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CMC hypersurfaces with bounded Morse index
By Theodora Bourni at Knoxville, Ben Sharp at Leeds and Giuseppe Tinaglia at London

Abstract. We provide qualitative bounds on the area and topology of separating con-
stant mean curvature (CMC) surfaces of bounded (Morse) index. We also develop a suitable
bubble-compactness theory for embedded CMC hypersurfaces with bounded index and area
inside closed Riemannian manifolds in low dimensions. In particular, we show that conver-
gence always occurs with multiplicity one, which implies that the minimal blow-ups (bubbles)
are all catenoids.

1. Introduction

Throughout this paper, N will be a closed (compact and without boundary) Riemannian
n-manifold of dimension n � 7 and an H -hypersurface M � N will be a closed connected
hypersurface embedded in N with constant mean curvature (CMC) H > 0.

Motivated by the results in [18], when n D 3, we prove the following area and topological
bounds for H -surfaces with bounded Morse index.

Theorem 1.1. Given I 2 N and H > 0, let M be an H -surface in N with index
bounded by I. If we furthermore assume that either

(1) M is separating in N , or

(2) N has finite fundamental group (e.g., if N has positive Ricci curvature)

then there exists a constant A WD A.I;H;N / such that

genus.M/C area.M/ � A:

Remark 1.2. Using the important work of Chodosh and Li [11], our method can be
used to show that the above remains true forH -surfacesM 3 � N 4 under the same hypotheses
and with the slightly adapted conclusion that, letting jMŠj denote the cardinality of the set of
distinct diffeomorphism types for such M , we have

jMŠj C vol.M/ � A:

See Remark 2.4 (2) and Remark 3.7 for further details.
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Since there exist examples of connected closed minimal surfaces embedded in and sepa-
rating a flat 3-torus with arbitrarily large area but bounded index [27], see Remark 3.3, having
H > 0 is a necessary hypotheses to obtain an area estimate. For minimal surfaces embedded in
closed three-manifolds N with positive scalar curvature RN > 0, an analogous result has been
obtained in [10]. For arbitrary three-manifolds N and immersed CMC surfaces † � N with
sufficiently large mean curvature H† > H0, an effective (and linear) genus bound in terms of
index has been obtained in [1].

We will prove the area estimate in Section 3 (see Theorem 3.1 and Corollary 3.4), the
genus bound will then follow from a general bubble-compactness argument for H -hyper-
surfaces with bounded index and area, the full details of which appear in Section 5.

The rest of the paper is therefore dedicated to the study of compactness results for
sequences ofH -hypersurfaces inN : this study is inspired by the result by Choi and Schoen [12]
that the moduli space of fixed genus closed minimal surfaces embedded in .S3; h/ with
a metric h of positive Ricci curvature has the structure of a compact real analytic variety, see
Theorem 3.5.

Contrary to the setting of minimal hypersurfaces, it is possible that a sequence of em-
bedded H -hypersurfaces (H > 0) converges to a limit which is itself not embedded. For
instance, a sequence of degenerating Delaunay surfaces converges to a string of pearls – CMC
spheres which self-intersect tangentially. We refer to connected collections ofH -hypersurfaces
which meet tangentially as “effectively embedded” (see Definition 2.8). Our first compact-
ness theorem guarantees that any weak-limit of a sequence of H -hypersurfaces with bounded
Morse index (Ind0) and area is effectively embedded and obtained via multiplicity one graph-
ical convergence away from finitely many points. Here Ind0 refers to the number of negative
eigenvalues of the Jacobi operator when restricted to volume-preserving deformations (see
Section 2).

Theorem 1.3. Let 3 � n � 7. Given H > 0, let ¹Mkºk2N be a sequence of H -hyper-
surfaces in N n satisfying

sup
k

Hn�1.Mk/ <1 and sup
k

Ind0.Mk/ <1:

Then there exists a hypersurface M1 effectively embedded in N with constant mean curva-
ture H and a finite set of points � � N such that, after passing to a subsequence, ¹Mkºk2N

converges smoothly and with multiplicity one, to M1 away from �. Furthermore, � is con-
tained in the non-embedded part of M1.

Remark 1.4. Notice that the convergence always happens with multiplicity one as
a result of the strict positivity of the mean curvature H > 0 and not by an assumption on the
ambient manifold. If ¹Mkº are all separating and stable (Ind0 D 0), multiplicity one conver-
gence has been obtained in [32, Theorem 2.11 (ii)] where in this case � D ; by the regularity
theory for stable CMC hypersurfaces (see, e.g., Lemma 2.3). The theorem above shows that
multiplicity one convergence continues to hold under bounded index, regardless of whether �
is empty or not. These facts are in sharp contrast to the setting of minimal hypersurfaces where
higher multiplicity convergence is guaranteed if � ¤ ;, or ruled out altogether (for instance)
under the assumption that RicN > 0 (see [23]).
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In light of Theorem 3.1, Corollary 3.4 and Remark 3.7, when n D 3; 4 the volume bound
can be replaced by either topological assumption (1) or (2), from Theorem 1.1, holding for
each Mk , or N , respectively.

In [6] the authors develop an extensive regularity and compactness theory for codi-
mension 1 integral varifolds with constant mean curvature and finite index in a Riemannian
manifold of any dimension. They in fact deal with a much larger class of varifolds with
appropriately bounded first variation.

Inspired by the bubbling analysis carried out in [8], and the works of Ros [19] and
White [31], we are able to capture shrinking regions of instability along a convergent sequence
Mk to provide a more refined picture close to �. As in [8] we can blow-up these regions to
obtain complete embedded minimal hypersurfaces in Rn (“bubbles”) which themselves have
finite index and Euclidean volume growth. A key feature in the setting of H -hypersurfaces
(H > 0), is that the multiplicity one convergence guaranteed by Theorem 1.3 implies that all
bubbles have two ends (since they occur at the non-embedded part of the limit) and are there-
fore catenoids thanks to the classification results of Schoen [22]. The full statements of these
results can be found in Section 5, but for now we content ourselves with stating the following
corollary of the bubble-compactness Theorem 5.2:

Theorem 1.5 (Corollary 5.3). Let 3 � n � 7 and H > 0. Then there exists a constant
G D G .N;ƒ; I;H/ so that the collection of H -hypersurfaces with index bounded by I and
volume bounded by ƒ has at most G distinct diffeomorphism types. Furthermore, for any
H -hypersurface M with the above index and volume bounds we have uniform control on the
total curvature Z

M

jAjn�1 � G :

Remark 1.6. The proof of Theorem 1.1 follows immediately from combining Theo-
rem 3.1 and Corollary 3.4 with the above theorem when n D 3. The proof of the statement in
Remark 1.2 follows similarly from Remark 3.7 and the above when n D 4.

2. Preliminaries

LetN n be a closed (compact and without boundary) Riemannian n-manifold, where here
and throughout we restrict 3 � n � 7.

Definition 2.1. An H -hypersurface M � N will be a closed connected hypersurface
embedded in N with constant mean curvature H > 0. When n D 3 we will often refer to M
as an H -surface.

Let� be the canonical measure corresponding to the metric onM (inherited by the metric
on N ), � a choice for its unit normal and A the second fundamental form of the embedding.
We consider Q, the quadratic form associated to the Jacobi operator:

Q.u; u/ D

Z
M

jruj2 � .jAj2 C RicN .�; �//u2 d�; u 2 W 1;2.M/;

where RicN is the Ricci curvature of N .
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Recall that for an open set U � N , the index of M in U , Ind.M \ U/, is defined as
the index of Q over W 1;2

0 .M \ U/, that is, by the minimax classification of eigenvalues, the
maximal dimension of the vector subspaces E � ¹u 2 W 1;2

0 .M \ U/ W Q.u; u/ < 0º.
CMC hypersurfaces are critical points of the area (Hn�1-measure) functional for vari-

ations which preserve the signed volume (Hn-measure). This can be characterised infinitesi-
mally as all variations whose initial normal speed u satisfies

R
M ud� D 0. Thus it makes sense

to define a new index Ind0.M \ U/ as the index of Q over

PW
1;2
0 .M \ U/ D

²
u 2 W

1;2
0 .M \ U/ W

Z
M\U

ud� D 0

³
that is the maximal dimension of the vector subspaces QE � ¹u2 PW 1;2

0 .M \U/ WQ.u; u/ < 0º.
We will call the CMC surfaceM stable (inU ) if Ind0.M/D 0 (Ind0.M\U/D 0) and strongly
stable (in U ) if Ind.M/D 0 (Ind.M \ U/ D 0). Note that if U � W � N are open sets, then
Ind.M \W / � Ind.M \ U/ and Ind0.M \W / � Ind0.M \ U/ and the two indices satisfy
the following relation.

Lemma 2.2. For any k 2 N [ ¹0º we have

Ind0.M/ D k H) k � Ind.M/ � k C 1:

Proof. It follows trivially from the definition of our indices that Ind0.M/ � Ind.M/.
So suppose that the lemma is not true and instead we have Ind.M/ � k C 2. Thus there exists
a .k C 2/-dimensional vector subspace E � W 1;2.M/ with Q.f; f / < 0 for all f 2 E. Let

E> D

²
f 2 E W

Z
M

f D 0

³
� PW 1;2.M/:

Then dimE> � kC1 and we still haveQ.f; f / < 0 for all f 2 E> giving Ind0.M/ � k C 1,
a contradiction.

Next we remind the reader of the curvature estimates available for stable H -hypersur-
faces via the work of Lopez and Ros [16] when n D 3 and Schoen and Simon [20] when
n � 4.

Lemma 2.3. Let H > 0 be fixed and M n�1 � N n an H -hypersurface. Given p 2M
and � > 0, assume that M 6� BN� .p/ and that either

(i) n D 3, Ind0.M \ BN� .p// D 0 or

(ii) n � 7, Ind.M \ BN� .p// D 0 and ��.n�1/Hn�1.M \ BN� .p// � �.

Then
jAj.p/ �

C

�
;

where C is a constant that depends on N , the value of the mean curvature and, in case (ii),
also on � .

