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Abstract

Purpose Object classification and localization is a key task of computer-aided diagnosis (CAD) tool. Although there have

been numerous generic deep learning (DL) models developed for CAD, there is no work in the literature to evaluate their

effectiveness when utilized in diagnosing fractures in proximity of joint implants. In this work, we aim to assess the performance

of existing classification systems on binary and multi-class problems (fracture types) using plain radiographs. In addition, we

evaluated the performance of object detection systems using the one- and two-stage DL architectures.

Methods A data set of 1272 X-ray images of Peri-prosthetic Femur Fracture PFF was collected. The fractures were annotated

with bounding boxes and classified according to the Vancouver Classification System (type A, B, C) by two clinical specialists.

Four classification models such as Densenet161, Resnet50, Inception, VGG and two object detection models such as Faster

RCNN and RetinaNet were evaluated, and their performance compared. Six confusion matrix-based measures were reported

to evaluate fracture classification. For localization of the fracture, Average Precision and localization accuracy were reported.

Results The Resnet50 showed the best performance with 95% accuracy and 94% F1-score in the binary classification:

fracture/normal. In addition, the Resnet50 showed 90% accuracy in multi-classification (normal, Vancouver type A, B and

C).

Conclusions A large data set of PFF images and the annotations of fracture features by two independent assessments were

created to implement a DL-based approach for detecting, classifying and localizing PFFs. It was shown that this approach

could be a promising diagnostic tool of fractures in proximity of joint implants.
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Introduction

In 1991 it was suggested that total hip replacement (THR)

may be the operation of the century that can provide excel-

lent pain relief and an improved quality of life for patients

with severe arthritis [18]. With a growing elderly popula-

tion, the rates of THRs is increasing (approximately 90,000

procedures per year in the UK) [36] accompanied by an

unavoidable rise in associated post-operative complications

such as Peri-Prosthetic Femur Fractures (PFFs) that occur in

3.5% of patients who undergo THR [1]. Following a primary

THR, PFF accounts for 10.5% of revision hip arthroplasties

[36] and it is predicted that 4.6% of THR patients can be

affected by PFF [1]. PFFs are usually caused by low energy

falls in elderly patients, but can also be due to implant loos-

ening, osteolysis or stress from an adjacent implant. The

assessment and management of PFFs relies on a clinical

assessment of the patient, prior operation notes on the joint
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implant and surgical approach taken, and the fracture image

to assess the fracture characteristics and the implant for loos-

ening and osteolysis [27]. The management of PFF varies

from non-operative treatment to open reduction and inter-

nal fixation (ORIF) to revision of the prosthesis [19]. The

Vancouver Classification System (VCS) is commonly used

to characterise these fractures and guide the subsequent sur-

gical management (see Fig. 1). VCS considers three main

fracture features: fracture location, implant loosening and

bone quality [4].

Optimal management of PFF patients is guided predom-

inately by the associated radiographic appearance, however

it has been found that 90% of PFF radiology reports do not

include all relevant radiographic features. This may lead to

a delay in diagnosis and incorrect treatment strategy and,

ultimately, delayed surgery [24].

Current efforts in computer aided fracture diagnosis focus

on the detection of fracture only. However, the reported work

exclude the fracture cases with a prosthesis when designing

automatic fracture detection systems [34]. One of the essen-

tial tasks that computer-aided diagnosis (CAD) for fracture

needs to address is identifying the type of the fracture. A few

existing fracture diagnosis techniques are focused on specific

regions of the bone, for example, proximal femur [14]. In case

of PFFs, the location of fracture varies significantly and can

be in different femur regions.This significantly increases the

variation between images and complexity of the detection

problem.

The detection, localization and classification of the frac-

tures from X-ray images can face one or more of the following

issues (refer to Fig. 2): (1) poor quality of X-ray images due to

noise and low contrast. (2) fracture lines often hard to iden-

tify. (3) significant variations in fracture location, fracture

pattern, image views and, specifically for PFFs, additional

variations related to implant type and capturing locations.

