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Abstract—To develop multi-functional human-machine inter-
faces that can help disabled people reconstruct lost functions
of upper-limbs, machine learning (ML) and deep learning (DL)
techniques have been widely implemented to decode human
movement intentions from surface electromyography (sEMG)
signals. However, due to the high complexity of upper-limb
movements and the inherent non-stable characteristics of sEMG,
the usability of ML/DL based control schemes is still greatly
limited in practical scenarios. To this end, tremendous efforts
have been made to improve model robustness, adaptation, and
reliability. In this article, we provide a systematic review on recent
achievements, mainly from three categories: multi-modal sensing
fusion to gain additional information of the user, transfer learning
(TL) methods to eliminate domain shift impacts on estimation
models, and post-processing approaches to obtain more reliable
outcomes. Special attention is given to fusion strategies, deep TL
frameworks, and confidence estimation. Research challenges and
emerging opportunities, with respect to hardware development,
public resources, and decoding strategies, are also analysed to
provide perspectives for future developments.

Index Terms—Upper-limb motion estimation, myoelectric con-
trol, multi-modal fusion, transfer learning, post-processing.

I. INTRODUCTION

Characteristics of surface electromyography (sEMG) signals

are highly correlated with neuromuscular activation during

muscle contractions. In past decades, this property has been

fully exploited in human-machine interfaces (HMI), such as

intelligent prostheses, to improve the life quality of disabled
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people by reconstructing lost functions of upper-limbs [1].

Currently, a large number of commercial prostheses still utilise

conventional control schemes such as on/off control and finite

state machine [2]. Although these strategies are simple and

robust, the number of degrees of freedom (DoFs) that can be

actuated are very limited. This situation is evidently contrasted

by the advances in mechanical design of dexterous artificial

hands. Furthermore, there is usually no one-to-one relationship

between muscle activities and controlled motions, and a lack

of intuitiveness can increase the cognitive burden of users [3].

The limited user comfort and functionality are prone to result

in the dissatisfaction of sEMG-based prosthetic devices [3–5].

To enable natural and multi-functional myoelectric con-

trol, machine learning (ML) approaches, i.e. classification

and regression, have been widely investigated to decode

user movement intentions from sEMG [6]. In particular, the

classification-based control strategy, or pattern recognition

(PR) scheme, aims to identify certain classes of movements

by assuming that sEMG patterns can be reproducible for the

same motion but separable among the different [7]. Differently,

regression approaches are exploited for continuous estimation

of joint kinematics/kinetics. The basic idea is that human

motions follow the simultaneous and proportional control

(SPC) scheme [1], thereby a coordinated task can be achieved

by the co-current activation of several basic DoFs [8]. To

better exploit the information of sEMG, deep learning (DL)

techniques, including convolutional neural network (CNN),

recurrent neural network (RNN), and auto-encoder (AE), are

now gaining considerable attention in both hand gesture clas-

sification [9–15] and joint kinematics/kinetics regression [16–

19]. Different from ML that relies on hand-crafted features,

DL derives representative high-level features from raw signals

via algorithms, which, in many cases, can be more effective.

Despite achievements of ML/DL in laboratories, estimation

accuracy normally degrades substantially in practical scenarios

[20]. To this end, Yang et al. [21] summarised confounding

factors that could affect the stability of myoelectric control

and reviewed the strategies aiming to improve the adaptation

of classifiers among individuals and for long-term usage. Xu et

al. [22] provided an overview on several real-life disturbances,

including muscle fatigue, users difference, and electrode shift.

Associated solutions were also introduced. Vincent et al.

[23] reported recent developments in the design of prosthetic

hands from four aspects: stable interfaces, advanced decoding

algorithms, somatosensory feedback, and assessment methods.
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Apart from the above literature that focused ML applications,

Phinyomark et al. [24] reviewed ML/DL methods for big data

analytics in sEMG pattern recognition, mainly focusing on the

comparison of feature engineering and feature learning. Xiong

et al. [25] summarised the developments and applications of

DL in both PR and SPC schemes. Meanwhile, Li et al. [26]

reviewed the key techniques in each procedure of DL-based

gesture/movement recognition.
Different from previous surveys, this paper provides a

systematic review on recent progress towards model robust-

ness, adaptation, and reliability in ML/DL based upper-limb

myoelectric control. Firstly, the main factors that limit ML/DL

implementations can be summarised as follows: 1) upper-limb

movements are non-cyclical and have a large number of DoFs

involved, whereas the information provided by sEMG signals

may not be adequate enough for precise control [27, 28]; 2)

characteristics of sEMG are time-varying and user-specific,

in the meantime they can be easily influenced by numerous

disturbances in practical environments [22]; 3) high estimation

accuracy can still lead to unintended activation, causing addi-

tional operations, cognitive burdens, and even unacceptable

risks [20]. In this context, related efforts will be introduced

accordingly in three aspects: 1) multi-modal fusion techniques

to provide additional information in myoelectric control; 2)

transfer learning methods to reduce domain shift impacts

on ML/DL algorithms; and 3) post-processing approaches to

enhance reliability of estimation outcomes.
In this review, several databases, including Elsevier,

PubMed, IEEE, SpringerLink, Google Scholar and Wiley On-

line Library, were used for literature search. A combination of

keywords, such as sEMG, myoelectric control, classification,

regression, machine learning, deep learning, robust/robustness,

adaptive/adaptation, reliable/reliability, transfer learning, do-

main adaptation, multi-modal, sensor fusion, post-processing,

confidence estimation, uncertainty analysis, etc. were used as

search terms. Publications from 2010 – 2021 were preferred,

but this range was extended in some cases. After literature

searching, we read each paper carefully and thoroughly to

exclude those that do not meet the inclusion criteria: 1) The

literature must work on upper-limb motion estimation using

ML/DL in myoelectric control; 2) Technical contributions well

match any of the three targets, i.e. multi-modal fusion, transfer

learning, and post-processing. We initially selected 106 related

papers for these targets, with 46 for the first, 34 for the second,

and 26 for the third, respectively.

II. ML AND DL: FROM FEATURE ENGINEERING TO

FEATURE LEARNING

The ML/DL based motion estimation can be formulated as

a function that maps sEMG signal to target movements:

ŷt = fθ (xt) (1)

where xt represents the tth sEMG segment that is obtained by

dividing a stream of sEMG signals into overlapping windows,

ŷt is the estimation result, and fθ(•) denotes the algorithmic

strategy. Parameters θ can be optimised by minimising the loss

function L (y, ŷ,θ) that evaluates how far the distribution of

model predictions ŷ is from that of measured movements y.

