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Abstract: In this paper, two dual three-phase winding configurations are compared based on the Toy-

ota Prius 2010 interior permanent magnet (IPM) machine. It is found that the winding configuration

with single-layer full-pitched (SF) windings can improve average torque and reduce torque ripple in

constant torque range. The winding configuration with double-layer short-pitched (DS) windings

has better torque performance in a constant power range. The electromagnetic performances of the

two winding configurations when one winding set is excited and the other one is open-circuited are

also compared. The DS winding configuration shows much better performance under this condi-

tion. Overall, the dual three-phase winding configuration with DS windings is preferred for dual

three-phase IPM machines in electric vehicles. A Toyota Prius 2010 IPM machine equipped with DS

windings was manufactured to verify the analyses presented in this paper.

Keywords: dual three-phase; interior permanent magnet; IPM machine; winding configuration

1. Introduction

In recent decades, electric vehicles (EVs) have attracted more and more attention with
the concerns about global greenhouse gas emissions and the unstable supplies of fossil
fuels. Since electrical machines are one of the most important components in the propulsion
system in EVs, developing a high-performance machine specialized for EVs can greatly
improve the overall performance of the vehicles. Among different kinds of machines,
interior permanent magnet (interior PM, IPM) synchronous machine (SM) is regarded as a
suitable choice for EV machines, as it has inherent high torque capacity, high torque density,
and high efficiency [1–5].

To further improve the performance of PMSMs, the dual three-phase (DTP) wind-
ing configuration is introduced, and some research has been conducted based on DTP
PMSMs [6–35]. Compared with conventional single three-phase (STP) machines, the ad-
vantages of DTP PMSMs include:

• Higher torque. The winding factors of the original windings can be improved by the
DTP winding configuration [6,23];

• Lower torque ripple. The specific torque harmonics produced by the two winding
sets can be cancelled with each other, and the stator magnetomotive force (MMF)
harmonics are significantly reduced by DTP windings [9,14,22];

• Higher efficiency. Due to the reduced stator MMF harmonic contents of DTP windings,
the PM eddy losses in the DTP machines are lower than those in the STP counterpart.
Considering that DTP windings can improve the output torque/power, the efficiency
can be increased by the DTP winding configuration [11];
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• Better fault-tolerant capacity. There are two separate winding sets in DTP windings,
and hence, the loss of one winding set will not lead to the failure of the whole system.
The DTP machine can be operated with the remaining healthy winding set [8,17–19].

Besides the advantages listed above, the ratings per phase are reduced with the
increase in phase number. The vibration of PWM frequency can also be reduced by two
parallel inverters in a DTP machine [31–34]. Moreover, the two winding sets provide more
control freedoms in a machine system, and thus, more control strategies can be utilized,
and the performance of DTP machines can be further improved [35].

However, most of the existing literature only focuses on fractional-slot PMSM, not
the most widely employed machines in EVs, i.e., integral-slot PMSMs. Since fractional-
slot PMSMs and integral-slot PMSMs have different slot/pole number combinations, their
winding layouts are also different. The coil pitch number in fractional-slot PMSMs is usually
relatively small. When the coil pitch number equals 1, the windings can also be called tooth
coils or non-overlapping concentrated windings. For integral-slot PMSMs, the coil pitch
number is around the number of slots per pole. These windings are called overlapping
distributed windings. Considering the differences in slot/pole number combinations
and winding configurations between fractional-slot PMSMs and integral-slot PMSMs, the
conclusion obtained from fractional-slot PMSMs may not be used in integral-slot PMSMs
directly. Thus, it is still meaningful to analyze the electromagnetic performance of integral-
slot DTP PMSMs and compare it with that of the STP counterpart.

In this paper, the Toyota Prius 2010 IPM machine, which is a 48-slot/8-pole IPMSM, is
chosen as the benchmark. For the 48 slot/8-pole IPMSM, two DTP winding configurations
have been proposed in existing literature [13,36–38]. The DTP winding configuration with
single-layer full-pitch windings (DTP-SF) was introduced in [36,37]. However, the differ-
ences between the original short-pitched windings and the proposed full-pitched wind-
ings are not considered thoughtfully. The DTP winding configuration with double-layer
short-pitched windings (DTP-DS) can be found in [13,38]. However, the electromagnetic
performance of DTP-DS has not been presented comprehensively in existing papers, and
the proposed DTP-DS winding configuration has never been compared with the conven-
tional STP winding configuration in the Toyota Prius 2010 IPM machine. In this paper,
the two DTP winding configurations are compared with each other for the first time, and
both of them are compared with the original winding configuration. The comparisons
are made using the finite element (FE) method over the whole speed range because the
electromagnetic characteristics of the IPMSMs with these winding configurations can be
affected obviously by rotation speed. Furthermore, for DTP-SF and DTP-DS machines,
even if one three-phase winding set is open-circuited (OC), they still can be operated with
the remaining three-phase winding set. To compare their electromagnetic performances
under this condition, the comparison carried out under the three-phase OC condition is
also considered. From the comparative studies given in this paper, the DTP-DS winding
configuration is preferred for the Toyota Prius 2010 IPM machine.

This paper is structured as follows: the details of different winding configurations are
provided in Section 2. In Section 3, the electromagnetic performances of these winding
configurations are compared under healthy conditions in various aspects, including output
torque capacity, torque ripple, torque-speed characteristic, efficiency, and so on. In Section 4,
the electromagnetic performances of two DTP winding configurations are compared under
three-phase OC conditions in similar aspects. The experimental verification is given in
Section 5, followed by the conclusion in Section 6.

2. Winding Configurations

The Toyota Prius 2010 IPM machine is well known for its excellent performance and
has been investigated by researchers all over the world in recent years [39–41]. The cross-
section of the machine with a 48-slot stator and an 8-pole V-type IPM rotor is presented
in Figure 1.
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Figure 1. Cross-section of the Toyota Prius 2010 machine.

The main design specifications of the machine can be found in [41], as shown in
Table 1.

Table 1. Design specifications of Toyota Prius 2010 IPM machine.