Proof. The proof is by contradiction, so suppose that we have a sequence of H -hyper-
surfaces ¹Mkºk2N , pk 2Mk and �k > 0 such that Mk 6� B

N
�k
.pk/ and

�kjAkj.pk/ � k;
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where jAkj is the norm of the second fundamental form of Mk . Abusing the notation, let Mk

denote the connected component of Mk \ B
N
�k
.pk/ containing pk and let

ak WD jAkj.qk/ distN .qk; àBN�k .pk//

D max
q2Mk

jAk.q/j distN .q; àBN�k .pk//

� jAkj.pk/�k � k:

Using the notation dk D distN .qk; àB�k .pk//, we rescale BN
dk
.qk/ by jAkj.qk/ and denote

by fM k the scaled connected component of Mk \ B
N
dk
.qk/ containing qk , where the scal-

ing is done in geodesic coordinates with origin at qk . Note that dk is bounded and since
jAkj.qk/!1 and ak WD dkjAkj.qk/!1, then fM k is a sequence of CMC hypersurfaces
in Bak .0/ equipped with metrics gk which converge in C 2 to the Euclidean metric and whose
mean curvature eHk D jAkj.pk/

�1H converges to 0. Moreover, jeAk.0/j � 1 for all k and for
z 2 Bak=2.0/ we have jeAk.z/j � 2. Furthermore, Ind0.fM k \ Bak=2.0// D 0 when n D 3 and
Ind.fM k \ Bak=2.0// D 0 when 3 < n � 7.

Thus, after passing to a subsequence, fM k converges (locally uniformly) in C 2 to some
complete minimal surface fM1 embedded in Rn with Ind0.fM1/ D 0 in case n D 3 and
Ind.M1/ D 0 in case 3 < n � 7. For the case n D 3, by Lopez and Ros [16], M1 is a plane,
contradicting that jA1.0/j D 1. In case 3 < n � 7, fM1 is a stable minimal surface which, by
the monotonicity formula (applied to eachfM k) and the assumption on the Hn�1-measure, has
Euclidean volume growth. Therefore, the curvature estimates of Schoen and Simon [20] imply
that M1 must be a plane which contradicts that jA1.0/j D 1.

Remark 2.4. (1) The estimates for the norm of the second fundamental form in (ii) of
Lemma 2.3 also hold when Ind0.M/ D 0 [5]. The proof follows from the same scaling argu-
ment once the authors prove that the hyperplane is the only complete connected oriented stable
minimal hypersurface embedded in Rn that has Euclidean area growth and no singularities.
We note that in [5] our notion of being stable with respect to volume preserving variations is
referred to as weak stability. We also note that a key ingredient in proving this characterization
of the hyperplane is the fact that a complete connected oriented stable minimal hypersurface
immersed in Rn is one ended [9].

(2) Utilising the main theorem of [11, Theorem 1], and using precisely the same argu-
ments as above one can in fact obtain a significantly better result when n D 4: with M as in
Lemma 2.3 and n D 4, Ind.M \ BN� .p// D 0 then the curvature estimate still holds (without
the hypothesis of a volume bound) with C depending only on N .

Definition 2.5. Let U be an open set inN and let ¹Mkºk2N be a sequence ofH -hyper-
surfaces in N . We say that the sequence ¹Mkºk2N has locally bounded norm of the second
fundamental form in U if for each compact set B in U ,

sup
k

sup
Mk\B

jAMk j <1;

where jAMk j is the norm of the second fundamental form of Mk .

Definition 2.6. Let ¹Mkºk2N be a sequence of H -hypersurfaces in N . A closed set
� � N is called a singular set of convergence if, after passing to a subsequence and reindexing,
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we have the following:

� For any q 2 �, � > 0 and n 2 N, supk supMk\BN� .q/ jAMk j > n.

� ¹Mkºk2N has locally bounded norm of the second fundamental form in N n�.

A point q 2 � will then be called a singular point of convergence.

Note that �, as in Definition 2.6, is not uniquely defined. However, when ¹Mkºk2N

does not have locally bounded norm of the second fundamental form in N , we can always
construct a singular set, for instance as follows. For each k 2 N, let the maximum of the
norm of the second fundamental form jAMk j of Mk be achieved at a point p1;k 2Mk . After
choosing a subsequence and reindexing, we obtain a sequence M1;k such that the points
p1;k 2M1;k converge to a point q1 2 N . Suppose the sequence of hypersurfacesM1;k fails to
have locally bounded norm of the second fundamental form in N n ¹q1º. Let q2 2 N n ¹q1º be
a point that is furthest away from q1 and such that, after passing to a subsequence M2;k , there
exists a sequence of points p2;k 2M2;k converging to q2 with limk!1AMk;2.p2;k/ D1.
If the sequence of hypersurfaces M2;k fails to have locally bounded norm of the second fun-
damental form in N n ¹q1; q2º, then let q3 2 N n ¹q1; q2º be a point in N that is furthest
away from ¹q1; q2º and such that, after passing to a subsequence, there exists a sequence
of points p3;k 2M3;k converging to q3 with limn!1AMk;3.p3;k/ D1. Continuing induc-
tively in this manner and using a diagonal-type argument, we obtain after reindexing, a new
subsequence Mk (denoted in the same way) and a countable (possibly finite) non-empty set
�0 WD ¹q1; q2; q3; : : : º � N such that the following holds. For every i 2 N, there exists an
integer N.i/ such that for all k � N.i/ there exist points p.k; qi / 2Mk \ B

N
1=k
.qi / where

AMk .p.k; qi // > k. We let � denote the closure of �0 in N . It follows from the construc-
tion of � that the sequence Mn has locally bounded norm of the second fundamental form
in N n�.

In light of the previous discussion, given a sequence ¹Mkºk2N ofH -hypersurfaces inN ,
after possibly replacing it with a subsequence, we will consider� to be a well-defined singular
set of convergence, as in Definition 2.6.

Lemma 2.7. Let ¹Mkºk2N be a sequence of H -hypersurfaces with the property that
supk Ind0.Mk/ <1 and assume that either n D 3 or n � 7 and for any open B �� N there
exists a constant �B such that supk Hn�1.Mk \ B/ < �B . Then, up to a subsequence, there
exists a finite singular set of convergence � with j�j � supk Ind0.Mk/C 1. Moreover, there
exists a constant C such that for any open B �� N n�,

lim
k!1

sup
Mk\B

jAMk j �
C

distN .B;�/
:

Proof. The proof is similar to that of [23, Claims 1 and 2]. Let I 2 N be such that
Ind0.Mk/C 1 � I for all k and assume that� has at least IC1 distinct points ¹q1; : : : ; qIC1º.
Let

" <
1

2
min

°
min
i¤j

distN .qi ; qj /; �N
±
;

where �N is a lower bound for the injectivity radius of N . By Lemma 2.3, after passing to
a subsequence, Ind.BN" .qi / \Mk/ > 0 for all 1 � i � I C 1. Since ¹BN" .qi /º

IC1
iD1 are pair-



Bourni, Sharp and Tinaglia, CMC hypersurfaces with bounded Morse index 181

wise disjoint, we obtain that Ind.Mk/ � I C 1 and by Lemma 2.2, Ind0.Mk/C 1 � I C 1,
which is a contradiction.

To prove the curvature estimate, it suffices to show that there exists "0 > 0 and a subse-
quence (not re-labelled) so that for all 0 < " � "0,

(2.1) lim
k!1

Ind..BN" .qi / n B
N
"=2.qi // \Mk/ D 0 for all qi 2 �.

This is indeed sufficient, because Mk has locally bounded norm of the second fundamental
norm in N n� and (2.1) combined with Lemma 2.3 yields the required curvature estimate.

To prove (2.1), we argue by contradiction: suppose there exists qi 2 � so that for all
"0 > 0, there exists "1 � "0 with lim inf Ind..BN"1 .qi / n B

N
"1=2

.qi // \Mk/ � 1. We can suc-
cessively apply this statement (setting "0 D "l

2
for each later iteration) I C 1 times to find

a sequence "1; "2; "3; : : : ; "IC1 satisfying

"lC1 �
"l

2
and lim inf Ind..BN"l .qi / n B

N
"l=2

.qi // \Mk/ � 1:

Once again we have found I C 1 disjoint sets for which each Mk is unstable and shown
Ind0.Mk/ � I C 1 for all large k, a contradiction.

To study the limiting behaviour of CMC surfaces, we will need the following definition.

Definition 2.8. A connected subset V � N is called an effectively embedded H -hyper-
surface if V is a finite union of smoothly immersed compact connected constant mean curvature
hypersurfaces and at any point p 2 V , there exists " > 0 such that either

(1) BN" .p/ \ V is a smooth embedded disk, or

(2) BN" .p/ \ V is the union of two embedded disks, meeting tangentially and whose mean
curvature vectors point in opposite directions.

Let V be an effectively embedded H -hypersurface as in Definition 2.8. We will refer
to the set of points p 2 V satisfying 1: of Definition 2.8 as the regular part of V and we will
denote it by e.V /.1) Note that e.V / is relatively open and splits into a finite number of (mutually
disjoint) connected components

e.V / D

L[
iD1

V i ;

each of which is a smooth embedded CMC hypersurface having the same size mean curva-
ture H . The set of points satisfying (2) of Definition 2.8 is the singular set of V , denoted by
t .V / which is relatively closed,2) and

t .V / WD

L[
iD1

V
i
n V i :

Notice that we cannot necessarily rule out V
i

self-intersecting, however, with this notation we
have that if p 2 t .V / then there exists " > 0 so that e.V / \ BN" .p/ splits into two disjoint

1) e.V / standing for the embedded part of V .
2) t .V / for touching set.
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components C i ; C j with C i � V i , C j � V j and ¹C iºiD1;2 are the two smooth embedded
CMC disks touching tangentially at p with opposite mean curvature vectors. It might happen
that i D j if one component V i self-intersects. It is not difficult to check that each V

i
is indi-

vidually an immersed, smooth, connected CMC hypersurface which is embedded unless it is
self-intersecting.

Below is a definition of convergence that we will be using often in this paper and we will
be referring to as H-convergence.