Since sEMG signals are non-stationary and random waves,

a key procedure is to obtain informative xt to preserve the

separability of sEMG patterns. In ML this target is achieved

by feature engineering, where xt is obtained by hand-crafted

features, including time-domain features (TD), time-serial do-

main features, frequency domain features, and time-scale or

time-frequency domain features [29]. To further improve the

robustness of feature extraction, several new features, such

as Time-Dependent Power Spectrum Descriptors (TD-PSD)

[30] and Temporal-Spatial Descriptors(TSD) [31], have also

been proposed recently. Since one feature can only provide

limited information, it is practical to combine multi-features

from different groups, such as the Hudgins’ feature set [32]

and the Phinyomark’s feature set [29].

By contrast, DL exploits feature learning that intends to

create a better representation by extracting high-level features

from input data using multiple layers of processing blocks. In

DL structures, both xt and fθ(•) can be learned from data

simultaneously. In particular, CNN has been widely investi-

gated to exploit the spatial information of sEMG such that

the correlations of muscle groups can be fully considered. To

be specific, convolution layers are applied to construct highly

discriminative features of sEMG signals, which are verified

to be more representative than many hand-crafted features

[33, 34]. Since sEMG signals can be typically regarded as

the time-series data during continuous muscle contractions,

temporal dependencies of adjacent samples are also of sig-

nificance. To this end, RNN and variations, including long-

short term memory (LSTM) and gated recurrent units (GRU),

have also been widely investigated. In this way, the contextual

information of adjacent inputs can be better utilised in the

recursive learning process. Different from CNN and RNN, AE

is an unsupervised technique that consists of an encoder part to

project sEMG features/data into a hidden vector and a decoder

to regenerate these features/data. By minimising the difference

between original inputs and regenerated outputs, non-linear

relationships in sEMG can be captured.

III. RECENT EFFORTS ON ROBUST, ADAPTIVE AND

RELIABLE MOTION ESTIMATION USING ML/DL

In this section, we will overview the recent efforts towards

more robust, adaptive and reliable motion estimation using

ML/DL in myoelectric control. As aforementioned, related

efforts are categorised into three types: multi-modal sensing

fusion to provide additional user information, transfer learn-

ing to enhance model generalisation/adaptability, and post-

processing to reduce estimation uncertainties.

A. Multi-modal Sensing Fusion

Despite the high correlation between sEMG and the inten-

sity of neural drives to target muscles, sEMG signals alone

may not be adequate enough for many practical applications

of multi-functional upper-limb HMI, mainly because of 1) the

large number of DoFs and non-cyclical nature of the upper

extremity’s movements [28]; 2) the complex patterns of EMG

influenced by the anatomical and physiological properties of

muscles, such as the limited spatial resolution caused by
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Fig. 1: The illustration of sensing modalities to be fused with sEMG in ML/DL
based upper-limb motion estimation.

muscle cross-talk [27]. To this end, the fusion of sEMG with

other signals have gained considerable attention, such that

more complementary information can be obtained from the

environment to compensate the shortcomings of sEMG. In this

context, Eq. (1) can be further extended as

ŷt = fθ (xt, st) (2)

where st denotes the physical or physiological signals to be

fused with sEMG. As illustrated in Fig. 1, they mainly include

mechanomyography (MMG), force myography (FMG), near-

infrared spectroscopy (NIRS), ultrasound imaging or sono-

myography (SMG), inertial measurement unit (IMU), elec-

troencephalography (EEG), intramuscular EMG (iEMG), and

computer vision (CV) etc.

1) MMG: MMG signals, also known as acoustic myog-

raphy (AMG) when detected by microphones [35], measure

the low-frequency (2–200Hz) mechanical responses of the

lateral oscillation of muscle fibre during contraction. Com-

pared with sEMG, MMG does not suffer from the skin

impedance changes and the sensitivity to sensor placement

[36]. In practice, MMG can be obtained using several other

types of transducers such as piezoelectric contact sensors

and accelerometers [37]. Therefore, the fusion of these two

signals has drawn considerable attention. Prociow et al. [38]

developed a hybrid EMG and MMG acquisition system for

hand movement recognition, and verified that the combined

EMG-MMG features helped to reduce the classification error

to 6.17%. Guo et al. [39] integrated dry EMG electrodes and

a couple of accelerometers to capture two signals simultane-

ously. In the following study [40], the authors further com-

pared accelerometers and microphones for MMG detection as

well their effectiveness in seining fusion. Apart from those

feature-based fusion strategies, a structure-level approach was

also developed by Zhang et al. [41] to utilise MMG signals as

motion onset/offset detectors for post-processing sEMG-based

hand gesture recognition.

2) FMG: FMG is another mechanical counterpart of

sEMG. It observes the volumetric changes of underlying

musculo-tendinous complex or stiffness changes on the skin

[42], and can be acquired via force sensing resistors (FSRs).

Compared with sEMG, FMG provides a relatively stable

signal against external electrical interference or sweating, and

was observed to surpass sEMG in classifying wrist gestures

[43]. Besides, the combined signals could reach the highest

accuracy. Nowak et al. [44] utilised twenty sEMG and FMG

sensors to simultaneously predict the opening/closing of the

hand and a 2-DoFs activation of the wrist. Several combined

configurations of sEMG and FMG were also explored. Ah-

madizadeh et al. [45] investigated the feasibility of FMG

as a synergist to sEMG in commercial prosthetic hands. A

customised myoelectric socket was made, and two different

configurations of FSRs placement were tested. To achieve the

co-located EMG-FMG sensing, Jiang et al. [46] designed a

novel armband to collect EMG and FMG simultaneously at

the same muscle location, and the classification accuracy can

reach 91.6±3.5%. For the recognition of finger movements,

Wan et al. [47] suggested placing FSRs on the back of a hand

to reduce the misclassification of adjacent fingers, however, the

current design reduced the wearability. To enable myoelectric

control for stroke survivors, Park et al. [48] implemented

a multimodal interface that used sEMG data to decode the

opening intention and the pressure sensors for hand closing.