For this work, we annotated a large dataset of PFF images

with bounding boxes and fracture classes. In addition, we

evaluated different deep learning approaches to identify, clas-

sify and localize PFFs from X-ray images using the VCS to

assist orthopaedic surgeons in fracture management that can

ultimately enhance patient outcomes.

The rest of the paper is organized as follows: the second

section summarises the related work of fracture diagnosis.

The methodology is presented in the third section. Followed

by the experiments and result discussions. Finally, the last

section provides conclusion and future work.

Related work

The huge development of machine learning techniques made

a major impact on improving the detection and diagnosis

of different diseases such as Lung nodule detection in the

chest [6,10], mass detection [38] and mass classification into

benign or malignant [9]. A collection of research and methods

on CAD in medical images can be found in [8,22]. Compared

to these developments, techniques for automatic diagnosing

bone fractures are scarce [15].

The existing methods for automatic image analysis of

bone fractures are based either on hand-crafted features or

learning relevant image features.

Feature-basedmethod

The early work on fracture detection and classification

focused on a typical machine learning framework that gen-

erally consisted of pre-processing, feature extraction and

classification steps. For the pre-processing step, many low

level pixel-processing methods such as noise reduction and

segmentation were used to obtain the region of interest (ROI).

Using ROI, various features can be extracted for classification

of bone fractures. The feature types can be texture analysis

[5,11,12], combination of texture and shape features [35]

or digital geometry of the extracted fracture points [3]. For

the classification step, the fusion of multiple classifications

resulted in improved fracture prediction [23,35] when com-

pared to using a single classification approach [5] .

The hand-crafted feature-based approaches require a prior

knowledge of the specific feature to be extracted which

affects their generalization ability. In addition, most of these

methods rely on a prior segmentation of the bone, the pro-

cess that typically lacks accuracy in extracting bone contours.

Modeling and representing a bone fracture is complex due to

a large number of parameters involved but it could be learned

from a large set of relevant image data.

Deep learning-basedmethod

The recent developments of deep learning techniques have

overcome some limitations of traditional feature-based

approaches. Convolutional neural networks (CNN) have

demonstrated the ability to detect fractures by performing

the binary classification task (fracture or normal) in differ-

ent anatomical regions, such as hip [7], pelvis [37], wrist

[21], spine [29] and ankle [17]. Imagenet [16,26,37], or a

similar dataset (bone x-ray images) [7,21] can be used to

pre-train a network in order to improve accuracy of clas-

sification. Moreover, it is illustrated in several studies that

cropping the ROI and feeding it to the network increases the

classification accuracy [14,37]. Combining hospital process

variables such as hospital department, scanner model, patient

demographic information (age, gender, body mass etc.) can

further improve fracture prediction outcome when compared

to using just X-ray images of the fracture [2].

All the above studies focus on a specific part of the

fractured bone, e.g. proximal femur [14], and do not con-
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Fig. 1 The classification of PFFs according to VCS [30]

Fig. 2 Illustration of the quality of X-ray images, fracture line appearance and the high variability of PFFs in X-ray images; image view, implant

type and captured bone part

sider more diagnostically complex fractures close to joint

implants, see Fig. 2. There is a wide range of fracture types

with different visual patterns at different anatomic locations.

Additionally, there is variability in the X-ray images in terms

of capturing different parts of the bone for the same fracture

type. In contrast to hip or other aforementioned fractures,

which are located at a specific position, for example the

femoral neck, PFFs can be located anywhere on the femur,

around or below the implant. This increases the complexity

of image pattern analysis and makes the extraction of a ROI

based only on the bone anatomy more difficult.

Therefore, we considered in depth evaluation of a deep

learning-based approach to tackle diagnosis of PFFs as both

a detection of the presence of the fracture (binary classifi-

cation ’fracture, normal’) and a classification of the fracture

according to the VCS.

Method

We developed a CAD tool based on CNN and systematically

explored different model architectures. In this direction, two

approaches were examined: PFF classification (‘PFF classi-

fication’ Section) and PFF detection, which combines both

the classification and localization (‘PFF detection approach’

Section). Figure 3 presents a general overview of these

approaches.