Definition 2.9. A sequence ¹Mkºk2N of H -hypersurfaces H -converges to

V D

L[
iD1

V
i
;

an effectively embedded H -hypersurface, with finite multiplicity .m1; : : : ; mL/ 2 NL if one
has dH .Mk; V /! 0 as k !1 and if its singular set of convergence � � V is finite and
whenever p 2 V n� the following holds:

� If p 2 V i , then there exists an " > 0 so that BN" .p/ \Mk converges smoothly and
graphically (normal graphs) with multiplicity mi , to BN" .p/ \ V .

� If p 2 t .V /, then there exists an " > 0 so that BN" .p/ \Mk uniquely partitions into two
parts. The first part converges smoothly and graphically, with multiplicity mi , to C

i
, and

the second converges smoothly and graphically, with multiplicity mj , to C
j

, where C i

and C j are as discussed in the previous paragraph.

Remark 2.10. If � D ;, then V D V
i

for some fixed i and the multiplicity of conver-
gence is one, contrary to what happens if we allow the limit to be minimal.3) This follows from
the fact that all H -hypersurfaces are two-sided. Thus over each V

i
we can write the approach-

ing H -hypersurfaces Mk globally as graphs – if the multiplicity is larger than one, or there is
more than one V

i
, the H -hypersurfaces Mk must have been disconnected.

Finally, in the next sections, we will also use the following notation. We let S0; I0; V0 > 0
denote a bound for the absolute sectional curvature, the injectivity radius and the volume of N .
Given H > 0, we fix JH 2 .0; I0/ so that for any � � JH , the geodesic balls BN� .p/ are
H -convex, that is their boundaries are hypersurfaces whose mean curvature is bigger than or
equal to H , independently of p 2 N .

3. Area estimate and compactness

When n D 3, we use the results in Section 2 to prove the following area estimate for
H -surfaces, H > 0.

3) For instance, in the standard S3 D ¹x 2 R4 W jxj D 1º, if S2 D ¹x4 D 0º \ S3 is a great sphere, the
equidistant surfaces Mk defined by Mk D ¹x4 WD

1
k
º are CMC spheres converging smoothly to S2. If we

project this picture to RP 3, then we have a sequence of CMC spheres converging smoothly (so � D ;) with
multiplicity two to a great RP 2.
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Theorem 3.1. Given I 2 N and H > 0, there exists a constant A WD A.I; N / such
that if M is an H -surface separating N with Ind0.M/ � I, we have

H2.M/ � A:

Proof. We first prove a local area estimate when the norm of the second fundamental
form is bounded.

Claim 3.2. Given ˛ > 0 there exists ! WD !.˛;N / such that the following holds. Given
p 2M and � < JH , if supBN� .p/ jAj < ˛, then

H2.M \ BN�=2.p// < !H3.N /:

Proof of Claim 3.2. Given � < JH , the techniques used to prove [17, Lemma 3.1] give
that there exists ˇ WD ˇ.˛; JH ; S0/ > 0 such that ifM \ BN� .p/ bounds anH -convex domain,
then M \ BN

�=2
.p/ has a one-sided regular neighbourhood of fixed size ˇ. This means that

the collection of geodesics of length ˇ starting at x 2M \ BN
�=2
.p/ and with initial velocity

given byH.x/=jH.x/j are pairwise-disjoint, only intersectM at x and therefore foliate a one-
sided neighbourhood of M . The result is mainly a consequence of the observation that two
H -surfaces with bounded norm of the second fundamental form which are oppositely oriented
and such that one lies on the mean convex side of the other, cannot be too close away from
their boundary and this is essentially a consequence of the maximum principle for quasi-linear
uniformly elliptic PDEs. Note that this is not true when H D 0.

SinceM is separating in N , we do have thatM \ BN� .p/ bounds anH -convex domain.
Let Uˇ denote the 1-sided regular neighbourhood of M \ BN

�=2
.p/ as above. Then, since the

norm of second fundamental form of M is uniformly bounded, we can directly relate the area
of M \ BN

�=2
.p/ with the volume of Uˇ : there exists a constant ! WD !.ˇ/ > 0 such that

1

!
H2.M \ BN�=2.p// � H3.Uˇ / � H3.N /:

This finishes the proof of the claim.

We now begin the proof of the area estimate. Arguing by contradiction, assume that there
exist I 2 N, H > 0, and a sequence of H -surfaces ¹Mkºk2N such that for all k 2 N, the
H -surface Mk separates N , Ind0.Mk/ � I and

H2.Mk/ > k:

By Lemma 2.7, after possibly passing to a subsequence, there exists a finite set of points
� WD ¹p1; : : : ; plº, l � I C 1, such that the sequence ¹Mkºk2N has locally bounded norm of
the second fundamental form inN n�. SinceN is compact, applying Claim 3.2 and a covering
argument gives that for any " > 0, there exists a constant V."/ such that

H2

 
Mk \

"
N n

l[
iD1

BN" .pi /

#!
< V."/:

In order to obtain a contradiction, it remains to show that the area ofMk\B
N
" .pi /, i D 1; : : : ; l ,

is also bounded, uniformly in k. To that end, we will use the monotonicity formula for the
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area. After isometrically embedding the ambient space N in an Euclidean space Rm, the
submanifolds Mk � N � Rm have mean curvature vector fields Hk D HN

k
CHN?

k
, where

HN
k

and HN?

k
are the projections of Hk (the mean curvature vector of Mk � Rm) onto the

tangent and the normal space of N respectively. Note that jHN
k
j D H and HN?

k
depends

only on the embedding of N and thus its norm is uniformly, in k, bounded. We thus have
a sequence of submanifolds with uniformly bounded mean curvature, jHkj � c. Therefore, the
area monotonicity, see for example [24, 17.6], yields, for any p 2 Rm and 0 < � < �,

ec���2H2.Mk \ ¹x W jx � pj < �º/ � e
c���2H2.Mk \ ¹x W jx � pj < �º/:

Since Mk � N and the embedding is isometric we obtain

ec���2H2.Mk \ B
N
� .p// � e

c���2H2.Mk \ B
N
� .p//:

Take now p to be a point in the singular set. Then for small " we have

"�2H2.Mk \ B
N
" .p// � e

c".2"/�2H2.Mk \ B
N
2".p// �

1

2
"�2H2.Mk \ B

N
2".p//;

which yields
H2.Mk \ B

N
" .p// � H2.Mk \ .B

N
2".p/ n B

N
" .p///:

But now, choosing " small enough so that BN2".p/ n B
N
" .p/ is away from �, the right hand

side is uniformly bounded by V."/ and thus H2.Mk/ < .l C 1/V ."/. This contradicts the
assumption that H2.Mk/ > k and finishes the proof of the area estimate.

Remark 3.3. In [27], Traizet proved for any positive integer g, g ¤ 2, every flat 3-torus
admits connected closed embedded and separating minimal surfaces of genus g with arbitrarily
large area. Fix g ¤ 2 and letMk be a sequence of such minimal surfaces whose area is becom-
ing arbitrarily large. Since the genus is fixed, by the Gauss–Bonnet theorem, the total curvature
ofMk is uniformly bounded in k. And this gives that the index ofMk is also uniformly bounded
in k [28]. Thus, these examples show that the area estimates do not hold when H D 0.

As a corollary of the proof above, if the ambient manifoldN has finite fundamental group
(e.g., if it has positive Ricci curvature), then the area bound is true without assuming that the
H -surface M is separating.

Corollary 3.4. Given I 2 N and H > 0, there exists a constant A WD A.I; N / such
that if M is an H -surface in N with Ind0.M/ � I and N has finite fundamental group,
we have

H2.M/ � A:

Proof. Since N has finite fundamental group, its universal cover … W eN ! N is a
finite covering. The preimage …�1.M/ is a disjoint collection of H -hypersurfaces in eN and
we denote by fM a connected component of …�1.M/. Then fM is an H -surface separat-
ing eN , because eN is simply-connected. We may now reduce to the setting of Theorem 3.1:
let ¹Mkº � N be a sequence of H -hypersurfaces with index uniformly bounded by I. By
Lemma 2.7, after passing to a subsequence, there exists a finite set of points� WD ¹p1; : : : ; plº,
l � I C 1, such that the sequence ¹Mkºk2N has locally bounded norm of the second funda-
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mental form in N n�. Thus picking connected lifts fM k �
eN we have that fM k are separating

and there exists a finite set of points e� WD ¹ep1; : : : ;epLº, L � j�1.N /j.I C 1/, such that the
sequence ¹fM kºk2N has locally bounded norm of the second fundamental form in eN n e�.
We can now apply Claim 3.2 to fM k �

eN and follow the remaining parts of the proof of
Theorem 3.1 to conclude the proof of the corollary.

Thanks to the area estimate, an elegant compactness result for H -surfaces separating N
now follows.

Theorem 3.5. Given H > 0, let ¹Mkºk2N be a sequence of H -surfaces such that, for
all k 2 N, Mk separates N (or not necessarily separating if j�1.N /j <1) and

sup
k

Ind0.Mk/ <1:

Then there exists an effectively embedded H -surface M1 such that, after passing to a subse-
quence, ¹Mkºk2N H-converges with multiplicity one to M1, where the convergence is as in
Definition 2.9.

Proof. Using the curvature estimate of Lemma 2.7 and the area estimate of Theorem 1.1
(or Corollary 3.4 if N has finite fundamental group), a standard argument yields that away
from a finite set of points � � N , that is the singular set of convergence (see Definition 2.6),
a subsequence H -converges with finite multiplicity to a surface M1 effectively embedded
in N n� with constant mean curvature H .

We next show that M1 [� is in fact effectively embedded in N , which will imply
that ¹Mkºk2N H -converges with finite multiplicity to M1 [� with � being the singular
set of convergence. For this we will need the following claim. We let � D ¹q1; : : : ; qlº and
" WD 1

2
infi;jD1;:::;l; i¤j distN .qi ; qj /.

