)−1 d

dt
χ(t)

t=1
+ |µ(0, 1)| dim U.

Proof. Define a new sheaf F′ on L \0 by

F′(x) =


0, x = 1

F(x), x , 1

with obvious structure maps induced from F. As F′ is essential, Lemma 1 part 4 gives

H∗(L \0; F′) � H∗(L \ {0, 1}; F′) = H∗(L \ {0, 1}; F)

To prove the result we must therefore compute H∗(L \0; F′). There is a short exact sequence of

sheaves

0→ F′ → F → G → 0

where G is the sheaf on L \ 0 defined by G(1) = U and G(x) = 0 otherwise. By (2) this gives a

long exact sequence of homology groups

· · · → Hi+1(L \0; G)→ Hi(L \0; F′)→ Hi(L \0; F)→ Hi(L \0; G)→ Hi−1(L \0; F′)→ · · ·

We can identify the complex S ∗(L \ 0; G) with the complex S ∗−1(L \ {0, 1};∆U), and we have

Hi(L \0; G) = Hi−1(L \ {0, 1};∆U), so that in particular H0(L \0; G) = 0. The homology groups

H∗(L \ {0, 1};∆U) are well known ([Fol66, Bjö82, OT92]) and it follows that

Hi(L \0; G) � Hi−1(L \ {0, 1};∆U) �



U |µ(0,1)|, i = rk(L) − 1

U, i = 1

0, otherwise.
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From this, Proposition 4 and the long exact sequence above, we immediately get Hi(L \ 0; F′)

vanishes in the degrees 0 < i < rk(L) − 2. In low degree and top degree we get short exact

sequences from which the homology in degree zero and rk(L) − 2 are easily shown to be as

claimed. ⊓⊔

4.4. Cellular homology and broken circuits

To a geometric lattice L one can associate a simplicial complex BC(L), the broken circuit com-

plex (see [Wil76, Bry77, Sta07]) that encodes some of the combinatorial geometry of the lattice.

In this section we outline some connections between BC(L) and the sheaf homology of L. Our

description of BC(L) follows [Sta07, Lectures 3-4].

Let L be a geometric lattice and fix a total ordering ⊣ of the atoms A. Label the covering

relation ≺, using the atoms, by defining

λ(x ≺ y) = a ∈ A (9)

where a is the maximum atom, with respect to the total order ⊣, with the property that x∨ a = y.

The function (9) is an example of a λ-labelling; see [Sta07, Definition 4.11] for the definition of

λ-labelling. The broken circuit complex BC(L) has vertices A and r-simplices the {ai0 , . . . , air } ⊆

A whenever there is a saturated chain

σ = 0 ≺ x0 ≺ x1 ≺ · · · ≺ xr = x (10)

with λ(0, x0) = ai0 , λ(x0, x1) = ai1 , . . . , λ(xr−1, xr) = air and ai0 ⊣ ai1 ⊣ · · · ⊣ air . Such a chain

is said to be λ-increasing. The resulting complex BC(L) depends on the choice of total order ⊣,

but it turns out that its homotopy type does not. Figure 3 illustrates these ideas for the partition

lattice Π(4).

The number of λ-increasing chains (10) is equal to (−1)rk(x)µ(0, x) and {ai0 , . . . , air } is a so-

called “no-broken-circuit base” for the interval L≤x. It is not hard to see that BC(L) is a pure

(rk(L)−1)-dimensional simplicial complex, and that any maximal dimensional simplex contains

the vertex that is maximal in the total ordering ⊣ of A. In particular, BC(L) is a cone whose base

is called the reduced broken circuit complex B̃C(L).

Since BC(L) is a cone, it is contractible, and thus has trivial reduced homology. On the other

hand the reduced broken circuit complex B̃C(L) has reduced homology

dim H̃i(B̃C(L)) =


β(L), i = rk(L) − 2

0, otherwise

where

β(L) = (−1)rk(L)−1 d

dt
χ(t)

t=1

is the beta-invariant; see [Sta77, Bjö92]. Comparing this to Theorem 3, it is then very natural to

ask what, if any, is the relationship between the sheaf homology of L equipped with the natural

sheaf and the reduced broken circuit complex? We are grateful to the referee for pointing this

out.