Number of Stator Slots 48 Number of Rotor Poles 8

Stator OD, mm 264 Rotor OD, mm 160.44
Stator ID, mm 161.9 Rotor lamination ID, mm 51

Stator stack length, mm 50.8 Lamination thickness, mm 0.305
Slot depth, mm 30.9 Slot opening, mm 1.88

Phase resistance, Ohm 0.077 Magnet dimensions, mm 49.3 × 17.88 × 7.16

The detailed characteristics of the magnets in the machine are investigated and pro-
vided in [41]. The intrinsic hysteresis graphs of the magnets are plotted in [41], considering
different temperatures. The diminishing nature of the remanent flux density and coercivity
with increasing temperature can be observed. However, in this paper, the simulations
are calculated using JMAG-Designer, which is a simulation software for the development
and design of electrical devices provided by JSOL [42]. To simplify the calculation in
simulations, the ideal permanent magnet material ‘NdFeB_Br = 1.2T’ is chosen as the
magnets in the JMAG model, and Br and µr of ‘NdFeB_Br = 1.2T’ are fixed at 1.2T and
1.05, respectively. Further, in the JMAG model, ‘35H270’ is chosen as the stator and rotor
core materials, and the calculated iron losses in this paper are based on the properties of
‘35H270’ in JMAG software.

2.1. Winding Arrangements

The stator windings equipped in the Toyota Prius 2010 PM machine are 5-slot-pitched
single layer three-phase windings, as shown in Figure 2a. In 48-slot/8-pole IPM machines,
the number of slots per pole is 6. Hence, the original windings in the Toyota Prius 2010 IPM
machine are short-pitched windings, which can reduce MMF harmonics and end-winding
length. The diagram of coil electromotive force (EMF) phasors is given in Figure 2b. It can
be seen that there is no phase shift between the coil EMF phasors of the same phase. In
other words, the original three-phase windings cannot be transferred into two three-phase
windings with a 30◦ phase shift.
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Figure 2. Winding arrangements of Toyota Prius 2010 IPM machine: (a) winding layouts; (b) coil

EMF phasor diagram.

As is well-known in existing literature [6], the DTP winding configuration with a
30◦ phase shift can improve output torque and reduce torque harmonics at the same
time in PMSMs. To realize the advantages of the 30◦ DTP configuration in 48-slot/8-pole
IPMSMs, two DTP winding configurations have been proposed. Different from the original
single-layer short-pitched windings, the stator windings utilized in the two DTP winding
configurations are single-layer full-pitched (SF) windings and double-layer short-pitched
(DS) windings, respectively. In this paper, the three different winding configurations are
designated as the original IPMSM (ORG), DTP-SF, and DTP-DS, respectively. The winding
connections of Phase A in the ORG machine and those of Phases A1 and A2 in the DTP-SF
and DTP-DS machines are shown in Figure 3.
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Figure 3. Winding layouts of Phase A in ORG machine and Phases A1 and A2 in DTP machines:

(a) ORG; (b) DTP-SF; (c) DTP-DS.

In the ORG machine, as shown in Figure 3a, the coils of Phase A are Coils 1, 7, 13,
19, 25, 31, 37, and 43. The interval between adjacent coils is 8 slot pitches in space, which
is 180◦ in electrical degree. Compared with Coils 1, 13, 25, and 37, Coils 7, 19, 31, and 43
are opposite connected. Thus, all the coils of Phase A in the ORG machine share the same
back EMF phases, as shown in Figure 2b. In the DTP-SF machine, the coil pitch number is
6 slot pitches instead of 5 slot pitches in ORG and DTP-DS machines. The detailed winding
layouts of the DTP-SF winding configuration are shown in Figure 3b. It can be seen that
the distance between Coil 1 and Coil 48 is one slot pitch in space, which is 30◦ electrical
degrees. In other words, the back EMFs induced in Coil 48 are ahead of that in Coil 1 by
30◦. Similarly, the back EMFs induced in Coils 12, 24, and 36 are advanced to those in
Coils 13, 25, and 37 by 30◦. In DTP-SF windings, Phase A1 is composed of Coils 48, 12, 24,
and 36, and Phase A2 is composed of Coils 1, 13, 25, and 37. Thus, Phase A1 is ahead of
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Phase A2 by 30◦. In the DTP-DS machine, the original windings are duplicated, and the
new winding set is shifted by one slot pitch, as shown in Figure 3c. The coils of Phase A in
the ORG machine, Coils 1, 7, 13, 19, 25, 31, 37, and 43, belong to Phase A1 in the DTP-DS
machine, and the new Coils 2, 8, 14, 20, 26, 32, 38, and 44 belong to Phase A2. Thus, all
the coils of Phase A2 lag behind those of Phase A1 by one slot pitch, which means that the
back EMF of Phase A2 is lag to that of Phase A1 by 30◦ in time. Overall, the resultant stator
winding arrangements of ORG, DTP-SF, and DTP-DS winding configurations are shown in
Figure 4a–c. The coil EMF phasor diagrams of these winding configurations are shown in
Figure 5a–c.
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Figure 4. Winding arrangements of different winding configurations: (a) ORG; (b) DTP-SF;

(c) DTP-DS.
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Figure 5. Coil EMF phasor diagrams of different winding configurations: (a) ORG; (b) DTP-SF;

(c) DTP-DS.

2.2. Winding Specifications

Besides the difference in winding arrangements, the drive system for DTP-SF and DTP-
DS winding configurations is also different from the original one, as shown in Figure 6a,b.
The original inverter is a three-phase six-switch voltage source inverter (VSI), and the
DC-link voltage is rated at 650 Vdc. DTP machines are fed by two separate three-phase
inverters, and the two inverters are parallel connected. Compared with the ORG machine,
the input power of DTP machines is split into two winding sets. Considering that the two
winding sets in DTP machines share the same DC-link voltage with the original windings,
the phase currents in DTP windings can be halved from the original phase currents in
ORG windings to produce equivalent power. In the ORG machine, the maximum torque
is produced with 236 Apk peak phase currents. Compared with the original machine,
the number of turns is doubled in DTP machines, and thus, phase currents should be
halved to keep the same equivalent ampere-turns. In other words, to make the comparison
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fair, 118 Apk peak phase currents are utilized in DTP machines to produce the largest
torque. Hence, the current requirement for DTP inverters can also be halved from the
original value in the ORG machine. The lower current requirement suggests that cheaper
power devices can be utilized in DTP inverters. Although the number of switches is
doubled in the DTP drive system, the total cost of the DTP drive system is lower than
twice the original cost. For example, according to the ‘IGBT Module Finder’ tool provided
by Infineon Technologies [43], FS400R07A1E3 can be chosen for the ORG drive system,
and FS200R07A1E3 can be chosen for DTP-SF and DTP-DS drive systems. Since both
FS400R07A1E3 and FS200R07A1E3 are three-phase six-pack modules, only one module
is needed in the ORG machine, and two modules are required in DTP machines. As
ORG and DTP machines share the same DC-link properties, the difference in the prices of
semiconductor modules is the only difference in the resulting cost of different drive systems.