PFF classification

Given a set of X-ray images I ∈ RH×W , our goal was to train

a classification model f(·) in order to specify a class label y ∈

C for each image (Ii ). Two sets of class labels were consid-

ered - C ⊂ { f racture, normal} for detecting the presence

of a fracture and C ⊂ {T ypeA, T ypeB, T ypeC, normal}

for categorization of the fracture. The classification model
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Fig. 3 PFF classification

approach: the examined

classification network are

(ResNet, DenseNet, VGG and

Inception). The object detection

network: FasterRCNN and

RetinaNet

can be defined as:

y = f (I ;w f ) (1)

Where I is the X-ray image and w f is the model parame-

ters. The function f is approximated using a CNN optimized

to minimize the cross-entropy loss function:

ℓclass = −
∑

j∈C

y j,clog(y j,c). (2)

Visualization of PFFs

To visualize the fracture region, we used the Class Activa-

tion Map (CAM) [39] method, which generates a weighted

activation map for each image. This identifies a region that

a classification model is focusing on. The CAM method

depends mainly on the global average pooling layers which

are added after the last convolutional layer of the network to

create the spatial average of the feature map of each image

unit. Given an image, let fk(x, y) denote the activation of unit

k in the last convolutional layer at a spatial location (x, y).

Then, the result of average pooling for unit k is
∑

x,y fk(x, y)

and the class activation map for class c for a spatial element

is defined as:

Mc(x, y) =
∑

k

wc
k fk(x, y) (3)

Thus, the class score Sc =
∑

x,y Mc(x, y). The Mc(x, y)

shows the importance of the activation at (x, y) resulting in

the image classification to a class c.

To highlight salient features in the X-ray image that dis-

criminate abnormality, the CAM is up-scaled to the image

dimension and overlays the image.

PFF detection approach

In the PFF detection approach, we attempted to classify and

localize the PFFs using image labels and vertices of a fracture

bounding box in a fully supervised fashion. The following

sections describe two object detection models: Faster RCNN

[28] and RetinaNet [20].
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Faster RCNN

Faster R-CNN is a two-stage object detection model: Region

Proposal Network (RPN) and Fast R-CNN. Both stages share

the same backbone network, which outputs the feature map

of the input X-ray image.

RPN is a fully convolutional network responsible for gen-

erating region proposals with various scales and aspect ratios

which are used by Fast R-CNN for fracture detection. The

RPN applies the concept of attention to tell the (Fast R-CNN)

where to look. First, a sliding window with a size n × n is

passed through the feature maps to generate K anchors with

a different size and aspect ratio for each location. For each

pixel, the network checks whether these K anchors contain

an object (fracture) or not. Therefore, for each anchor, a fea-

ture vector is extracted and fed to two fully connected layers.

The first one is a binary classifier that computes the objective

score, i.e if the area includes an object (fracture) or not. The

second one returns the bounding box as region proposals.

Fast R-CNN The feature maps from the backbone net-

work and the resulted region proposals are fed to the ROI

pooling layer. The ROI pooling layer splits each region pro-

posal into grid cells and applies a max pooling operator to

each cell to return a single value. The output feature vector is

defined by all values from all these cells. The feature vector

is then passed to the fully connected layer which is divided

into two sub-networks: the softmax layer that predicts class

scores and the regression layer that predicts the bounding

box coordinates.

RetinaNet

RetinaNet is a one stage object detection model, which con-

sists of three sub-networks: a backbone network, a Feature

Pyramid Network (FPN), and Fully Convolutional Net-

works(FCNs).

Backbone network computes a feature map of the input

X-ray image.

FPN is used to construct a rich multi-scale feature pyra-

mid from a single scale input image. The structure of the

pyramid consists of two pathways: bottom-up and top-down.

The first pathway computes a feature hierarchy by using the

feature activation output of each residual block. The high

level feature maps are considered in the top-down pathway by

up-sampling spatially coarser feature maps from the higher

pyramid levels.