It is possible to make a very explicit connection between the sheaf homology of L equipped

with the constant sheaf and the (un-reduced) broken circuit complex. In order to do this it is most
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rank

3

2

1

0

a1 a2

a3

a4

a5 a6

1

−1 −1

−1

−1

−1 −1

2 2 2 2

1

1

1

−6

6 6 6 5 6 5 4

6 1

3 2 5 5 4 6 6 4 6 6

5 2

3 3 5

4

1 2 34 5 6

Fig. 3. The partition lattice Π(4) – adapted from a picture by Tilman Piesk [JB] – with the total ordering a1 ⊣ a2 ⊣

· · · ⊣ a6 and the resulting λ-labelling in red; the values of the Möbius function µ(0, x) and the λ-increasing chains

(10) that give the six 2-simplices of the BC-complex are in blue.

convenient to pass via the “cellular homology” of L with coefficients in a sheaf (see [ET15] –

suitably adapted to be homological rather than cohomological) and we now briefly explain these

ideas.

Let L0 = L\0 and F be a sheaf on L0. Filter L0 by rank, defining Lr
0
= {x ∈ L0 : rk(x) ≤ r+1};

the “+1” is because we are using the L-rank function for L0. Then, S ∗(L
r−1
0

; F) is a subcomplex of

S ∗(L
r
0
; F) with quotient complex that we denote by S ∗(L

r
0
, Lr−1

0
; F). The cellular chain complex

C∗(L0; F) has chains

Cr(L0, F) = Hr(L
r
0, L

r−1
0 ; F)

and differential Cr → Cr−1 provided by the boundary map that arises in the long exact sequence

of the triple of subposets (Lr
0
, Lr−1

0
, Lr−2

0
). By [ET15, Theorem 2 and §4.4] the cellular chain

complex computes sheaf homology:

H∗(L0; F) � HC∗(L0; F).

After a little analysis, the arguments of [ET15, §2 and §4.4] can be massaged to show that

Cr(L0; F) �
⊕

rk(x)=r

Ax ⊗ F(x)

where

Ax � H̃r−1((L0)<x;Z) � Z
|µ(0,x)|

with the middle term the ordinary reduced homology of the nerve of (L0)<x. This is in turn free of

rank the Möbius function of (L0)<x by [Fol66]. It is also possible to give an explicit presentation
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for the abelian group Ax. Let b0, b1, . . . , br be a set of linearly independent (in the sense of §1.3)

atoms for (L0)≤x such that
∨

bi = x, and consider the saturated chain

σ = b0 ≺ b0 ∨ b1 ≺ · · · ≺ b0 ∨ b1 ∨ · · · ∨ br.

Any other saturated chain has the form

π(b0) ≺ π(b0) ∨ π(b1) ≺ · · · ≺ π(b0) ∨ π(b1) ∨ · · · ∨ π(br)

for a unique π ∈ Sr. The group Ax is freely generated by elements of the form

ασ =
∑

π∈Sr

(−1)sgn(π)σπ (11)

where σ is λ-increasing [Bjö82].

Proposition 5. If σ is a λ-increasing chain as above with λ(0, x0) = ai0 , . . . , λ(xr−1, xr) = air ,

then the map

ασ 7→ r-simplex {ai0 , ai1 , . . . , air } of BC(L)

induces an isomorphism from C∗(L \ 0;∆k) to the simplicial chain complex of BC(L).

The homology itself is uninteresting but using cellular homology in this way, makes a fairly

direct link between the different chain complexes computing it.

Proposition 5 is an encouraging start. To explain the appearence of the beta-invariant in

Theorem 3 we need to replace the constant sheaf ∆k in C∗(L \ 0;∆k) by the natural sheaf F,

and we need to replace the unreduced broken circuit complex BC(L) by the reduced complex

B̃C(L). These are modifications of quite a different nature: the reduced broken circuit complex

may be defined for any lattice (but no sheaf is present) and the natural sheaf is a construction

only defined for hyperplane arrangements. It may be possible though, to choose bases for the

hyperplanes in such a way that the combinatorics can be pushed to give an isomorphism of chain

complexes similar to the one in Proposition 5.
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