  
(a) (b) 

STP
PMSM

DC-side

A

B

C

DTP
PMSM

DC-side

A1

B1

C1

A2

B2

C2

Figure 6. Schematics of drive systems for different winding configurations: (a) ORG; (b) DTP-SF;

DTP-DS.

The detailed parameters of different winding configurations are summarized in Table 2.
As shown in Figure 3, the number of coils in series per phase is eight in ORG and DTP-DS
machines and four in the DTP-SF machine. As mentioned before, the current requirement is
halved in DTP windings. Thus, the number of wires per turn in parallel can also be halved
from 12 in ORG windings to 6 in DTP-SF and DTP-DS windings. However, it should be
mentioned that the number of turns per coil in DTP-SF windings needs to be doubled
from 11 to 22 after the currents are halved because the number of turns per slot should be
doubled to keep the total ampere-turns the same after the change. The number of turns
per coil does not need to be changed in the DTP-DS machine because the number of turns
per slot is doubled by using double-layer winding layouts. Another difference between
different winding configurations is the coil pitch number, which is 5 in ORG and DTP-DS
machines and 6 in DTP-SF machines. Assuming the end-windings are semi-circular in
shape, the schematics of each turn in different windings are also plotted in Table 2.

As shown in Table 2, the windings utilized in different winding configurations are quite
different. The phase resistances of DTP-SF and DTP-DS windings should be re-calculated
according to the phase resistance of ORG windings. It is known that the resistance of a
conductor can be computed as

R = ρ
l

A
(1)

where l is the length of the conductor, A is the cross-sectional area of the conductor, and ρ

is the electrical resistivity of the conductor. To obtain the phase resistance of DTP-SF and
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DTP-DS windings, the relationships of total winding length and cross-sectional area of
DTP-SF and DTP-DS windings to those of ORG windings should be obtained firstly.

Table 2. Specifications of different winding configurations.

ORG DTP-SF DTP-DS

Number of phases 3 6 6
Coils in series per phase 8 4 8
Turns in series per coil 11 22 11

Wires in parallel per turn 12 6 6
Coil pitch number 5 6 5

Parallel circuits per phase 0 0 0
Wire diameter, mm 0.8 0.8 0.8

Schematic of each turn

𝑅 = 𝜌 𝑙𝐴
ρ

ls-f

𝑅 = 𝜌 𝑙𝐴
ρ

ls-f

𝑅 = 𝜌 𝑙𝐴
ρ

ls-f

The cross-sectional area of these windings can be easily obtained. From Table 2, it
is known that there are no parallel circuits in these windings, and the same copper wires
are utilized in three windings. The cross-sectional area of each coil is the product of the
number of wires per coil and the cross-sectional area of each wire. From Table 2, there are
12 strands of wires in ORG windings, and only 6 strands of wires in DTP-SF and DTP-DS
windings. Thus, the cross-sectional area of DTP-SF and DTP-DS windings is half of that of
ORG windings.

However, the total winding length is relatively difficult to compute directly because
the lengths of different coils are different according to the position of their two sides in the
slot. In this paper, to simplify the calculation, all coil sides are assumed at the center of slots.
Thus, the total winding length can be estimated from the total number of turns in series per
phase and the length of each turn. The number of coils per phase and the number of turns
per coil are provided in Table 2. It can be found that the three winding configurations share
the same number of turns in series per phase, which is 88. Thus, the resultant total winding
length is proportional to the length of each turn.

From Figure 3 and Table 2, it can be seen that only the coil pitch number can affect the
length of each turn under these assumptions. Since both the coil pitch numbers of ORG and
DTP-DS windings are 5, the total winding lengths of the two winding configurations are
identical. Considering that the cross-sectional area of DTP-DS windings is half compared
with ORG windings, the phase resistance of DTP-DS windings is doubled from 0.077 Ohm
in ORG windings to 0.154 Ohm.

For DTP-SF winding configuration, the coil pitch number is 6 and the full-pitched
windings are utilized. To calculate the phase resistance of DTP-SF windings, the total
lengths of short-pitched and full-pitched windings should be obtained first. As different
windings share the same number of turns per phase, the lengths of different windings
can be obtained from the length of short-pitched and full-pitched coils. The schematics of
short-pitched and full-pitched coils are shown in Figure 7.
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Thus, the equivalent radius of each coil side, re, is

re =
50.8

2
+

39.6

2
= 96.4 mm (2)

Then, the distance between two coil sides in short-pitched coil, lcs-s, and that in full-
pitched coil, lcs-f, can be obtained by taking the coil pitch number into consideration,

lcs-s = 5
2πre

48
≈ 63.10 mm (3)

lcs- f = 6
2πre

48
≈ 75.71 mm (4)

As shown in Figure 7, the distance between two coil sides is the diameter of the
end-winding part. The length of each end-winding part in short-pitched coil, lew-s, and that
in full-pitched coil, lew-f, can be calculated as

lew-s = π
lcs-s

2
≈ 99.11 mm (5)

lew- f = π
lcs- f

2
≈ 118.93 mm (6)
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Assuming the stator axial length is la, the total length of short-pitched coil, ls, and that
of full-pitched coil, lf, can be obtained as

ls = 2la + 2lew-s = 299.82 mm (7)

l f = 2la + 2lew- f = 339.46 mm (8)

Since numbers of wires in parallel are identical in DTP-SF and DTP-DS winding
configurations, the cross-sectional area of DTP-SF windings is the same as that of DTP-DS
windings. Hence, the phase resistance of DTP-SF windings can be estimated from the
winding lengths of the two windings and the phase resistance of DTP-DS windings as

RDTP-SF =
l f

ls
RDTP-DS ≈ 0.174363 Ohm (9)

Besides the difference in phase resistance, it also should be noticed that the total axial
lengths of different windings are also different. Using the same simplification method
above, the total axial length of short-pitched windings, lta-s, and that of full-pitched wind-
ings, lta-f, can be estimated as

lta-s = la + 2
lcs-s

2
= 113.90 mm (10)

lta- f = la + 2
lcs- f

2
= 126.51 mm (11)

Overall, the axial length and the phase resistance of different winding configurations
are summarized in Table 3.

Table 3. Estimated key parameters of different winding configurations.