Claim 3.6. Given ı > 0, there exists � with 0 < � � " such that for any qi 2 � and
p 2M1 \ B

N
� .qi /,

jAM1 j.p/ �
ı

distN .p; qi /
:

Proof of Claim 3.6. Note first that, by the nature of the convergence and Lemma 2.7,
for any qi 2 � and p 2M1 \ BN" .qi / we have

(3.1) jAM1 j.p/ �
C

distN .p; qi /
:

Moreover, arguing as in [23, Claim 2] taking " even smaller if necessary, we have that each
connected component of M1 \ .BN" .qi / n ¹qiº/ for all qi 2 � is strongly stable.

To prove the claim, we argue by contradiction and suppose that for some ı > 0 there exist
q 2 � and a sequence of points pk 2M1 such that limk!1 pk D q and

jAM1 j.pk/ >
ı

distN .pk; q/
:

Consider now scaling M1 by 1
distN .pk ;q/

, with the scaling performed in geodesic coordinates
and with origin at q. Letting k !1, and since distN .pk; q/! 0, after passing to a subse-
quence, the scaled surfaces converge to a tangent cone of M1 [ ¹qº at q. The convergence
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is in general weak convergence, however, by the curvature estimate (3.1) and the comments
following it, it is in fact smooth away from the origin and the limit is strongly stable away from
the origin. Since the limit is also a stationary cone it must be a plane. This contradicts the fact
that there exists a point at distance 1 from the origin with jAj � ı > 0.

We can now show that M1 [� is effectively embedded following the ideas of [30]
(see also [25, Theorem 4.3]). Let p 2 � and r > 0 be such that BN2r.p/ \� D ¹pº. Consider
a sequence ri ! 0 and denote by fM i the scaling of M1 \ BNr .p/ by 1

ri
. Then, the curvature

estimates of Claim 3.6 yield that, after passing to a subsequence fM i converge to a union of
planes. This in turn implies thatM1 is a union of disks and punctured disks. We can thus argue
exactly as in [25, Theorem 4.3] to show that M1 [� is indeed effectively embedded.

That the multiplicity of convergence is 1 will be a consequence of the results in
Section 4.

Remark 3.7. Using the improved curvature estimates for minimal hypersurfaces in [11]
(see Remark 2.4 (2)), as well as Lemma 2.2, we leave it to the reader to check that in fact all
the results in this section (Theorem 3.1, Corollary 3.4, Theorem 3.5) now appropriately carry
over to the case n D 4 for H -surfaces M 3 � N 4.

The curvature estimates discussed in Section 2 and that were used to prove Theorem 1.1
and Theorem 3.5, crucially depend on a bound for the volume of the H -hypersurface when
4 < n � 7. However, if one assumes an a priori volume bound, then the proof of Theorem 3.5
can be modified to prove a compactness result in higher dimensions, that is Theorem 1.3 in
the Introduction. As in Theorem 3.5, multiplicity 1 will be a consequence of the results in
Section 4.

4. Multiplicity analysis

The main goal of this section, is to show that under certain hypotheses, a sequence of
H -hypersurfaces that converges to an effectively embedded surface, will in fact converge with
multiplicity one to its limit. This result will complete the proofs of Theorems 3.5 and 1.3.

We first recall that I0 > 0 denotes a bound for the injectivity radius of N . And that given
H > 0, we have fixed JH 2 .0; I0/ so that for any � � JH , the ambient geodesic balls BN� .p/
are H -convex, independently of p 2 N . Throughout this section, we will always assume that
the radius of an ambient geodesic ball is less than JH .

We will show that even if � ¤ ;, we must always have multiplicity one convergence:

Theorem 4.1. Let V D
SL
`D1 V

` be a hypersurface effectively embedded in N with
constant mean curvature H > 0 and let ¹Mkºk2N be a sequence of H -hypersurfaces that
H -converges to V with multiplicity .m1; : : : ; mL/ 2 NL. Then the singular set of convergence
� lies inside t .V / and m` D 1 for all ` D 1; : : : ; L.

Proof. Since Mk is embedded with uniformly bounded volume and the number of
points in � is finite, there exist 0 < 2" < ı < JH such that for k sufficiently large and y 2 �,
BN
ı
.y/ n BN" .y/ \Mk is a collection of m.y/ � 1 graphs of functions uyi , i WD 1; : : : ; m.y/,
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over V which converge smoothly to zero in k (where for simplicity we have omitted the
index k). If y … t .V /, let ny D H

jH j
be the unit normal to V at y, otherwise let ny be a choice of

unit normal. The graphs of uyi , i WD 1; : : : ; m.y/, converge smoothly to BN
ı
.y/ n BN" .y/ \ V

as k !1 and can be ordered by height, say with respect to ny , so that uyi is above uyiC1
for i WD 1; : : : ; m.y/ � 1. Let Qyi be the connected component of BN

ı
.y/ \Mk that contains

graphuyi .

Claim 4.2. One has � � t .V /.

Proof of Claim 4.2. Arguing by contradiction, suppose that y 2 � \ e.V / – so that y
lies on an embedded part of the limit. By definition, V \ BN

ı
.y/ � V ` is an embedded CMC

disk and the collection of graphuyi , i WD 1; : : : ; m.y/, converges to V \ ŒBN
ı
.y/ n BN" .y/�.

If for all i WD 1; : : : ; m.y/,

Q
y
i \ ŒB

N
ı .y/ n B

N
" .y/� D graphuyi

(i.e. Qyi \ ŒB
N
ı
.y/ n BN" .y/� is connected), then since Qyi converges to the disk V \ BN

ı
.y/

as Radon measures with multiplicity one, by Allard’s regularity theorem [3] the convergence is
smooth and y 62 �. Therefore, there exists i 2 ¹1; : : : ; m.y/º such thatQyi \ ŒB

N
ı
.y/nBN" .y/�

consists of more than one connected components. However, note that because Qyi separates
BN
ı
.y/, the sign of the inner product between the unit normal to Qyi and ny must change

as we alternate components of Qyi \ ŒB
N
ı
.y/ n BN" .y/�. This contradicts the fact that such

components must converge to a single CMC disk V \ BN
ı
.y/. This contradiction proves that

� � t .V /.

It remains to prove that the convergence to V is with multiplicity one. Let y 2 � � t .V /,
then BN

ı
.y/ \ V is the union of two embedded discs, C˙ meeting tangentially and whose

mean curvature vectors point in opposite directions. Without loss of generality, we pick

ny D
HC

jHCj
;

where HC is the mean curvature of CC and thus so that CC lies above C�, in the sense
discussed in the first paragraph of the proof. The collection graphuyi , i WD 1; : : : ; m.y/, con-
verging smoothly to BN

ı
.y/ n BN" .y/ \ V as k !1 can be divided into two distinct finite

collections of graphs �C and �� that satisfy the following properties:

� the graphs in �C are above the graphs in ��,

� the collection
�C WD ¹graphuyi;C W i WD 1; : : : ; mC.y/º

converges smoothly to CC \ ŒBN
ı
.y/ n BN" .y/� as k !1,

� the collection

�� WD ¹graphuyi;� W i WD mC.y/C 1; : : : ; m�.y/º

converges smoothly to C� \ ŒBN
ı
.y/ n BN" .y/� as k !1.

Recall that Qyi is the connected component of BN
ı
.y/ \Mk that contains graphuyi .

Just like we observed before, if Qyi \ ŒB
N
ı
.y/ n BN" .y/� consists of more than one connected
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component, since Qyi separates BN
ı
.y/, then the sign of the inner product between the unit

normal toQyi and ny must change as we alternate component ofQyi \ ŒB
N
ı
.y/ n BN" .y/�. This

implies that alternating components must alternating convergence to uy
C

and uy�. This gives that
ifQyi \ ŒB

N
ı
.y/ n BN" .y/� consists of more than one connected component, then it consists of

exactly two components, one in �C and the other in ��. And Qyi converges to BN
ı
.y/ \ V

on compact subsets of BN
ı
.y/ n ¹yº with multiplicity 1.

Claim 4.3. There is only one Qyi such that Qyi \ ŒB
N
ı
.y/ n BN" .y/� is disconnected.

Proof of Claim 4.3. Arguing by contradiction, assume thatQyj , i ¤ j also has the prop-
erty that Qyj \ ŒB

N
ı
.y/ n BN" .y/� consists of exactly two components. Let

Q
y
i \ ŒB

N
ı .y/ n B

N
" .y/� D graphuyi;C [ graphuy

li ;�

and let
Q
y
j \ ŒB

N
ı .y/ n B

N
" .y/� D graphuyj;C [ graphuy

lj ;�
:

Then, because of the convergence and separation properties, we can assume that j < i < li < lj .
Let W be the connected component of BN

ı
.y/ nQ

y
i [Q

y
j such that Qyi [Q

y
j � àW .

The convergence and elementary separation properties yield that the mean curvature vector
of Mk is pointing outside W on Qyj and inside W on Qyi . Moreover, as k !1, we have
that W ! CC [ C� in Hausdorff distance. The argument described in [2] can be modified to
prove the following claim.

Claim 4.4. If Qyi is not strongly stable, then there exists a compact, oriented, stable
hypersurface � embedded in W with constant mean curvature H and such that à� D àQyi
and � is homologous to Qyi in W .

Proof of Claim 4.4. Let F be the family of subsets Q � W of finite perimeter whose
boundary àQ is a rectifiable integer multiplicity current such thatQyi � àQ. Let†D àQnQyi ,
so that à† D àQyi . Given � > 0, let F�WF ! R be the functional

F�.Q/ D Hn�1.†/C .H C �/Hn.Q/:

Let W1 be the mean convex component of BN
ı
.y/ nQ

y
i , let Smin � W1 be a volume

minimizing hypersurface with àSmin D àQ
y
i and homologous to Qyi , and let Qmin denote the

region in W1 enclosed by Qyi [ Smin (see [13–15]). Recall that since n � 7, no singularities
occur.