3) NIRS: Based on the near–infrared radiation of the elec-

tromagnetic spectrum, NIRS can monitor muscle perfusion and

oxygenation during contraction. For data acquisition, a LED

emits near–infrared light into the tissues, and a photodetector

measures the amount of light scattered nearby [49]. Therefore,

NIRS can capture the state of muscles at different depths

and thereby offers good spatial resolution [50], and can also

compensate for the limitation of sEMG due to muscle fatigue

[51]. For information fusion, Herrmann et al. [52] developed

a customised miniature sensor composed of dry electrodes,

high-intensity LEDs, and a monolithic photo amplifier inte-

grated. The combined data were verified to provide a higher

spatial resolution than each single modality, resulting in better

classification of finger movements. Similarly, Attenberger et

al. [53] observed an improved classification accuracy by

fusing NIRS data with sEMG. Furthermore, Guo et al. [54]

developed a multi-channel compact-size wireless sEMG-NIRS

hybrid sensing system for prosthetic manipulation. Dry sEMG

electrodes, NIRS capture components, and Bluetooth were

integrated. Paleari et al. [50] compared three possible fusion

strategies to enhance the estimation performances. A parallel

strategy, in which the first classifier was trained on NIRS

and the second on combined data, was mostly suggested. To

further improve the wearability, Nsugbe et al. [51] designed

a NIRS sensing armband using cheap and affordable sensors,,

and managed to recognise eight discrete hand gestures with

classification accuracy in the range of 79–81%.

4) SMG: SMG captures two-dimensional images of the

internal body structures [55]. For measurement, an array of

piezoelectric transducers is utilised to project a focused wave

into the muscle, and echoes are produced when the beam inter-

acts with tissues. During muscle contraction, different tissues



4

produce varying qualities of echoes. Therefore, movements

in both superficial and deep muscles, as well as tendons,

can be inferred [56]. The combination of SMG and sEMG

have also gained considerable attention. For instance, Xia et

al. [57] developed a portable hybrid system using A-mode

SMG transducer. Experiments validated that hybrid features

contributed to significant improvement of hand gesture recog-

nition (20.6% when compared to sEMG features alone). Yang

et al. [58] explored the complementary advantages of A-

mode SMG and sEMG on gesture recognition and continuous

force estimation, and suggested the simultaneous combination

of two sensor modalities to enhance multi-class proportional

gesture control. Furthermore, experiments conducted by Boyd

et al. [59] reaffirmed that the multimodal sensing outperformed

the uni-modalities in hand motion recognition with larger arm

movements, and Zeng et al. [60] demonstrated that the modal

fusion shows better robustness against muscle fatigue, over-

coming the defect of sEMG in proportional force prediction.

5) IMU: IMU combines accelerometers, gyroscopes, and

magnetometers to measure the specific force, angular ve-

locity, and orientation information of the carrier. One of

the main applications of IMU in myoelectric control is to

eliminate the arm position effect on hand gesture recognition.

A popular strategy is to apply dual-stage classification by

selecting position-specific classifiers. To be specific, the first

stage serves as a position classifier based on IMU for the

identification of arm positions, and the second stage works as

a motion classifier trained with sEMG to recognise targeted

movements [61–63]. Differently, in another framework both

sEMG and IMU data are combined as inputs of a classifier

[2, 64–67]. To verify the real-time performances, Krasoulis et

al. [66] fused sEMG with 9-DoFs IMU signals in the con-

trol of a commercial prosthetic hand, resulting in significant

improvement in completion rate (median increase of 25% for

the able-bodied group). In the extended work, an end-to-end

pipeline by using only two sEMG-IMU sensors was further

proposed [2]. According to the reviewed papers, time-domain

features of IMU signals (e.g. the mean value of accelerometers,

gyroscopes, and magnetometers within a sliding window) were

mainly exploited in sensor fusion.

6) EEG: EEG captures bio-electricity generated by the

brain via electrode caps on the scalp and has several advan-

tages over sEMG. Firstly, EEG signals are related to the mental

activities of brain and thereby are much less dependent on

amputation conditions. Secondly, muscle fatigue that impacts

sEMG-based motion estimations will not interfere EEG-based

motion estimation. Therefore, the combination of sEMG and

EEG now becomes a research interest [68–73], where features

of two signals can either be processed sequentially or simul-

taneously. In [69], an artificial arm for above-elbow amputees

was controlled based on the parallel processing of sEMG

and EEG signals, with forearm pronation/supination estimated

using EEG and elbow flexion/extension decoded by sEMG. A

similar study can be found in [73] to provide precise control to

the prosthesis for transhumeral cases. Differently, in cascaded

prediction, either sEMG signals were used as a switching

mechanism to the EEG-based control or vice versa [68, 72].

For instance, in [68] EEG was firstly used to recognise

the intentional voluntary movements of subjects, after which

sEMG signals were used to identify the tremor onset. In [72],

EEG signals acted as a gate to choose only the dedicated

decoders of sEMG for estimation of the trajectory angle. In

addition, the designs in [70, 71] represent another popular

fusion method, in which the data of two signals were combined

to enhance the estimation accuracy. The classification error can

be reduced to around 5% when a DL model was exploited [71].

7) iEMG: Different from sEMG, iEMG is an invasive

technique to measure EMG signals from small and deep

muscles directly and selectively, providing localised infor-

mation with less cross-talk. Although many researchers have

observed similar estimation performances when using sEMG

and iEMG individually [14], the combined EMG features

(cEMG) still show potentials to improve the discrimination of

upper limb movements [74, 75]. By using Fitts’ Law tracking

test, Kamavuako et al. [74] reported that the inclusion of

iEMG from the deeper muscles can improve overall perfor-

mances (20% improvement in Throughput was obtained with

cEMG). Waris et al. [75] quantified the effect of time on the

offline classification of hand motions with sEMG and iEMG

recordings. In this study, iEMG was recorded concurrently

with sEMG, with bipolar wire electrodes inserted to reside

underneath each sEMG electrode pair, to measure similar

activity as the sEMG. A significant difference in the between-

day recognition error was observed, i.e. 7.2±7.6% for sEMG,

11.9±9.1% for iEMG, and 4.6±4.8% for cEMG. Nevertheless,

the invasiveness of iEMG still greatly hinders its wearability.