ORG DTP-SF DTP-DS

Total axial length (mm) 113.9 126.51 113.9
Phase resistance (Ohm) 0.077 0.174363 0.154

As shown in Table 3, compared with DTP-DS windings, the phase resistance in DTP-SF
machines is increased by 13.2%, and the total axial length is also raised by 11.1%. It is
suggested that the DTP-DS winding configuration is better than the DTP-SF counterpart
in efficiency and machine size because the higher phase resistance implies higher copper
loss under the same phase currents and the longer axial length denotes the machine’s
larger size.

Based on the calculations shown above, it can be summarized that the total volumes of
copper wires utilized in ORG and DTP-DS machines are identical because of the identical
short-pitched windings equipped in them. However, the DTP-SF machine needs more
copper wires—13.2% higher than the counterparts—due to the full-pitched windings. In
other words, the cost of winding connections in the DTP-SF machine is higher than the
other two counterparts. It should be mentioned that the analyses presented here are only
based on estimations. The actual winding length and machine size can be further optimized
in design and assembling processes. However, it can still be concluded that compared with
the DTP-SF counterpart, the DTP-DS winding configuration has inherent advantages in
winding resistance and machine size due to the short-pitched windings in it.

3. Electromagnetic Performance under Healthy Condition

To reveal the merits and demerits of different winding configurations, the electro-
magnetic performances of Toyota Prius 2010 machines with ORG, DTP-SF, and DTP-DS
windings are analyzed using the FE analysis software, JMAG Designer. It should be men-
tioned that the FE analyses shown below are calculated based on 1/4 machine models,
as shown in Figure 9. Because of the 48-slot/8-pole topology of the investigated proto-
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type machine, the electrical periodicity within the machine is 4, which suggests that the
flux distributions are identical every quarter machine. Setting the two sides of a quar-
ter machine as master and slave boundary boundaries, the electromagnetic performance
of different winding configurations can be obtained from the 1

4 models with much less
computation time.

   
(a) (b) (c) 

Figure 9. One-fourth models of Prius 2010 machine with different winding configurations: (a) ORG;

(b) DTP-SF; (c) DTP-DS.

3.1. Winding Factor

For all winding configurations, the winding factor is the product of the distribution
factor and the pitch factor. The distribution factors can be obtained from the coil EMF
phasor diagrams shown in Figure 5, and the pitch factors are determined by slot/pole
number combination and coil pitch number. In Figure 5a–c, it can be seen that the EMF
phasors of the same phase overlap each other. Thus, the distribution factors of the three
winding configurations are all 1. Pitch factors are the ratio of coil-pitch to pole-pitch. For
the full-pitched windings in the DTP-SF machine, the pitch factor is 1. For the short-pitched
windings in ORG and DTP-DS machines, the pitch factors are 0.966. Then, the winding
factors of different winding configurations are calculated and listed in Table 4.

Table 4. Winding factors of different winding configurations.

ORG DTP-SF DTP-DS

Distribution factor, kd 1 1 1
Pitch factor, kp 0.966 1 0.966

Winding factor, kw 0.966 1 0.966

From Table 4, it can be concluded that the full-pitched windings in the DTP-SF machine
improve the winding factor from 0.966 in the ORG machine to 1. The winding factor
improvement is about 3.53%. In the DTP-DS machine, each winding set shares the same
layout with ORG windings. Hence, the DTP-DS winding configuration cannot change the
winding factors in the ORG machine.

However, it should be noticed that the winding factors shown in Table 4 only take
the fundamental component in one winding set into consideration. In fact, there are two
winding sets in DTP-SF and DTP-DS machines, and the resultant stator MMF and output
torque are produced by the two winding sets containing abundant harmonic contents. It is
necessary to evaluate the mutual effects of two winding sets between each other.

The ideal stator MMF distributions for ORG, DTP-SF, and DTP-DS winding configura-
tions are calculated to illustrate the influences of the shifting windings on resultant stator
MMF harmonics. The waveforms and spectra of ideal stator MMF distributions are shown
in Figure 10a,b, respectively. Although ORG and DTP-DS winding configurations have dif-
ferent stator MMF distribution waveforms, the amplitudes of the fundamental components
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in the two windings are identical. Compared with ORG and DTP-DS counterparts, the
amplitude of the fundamental component in the DTP-SF winding configuration is higher,
which agrees well with the calculated winding factors shown in Table 4. What is more, it
can be seen that there are no fifth and seventh harmonics in DTP-SF and DTP-DS winding
configurations from Figure 10b because these harmonics are eliminated by the two winding
sets with a 30◦ phase shift. Furthermore, it can be inferred that the sixth torque pulsations
can be totally eliminated in DTP-SF and DTP-DS machines [23].
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Figure 10. Ideal stator MMF distributions for different winding configurations: (a) waveforms;

(b) spectra.

3.2. Open-Circuit (OC) Performance

3.2.1. Flux Distribution

Under OC conditions, all the flux in the machine is provided by permanent magnets
in the rotor. Thus, different winding configurations have no influence on flux distribution
performance. The flux density contour and the flux line distribution of the Prius 2010
machine under OC conditions are plotted in Figure 11a,b, respectively. The air-gap flux
density waveform and its spectrum in the machine are shown in Figure 12a,b, respectively.
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Figure 11. Flux distribution of Prius 2010 machine under OC condition: (a) contour; (b) flux line

distribution.
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Figure 12. Air-gap flux density distribution of Prius 2010 machine under OC condition: (a) waveform;

(b) spectrum.

Although different winding configurations cannot affect the flux distribution perfor-
mance of the machine under OC conditions, their flux linkages are different. The phase
flux linkages of different winding configurations are presented in Figure 13a–c.
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Figure 13. Phase flux-linkages of different winding configurations under OC condition: (a) ORG;

(b) DTP-SF; (c) DTP-DS.

3.2.2. Back EMF

The waveforms of back EMFs of Phase A in ORG machine, Phases A1, A2 in DTP-SF
and DTP-DS machines are shown in Figure 14 (Rotation speed is 3000 rpm). It can be
clearly seen that the shifting angle between the two winding sets is 30◦ in DTP-SF and
DTP-DS machines.
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Figure 14. Phase back EMF of different winding configurations at 3000× g rpm: (a) ORG; (b) DTP-SF;

(c) DTP-DS.