Let Q� WD ¹x 2 W W distN .x;Q
y
j / � �º and note that if � is chosen sufficiently small,

then the sets
St WD ¹x 2 Q� W distN .x;Q

y
j / D tº; 0 � t � �;

are smooth hypersurfaces parallel toQyj and foliatingQ�. Let Y be the unit vector field normal
to the foliation and pointing toward Qyj . Let Ht denote the mean curvature of St as it is
oriented by Y . Then

d

dt
Ht

ˇ̌̌
tD0
D jAj2 C RicN .nj ; nj /;

where nj is the unit normal vector field to Qyj . Thus, for any � > 0 there exists �� > 0,
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depending on RicN .nj ; nj /, such that for t 2 Œ0; ���we haveHt <HC� and at a point p 2 St ,

divN Y D divSt Y D �Ht H) �H � � < divN Y:

Let Qpar WD Q�� and Spar D S��
Next we are going to work onQyi . Let � be the first eigenfunction of the stability operator

of Qyi . The eigenfunction � is positive in the interior of Qyi and since Qyi is not stable, it
follows that

�� C jAj2� C RicN .ni ; ni /� C �1� D 0;

where �1 is a negative constant and ni is the unit normal vector field to Qyi . Possibly after
a small perturbation of ı, we can assume that 0 is not an eigenvalue of�CjAj2CRicN .ni ; ni /.
Thus there is a smooth function v vanishing on àQyi such that

�v C jAj2v C RicN .ni ; ni /v D 1 in Qyi .

By Hopf’s maximum principle the derivative of � with respect to the outer pointing normal
vector to àQyi is strictly negative. Therefore, there exists a > 0 small, such that u D � C av
is positive in the interior of Qyi .

Let eS t WD ¹x 2 W W distN .x;Q
y
i / D tuº; 0 � t � ��:

If �� is sufficiently small, the sets eS t are smooth hypersurfaces foliating a closed neighbour-
hood eQ�� of Qyi in W .

Let X be the unit vector field normal to the foliation and pointing away fromQ
y
i . LetHt

denote the mean curvature of eS t as it is oriented by X . Then

d

dt
Ht

ˇ̌̌
tD0
D �uC jAj2uC RicN .ni ; ni /u D ��1� C a > 0;

where ni is the unit normal vector field to Qyi . Therefore, if �� is taken sufficiently small, for
t 2 .0;�� � we have Ht > H and at a point p 2 eS t we have

divN X < �H:

Let Quns WD eQ�� and Suns WD eS��.

Claim 4.5. Let Q 2 F with † smooth and transverse to Smin; Spar, and Suns. The
following statements hold:

(1) If Q 6� Qmin, then F�.Q \Qmin/ � F�.Q/.

(2) If Q \Qpar ¤ ;, then F�.Q nQpar/ � F�.Q/.

(3) If Quns 6� Q, then F�.Q [Quns/ � F�.Q/.

Proof of Claim 4.5. We first prove that if Q 6� Qmin, then F�.Q \Qmin/ � F�.Q/.
Since Q \Qmin � Q, we have

Hn.Q \Qmin/ � Hn.Q/

and, by construction,
Hn�1.†0/ � Hn�1.†/;

where †0 WD à.Q \Qmin/ nQ
y
i .
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We now prove that if Q \Qpar ¤ ;, then F�.Q nQpar/ � F�.Q/. Recall that in Qpar,
�H � � < divN Y , therefore

.�H � �/Hn.Q \Qpar/ <

Z
Q\Qpar

divN Y D
Z
à.Q\Qpar/

Y � �;

where � is the outer pointing unit normal to à.Q \Qpar/ andZ
à.Q\Qpar/

Y � � D

Z
Q\Spar

Y � � C

Z
†\Qpar

Y � �:

Since, by construction, Y � � D �1 on Spar and Y � � � 1 on † \Qpar, we have

.�H � �/Hn.Q \Qpar/ < �Hn�1.Q \ Spar/CHn�1.† \Qpar/

and
F�.Q nQpar/ D .H C �/.H

n.Q/ �Hn.Q \Qpar//

CHn�1.† nQpar/CHn�1.Q \ Spar/

< .H C �/Hn.Q/CHn�1.† \Qpar/CHn�1.† nQpar/

D F�.Q/:

We finally prove that if Quns 6� Q, then F�.Q [Quns/ � F�.Q/. We argue similarly to
the previous claim. Recall that in Quns, divN X < �H . Therefore

�HHn.Quns nQ/ >

Z
QunsnQ

divN X D
Z
à.QunsnQ/

X � �;

where � is the outer pointing unit normal to à.Quns nQ/ andZ
à.QunsnQ/

X � � D

Z
SunsnQ

X � � C

Z
†\Quns

X � �:

Since, by construction, X � � D 1 on Suns and X � � � �1 on † \Quns, we have

�HHn.Quns nQ/ > Hn�1.Suns nQ/ �Hn�1.† \Quns/

and
F�.Q [Quns/ D .H C �/.H

n.Q/CHn.Quns nQ//

CHn�1.† nQuns/CHn�1.Suns nQ/

< .H C �/Hn.Q/C �Hn.Quns nQ/

CHn�1.† \Quns/CHn�1.† nQuns/

< F�.Q/:

This finishes the proof of Claim 4.5.

In order to find a minimizer for the functional F� we consider a minimizing sequenceQm
and, since they have uniformly bounded areas, we can apply the compactness results of [14]
to extract a converging subsequence. Note that by Claim 4.5, we can assume that Qm � Qmin,
Qm \Qpar D ;, and Quns � Qm. It is known that a minimizer of F� is smooth [4, 7, 21] and
thus we obtain a compact, embedded, oriented minimizer �� � W of the functional F� such
that à�� D àQ

y
i and �� is homologous to Qyi in W . In particular, �� has constant mean

curvature equal to H C �.
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We can also assume that H C � < 2H and

Hn�1.��/ � Hn�1.Q
y
i / � 2H

n�1.CC [ C�/:

The first inequality above follows because Hn�1.��/ � F�.��/ � F�.Q
y
i / D Hn�1.Q

y
i /.

The second inequality holds because away from the singular point of convergence y, the vol-
ume can be bounded by the volume of the limit, and nearby y it can be bounded by using the
monotonicity formula for the volume, exactly like we have done to finish the proof of Theo-
rem 1.1. Then the results in [5] (see Lemma 2.3 and Remark 2.4 (1)) give that �� has norm
of the second fundamental form uniformly bounded on compact sets of BN

ı
.y/. And taking

the limit of �� as � goes to zero, we obtain in the limit the desired � and finish the proof
of Claim 4.4.

We can now finish the proof of Claim 4.3. Since y is a singular point of convergence,
it follows that Qyi cannot be strongly stable and thus cannot have norm of the second funda-
mental form bounded nearby y. Therefore Claim 4.4 gives a compact, oriented, stable hyper-
surface � embedded in W with constant mean curvature H and such that à� D àQyi and � is
homologous to Qyi in W .

We now recall that while we have omitted the index k, we have in fact a sequence of
domains W.k/ and stable hypersurfaces �.k/ � W.k/. By the previous discussion, �.k/ has
norm of the second fundamental form uniformly bounded on compact sets of BN

ı
.y/, uniform

in k. By construction, since �.k/ is homologous to Qyi in W , for any � > 0 there exists k > 0
such that �.k/ \ BN� .y/ ¤ ;. Using the uniform bound on the norm of the second fundamental
form gives that �.k/ must converge smoothly to CC or C� or both. Elementary separation
properties give that Qyj cannot converge smoothly to ŒCC [ C�� n ¹yº. This contradiction
proves that there is only one Qyi such that ŒQyi \ B

N
ı
.y/� n BN" .y/ is disconnected.

We now prove that the convergence to V is with multiplicity one and finish the proof
of the theorem. Arguing by contradiction, assume that the multiplicity of convergence along
some V ` is m` � 2. Recall that the convergence is smooth on compact subsets K �� V `n�.
Observe that we must have � \ V ` ¤ ;: if not, since V ` is connected, we can write the
approaching H -hypersurfaces Mk globally as graphs over V ` (since CMC hypersurfaces are
always two-sided). And if there were more than one graph, then the H -hypersurfaces Mk are
disconnected.

Let� \ V ` D ¹y1; : : : ; yg.`/º. Since the convergence is smooth on V ` n
Sg.`/
jD1 B

N
" .yj /

and with finite multiplicity, we can write the approaching surfaces

Mk n

g.`/[
jD1

BN" .yj /

globally as graphs over V ` n
Sg.`/
jD1 B

N
" .yj / and order such graphs by height with respect to the

mean curvature vector EH ` of the hypersurface V `. This gives ordered sheets S1
k
; : : : ; Sm

`

k

each converging smoothly to V ` n
Sg.`/
jD1 B

N
" .yj /. Note that this ordering is different from

the previous local ordering established nearby a singular point. Let yj 2 � \ V ` � t .V / and
recall that V \ ŒBN

ı
.yj /nB

N
" .yj /� consists of two oppositely oriented components which we

denote by �Cj and ��j . Assume that �Cj � V
`; let Q1j denote the connected component of

the setMk\B
N
ı
.yj / containing the component of S1

k
\ ŒBN

ı
.yj /nB

N
" .yj /� converging to �Cj .
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If ��j � V
`, we letQ1j� denote the connected component ofMk\B

N
ı
.yj / containing the com-

ponent of S1
k
\ ŒBN

ı
.yj /nB

N
" .yj /� converging to ��j . Recall that if Q1j \ ŒB

N
ı
.y/ n BN" .y/�

consists of more than one connected component, it consists of exactly two components, one
converging to �Cj and the other to ��j . The same is true ofQ1j� . If for each point yj 2 � \ V `,
Q1j \ ŒB

N
ı
.y/ n BN" .y/� and Q1j� \ ŒB

N
ı
.y/ n BN" .y/� each consists of exactly one compo-

nent, then S1
k

would correspond to a single connected component of Mk converging smoothly
with multiplicity one to V `, and in particular Mk would be disconnected. Therefore, after
possibly relabelling, there exists yj 2 � \ V ` such that Q1j \ ŒB

N
ı
.y/ n BN" .y/� consists of

exactly two components, one converging to �Cj and the other to ��j .
Notice that by the previous claim, Q1j must be the unique such component. That is, if ƒ

is another connected component of Mk\B
N
ı
.yj /, then ƒ\ ŒBN

ı
.y/nBN" .y/� is connected.