8) CV: CV provides visual feedback/assistance for upper-

limb myoelectric control, via local vision (e.g. a prosthetic

hand embedded with cameras) [76, 77] or global vision (e.g.

glasses or helmets embedded with cameras) [78, 79]. In this

scenario, sEMG is usually used to interpret muscle activation

for triggering prosthetic hands, whilst CV is processed to

estimate the target operation and then design the moving

trajectory. An early effort was firstly presented by Došen et

al. [76], demonstrating a simple and effective fusion con-

cept to achieve autonomous decision-making, and has been

continuously optimized by following studies. For instance,

Ghazaei et al. [77] improved the grasping ability of prosthetics

by using CNN to extract grasp-related features of the low-

resolution object images. Mouchoux et al. [78] integrated a

classification-based myoelectric control with advanced scene

perception provided by augmented reality (AR). The usability

of the hybrid interface was successfully assessed using clinic

tests. Different from the above studies that exploited CV to

activate extra DoF, Krausz et al. [79] used Kalman filter to

fuse gaze data with sEMG for pick-and-place and observed a

significant reduction of the positional error.

9) Summary: To provide complementary information for

upper-limb myoelectric control, a variety of sensing modalities

have been exploited. According to the searched literature,

fusion strategies can be divided into three main groups: Feature

Combination, Parallel Processing, and Cascaded Prediction.

As illustrated in Fig. 2, Feature Combination combines fea-

tures of each modality as a comprehensive input for ML/DL

models. This paradigm is mostly adopted among reported liter-

ature [2, 38–40, 43–47, 50–54, 57–60, 64–67, 70, 71, 74, 75],
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TABLE I: Various sensing modalities that have been fused with sEMG in ML/DL based upper-limb motion estimation.

Modality Measured Information Advantages Disadvantages Fusion Strategies
MMG Low-frequency mechani-

cal responses of the lateral
oscillation of muscle fibre.

1. Low sensitivity to skin
impedance changes, sensor
placement, and external
electrical interference.
2. Good wearability in trans-
ducer size, signal processing
and power consumption.

Low estimation
accuracy in some
tasks such as
finger motion
recognition

Prone to distortion from
external vibrations and
movement artifacts.

Feature Combination [38–
40], Cascaded Prediction
[41]

FMG Volumetric changes of
underlying musculo-
tendinous complex.

Prone to significant drift
and noise problems for
both static and dynamic
conditions

Feature Combination [43–
47], Parallel Processing
[48]

NIRS Muscle perfusion and
oxygenation.

1. Good spatial resolution by
capturing the state of muscles
at different depths.
2. Low sensitivity to muscle
fatigue.

Sensitive to tissue thickness. Feature Combination [50–
54], Parallel Processing
[50]

SMG Morphological changes of
tissues

Less sensitive to muscle force variations than
sEMG

Feature Combination [57–
60]

iEMG Electrical manifestation of
muscle activities (same to
sEMG)

Less impacted by crosstalk due
to localised placement.

Poor usability in wearable systems due to the
invasive operation.

Feature Combination [74,
75]

CV Shape, size, and position
of target objects in scene
perception

Visual feedback/assistance can
be provided to enable semi-
autonomous control.

Visual devices can be either bulky or energy-
consuming.

Parallel Processing [76–
79]

EEG Electrical manifestation of
brain activities.

Less dependent on amputation
conditions.

Low signal-noise ratio (SNR), data transfer rate,
estimation accuracy, and user adaptability.

Feature Combination [70,
71], Parallel Processing
[69, 73], Cascaded Predic-
tion [68, 72]

IMU

Orientation, velocity, and
displacement of a carrier
with respect to a global
reference frame

1. Arm positions can be pro-
vided to promote hand motion
estimation
2. Easy to be integrated into
sEMG devices.

1. Unable to measure the state of muscle con-
tractions.
2. Heavily dependent on amputation conditions.

Feature Combination [2,
64–67], Cascaded Predic-
tion [61–63]

Fig. 2: Strategies to fuse sEMG and additional sensing modalities in ML/DL
based upper-limb motion estimation.

attempting to improve prediction accuracy of the original

model by increasing informativeness of input data. Never-

theless, it normally cannot further enhance the functionality

of myoelectric systems. When applying the second strategy,

sEMG and the additional modality are processed in parallel

based on their specific models [48, 50, 69, 73, 76–79]. In

this way, complicated movement intentions, such as those with

multiple joints/DoFs involved, can be decoded more flexibly.

To summarize, Parallel Processing predicts intentions of extra

movements based on the additional modality, thereby can

help to reduce user’s burden or complete more challenging

prosthetic operations (e.g. grasping a variety of objects, es-

pecially when users are with high-level amputation) [69, 73].

However, the sensing system and control strategy could be

more complicated. As for Cascaded Prediction, the additional

modality is utilized for the transition of sEMG decoding

models, such that the most suitable sub-model can be selected

to enhance estimation robustness against changing properties

of sEMG [41, 61–63, 68, 72]. Apparently, Cascaded Prediction

is usually designed to cope with specific scenarios/tasks, such

as the elimination of arm position impact [61–63], and the

experimental protocols can become onerous.
Table I summarises the measured information, advantages,

and disadvantages of each additional modality, together with

the fusion strategies. As we can see, each modality has its

benefits and limitations. In specific, the information provided

by iEMG, NIRS and SMG are more correlated with muscle

contractions. When working as a uni-modality in motion

estimation, they can achieve comparable performances than

sEMG. Differently, other modalities mainly work to enrich the

functionality of myoelectric control system. For example, EEG

can be used to decode the brain signals and thereby is much

less restricted to the amputation condition than sEMG. IMU

can provide additional information on the limb orientation to

benefit the robustness of sEMG models. In addition, when

multiple modalities are synchronized varies among sensing

systems. In general, data of MMG, FMG, IMU, iEMG, NIRS,

and SMG are often integrated with sEMG during acquisition.

More specifically, signals amplification, analogue-to-digital

conversion, and wire/wireless transmission can be conducted

concurrently via a front-end conditioning circuit. By contrast,

to fuse sEMG with EEG and CV, modalities are usually

collected and pre-processed by different sensing systems in-

dependently and thereafter synchronized for decoding.

B. Transfer Learning

Classical ML/DL assumes that training and testing data

stem from the same underlying distribution [80]. However,

this assumption is often violated in practical scenarios [81],

which can be referred as domain shift. As a type of bio-

electricity, sEMG is user-specific and even time-variant. Be-

sides, characteristics of sEMG signals can be substantially im-

pacted by electrophysiological changes such as muscle fatigue

[82], the varying electrode-skin impedance due to perspiration



6

Fig. 3: Applications of TL in myoelectric control. The arm position change
and electrode shift are adapted from [87] and [88]

or humidity [83], external/measurement factors caused by

electrode shift [84], and user issues including variations of

contraction intensity, hand orientations and arm positions [85].