The waveforms and spectra of phase back EMFs with different winding configurations
are compared in Figure 15. In Figure 15a, the back EMF curve of ORG windings is totally
overlapped with that of DTP-DS windings. The spectra of these back EMFs are given
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in Figure 15b. For DTP-SF winding configuration, the magnitudes of the first, fifth, and
seventh harmonics are higher than those in the ORG machine. To be more specific, the
fundamental component is increased by about 3.53%, which validates the calculation of
winding factors, as shown in Table 4. From Figure 15, it also can be seen that the harmonic
contents in ORG and DTP-DS windings are identical.
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Figure 15. Phase back EMFs of different winding configurations at 3000× g rpm: (a) waveforms;

(b) spectra.

The comparison of line-to-line back EMFs with different winding configurations is
shown in Figure 16. The harmonic contents in line-to-line back EMFs are similar to those
in phase back EMFs except that the triple harmonics (the third and ninth harmonics) are
eliminated in line-to-line back EMFs due to the symmetric three-phase winding layouts.
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Figure 16. Line-to-line back EMFs of different winding configurations at 3000× g rpm: (a) waveforms;

(b) spectra.

3.2.3. Cogging Torque

As cogging torque is not associated with armature currents, different winding con-
figurations share the same cogging torque characteristic. The waveform and spectrum
of the cogging torque in the Prius 2010 machine are shown in Figure 17a,b, respectively.
It is illustrated that the dominant harmonic in cogging torque is the twelfth harmonic,
which is the least common multiple between the slot number and pole pair number for a
48-slot/8-pole machine.
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Figure 17. Cogging torque of Prius 2010 machine: (a) waveform; (b) spectrum.

3.2.4. Inductance Characteristics

The inductance characteristics of different winding configurations under OC condi-
tions can also be obtained from these models. The d- and q-axis inductances of these
winding configurations are shown in Figure 18a–c. It should be noticed that the frozen
permeability method is utilized to improve the accuracy in inductance calculations, and
the details can be found in [44]. From Figure 18a,c, it can be observed that the inductance
characteristics of each winding set in DTP-DS windings are very similar to that of ORG
windings. The oscillations of d- and q-axis inductances in DTP-SF windings are much
larger than those in ORG and DTP-DS windings.
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Figure 18. d- and q-axis inductances of different winding configurations at OC: (a) ORG; (b) DTP-SF;

(c) DTP-DS.

3.3. Torque Performance

3.3.1. Average Torque-Current Advancing Angle Characteristics

Since an IPM rotor is employed in the Toyota Prius 2010 IPM machine, the output
torque varies with the current advancing angle in windings, and the current advancing
angle should be chosen specially to make full use of the electromagnetic and reluctance
torque components in the machine. In this part, the variations of average torque with
current advancing angle are examined with different winding configurations.

To produce the largest torque, the maximum phase currents are employed, which
are 236 Apk in ORG windings and 118 Apk in DTP-SF and DTP-DS windings. In ORG
windings, the current advancing angle is a variable, β. In DTP-SF and DTP-DS windings,
the current advancing angles for the two winding sets are β1 and β2, respectively. Since β1

and β2 are displaced by 30◦, it can be assumed that β1 = β + 15◦ and β2 = β − 15◦. Then, the
output torques of STP and DTP machines are all varied with only β. The average torque-
current advancing angle characteristics of different winding configurations are shown in
Figure 19, and the specific values are given in Table 5. It can be seen that the maximum
output torque is obtained when β = 50◦ for all winding configurations. This indicates
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that both DTP-SF and DTP-DS winding configurations do not change the optimal current
advancing angle in the ORG machine. In other words, the optimal current advancing angle
in the ORG machine can be utilized directly in DTP machines.
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Figure 19. Average torque-current advancing angle characteristics of different winding configurations.

Table 5. Comparison of average torque-current advancing angle characteristics of different winding

configurations.

ORG DTP-SF DTP-DS

Current
Advancing

Angle, β (ED)

Average
Torque
(Nm)

Average
Torque
(Nm)

Improvement
(% Compared

with ORG)

Average
Torque
(Nm)

Improvement
(% Compared

with ORG)

0 135.82 138.74 2.15 138.67 2.10
10 162.93 166.46 2.17 165.63 1.66
20 187.70 191.73 2.15 190.03 1.24
30 209.31 213.77 2.14 211.08 0.85
40 227.22 232.12 2.16 228.23 0.44
50 236.98 242.80 2.45 237.75 0.33
60 228.95 237.02 3.53 231.26 1.01
70 186.77 199.38 6.75 193.43 3.57
80 106.29 114.43 7.66 110.36 3.83
90 0.01 0.02 - 0.05 -

From Figure 19 and Table 5, it is expected that the DTP-SF winding configuration has
a relatively higher torque output capacity than other counterparts because it has a higher
winding factor.

For the DTP-DS winding configuration, although it shares identical winding factors
with the ORG counterpart, the torque characteristics of the two winding configurations
are not the same. The average torque of the DTP-DS machine is slightly higher than that
of the ORG counterpart. In other words, the average torque in the ORG machine can be
improved slightly using the DTP-DS winding configuration.

To be specific, in Table 5, Row 1, the torque improvements in DTP-SF and DTP-DS
machines at 0 current advancing angle are 2.15% and 2.10%, respectively, compared with
the ORG counterpart. In Section 3.1, it is mentioned that DTP winding configurations
can produce different stator MMFs. It is assumed that DTP winding configurations affect
the flux distributions a lot, and consequently, improve the average torque. To investigate
the influences of different winding configurations on flux distributions, the flux density
contours of these winding configurations under this condition are shown in Figure 20. It
can be observed that the influences of winding configurations on flux distributions are very
minor. The air-gap flux density waveforms and spectra of these winding configurations
under this condition are shown in Figure 21. It can also be seen that the air-gap flux density
distributions of different winding configurations are very similar to each other. From
Figures 20 and 21, it can be summarized that the influences of DTP windings on the overall
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flux distributions are very minor. The torque improvements of DTP winding configurations
cannot be attributed simply to the different flux distributions in DTP machines. However,
although the different stator MMF cannot be easily observed in Figures 20 and 21, the
elimination of the harmonic contents in the stator’s MMF still results in lower eddy currents
in the magnets. Thus, the magnet eddy loss can be reduced in DTP machines, as will be
shown later.
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Figure 20. Flux density distributions of different winding configurations at IA = 236 Apk, β = 0◦:

(a) ORG; (b) DTP-SF; (c) DTP-DS.
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Figure 21. Air-gap flux density distributions of different winding configurations at IA = 236 Apk,

β = 0◦: (a) waveforms; (b) spectra.