FCNs This sub-network includes two FCNs. The first FCN

performs the classification task (fracture/ no fracture), while

the second one performs the bounding box regression (local-

ization of the fracture).

RetinaNet uses a focal loss function to resolve the class

imbalance problem between the background and foreground

in the detection scenario. Thus, the standard cross entropy

loss has been modified to the following:

F L(pt ) = −αt (1 − pt )
γ log(pt ). (4)

where pt =

{

p if y=1

1 − p if otherwise

γ is a tuning focusing parameter (γ ≥ 0)

Experiments

Dataset collection and preparation

The experiment was approved by the Healthcare and Medicine

Research Ethics Committee at the University of Leeds

(MREC 19-005). The dataset of PFF images was collected

at multiple trauma centers in the United Kingdom. Overall,

607 anonymised patient data were collected with a total of

2544 X-ray images. To establish a ground truth classification

and detection for the images, two clinical experts participated

in image annotations and provided class labels and fracture

bounding boxes. 59% of the images were annotated by both

experts and the rest with a single annotation.

For each patient, we collected either a lateral or an

anterior-posterior (AP) image or both. The images included

either a partial region of the femur, the full femur or the

pelvis with both femurs. The last type of image was split into

two, containing one femur each. The images were of vari-

ous scales, orientations and implant types. Images for each

patient included an X-ray after THR surgery (representing

the normal cases) and an X-ray containing the fracture. The

images were annotated by class labels (Type A, Type B, Type

C and normal). The fracture images were further annotated

by a bounding box around the fracture, i.e the coordinates

of the minimum and maximum corners of the rectangle. For

annotations we used Microsoft Visual Object Tagging Tool

(VOTT).

PFF classification For the classification task, both binary

classification (fracture vs normal) and multi-classification

(Type A, Type B, Type C and normal) were considered. For

binary classification, 1272 images with a fracture and 1272

images without a fracture (normal) were used. For the multi-

classification task, the dataset consisted of: 375 normal, 88

Type A, 375 Type B and 378 Type C images. The number of

images of Type B was very high (63% of the fracture images)

when compared to the other types (A and C). Therefore, we

randomly excluded 431 images from Type B. For both tasks,

the dataset was divided into two parts: training and valida-

tion, with the ratio 75% : 25%, respectively.

PFF detection In this experiment, we focused on detect-

ing the fracture region and considered two classes: fracture

and background (normal). The same dataset of fracture
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images in the binary classification experiment was split into

the training and validation sets.

Model architectures and implementation details

All the models were trained on a Windows machine equipped

with 8 GB RAM, Intel(R) Core(TM) CPU @ 3.00 GHz and

GeForce RTX 2080 graphics card.

PFF classification For classification tasks, we compared

different network architectures (ResNet50 [11], VGG [32]

, DenseNet161 [13], Inception [33]) that were pre-trained

on ImageNet. Each network was trained on X-ray images

down-sampled from the original size to 224 × 224 px, except

Inception model which accepts 299 × 299 px. The classes

included ‘normal’ and the categories of VCS. Data augmen-

tation techniques such as flipping, rotation and scaling were

used. The CAM is used on top of each model to visualize the

fracture region.

For optimization, we used Stochastic Gradient Descent

(SGD). All the models were trained until convergence (100

epoch). The batch size was 8, momentum 0.9 and learning

rate was set to 1 ×10−2.

PFF detection Both models were trained and validated

using different image resolutions. For the backbone network,

ResNet50 was used in both object detection models and the

optimization was performed using SGD. All the models were

trained until convergence (100 epoch). The batch size was 2,

momentum 0.9. We used the default anchor configuration

and non-maximum suppression with IoU 0.7. The learning

rate was set to 1 ×10−2 on Faster R-CNN and 5 ×10−2 on

RetinaNet.