Due to domain shift, a severe degradation usually occurs to an

existing model. To this end, transfer learning (TL) approaches

have been widely explored in upper-limb motion estimation.

As illustrated in Fig. 3, TL utilises the knowledge learned

in the source domain to promote the learning process in a

target domain where sufficient labelled data are unavailable.

Mathematically, given a source domain DS and learning task

TS , while a target domain DT and learning task TT , TL

improves fθ(•) in DT using the knowledge in DS , where

DS ̸= DT and/or TS ̸= TT . As summarised by [86], when

DS ̸= DT but TS = TT , TL tasks can be narrowed as domain

adaptation (DA). In this context, a label-specified but domain-

invariant subspace is normally extracted from the original

feature spaces. Besides, a TL task ⟨Ds, Ts, Dt, Tt, fθ(•)⟩ is

referred as conventional TL if fθ is a traditional ML model,

or deep TL when fθ(•) reflects a deep neural network.

1) Conventional TL: The foundation of a positive transfer

among individuals is that DS can provide useful information

for the estimation tasks in DT . In another word, there are

supposed to be inherent user-independent properties buried

in sEMG signals. In this context, a preliminary study was

presented by Saponas et al. [89], verifying that pooling data

from multiple users yielded a classification result higher

than chances for a novel user. This observation indicates the

possibility to build cross-user algorithms. Orabona’s et al. [90]

then proposed an adaptation process to enhance the model gen-

eralisation among different users, in which the best-matched

model was modified from a pool of stored datasets to fit a new

subject. Chattopadhyay et al. [91] proposed a multi-source DA

methodology based on predominantly conditional probability

differences between the source and target distributions, and

improved the subject independent classification accuracy by

5%. Matsubara et al. [92] proposed a projection approach

based on a bilinear model composed of user-dependent factors

and motion-dependent factors, where the latter could be further

used as user-independent features for a motion classifier. More

recently, Zhang et al. [93] introduced a dual-layer TL (dualTL)

framework. The first layer leveraged correlations of sEMG

among users to label target gestures, and the second layer

labelled other gestures according to consistencies of sEMG

between training and testing users. Jiang et al. [94] proposed

a correlation-based data weighting (COR-W) method. The

domain shift level between source and target subject was firstly

evaluated via correlation alignment (CORAL), then a weighted

least squares method was employed to develop a calibrated

model based on previous training trials. Differently, Kanoga

et al. [95] proposed a transfer framework to bridge source

and target distributions by means of linear projection, and an

ensemble strategy was exploited to ensure the positive subject-

subject transfer. The classification accuracy can be increased

by up to 20% after transfer. Please note that only healthy

participants were recruited in the reviewed literature. In fact, it

is more challenging to extract user-independent properties of

sEMG among amputees since muscle activations are strictly

related to the level of amputation and the kind of surgery.

As for the long-term utilisation, Sensinger et al. [96]

compared several paradigms that employed the entropy of

linear discriminant analysis (LDA) classifier for model re-

training, and suggested the supervised adaptation using low-

entropy samples. Liu et al. [97] proposed a DA algorithm

for both LDA and a polynomial classifier. The new model

automatically reused pre-trained models for re-learning. Fol-

lowing this study, Zhu et al. [98] further introduced a cascaded

adaptation scheme including a DA component and a self-

enhancing component. In the experiment, DA-based classifiers,

which only used 20 new samples per class, could reach com-

parable accuracy (84.47% for PC and 86.72% for LDA) when

compared with classifiers trained by 80 samples. Similarly,

Cosima et al. [99] investigated a TL approach based on

the generalised matrix learning vector quantization (GMLVQ)

classifier, such that only a very small amount of training

data was required in the following days. Benjamin et al. [88]

presented an expectation maximisation (EM) algorithm which

learned a linear transfer function between the target and source

space, thereby samples in the target space could be classified

correctly by the source space classifier after data mapping. By

weighting the importance of training samples in the prediction

of testing outputs, Vidovic et al. [100], Kanoga et al. [101],

and Jung et al. [102] investigated the covariate shift adaptation

methods to calibrate parameters of conventional classifiers

such as LDA or Gaussian process regression (GPR).

2) Deep TL: Deep TL in myoelectric control can be divided

into two categories: network-based approaches and feature-

based approaches. Fig. 4 demonstrates the typical structures

of them. In the first structure, a network is firstly trained

in DT with sufficient labelled data. Then, partial of this

network is maintained by freezing the weights, and the non-

frozen part is updated using either labelled or unlabelled

target data. Differently, a feature-based structure attempts to

obtain domain-invariant features via domain alignment. To be

specific, front layers of the network extract features from two

domains for domain loss calculation, aiming to reduce the

mismatch of feature distributions in the latent space.

Fine-tuning (FT) is a simple but prevalent implementation

of network-based deep TL in myoelectric control. A represen-

tative effort was presented by Wang et al. [67]. The authors
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Fig. 4: The typical structures of deep TL in upper-limb myoelectric control:
(a) network-based deep TL; (b) feature-based deep TL. Note that unsupervised
TL can be applied when the target labels/loss are unavailable in each structure.
The discussion of supervised/unsupervised TL can be found in Section III.B3

utilised FT to enhance the training of recurrent convolutional

module, where DS data came from a public sEMG database

whilst DT was composed of multimodal data collected from

experiments. Kim et al. [103] proposed a subject-transfer

framework by fine-tuning the supportive CNN classifiers. The

estimation model was examined to be more robust in terms

of intra-user variability. Ameri et al. [104] employed FT to

reduce the electrode shift impacts on CNN. Experiments in

both hand gesture recognition and wrist kinematics estimation

verified that FT outperformed a simple aggregation of pre-

shift and post-shift sets. Recently, the generalisation of high-

density sEMG matrix was also verified for both new subjects

and gestures through FT [105]. In addition, Demir et al. [106]

applied AlexNet that are pre-trained in computer vision tasks

to fine-tune the sEMG images. Bird et al. [107] investigated

FT between sEMG and EEG signals, and observed that the

knowledge could be successfully transferred between two

modalities. To further enhance the effectiveness of FT, Chen et

al. [108] constructed the source gestures composed of elbow,

wrist, and finger joints. They observed that even if a new

gesture was not included in the source set, a good recognition

accuracy could be obtained as long the activation modes of

muscles were covered.