It should be noticed that the air-gap flux density distributions shown in Figure 21 are
captured at a specific time. To illustrate the variation in air-gap flux density distributions
over a whole electrical period, the waveforms and spectra of phase back EMFs of different
winding configurations are shown in Figure 22. In Figure 22, the higher fundamental back
EMF in the DTP-SF machine can be observed as the DTP-SF winding configuration has a
higher fundamental winding factor. It also can be observed the fifth and seventh harmonics
are reduced in the DTP-DS machine. Although the flux contours and air-gap flux density
distributions look similar in ORG and DTP-DS machines, their harmonic contents are not
exactly the same. Some MMF harmonics (particularly the fifth and seventh) can be reduced
using the DTP-DS winding configuration.
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Figure 22. Phase back EMFs of different winding configurations @IA = 236 Apk, β = 0◦: (a) waveforms;

(b) spectra.

Additionally, as only one phase is considered in Figure 22, it is necessary to take all
phases into consideration. Multiplying the phase back EMF and phase currents, the input
power of the machine can be obtained, as shown in Figure 23. The average input power of
ORG, DTP-SF and DTP-DS machines are 55.43 kW, 57.46 kW, and 56.21 kW, respectively.
Compared with ORG winding configuration, the power improvements in DTP-SF and
DTP-DS counterparts are 3.65% and 1.40%, respectively.
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Figure 23. Input power of different winding configurations @IA = 236 Apk, β = 0◦.

From Figures 22 and 23, it can be summarized that although the influences of two
winding sets on flux distributions cannot be observed clearly in Figures 20 and 21, the two
winding sets can truly reduce some harmonic contents and improve the overall input power.

In general, the average torque improvement of the DTP-DS winding configuration
should be attributed to the two winding sets with reduced MMF harmonics. The reduced
MMF harmonic contents improve total input and reduce magnet eddy current loss in
the machine. The detailed loss calculation will be presented in Section 3.4.1. As a result,
although the DTP-DS winding configuration shares the same winding factors with the
ORG machine, the average torque of the ORG machine can still be improved a little by
using DTP-DS windings.

3.3.2. Instantaneous Torque Characteristics

According to Figure 19, the maximum torque condition of different winding configu-
rations is selected for further analyses. The instantaneous torque waveforms are shown in
Figure 24a, and their spectra are given in Figure 24b. The average torque and torque ripple
of different winding configurations are listed in Table 6. It can be seen that not only the
average torque is improved by DTP winding configurations, but also the torque ripples are
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reduced significantly by using DTP windings. To be specific, the torque ripple in the ORG
machine is 14.59%, while it is 8.43% in DTP-SF and 7.80% in DTP-DS counterparts.
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Figure 24. Instantaneous torque performance of different winding configurations under maximum

torque condition: (a) waveforms; (b) spectra.

Table 6. Comparison of instantaneous torque performance of different winding configurations under

maximum torque condition.

ORG DTP-SF DTP-DS

Average torque 236.98 242.80 237.75
Improvement (% compared with ORG) - 2.45 0.33

Torque ripple (Nm) 34.11 20.46 18.54
Torque ripple (%) 14.39 8.43 7.80

From Figure 24b, it can be seen that the dominant torque harmonics in the ORG
machine are the sixth and twelfth harmonics. As suggested in Figure 10, with the utilization
of DTP windings with a 30◦ phase shift, the sixth torque harmonics are totally eliminated.
Thus, the torque ripples in DTP-SF and DTP-DS machines are much lower than that in
the ORG machine. In other words, both DTP-SF and DTP-DS winding configurations can
reduce torque ripple significantly.

The inductance characteristics of the three winding configurations under the maximum
torque condition also can be calculated using the method proposed in [44]. The d- and
q-axis inductances in the three machines are shown in Figure 25. Compared with the
inductances at OC condition shown in Figure 18, both d- and q-axis inductances are
affected obviously by the load. The q-axis inductances are reduced significantly in all
three machines. The fluctuations of all inductances with rotor position are much more
evident due to the relatively severe magnetic saturation in the machine under the maximum
torque condition.
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Figure 25. d- and q-axis inductances of different winding configurations at maximum torque condi-

tion: (a) ORG; (b) DTP-SF; (c) DTP-DS.
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Besides the maximum torque condition, the variations of d- and q-axis inductances
with different excitation conditions are also calculated [45], as shown in Figure 26. It
should be noticed that frozen permeability method is not utilized in the calculation to
obtain Figure 26. In Figure 25, it can be seen that the d- and q-axis inductances in DTP-SF,
Figure 25b, are higher than those in DTP-DS windings, Figure 25c. However, in Figure 26,
the inductance characteristics of the three winding configurations are almost the same
because the mutual inductances are not considered fully in the method proposed in [45].
From Figure 26, it still can be inferred that the magnetic saturations in the three machines
are very similar to each other, as shown in Figure 20. It also can be observed that both d-
and q-axis currents can affect d- and q-axis inductances very evidently.
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Figure 26. Variations of d- and q-axis inductances with different winding configurations and dif-

ferent d- and q-axis current combinations: (a) ORG: d-axis inductance; (b) ORG: q-axis inductance;

(c) DTP-SF: d-axis inductance; (d) DTP-SF: q-axis inductance; (e) DTP-DS: d-axis inductance;

(f) DTP-DS: q-axis inductance.
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3.3.3. Average Torque and Torque Ripple–Current Amplitude Characteristics

Besides the maximum torque condition, the torque characteristics of these winding
configurations under different excitation conditions are also investigated in this paper. It
has been mentioned previously that since the number of turns is doubled in DTP wind-
ing configurations, the phase currents in DTP windings should be halved from those in
ORG windings to keep the same Ampere-turns output. Assuming that the phase current
amplitude in ORG windings is IA, the phase current amplitude in DTP-SF and DTP-DS
machines is IA/2. If the machine is controlled using the maximum torque per ampere
(MTPA) strategy, β is always selected particularly to produce the largest torque. With IA

varying from 10A, 50A, 100A, 150A, 200A to 236A, the average torque and torque ripple of
different winding configurations are plotted in Figure 27. The detailed values of average
torques and torque ripples are listed in Table 7.
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Figure 27. Torque-current amplitude characteristics of different winding configurations with MTPA

strategy: (a) average torque; (b) torque ripple.

Table 7. Comparison of torque-current amplitude characteristics of different winding configurations

with the MTPA strategy.