Evaluation settings

To evaluate the classification results, we used the standard

metrics derived from Confusion Metrics: accuracy, preci-

sion, recall (sensitivity), specificity, F1 score and AUC-ROC

curve. The classification accuracy determines the percentage

of the correct estimated class (fracture/ no fracture) in respect

to the ground truth. The precision measures the proportion

of predicted fracture images that were actually correct. The

recall measures the proportion of actual fracture images that

were identified correctly. Specificity measures the propor-

tion of predicted normal images that were actually correct.

The ROC curve is a probability curve that plots the true posi-

tive rate against false positive rate at various threshold values

and the AUC is used to measure the ability of the classifier

to differentiate between the classes.

In addition, for a qualitative analysis of clinical appli-

cability of the classification model, we visualized the part

of the X-ray image that contributes more to the predic-

tion as explained in Visualization of PFFs section. For the

object detection task, we measured the localization accuracy

which considered the tested image as correct if both pre-

dicted classes and the bounding box were correct. The correct

bounding box was defined using the Intersection Over Union

(IOU) measure which computes the overlap area between the

ground truth box and the predicted box over the area of union

of them. The predicted bounding box was considered as cor-

rect when IOU ≥ 0.5. In addition, we reported the precision,

recall and Average Precision (AP).

Results

PFF classification

Two classification experiments of PFFs were evaluated—

binary classification to distinguish between fracture and no

fracture X-ray images and classification according to VCS.

In the binary classification task, we evaluated differ-

ent network architectures (Inception, VGG, ResNet50 and

DenseNet161). Figure 4 presents the accuracy, precision,

sensitivity (recall), specificity and F1 score for each model of

binary classification. The Densenet161, Resnet50 and Incep-

tion models provided similar accuracy—around 95%. Both

Resnet50 and Inception models detected 96% of fracture

images correctly. As no current automated methods for PFF

detection has been found in the literature, this result could

be considered the state of the art. Compared to Miao et al.

[25], method for detecting fractures in femur with no pres-

ence of implants, our results outperform their stated accuracy

of fracture detection (91%).

In multi-classification task, after excluding uncertainty

labels, the dataset consists of 1216 studies. The dataset

presents class imbalances (7% TypeA, 31% TypeB, 31%

Fig. 4 Comparison of the performance of Fracture/ no fracture classi-

fication
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Fig. 5 ROC curves for Fracture Types A,B and C and Normal class for each classification model

TypeC, 31% normal), therefore, AUC-ROC curve as well

as standard metrics derived from confusion metrics were

reported (see Fig. 5 and Table 1). We analysed the perfor-

mance of the aforementioned models in each class. It is clear

from Table 1 that the performance decreased when the task

became more difficult (multi-classification), especially when

we considered the recall score. The performance of correctly

classified fracture types was reduced by 10%.

To evaluate the effect of cropping the ROI (femur) on

the performance of the classification, we considered two

approaches: (1) using the full image as input. (2) using the

cropped ROI (femur region) as input. The existing frac-

ture diagnosis approaches have achieved better performance

when a cropped ROI was utilized. For instance, [14] applied

an ROI cropping method to localize the proximal femur

region in a pre-processing step of fracture classification. This

allows the variety between the images to be reduced and the

model to learn the shape of the proximal femur. However,

in PFFs the fracture can be located at different regions of

the femur. In addition, the analysed X-ray images contained

different regions of the femur which further increased the

image variation. Therefore, the classification of PFFs using

a femur region as a ROI had a similar accuracy as when the

full image was used as shown in Table 1.

Regarding the average AUC for the classification of the

fracture, Resnet50 and Inception performed best (See Fig. 5).

Broken down for individual results, the most precise detec-

tion of Type A and Type B fractures was accomplished by

Resnet50 (0.95). For detection of TypeC fracture, Inception

net was the best model.

Overall, Resnet50 provided the best performance of the

PFF classification types with an average accuracy of 90%.

On the other hand, when focusing on Recall metric to mea-

sure the performance of the correctly classified fracture cases,

Resnet50 was able to classify 45% of Type A, 83% of Type

B and 86% of Type C images. The low performance in clas-

sification of type A could be related to the smaller number

of this type of images. In addition, distinguishing between

Type B and C resulted in a slightly lower performance, 10%

of Type C fractures were classified as Type B which is not

surprising considering that these two types look similar in

some cases.