In particular, if ƒ is the connected component of Mk \ B
N
ı
.yj / containing the component

of S2
k
\ ŒBN

ı
.yj /nB

N
" .yj /� converging to �Cj , then the set ƒ \ ŒBN

ı
.y/ n BN" .y/� is con-

nected. Note that by our choice of S1
k

, the set ƒ \ ŒBN
ı
.y/ n BN" .y/� must be below the

component of Q1j \ ŒB
N
ı
.y/ n BN" .y/� that converges to �Cj and above the component of

Q1j \ ŒB
N
ı
.y/ n BN" .y/� that converges to ��j . By elementary separation property, we obtain

a contradiction. This proves m` D 1, l D 1; : : : ; L, and finishes the proof of the theorem.

5. The bubbling analysis

The goal of this section is to prove the bubble-compactness theorem forH -hypersurfaces
when H > 0 is fixed. We shall see that, contrary to the minimal setting, the only bubbles that
can occur are catenoids. We recall that the catenoid Cn�1 � Rn is a rotationally symmetric
complete minimal hypersurface with

Ind.C/ D lim
R!1

.C \ BR.0// D 1

and finite total curvature (see, e.g., [26] for further details). In the sequel C will denote any
catenoid up to scaling, rotations and translations, without re-labelling.

We first recall a result of Schoen [22, Theorem 3] which states that for each n � 3 the only
complete minimal immersionsM n�1 � Rn which are regular at infinity and have two ends are
either catenoids Cn�1 or a pair of hyperplanes. Combining a result of Tysk [29, Lemma 4] with
[22, Proposition 3] we see in particular that this implies

Lemma 5.1. When 3 � n � 7, the only embedded, complete minimal hypersurfaces
M n�1 � Rn with Euclidean volume growth, finite index and at most two ends, are either one
or two parallel planes,4) or a catenoid.

The total curvature of a hypersurface is denoted by

T D

Z
jAjn�1

and T .Cn�1/ denotes the total curvature of the catenoid. When n D 3, we have T .C2/ D 8� .
The main result of this section is as follows.
4) Two parallel planes may include a single plane of multiplicity two.
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Theorem 5.2. With the same hypotheses as Theorem 1.3, for each y 2 � there exists
a finite number 0 < Jy 2 N of point-scale sequences (see Definition 5.4) ¹.py;`

k
; r
y;`

k
/º
Jy
`D1

so
that:

(1) These point-scale sequences are distinct, in the sense that for all 1 � i ¤ j � Jy ,

distg.p
y;i

k
; p
y;j

k
/

r
y;i

k
C r

y;j

k

!1:

Taking normal coordinates centred at py;`
k

and lettingfM y;`

k
WDMk=r

y;`

k
� Rn;

the sequence fM y;`

k
converges smoothly on compact subsets to a catenoid Cn�1 with

multiplicity one, for all `.

(2) There exist ı0; R0 > 0 so that for all y 2 �, ı � ı0, R � R0 and k sufficiently large,

Mk \

 
Bı.y/n

Jy[
`D1

B
Rr

y;`

k

.p
y;`

k
/

!
can be written as two smooth graphs over TyV D ¹xn D 0º with mean curvature vectors
pointing in opposite directions (in suitable normal coordinates ¹xiº centred at y) with
slope � D �.k;R; ı/ satisfying

lim
ı!0

lim
R!1

lim
k!1

� D 0:

(3) The number of catenoid bubbles
P
y2� Jy D J � I, and

index.V / WD
LX
iD1

index.V i / � I � J :

(4) There is no loss of total curvature:

lim
k!1

T .Mk/ D

LX
iD1

T .V
i
/C JT .Cn�1/;

where we have denoted by T .V
i
/ and T .Mk/ the total curvature in .N n; g/ of the

hypersurfaces V
i

and Mk , respectively. In particular, when n D 3, we have, for all k
sufficiently large,

�.Mk/ D

LX
iD1

�.V
i
/ � 2J:

(5) When k is sufficiently large, the surfaces Mk of this subsequence are pair-wise diffeo-
morphic to one another.

By a contradiction argument we immediately obtain the following

Corollary 5.3. Given H > 0 there exists C D C.N;ƒ; I;H/ so that the collection of
H -hypersurfaces with index bounded by I and volume bounded byƒ has at mostC distinct dif-
feomorphism types. Furthermore, for anyH -hypersurfaceM with the above index and volume
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bounds we have Z
M

jAjn�1 � C:

In order to prove Theorem 5.2 we will repeatedly blow-up a sequence ofH -hypersurfaces
according to a given shrinking scale centred at a sequence of points. We first introduce some
terminology for this, where here and throughout this section ı > 0will always denote a number
satisfying 0 < ı < injN :

Definition 5.4. Let ¹Mkº be a sequence ofH -hypersurfaces in some closed Riemannian
manifold N . Given x 2 N , we say that ¹.xk; rk/º � N �R>0 is a point-scale sequence for
¹Mkº, based at x, if xk 2Mk \ Bı.x/, xk ! x and rk ! 0.

Given normal coordinates based at Bı.xk/, we say that fM k � B
Rn

ı=rk
, defined by

fM k D
Mk

rk

in these coordinates, is a blow-up at scale .xk; rk/.
We furthermore say that fM k converges non-smoothly to a plane of multiplicity two

if there exists at least one, but finitely many points, where the convergence is smooth and
graphical away from these points but not smooth and graphical across them.

With Lemma 5.1 and this terminology we are now able to prove the following lemma.

Lemma 5.5. Let V D
SL
`D1 V

` be a hypersurface effectively embedded in N with
constant mean curvature H > 0 and let ¹Mkºk2N be a sequence of H -hypersurfaces with
supk Ind0.Mk/ <1 that H-converges to V with multiplicity one and let x 2 t .V /. Let .xk; rk/
be a point-scale sequence for ¹Mkº based at x and fM k WD

Mk
rk
� Rn a blow-up along this

scale. Then up to subsequence and on compact subsets, fM k converges to a limit fM1, which
must pass through the origin. This happens in one of three distinct ways:

(1) smoothly and graphically to a catenoid,

(2) non-smoothly to a plane of multiplicity two,

(3) smoothly and graphically to a single plane or two parallel planes.

In case (1) above, if .zk; �k/ is another point-scale sequence based at x with rk � �k and

distg.xk; zk/
rk C �k

� C;

then taking a blow-up cM k at scale .zk; �k/ yields two further distinct possibilities:

(1a) there exists some K with �k
rk
� K and cM k converges smoothly to a catenoid or

(1b) �k
rk
!1 and cM k converges non-smoothly to a plane with multiplicity two.

Again in either case the limit cM1 of the H -hypersurfaces cM k passes through the origin.

Proof. Since x 2 t .V /, we have

lim
r!0

kV k.BNr .x//

!n�1rn�1
D 2:
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Now by varifold convergence, coupled with the monotonicity formula for CMC hypersurfaces
(see, e.g., [24]), we know that for all " > 0 there exist � > 0 and r0 > 0 so that for all points
zk 2Mk \ B

N
� .x/ and k sufficiently large,

kMkk.B
N
r .zk// � .2C "/!n�1r

n�1

for all r � r0.
In particular, if ¹.zk; �k/º is any point-scale sequence based at x, then

(5.1) lim sup
k!1

kMkk.B
N
�k
.zk//

!n�1�
n�1
k

� 2:

Now considering .xk; rk/ and Mk as in the statement of the lemma we will perform
a blow-up at this scale in normal coordinates centred at xk . Note that the metric on N in
these coordinates can be written gk D g0 COk.jxj2/, and we may suppress the dependance
on k and simply write gk D g0 CO.jxj2/, where g0 denotes the Euclidean metric. We can
therefore consider fM 1

k � .B
Rn

ı=rk
.0/;egk/;

where egk D g0 C r2kO.jxj2/. We have that fM 1
k

is a potentially disconnected CMC hyper-
surface with mean curvature Hk D rkH ! 0. Moreover, by (5.1), for any R > 0,

(5.2) lim sup
k

Hn�1.fM k \ BR/

!n�1Rn�1
D lim sup

k

kMkk.B
N
Rrk

.zk//

!n�1.Rrk/
n�1

� 2:

It follows from a standard argument using Lemma 2.7 (following along the lines of, e.g.,
[8, Theorem 2.4, Corollary 2.5]) that each component of fM k converges smoothly, away from
finitely many points, to a minimal limit M1 which has Euclidean volume growth and finite
index by construction, and if the convergence is of multiplicity one, then it is smooth every-
where. Note that M1 has at most two ends by taking the limit as R!1 in (5.2) so by
Lemma 5.1 it must be a catenoid or at most two parallel planes. Finally, appealing again to
the arguments in, e.g., [8, Theorem 2.4, Corollary 2.5], if the convergence is not multiplicity
one (equivalently not smooth), then the limit must be (stable in compact subsets, and therefore)
a plane of multiplicity two.

For the second part of the lemma, we first note that rk � �k and distg.xk ;zk/
rkC�k

� C implies
that Brk .xk/ � B2C�k .zk/. We leave the final details to the reader as the arguments are stan-
dard, noting that in case 1(b) there must exist a sequence of points converging to the origin
in cM k , where the second fundamental form blows up, and thus it cannot converge smoothly
and graphically near the origin.

Lemma 5.6. Let V D
SL
`D1 V

` be a hypersurface effectively embedded in N with
constant mean curvature H > 0 and let ¹Mkºk2N be a sequence of H -hypersurfaces with
supk Ind0.Mk/ <1 that H-converges to V with multiplicity one and let x 2 t .V /. Suppose
.xk; rk/ is a point-scale sequence for ¹Mkº based at x so that the blow-up at this scale con-
verges smoothly locally to a catenoid. Suppose further that there is a positive sequence �k ! 0

with �k
rk
!1 and so that fM k WD

Mk
�k

converges smoothly to the double plane ¹xn D 0º on
B1nB� for all � > 0. Then there exists R0 <1 so that for all R � R0,

fM k \ .B1nBRsk /; where sk D
rk

�k
! 0;
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can be written as a pair of graphs over ¹xn D 0º with mean curvatures pointing in opposite
directions and the graphs converge to zero in C 1 as first k !1 and then R!1.