IA (A) ORG DTP-SF DTP-DS

10

Average torque (Nm) 8.25 8.55 8.25
Improvement (% compared with ORG) 3.73 −0.02

Torque ripple (Nm) 1.68 1.28 1.29
Torque ripple (%) 20.37 15.00 15.59

50

Average torque 54.01 56.52 54.17
Improvement (% compared with ORG) 4.64 0.29

Torque ripple (Nm) 10.02 5.29 5.00
Torque ripple (%) 18.55 9.36 9.23

100

Average torque 116.66 122.44 117.95
Improvement (% compared with ORG) 4.95 1.10

Torque ripple (Nm) 15.43 7.84 7.39
Torque ripple (%) 13.22 6.41 6.26

150

Average torque 169.44 178.90 172.86
Improvement (% compared with ORG) 5.59 2.02

Torque ripple (Nm) 21.32 11.27 10.08
Torque ripple (%) 12.58 6.30 5.83

200

Average torque 213.38 221.15 215.64
Improvement (% compared with ORG) 3.64 1.06

Torque ripple (Nm) 29.91 16.83 15.88
Torque ripple (%) 14.02 7.61 7.37

236

Average torque 236.98 242.80 237.75
Improvement (% compared with ORG) 2.45 0.33

Torque ripple (Nm) 34.11 20.46 18.54
Torque ripple (%) 14.39 8.43 7.80
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According to Table 7, when the currents are very small (IA = 10A), the torque improve-
ments of DTP-SF and DTP-DS winding configurations are 3.73% and −0.02%, respectively,
which agree very well with the theoretical improvements on winding factors. Except for
this condition, both DTP-SF and DTP-DS winding configurations can improve average
torque and reduce torque pulsation at the same time. To be more specific, the torque
improvement in the DTP-SF winding configuration is higher than that in the DTP-DS
counterpart, while the torque pulsation in the DTP-DS machine is always slightly lower
than that in the DTP-SF machine. It is noteworthy that the torque improvements of DTP-SF
and DTP-DS winding configurations are 5.59% and 2.02%, respectively, under the condition
IA = 150 A. The actual torque improvements are much higher than the theoretical values
(3.53% in DTP-SF winding configuration and 0% in DTP-DS winding configuration). This
indicates that the real torque improvement caused by DTP windings can be much higher
than the theoretical increase in winding factors under specific on-load conditions.

3.3.4. Torque and Power–Speed Characteristics

In the analyses above, the speed of the machine is fixed at 3000 rpm. The performances
of different winding configurations under different speeds, especially high-speed condi-
tions, have not been considered. In this part, to illustrate the influences of DTP-SF and
DTP-DS winding configurations on the Toyota Prius 2010 IPM machine over the entire
speed range, the torque and power-speed envelopes of different winding configurations
are shown in Figure 28. In the calculation, the DC voltage is fixed at 650 V, and the phase
currents are limited at 236 Apk in STP windings and 118 Apk in DTP windings. It should
be mentioned that the power shown in Figure 28b is the output power of these machines. A
comparison of input powers of different winding configuration machines should take losses
into consideration, which will be presented in the next part. According to the calculation
results, the base speed is 3500 rpm, 3400 rpm, and 3600 rpm in ORG, DTP-SF, and DTP-DS
machines, respectively. Thus, the DTP-DS winding configuration can increase the base
speed a little.
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Figure 28. Torque– and power–speed envelopes of different winding configurations: (a) torque–speed

envelope; (b) power–speed envelope.

In the constant torque range, the DTP-SF winding configuration shows the highest
output torque. ORG and DTP-DS winding configurations have very similar output torque
capacities. However, when the speed is higher than the base speed, the machine is run
in the constant power range. The output power of the DTP-SF winding configuration is
lower than that of the ORG counterpart, and the DTP-DS winding configuration has the
highest output power. Since higher output power suggests higher output torque with the
same rotation speed, the DTP-DS winding configuration produces the largest torque under
high-speed conditions.
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To further find out the reason why the DTP-DS winding configuration can produce the
highest torque in the high-speed range, the phase currents in these winding configurations
to produce the highest torque should be calculated and compared.

In fact, in the calculation of the torque– and power–speed envelopes shown in
Figure 28, the d- and q-axis currents that produce the maximum torque at different speed
conditions have been obtained, as shown in Figure 29. Firstly, the torque– and power–speed
envelopes are calculated based on 81 cases with different d- and q-axis currents at a specific
speed, 3000 rpm. In the 81 cases of the ORG machine, the d-axis current is varied from
0A to −240A and the q-axis current is varied from 0A to 240A. In the cases of DTP-SF and
DTP-DS machines, d- and q-axis currents are varied from 0A to −120A and 0A to 120A,
respectively. Thus, the variations of d- and q-axis flux-linkages over the entire excitation
range (−240A ≤ Id ≤ 0A and 0A ≤ Iq ≤ 240A in ORG machine; −120A ≤ Id ≤ 0A and
0A ≤ Iq ≤ 120A in DTP-SF and DTP-DS machines) at 3000 rpm can be obtained using the
interpolation function. Then, the variation of output torque over the excitation range can
be obtained from the d- and q-axis flux-linkages and corresponding currents. Then, since
output torque keeps the same under the same excitation condition regardless of rotation
speed, the variation of output torque at 3000 rpm can be utilized at any speed condition.
Different from that in output torque, phase back EMF is closely related to rotation speed.
Taking speed, flux-linkages, currents, and phase resistance into consideration, the variation
of phase back EMF over the entire excitation range at different speed conditions also can
be calculated. When the speed is lower than the base speed of the machine, the d- and
q-axis currents are selected to produce the highest torque under the current amplitude limit.
When the speed is higher than the base speed of the machine, the d- and q-axis currents are
selected to produce the highest torque under the limit of DC-link voltage.
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Figure 29. d- and q-axis currents of different winding configurations over entire speed range:

(a) ORG; (b) DTP-SF; (c) DTP-DS.

According to the d- and q-axis currents shown in Figure 29, the amplitudes and current
angles of phase currents in the three windings over the entire speed range are shown in
Figure 30a,b. It should be mentioned that the phase current amplitudes in DTP-SF and
DTP-DS windings are doubled in Figure 30a to make the comparison clearer. It also can be
observed that the curves shown in Figure 30 are not very smooth because the number of
cases used in the calculation is only 81. The variations of phase back EMF and torque over
the entire excitation range are fitted based on 81 cases, which resulted in some small errors
between estimated values and real results. These small errors cause the small pulsations in
the current amplitude– and current angle–speed curves in Figure 30.