The majority of the previous CAD systems for fracture

analysis focuses on abnormality detection. Few works have
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0 been introduced to classify the fracture types such as [14].

Their work focuses on a specific region of femur and requires

cropping of the femur proximal area before analysis. Our

method did not require this stage and achieved similar per-

formance accuracy.

When using CAD tools, it is important to visualize the

region of interest in order to support the decision making

process. In addition, it is important to base the evalua-

tion on a correct analysis of fracture features. Therefore,

we used CAM method to highlight the region that the

model focuses on to predict a class type. Figure 8b presents

some results of classification of PFF images using Resnet50

model.

PFF detection

The CAM method provides only an approximate localiza-

tion of a fracture because it tends to concentrate on the

most discriminate region of the fracture. Weakly supervised

object detection approach, such as the CAM based method we

used, utilized image level labels only to classify and localize

fractures in the images. The fully supervised object detec-

tion approach used both image labels and fracture region

annotations in the training phase. Therefore, the perfor-

mance gap between the two approaches is still large [31]

(Fig. 6).

The two state-of-the-art object detection models that we

evaluated are: Faster R-CNN and RetinaNet. Table 2 presents

the precision, Recall an accuracy obtained by the two detec-

tion models (Faster RCNN and RetinaNet). As can be seen,

Faster RCNN provides the best performance. The recall

results, in Table 2, showed that both model were able to

detect majority of ground truth images. The precision results

showed that 80% of these detections were correct using Faster

RCNN, while 31% only using RetinaNet. The localization

accuracy of the Faster R-CNN was 78%. It reached AP value

of 76 in contrast to RetinaNet which provide very low AP

(see Fig. 7).

Figure 8c and d shows some examples of the predicted

fracture location using Faster R-CNN and RetinaNet.

The localization of PFF fractures in X-ray images can

be difficult to narrow to the boundary box so the box

may include multiple anatomical regions. This increases

the ambiguity of the bounding box. However, the Faster

R-CNN provides promising results for PFF localization

(Fig. 8).

Conclusion

There are increasing cases of PFFs in the elderly population,

associated with the increase in rates of THR. An accu-
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Fig. 6 CAM-based fracture

localization. (green box is the

ground truth and red is the CAM

result)

Table 2 Precision, recall, and accuracy of PFFs detection (classification

and localization)

Faster RCNN RetinaNet

Precision 80 31

Recall 98 97

Accuracy 78 31

rate clinical diagnosis for this type of fracture is essential

for taking a correct treatment approach and, subsequently,

for the overall clinical patient outcome. Unlike existing

techniques developed for fracture detection, this work con-

centrates on a framework for automated diagnostics of

fractures in the proximity of joint implants (hip). Our in

depth evaluation of different methods demonstrated that

Resnet50 is able to detect PFFs with an accuracy of 95%,

and classify fracture type with an accuracy of 90% . CAM

method provided an approximate visualization of the fracture

region. However, Faster RCNN predicted a narrower bound-

ing box of the fracture region with a localization accuracy

of 78%.

Fig. 7 Precision-Recall curve for Faster RCNN and RetinaNet

The future work will consider more complex approaches

to improve the accuracy of the classification of the frac-

ture types, by incorporating additional information based on

the expert surgeon’s diagnostic patterns such as identifying

regions and features they pay particular attention to. Defining

attention maps as ROI will enhance the features from fracture

related regions while preserving the global feature from the
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Fig. 8 (a) the original x-ray images. (b) Resnet50 classification results with the CAM. The heat map color range from blue (minimum) to red

(maximum). (c) fracture bounding box results of Faster RCNN (d) fracture bounding box results of RetinaNet (blue is the ground truth and red is

the predicted box)

X-ray image. It is hoped that this methodology will help the

clinicians and thereby patients in improving the diagnosis of

PFF, thereby reducing variation in the existing practice.
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