Apart from FT, several other efforts have been conducted

to exploit network-based approaches. For example, Du et

al. [10] presented a multi-stream AdaBN method to boost

the inter-session performances of CNN. In the recognition

phase, the adaptation process was performed by updating the

statistics of batch normalisation with unlabelled calibration

data. Côté-Allard et al. [109] applied the progressive neural

networks (PNN) to decrease the training burden. The pre-

training source network was firstly frozen, and a new network

with random initialisation was connected with source network

using merging layers. With this framework, an offline accuracy

of 98.31% could be reached by CNN for 7 hand gestures and

68.98% for 18. Ketykó et al. [110] proposed a RNN-based

two-stage framework which consists of a linear DA layer and

a sequence classifier. In the adaptation stage, the classifier

was frozen and DA layer was re-trained using target data.

Compared with FT, a 20% improvement was reported.

As for the feature-based deep TL, weights of the network

are updated by learning information from both source and

target domain simultaneously, and DA is achieved by aligning

feature distributions of different domains in the latent space.

Inspired by the success of domain-adversarial neural networks

(DANN) [111], Côté-Allard et al. [34] presented the adaptive

DANN (ADANN) for cross-subject training. This objective

was achieved by adding a domain classification head to a

conventional CNN. During back-propagation, this operation

learned to discriminate source and target domains via a gradi-

ent reversal process that forced the feature distributions over

domains to be similar. Using a self-calibration strategy, the

effectiveness of ADANN was then validated in the presence

of confounding factors including inter-session and across-day

variations [112]. In another following work, Campbell et al.

[113] further tested ADANN in the cross-subject classification

by requiring minimal training data from an end-user. Different

from those efforts, another investigation of feature-based deep

TL was presented by Bao et al. [114] based on a two-stream

CNN with shared weights. By adding additional discrepancy

losses including the maximum mean discrepancy (MMD) and

a novel regression contrastive loss, distribution divergences

were effectively minimised in model training.

3) Summary: In this sub-section, we mainly discussed the

network structure of deep TL. As depicted by Fig. 4, TL can

also be categorised as supervised TL (STL) and unsupervised

TL (UTL). In STL a small amount of labelled data are present

in DT , but these data alone are insufficient to train a new

model from scratch. By contrast, sufficient but unlabelled

DT data are available in UTL. For instance, FT approaches

[67, 103–108] typically belong to STL, whilst the DANN-

based approaches [34, 112, 113] exploit UTL. According to

investigations on both conventional TL [96, 115] and deep TL

[104], the supervised versions usually perform significantly

better than unsupervised ones. Apart from a lower accuracy,

another potential drawback of UTL methods is that they

usually require all exemplars in DT to be included in the

calibration process, resulting in a much larger computational

load than STL. Nevertheless, UTL can be of significance due

to its exclusion of hardware set-up and extra time for data

relabelling. In particular, during long-term usage, unlabelled

data can be generated to re-train UTL models constantly [10].

C. Post-processing

With human in the loop, user safety is critical in myoelectric

control systems. However, due to the inherent variability of

sEMG, a well-trained model is likely to produce unintended

estimation, causing undesirable operations and even unac-

ceptable risks to users. Therefore, several post-processing

methods have been implemented to reduce potential errors

of motion estimation and improve the reliability of prosthetic

control. According to previous literature, the commonly used

post-processing techniques can be roughly categorised into

multiwindow smoothing and confidence estimation.
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1) Multiwindow Smoothing: To apply ML/DL in myoelec-

tric control, the sliding window method is normally utilised to

extract sEMG signals into successive segments. Considering

that adjacent windows of signals are likely to reflect the

same motion, multiwindow smoothing approaches have been

developed to smooth out noisy estimations. Of all related

efforts, majority vote (MV) strategy is the most simple and

prevalent one. It was firstly introduced by Englehart et al.

[116] to eliminate spurious misclassification errors in the

unprocessed decision stream, and has been vastly applied in

hand gesture recognition tasks [117–120]. To summarise, MV

minimises misclassification by employing successive windows

of signals to make a final decision. In addition to conventional

MV, some variations have also been investigated. For instance,

Falk-Dahlin [121] developed three modified MV to work with

the simultaneous control system. Zhai et al. [122] presented

a MV-based label updating mechanism for CNN classifier. To

increase the total number of votes for a given data stream,

Wahid et al. [123] developed a multiwindow majority vot-

ing (MWMV) strategy composed of windows with varying

lengths. Apart from implementations in non-recurrent ML/DL

models, Simao et al. [124] applied MV for an LSTM classifier

to remove the false positive results of time steps that cover the

transition period between gestures.

However, MV operates on the decision stream directly with-

out considering the actual probabilities of misclassification.

By contrast, a Bayesian fusion (BF) approach was presented

based on the Bayesian rule [120]. Specifically, BF utilises

several posterior probabilities in a series of sliding windows

to calculate the final probability of each class. The class

with highest probability is selected as the final output. In

addition, weighting factors are given to each sliding window,

such that higher priorities are assigned for current decisions.

Experiment results in [120] demonstrated that average clas-

sification accuracy of 90% across healthy subjects could be

obtained, showing the superiority to MV with all number of

voting decisions and across different classifiers. Competitive

performances of BF over MV were also reported in amputees

[125]. Another well-known method is the decision-based ve-

locity ramp (DVR) [126]. Different from MV and BF, DVR

boosts the control reliability by changing the speed of output

movements. In the beginning, DVR forces a new movement

to perform slowly and increases the speed when predictions

of the same movement are made consecutively, with counters

to track the speed of each movement. Only the movement that

is currently predicted can be outputted, and the baseline speed

is calculated according to muscle intensity. As reported by

[126], a superiority of DVR to MV was observed, and no delay

was introduced to myoelectric control since every prediction

was outputted. Due to this advantage, DVR has also gained

popularity in both PR scheme [127, 128] and SPC [129, 130].