Proof. We will show that if tk ! 0 is a sequence of positive numbers so that sk
tk
! 0,

then cM k D
fM k

tk

converges smoothly and graphically to ¹xn D 0º on compact subsets away from the origin –
in fact, we need only check this in the region B2nB1. Since the slope of the graph is scale-
invariant, this will complete the proof.

Lemma 5.5 tells us that (up to subsequence)cM k converges to some plane passing through
the origin. By the hypotheses of the lemma and the choice of tk , this convergence happens
smoothly with multiplicity two in compact subsets away from the origin. In particular, there
is some .n � 1/-dimensional linear subspace E of Rn so that cM k \ B2nB1 can be written as
two graphs over E which are uniformly converging to zero as k !1. We will prove below
that E D ¹xn D 0º; this fact will be independent of the choice of sequence tk as above, and
any subsequence.

Without loss of generality we will prove what we need only for the top sheet, whose
mean curvature points upwards. Denote byD� the closed ball of radius � centred at the origin in
¹xn D 0º. Let uk W D1nD1=4 ! R describe the top sheet offM k (whose mean curvature points
upwards) and notice that kukkC l ! 0 for all l , and Hk D �kH ! 0 is the mean curvature
of fM k . Thus, using Proposition 5.7 and Remark 5.8, we can foliate a region of D1=2 � Œ�ı; ı�
by CMC graphs vh

k
W D1=2 ! R with boundary values given by uk C h, h 2 R. Notice that as

k !1, we have that gk ! g0 and uk ! 0 in C l for all l which tells us that

kvhk � hkC2;˛ ! 0

as k !1 which follows from Proposition 5.7.
Similarly as in [31, Lemma 3.1] (cf. [8]) we can define a diffeomorphism of this cylin-

drical region (via its inverse)

F�1k .x1; : : : ; xn�1; y/ D .x1; : : : ; xn�1; v
y�hk
k

.x1; : : : ; xn�1//;

where hk ! 0 is uniquely chosen so that v�hk
k

.0; : : : ; 0/ D 0 (so that Fk.0/ D 0). Notice that
Fk ! Id as k !1 inC 2, so in particular the metric gk in these coordinates is also converging
to the Euclidean metric.

We will now work with these new coordinates .x1; : : : ; xn�1; y/, on which horizontal
slices ¹y D cº provide a CMC foliation, and furthermore in these coordinates, the part of fM k

described by uk takes a constant value hk at the boundary of D1=2. Without loss of generality
(by perhaps choosing a sub-sequence) we assume that hk � 0 for all k (if hk � 0 the proof
is similar).

We now blow up this coordinate system by a factor 1
tk

, and let

cM k D
fM k

tk
� D1=.2tk/ �

�
�
ı

tk
;
ı

tk

�
:

Strictly speaking this is not the same cM k as before (which was a blow-up of fM k in a differ-
ent coordinate system) but since our two choices of coordinates are asymptotically equivalent
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(as k !1), their limits are equal. In particular, we still have that cM k \ B2=B1 is uniformly
graphical over E (equivalently defined in either coordinates), and our goal is to prove that
E D ¹y D 0º D ¹xn D 0º. Notice that over àD1=.2tk/, the top sheet of cM k is described by
a constant function of value bhk D hk

tk
� 0, and the horizontal slices ¹y D cº still provide

a CMC foliation where the mean curvature of the foliation equals that of the top sheet of cM k .
For a contradiction suppose that E ¤ ¹y D 0º, which means that

minbMk\..D1=.2tk/nD1/�R/

y < 0

and the minimum is not attained at a boundary point. The maximum principle for CMC graphs
then implies that cM k is globally a horizontal slice ¹y D �c0º, for some c0 < 0, which contra-
dictsbhk � 0. Thus we must have E D ¹y D 0º.

Thus, for k,R sufficiently large,fM k \ .B1nBRsk / is graphical over ¹xn D 0ºwith slope
� D �.k;R/! 0 as we first send k !1 then R!1.

Proof of Theorem 5.2. To begin we choose ı sufficiently small so that

2ı < min
²

min
�3yi¤yj2�

dg.yi ; yj /;
injN
2

³
and furthermore that BN

ı
.x/ \ V is stable for all x 2 V . Towards the end of the proof, we will

consider ı ! 0, but for the majority of the proof we work with some fixed ı satisfying the
above.

From now on we work with a single y 2 � since we only need check the conclusion of
the theorem for one such point chosen arbitrarily.

Picking the smallest scale. Let

r1k D inf¹r > 0 WMk \ Br.p/ is unstable for some p 2 Bı.y/ \Mkº:

Note that with r1
k

defined above, we can pick a point p1
k
2 Bı.y/ \Mk and ı > r1

k
> 0 such

that Mk \ B3r1k=2.p
1
k
/ is unstable.

We must have p1
k
! y since if not, we know that Mk \ Bdg.p1k ;y/=2.p

1
k
/ converges

smoothly to V and thus is eventually stable inside all such balls by the choice of ı.
Furthermore, r1

k
! 0 as otherwise the regularity theory of Lopez–Ros and Schoen–Simon

(see Lemma 2.3) would give a uniform L1 estimate on the second fundamental form for
Mk \ Bı=2.y/ and we reach a contradiction to the fact that y is a point of bad convergence.

Thus .p1
k
; r1
k
/ is a point scale sequence based at y and we let fM 1

k
be the blow-up at this

scale (see Definition 5.4).
The metric on N in these coordinates can be written gk D g0 COk.jxj2/, and we may

suppress the dependance on k and simply write gk D g0 CO.jxj2/, where g0 denotes the
Euclidean metric. Thus we may consider fM 1

k
� .BRnC1

ı=r1
k

.0/;egk/, where

egk D g0 C .r1k /2O.jxj2/:
By the choice of r1

k
we have that fM 1

k
is a potentially disconnected CMC hypersurface with

mean curvature Hk D r1kH ! 0.
As fM 1

k
is stable inside every (Euclidean) ball of radius 1

2
in .BRn

ı=r1
k
;egk), by Lemma 2.3,

it converges (up to subsequence) smoothly with multiplicity one to some minimal limit M 1
1
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in Rn equipped with the Euclidean metric and by Lemma 5.5,M 1
1 is either at most two planes

or a catenoid.
Note that M 1

1 cannot be a collection of one or two planes, as this would contradict
the instability hypothesis on balls of radius 2 centred at the origin: if M 1

1 were a collec-
tion of planes, it would be strictly stable in any compact set, and this strict stability would
eventually pass to fM k for large k. Thus we must have that M 1

1 is a catenoid. Finally, since
index.Mk \ B3r1

k
=2.p

1
k
// � 1, for all large k and any � > 0 we have, by domain monotonicity

of eigenvalues,

index.Mk n B�.y// � index.Mk n B3r1
k
=2.p

1
k// � I � 1

and thus index.V / � I � 1. This lat step follows since there exists � > 0 so that

(5.3) lim sup
k

index
�
Mkn

[
y2�

B�.y/

�
� index

�
V n

[
y2�

B�.y/

�
D index.V /:

Here the index of any domain is computed with respect to Dirichlet boundary conditions.

Picking further scales. Now let

r2k D inf¹r > 0 W Br.p/ \ .Mk n B2r1
k
.p1k// is unstable for some p 2 Bı.y/ \Mkº:

If lim infk!1 r2k > 0, then the process of picking point-scale sequences stops and we go on
to the neck analysis. Assuming therefore that r2

k
! 0, we must also have the existence of

p2
k
2Mk \ Bı.y/ so that .p2

k
; r2
k
/ is a point scale sequence based at y and

.Mk \ B3r2
k
=2.p

2
k// n B2r1

k
.p1k//

is unstable. As before, let fM 2
k

be the blow-up at this scale which by Lemma 5.1 converges to
at most two planes or a catenoid.

There are two distinct cases:

(1) one has
distg.p1k; p

2
k
/

r1
k
C r2

k

� C <1

(i.e. Br1
k
.p1
k
/ � B3Cr2

k
.p2
k
/) and fM 2

k
converges non-smoothly to a double plane,

(2) one has
distg.p1k; p

2
k
/

r1
k
C r2

k

!1

and fM 2
k

converges smoothly to a catenoid.

Indeed, in the first case we claim that the limit is attained non-smoothly and is therefore
a double plane by Lemma 5.5. For a contradiction if the limit is attained smoothly we must
have r2

k
=r1
k
� K for some K and the limit is a catenoid by case (1a) of Lemma 5.5. However,

by the definition of r1
k

we have

�1.Mk \ B3r1
k
=2.p

1
k// < 0 and �1.Mk \ B3r2

k
=2.p

2
k// n B2r1

k
.p1k// < 0:

These disjoint open regions ofMk remain strictly unstable for all k and thus, after blowing up at
scale .p2

k
; r2
k
/ pass to two non-empty disjoint open regions of the limiting catenoid �1; �2 for

which �1.�1/ � 0 and �1.�2/ � 0. This contradicts the fact that the catenoid has index one.
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In the second case we invite the reader to blow up precisely as we did for .r1
k
; p1
k
/ and

see that fM 2
k

converges smoothly to a catenoid: at this blow-up scale we once again have that,
on compact subsets, fM 2

k
is stable on all balls of radius 1

2
and the first forming catenoid is

disappearing at infinity.
We wish to keep track of this point-scale sequence in either scenario, but in case one, the

blow-up procedure produces no extra catenoid so we mark this sequence for removal later. In
either case we conclude similarly as before that index.V / � I � 2.

Now suppose that we have picked j � 1 point-scale sequences ¹.r i
k
; pi
k
/º
j�1
iD1 satisfying

(a) for each 2 � i � j � 1 we have r i
k
! 0, pi

k
! y,

(b) denoting Ui�1 D
Si�1
sD1B2rsk

.ps
k
/, .Mk \ B3ri

k
=2.p

i
k
// n Ui�1 is unstable,

(c) index.MknUj�1/ � I � .j � 1/ and thus index.V / � I � .j � 1/ by (5.3)

Furthermore, we suppose there are two distinct cases:

(1) there exist C <1 andm < i so thatBrm
k
.pm
k
/ � BCri

k
.pi
k
/ and blowing up at this scale

we converge non-smoothly to a double plane,

(2) one has

min
m<i

distg.pmk ; p
i
k
/

rm
k
C r i

k

!1

and blowing up at this scale yields a catenoid as a smooth limit.