In addition, post-processing approaches have also been

investigated for regression since the instantaneous outputs nor-

mally contain undesirable fluctuations caused by the stochastic

nature of sEMG signals. For instance, both Hahne et al. [131]

and Hwang et al. [132] suggested applying an exponential

moving-average filter (EMA) to smooth outputs of a LR

model, considering that EMA is a simple method that reacts

Fig. 5: A typical workflow of confidence estimation for PR-based upper-
limb motion estimation. To enhance the model reliability, confidences of
classification results are estimated for a rejection or smoothing operation.

relatively fast without introducing a systematic overshoot in

step-response. Hwang et al. [132] further applied a velocity

control modality to filer the EMA outputs for better online

performances. In this study, two online metrics, i.e., comple-

tion rate and completion time, were used to tune parameters

of EMA and the velocity control. To overcome the limitation

of [131] that is restricted to position control, Igual et al. [133]

proposed an adaptive auto-regressive filter that allows for a

gradual transition between position and velocity control. In this

design, the additional post-processing step is never required

since it is implicitly implemented in the output recursion.

2) Confidence Estimation: To enhance the usability of

ML/DL, it is desirable to alleviate the negative influence of

misclassification based on the analysis of model confidence.

As illustrated by Fig. 5, a practical solution is to estimate the

confidence of classification results, and a rejection process or

smoothing operation will be further performed to cope with the

unconfident/uncertain decisions. In some early efforts, Fukuda

et al. [134, 135] suggested calculating the entropy of a log-

linearised Gaussian mixture network to indicate the risk of in-

correct discrimination. If the entropy exceeded a pre-specified

threshold, meaning that the network output is ambiguous,

the associated motor control should be suspended. This idea

was further expanded by Sensinger et al. [96] to measure

classification confidence, where entropy was calculated as a

function of the probability that a feature set belonged in each

class. Therefore, a decision obtained low entropy, i.e. high

confidence, if only one class had a high probability.

Another representative study for confidence-based rejection

was presented by Scheme et al. [136]. The authors linearised

and normalised the log probability outputs of an LDA classifier

as the confidence metric, and estimations were regarded as

no-movement when the associated confidences were below

a given threshold. Differently, Amsüss et al. [137] applied

a multi-layer perceptron (MLP) to indicate the confidence

of a LDA classifier and then facilitate corrections on wrong

classifications using past results. In specific, LDA outputs were

relabelled as +1 if they were correctly classified and –1 for

erroneous ones. Meanwhile, the maximum likelihood of LDA

and the mean global muscle activity of the forearm worked

as features for MLP-based confidence estimation. To have a
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deeper perspective of confidence-based rejection, Scheme et

al. [138] examined the confidence characteristics of several

conventional classifiers and observed that low confidence was

correlated with a decrease in classification accuracy. Moreover,

they found that support vector machine (SVM), which allowed

for more complex boundaries than other classifiers, provided a

more stable rejection-to-threshold relationship during dynamic

usage. Based on this finding, Robertson et al. [20] further

investigated the range of rejection thresholds for optimal

usability of SVM in real-time control. Similarly, by using a

regularised discriminant analysis (RDA) classifier, Krasoulis et

al. [2] introduced the operating characteristic (ROC) analysis

for selecting class-specific confidence thresholds. In this way,

the true positive rate was maximised while the false-positive

rate was constrained to be smaller than a cut-off value, such

that the amount of unintended performed motions could be

minimised. More recently, Bao et al. [139] proposed an novel

framework to reject uncertain classifications in CNN-based

hand gesture recognition, where posterior probabilities of the

softmax layer were exploited for confidence estimation. The

averaged classification error in an online experiment could be

reduced to 10%.

3) Summary: To post-process model predictions for more

reliable control, both multiwindow smoothing and confidence

estimation have been widely investigated. In specific, the

former attempts to reduce the spurious estimation errors by

exploiting information of consecutive sliding windows, and the

latter quantifies model confidence such that uncertain estima-

tions can be detected and suspended. In terms of multiwindow

smoothing, MV and DVR are two popular methods that are

used for different purposes. Nevertheless, these two methods

could be applied as complements to each other. For instance,

MV can work to generate a good output stream based on

noisy classifications, then DVR can be utilised to convert the

smoothed predictions to desirable velocities of the prosthesis.

In addition, although ML/DL approaches can improve the

functionality of myoelectric control, these methods suffer a

lot from the lack of interpretability. In this context, confidence

estimation may help to have a deeper insight into these black

boxes, providing HMI with the ability to not only decide what

to do but also if it should be done [138].

IV. CHALLENGES AND OPPORTUNITIES

In past decades, ML/DL techniques, developed to improve

the functionality and intuitiveness of myoelectric system by

decoding movement intension of users, have become a sub-

stantial area of research. In addition, PR-based myoelectric

control has also been successfully applied in commercial

prostheses such as COAPT [140] and OttoBock [141], etc.

In this survey, we particularly focus on recent efforts in multi-

modal fusion, transfer learning, and post-processing, attempt-

ing to enhance the robustness, adaptation, and reliability of

ML/DL performances. Nevertheless, whether state-of-the-art

(SOTA) artificial intelligence (AI) techniques, especially DL,

can be successfully transferred to clinic use need to be further

investigated. In this section, some perspectives and thoughts on

current challenges and emerging opportunities, particularly for

hardware development, public resources, decoding strategies,

and real-life implementation are presented.

A. Electrode Techniques

In the reviewed literature, three types of electrodes are

mostly used. In brief, wet electrodes utilize conductive gel

to reduce electrode-skin interface impedance and provide

high-quality signal. Alternatively, dry electrodes do not need

gel, thereby minimize the preparation time and increase user

comfort. However, recorded data are prone to suffer from

lower signal-to-noise ratio (SNR) [142]. Apart from multi-

channel signals, high-density (HD) sEMG can be collected by

matrix electrodes. With an increased spatio-temporal resolu-

tion of myoelectric activity, HD-sEMG is able to capture motor

unit firing information (while decomposition of conventional

sEMG is impractical). The motor unit behaviour can provide

a novel approach for motion estimation in myoelectric con-

trol, and higher accuracy is often expected [143]. However,

computational load and energy consumption are substantially

increased, and experiment setup is cumbersome [144]. To

summarize, sEMG acquisition via different electrodes impacts

signal properties, model performances, and system complexity.

A trade-off between device portability and control accuracy

should be considered in real-time applications. Currently,

continuous efforts are being made to advance sEMG sensors,

such as tattoo ones [145] and textile ones [144], etc. providing

considerable potentials to enhance the electrode–skin contact

and long-term usability.