We now pick the next shrinking scale (if it exists) according to

r
j

k
D inf

°
r > 0 W Br.p/ \ .Mk n Uj�1/ is unstable for some p 2 Bı.y/ \Mk

±
:

If lim infk!1 r
j

k
> 0, then the process of picking point-scale sequences stops and we go on to

the neck analysis. Assuming therefore that rj
k
! 0, we now perform the usual argument that

first of all there exists pj
k
2Mk \ Bı.y/ so that

.Mk \ B3rj
k
=2
.p
j

k
// n Uj�1 is unstable

and show that once again we are in case (1) or (2) above (we leave the details to the reader) and
this time index.MknUj / � I � j implying index.V / � I � j . In short, we satisfy conditions
(a)–(c) and the j th sequence also satisfies condition (1) or (2).

This process must stop eventually (after at most I iterations) and we can move on to the
neck analysis, noting that if Jy is the total number of distinct point-scale sequences forming at
y (distinct in the sense that we have removed all point-scale sequences satisfying case (1), then
in particular have index.V / � I � Jy which is part (3) of the theorem.

Before we move on let us now throw away all the marked sequences (those satisfying
condition 1 above), since blowing up at these scales means that we see only a double plane
passing through the origin as a weak limit, and we have finished proving part (1) of the theorem.

Part (2) of the theorem. If there is only one catenoid forming at y (i.e. Jy D 1), we
first pick an arbitrary �k ! 0 so that �k=r1k !1 and we first apply Lemma 5.6 to the blow-upfM k at scale .p1

k
; �k/ to conclude thatfM k \ .B1nBRr1

k
=�k
/ is uniformly graphical over a fixed

plane E (in these coordinates) with slope converging to zero as k !1 and then R!1.
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We now consider the point scale sequence given by .p1
k
; ı/ and the corresponding blow-

up LMk D
Mk
ı

. Notice that, for any ı > 0, we can always rotate the coordinates so that TyV is
parallel to ¹xn D 0º and that for any fixed � < 1, LMk \ B1nB� can be written as two graphs
over ¹xn D 0º with slope �! 0 as we first send k !1 and ı ! 0. The reader can check that
(by following the steps in the proof of Lemma 5.6) LMk \ B1nB�k=ı is uniformly graphical
over ¹xn D 0º with slope converging to zero as k !1 and ı ! 0. Thus the orientation of
the plane ¹xn D 0º is passed down to the next scale (so E D ¹xn D 0º above), and we recover
that LMk \ B1nBRr1

k
=ı is uniformly graphical over ¹xn D 0º (equivalently over TyV ) with

slope converging to zero as k !1, R!1 and finally ı ! 0.
By undoing the scaling, we see that Mk \ .Bı.p

1
k
/nBRr1

k
.p1
k
// is uniformly graphical

over TyV with slope �.k;R; ı/ converging to zero as k !1, R!1 and ı ! 0.
When there is more than one bubble we simply inductively apply Lemma 5.6 at progres-

sively smaller scales, noting that the orientation of the limit plane (i.e. TyV ) is passed down to
each smaller scale: the ends of the catenoids are always parallel to TyV .

The neck analysis when Jy > 1. Set �k D 2maxj>1 dist.p1
k
; p
j

k
/ which gives in par-

ticular that �k=r1k !1 and Lemma 5.5 guarantees that by blowing up at scale .p1
k
; �k/ we

see weak convergence of fM k DMk=�k to a double plane. Furthermore, there are Jy catenoid
bubbles forming inside the ball of radius 1

2
at this scale and the convergence is smooth and

graphical on compact subsets of RnnB1.
In exactly the same fashion as above we now consider LMk DMk=ı the blow-up at

scale .p1
k
; ı/. After rotating our coordinates so that TyV is parallel to ¹xn D 0º, (and again

following the steps in the proof of Lemma 5.6) we have that LMk \ B1nB�k=ı is uniformly
graphical over ¹xn D 0º.

Going back to fM k we now successively apply Lemma 5.6 to each bubble forming inside
B1 at scale .p1

k
; �k/ to conclude part (2) of the theorem.

No loss of total curvature, part (4) of the theorem. By smooth, multiplicity one
convergence away from � we know that

lim
ı!0

lim
k!1

Z
Mkn

S
y2�Bı.y/

jAkj
n�1
!

X
i

Z
V i
jAjn�1 D

Z
V

jAjn�1:

Furthermore, by the scale invariance of the total curvature, given any point-scale sequence
.p
`;y

k
; r
`;y

k
/ corresponding to a catenoid we have

lim
R!1

lim
k!1

X
y2�

JyX
`D1

Z
Mk\B

Rr
`;y
k

.p
`;y
k

/

jAkj
n�1
D JT .Cn�1/:

It thus remains to check that, in each degenerating neck region between the bubble scales we
have

lim
ı!0

lim
R!1

lim
k!1

Z
Mk\.

S
y2�.Bı.y/n

SJy
`D1

B
Rr
`;y
k

.p
`;y

k
//

jAkj
n�1
D 0:

Given that we know such regions are uniformly graphical over the limit, with slope �! 0 in
this limit, the argument now follows exactly the lines as that appearing in [8, pp. 4392–4394]
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with the exception that equation (4.6) there must be replaced with

j�bgkukj D
ˇ̌̌̌bg˛ˇ
k
�k.buk/nC1jl

àbuj
k

àx˛
àbul
k

àxˇ
Cbg˛ˇ

k
.gk/ij
àbuj
k

àx˛
àbul
k

àxˇ
H

ˇ̌̌̌
� C�2.jbukj CH/;

since we are working with CMC H ¤ 0. This makes no difference to the remainder of the
argument so we leave it to the interested reader to follow up.

Finite diffeomorphism type, part (5) of the theorem. Notice that we have implic-
itly constructed a finite open cover of the union

S
kMk so that in each element of the cover

the H -hypersurfaces Mk are pair-wise graphical over one-another, for sufficiently large k.
Thus the H -hypersurfaces Mk are globally graphical over one-another and have the same
diffeomorphism type.

5.1. Local CMC foliations. Here we wish to show the existence of local CMC foli-
ations by disks for metrics sufficiently close to the Euclidean metric, and mean curvature
sufficiently small. LetD1 � Rn�1 be the closed unit (Euclidean) ball and C D D1 �R � Rn.
For any fixed ˛ 2 .0; 1/ denote by G the collection of C 2;˛ Riemannian metrics on C so
that we can view G D C 2;˛.C;R/ where R is the open set of symmetric, positive-definite
n � n-matrices. Let W D C 2;˛.D1/ and U D C 2;˛0 .D1/ D ¹u 2 W W u � 0 on àD1º.

For .t; g; w; u/ 2 R � G �W � U we denote Hg.t C w C u/ the g-mean curvature of
the graph t C w C u with respect to the upward pointing unit normal Ng.t C w C u/. We
consider ˆ W R � G �W � U � C 0;˛.D1/! C 0;˛.D1/ defined by

ˆ.t; g; w; u;H/ D Hg.t C w C u/ �H

and notice that ˆ is C 1 with
ˆ.t; gE ; 0; 0; 0/ D 0:

Here gE 2 G denotes the Euclidean metric on C . We now consider the derivative with respect
to u at u D 0,D4ˆ.t; gE ; 0; 0; 0/ W C

2;˛
0 .D1/! C

0;˛
0 .D1/ where for v 2 C 2;˛0 .D1/ we have

D4ˆ.t; gE ; 0; 0; 0/Œv� D
à
àh

ˇ̌̌
hD0

HgE .t C hv/:

This is equivalent to considering an infinitesimal variation of the flat disk by the ambient vec-
tor field V.x1; : : : ; xn/ D .0; : : : ; 0; v.x1; : : : ; xn�1// 2 C

2;˛
0 .C /, whose normal component

is given by hV;NgE .t C uH /i D v. Thus we have

D4ˆ.t; gE ; 0; 0; 0/Œv� D �v

which is a Banach space isomorphism, noting that by Schauder theory we have

kD4ˆ.t; gE ; 0; 0; 0/
�1Œf �kC2;˛.D1/ � Ckf kC0;˛.D1/:

In particular, for each fixed t there exists " > 0 and a C 1 mapping

U W .t � "; t C "/ � BR
" .gE / � B

W
" .0/ � B

C0;˛

" .0/! BUı .0/

so that whenever

.s; g; w/ 2 .t � "; t C "/ � BR
" .gE / � B

W
" .0/ � B

C0;˛

" .0/;
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then ˆ.s; g;w;U.s; g; w;H/;H/ D 0. In particular, when g;w;H are fixed, s C w CU is
a graphical foliation with mean curvatures given by the functionH with boundary values given
by s C w. By the uniqueness of such H -graphs we can carry out this local foliation for any t
noting that whenever two leaves have the same boundary values, they must coincide. Thus we
have proven:

Proposition 5.7. Let D1 � Rn�1 denote the closed unit (Euclidean) ball and define
C D D1 �R � Rn. Then there exists " > 0 so that for any w 2 C 2;˛.D1/, H 2 C 0;˛.B1/
and Riemannian metric g on C satisfying

kwkC2;˛ C kg � gEkC2;˛ C kHkC0;˛ < "

there exists a C 2;˛ foliation of graphs u W R! C 2;˛.D1/ with g-mean curvature H pointing
upwards, and for each t 2 R, u.t/ has boundary values t C w. Furthermore, kukC2;˛ depends
on t; w; g and H in a C 1 way.

Remark 5.8. If we consider g, w and H to have higher regularity, we can pass this
onto the foliation by the usual regularity results: in particular, if g is C l;˛ for l � 2, then ˆH
is C l�1 and we can find a C l�1 CMC foliation, i.e. u W R! C 2;˛ is C l�1 in t .
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