B. Open-source Resources

To obtain sufficiently trained ML/DL models that can cap-

ture the complexity and variability of sEMG, a massive amount

of information need to be learned from data. To this end,

several benchmark datasets have been shared online, saving

other researchers a considerable amount the time and provid-

ing effective platforms for model comparison. Representative

works include Ninapro [146], CapgMyo [10], CSL-HDEMG

[147], SEEDS [148], HITSIMCO [149], and Hyser [150]. Data

were acquired from different experimental protocols, several

types of electrodes, healthy participants and amputees, static

and dynamic scenarios, and a variety of discrete gestures or

continuous movements. Besides, open-source packages, such

as BioPatRec [151] and Myoelectric Control Development

Toolbox [152], also help to accelerate related research, with a

series of techniques provided for signal pre-processing, feature

engineering, motion decoding, and post-processing. However,

the development of benchmarks/platforms in sEMG field is in

general lagging behind other fields in biomedical engineering

[24], and public resources concerning real-time experiments

are still insufficient. To this end, continuous efforts are highly

urged to enrich open-source resources, with more practical

scenarios included, multiple sensing systems involved, and

state-of-the-art decoding methods updated.

C. Neuromorphic Computing

The success of ML/DL is centred around long-term training

and the use of dedicated GPU hardware. However, computa-

tional load, associated with the power consumption, can be
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another critical issue for the deployment of these techniques

in myoelectric control [24]. Furthermore, it is desirable that

the processing time can be continuously reduced to produce

timely commands for actuators. To address this contradiction,

researchers start to investigate neuromorphic computing which

exhibits desirable properties including analogue computation,

low power consumption, fast inference, event-driven process-

ing, online learning, and massive parallelism [153]. Some

primary efforts of neuromorphic computing in myoelectric

control can be found in [154–156]. Compared with the tradi-

tional ML pipeline, the proposed system exhibited increased

inference time and lower power consumption. Note that it

is now possible to design mixed digital-analogue systems

[154] to enable conventional ML/DL models in neuromorphic

computing, the combination of two techniques can be further

explored in myoelectric control.

D. Uncertainty Analysis

The black box property hinders the application of ML/DL

in safety-critical areas since it is unknown to us how models

make such predictions and whether they are certain about

the results. In Section III.C.2, we overviewed methods that

attempt to improve the control reliability based on confidence

estimation of ML/DL classifiers. However, related research

did not provide deep-insights on theoretical analysis. Recently,

studies on model uncertainty of DL, particularly the utilisation

of Bayesian approximation and ensemble learning techniques,

have draw considerable attention in the DL community [157].

Further investigations have also been extended to specific

applications, including autonomous driving [158], adversarial

example identification [159], and robotics control [160], etc.

To summarise, the potential benefits of uncertainty analysis

include but are not limited to 1) knowing when to trust DL

predictions, particularly under domain shift; 2) active learning

via recalibration or TL when the model is uncertain; 3) better

decision-making by compromising risks and gains. All these

efforts can inspire further research in myoelectric control.

E. Simultaneous Control

In the past decade, PR has been extensively explored as the

major approach to enhance myoelectric control. However, PR

scheme identifies discrete states of movements, hence only one

class could be predicted at a time [161]. In order to perform

coordinated tasks, each individual function has to be selected

sequentially [162], limiting the capability of dexterous ma-

nipulation over multiple DoFs and also introducing additional

cognitive burden. To address this issue, numerous efforts have

been made to enable simultaneous control based on PR scheme

[162–164], mainly by adding combined motions as classi-

fication labels or exploiting a variety of sequential/parallel

tropologies composed of multiple classifiers. To determine

common settings for simultaneous motion classification, Ca-

margo et al. [165] further investigated the feature selection

for several prevalent PR algorithms, suggesting that non-linear

classifiers using waveform length and entropy could achieve

the best performances. It is noted that regression approaches

are also being investigated to enable simultaneous control by

estimating joint kinematics/kinetics, but the number of DoFs

that can be reliably activated is still very limited. In this sense,

the combination of classification and regression, which has

been preliminarily studied by Amsuess et al. [166], could be

a more feasible strategy.

F. Real-life Implementation

Thus far, evaluations of ML/DL are mostly carried out using

offline analysis or computer-based virtual assessment that are

restricted to lab settings. Since the final target of myoelectric

control is to obtain a usable device, real-life investigations on

motion estimation in prosthetic control are highly desirable.

Some representative works can be found in [167–169]. Specifi-

cally, ML-based systems were evaluated using functional tasks

such as box-and-blocks test [170], clothes pin test [171],

and Southampton Hand Assessment Procedure (SHAP) test

[172], etc. Experimental results all indicate that ML-based

myoelectric control can outperform clinically well-established

approaches, e.g., co-contraction control. More recently, after

monitoring a prolonged period of at-home use of a prosthetic

limb worn by a participant with transhumeral amputation,

Osborn et al. [173] reported that the effectiveness of ML-

based myoelectric control could last up to one month without

re-training. As for DL, Yang et al. [174] reported a series of

robotic control, including wiping, pouring, screwing, and plug-

ging, based on kinetics estimation using a light-weight CNN.

To enhance model generalization, robustness, and adaptability,

the multi-subject training strategy, data-augmentation, and

fine-tuning were applied. However, those robotic tasks were

completed by healthy participants, with experimental results

mainly indicating the high potential of DL-based myoelectric

control to be applied in industrial human-machine interaction.

Therefore, the long-term usability of DL in clinic practice,

i.e. the capability to promote daily activities of the disabled

or amputees using prosthetics/exoskeletons, and the pros/cons

of DL compared with ML, need to be further examined.

V. CONCLUSION

In this study, we performed a comprehensive survey of

recent advances to promote myoelectric control in practical

applications, mainly focusing on motion estimations using

ML/DL. The similarities and differences between ML and DL

in motion estimation were briefly introduced. The state-of-the-

art developments of multimodal fusion, transfer learning, and

post-processing were presented to provide feasible references

towards model robustness, adaptation and reliability. Besides,

some emerging directions including the electrode technique,

neuromorphic computing, and uncertainty analysis were also

introduced. Based on the above review, it can be inferred that

there is a high potential for ML/DL to be transferred to both

industrial application and clinic use, and the implementation

of DL in wearable systems is now becoming more feasible.
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