From Figure 30a,b, it can be found that the amplitudes of phase currents in DTP-DS
windings are higher than those in DTP-SF and ORG windings, while the current angles of
different winding configurations are very similar. It is inferred that the lower winding factor
and reduced MMF harmonics decrease the amplitude of back EMF in DTP-DS windings.
In high-speed conditions, the constraint is DC-link voltage, the lower back EMF suggests
that the higher phase currents can be utilized, and the higher phase currents in DTP-DS
windings result in larger output torque in the DTP-DS machine than other counterparts
over the constant power range.
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Figure 30. Amplitudes and current angles of phase currents of different winding configurations over

entire speed range: (a) amplitudes; (b) current angles.

Overall, it can be concluded that the DTP-SF winding configuration can improve
average torque in the constant torque range and the DTP-DS winding configuration can
improve average torque in the constant power range, although both are not very significant.

3.4. Loss and Efficiency Performance

3.4.1. Loss and Efficiency under the Maximum Torque Condition

The losses of different winding configurations under the maximum torque conditions
are calculated firstly. The total loss in a PMSM machine can be classified into copper loss,
iron loss, PM eddy loss, and mechanical loss. Copper loss is calculated using Joule’s law.
Iron loss and PM eddy loss are calculated by the FE software, JMAG, according to the
properties of materials. The lamination material used in the model is ‘35H270’, and the PM
material is ‘NdFeB_Br = 1.2T’.

Although different winding configurations are utilized, the mechanical structures of
these machines are identical. Hence, all the three winding configurations share the same
mechanical loss characteristics, which are estimated using the measured results in [40], as
shown in (12) and Figure 31.

Pme( f ) = 0.26 f + 0.00103 f 2 (12)
𝑃 𝑓 = 0.26𝑓 + 0.00103𝑓
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Figure 31. Variation of mechanical loss with speed [40].

With the methods mentioned above, the losses of different winding configurations
under the maximum torque condition are calculated. Then, the efficiencies of machines
with different winding configurations are obtained. The losses and efficiencies are sum-
marized in Table 8. It can be seen that copper loss is the dominant loss among all kinds of
losses. Compared with ORG and DTP-DS winding configurations, the larger resistance of
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full-pitched windings in DTP-SF winding configuration results in higher copper loss and
lower efficiency. From Table 8, it can also be seen that the PM eddy loss can be reduced
significantly by using DTP windings. This phenomenon can be explained by the reduced
stator MMF harmonics in DTP winding configurations. However, PM eddy loss is much
smaller than copper loss. The reduction in PM eddy loss in the DTP-DS winding config-
uration can only increase its efficiency very little, but it may affect the rotor temperature
significantly. As PM eddy current loss accounts for a small part of the total loss in all
investigated machines, the PM eddy current loss is neglected in this paper in order to
significantly simplify the calculation of efficiency maps.

3.4.2. Loss and Efficiency Maps

Based on the calculations above, the losses and efficiencies of different winding config-
urations under the entire speed range can be obtained. The copper loss maps and iron loss
maps of these winding configurations are calculated first, as shown in Figures 32 and 33,
respectively.

Table 8. Loss and efficiency of different winding configurations under maximum torque condition.

ORG DTP-SF DTP-DS

Speed (rpm) 3000 3000 3000
Average torque (Nm) 236.98 242.80 237.75

Copper loss (W) 6432.89 7283.49 6432.89
Iron loss (W) 358.34 368.14 365.40

PM eddy loss (W) 94.58 46.24 51.28
Mechanical loss (W) 93.20 93.20 93.20
Output power (W) 74449.61 76276.54 74690.46

Total loss (W) 6979.01 7791.07 6942.77
Input power (W) 81428.62 84067.61 81633.23

Efficiency (%) 91.43% 90.73% 91.50%

   

Copper loss 

(W) 

 (a) (b) (c) 

Figure 32. Copper loss maps of different winding configurations. (a) ORG; (b) DTP-SF; (c) DTP-DS.

   

Iron loss 

(W) 

 (a) (b) (c) 

Figure 33. Iron loss maps of different winding configurations: (a) ORG; (b) DTP-SF; (c) DTP-DS.

Thus, the efficiency maps of different winding configurations are shown in Figure 34.
It can be seen that the highest efficiency in ORG and DTP-DS winding configurations can
reach 97%, while the highest efficiency in DTP-SF is 96%. The high-efficiency island in the
DTP-DS machine is slightly larger than that in the ORG machine.
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Figure 34. Efficiency maps of different winding configurations: (a) ORG; (b) DTP-SF; (c) DTP-DS.

The differences between the efficiency maps of DTP and ORG winding configurations
are shown in Figure 35. For the DTP-SF winding configuration, the difference is negative in
the most efficient region. However, for the DTP-DS winding configuration, the difference is
positive in most of the whole range. It indicates that the efficiency of the DTP-SF winding
configuration is lower than that of the ORG counterpart in most conditions, while the DTP-
DS winding configuration can improve efficiency over most of the whole operating region.
It also should be noticed that almost all differences shown in Figure 35 are lower than
±0.5%, which suggests that the influences of DTP-SF and DTP-DS winding configurations
on efficiency are not obvious.
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Figure 35. Differences between efficiency maps of DTP and ORG winding configurations: (a) DTP-SF;

(b) DTP-DS.

3.5. Summary

In this section, the electromagnetic performances of ORG, DTP-SF, and DTP-DS wind-
ing configurations are compared comprehensively using the FE method. The comparison
includes back EMF performance, torque and power characteristics, and efficiency perfor-
mance. In each comparison, various characteristics are considered. From the analyses
above, it is found that both DTP-SF and DTP-DS winding configurations can improve
average torque and reduce torque ripples in the Toyota Prius 2010 IPM machine. Specif-
ically, the DTP-SF winding configuration is more suitable for the constant torque range,
as the torque improvement in the DTP-SF winding configuration is higher than that in
the DTP-DS counterpart. The DTP-DS winding configuration is preferred for constant
power range because it can produce higher output torque with lower torque pulsation in
high-speed conditions.

4. Electromagnetic Performance under 3-ph OC Condition

The fault tolerance capability is a prominent advantage of the DTP winding configu-
rations. Since DTP windings are composed of two separate three-phase winding sets, the
failure of one winding set will not lead to the failure of the whole system, and DTP ma-
chines can only run with one three-phase winding set. The condition that one three-phase
winding set is excited and one three-phase winding set is open-circuited is designated as the
‘3-ph OC condition’ in this paper. Although the performance under the 3-ph OC condition
indicates the fault-tolerant capability of the DTP machines, the ‘3-ph OC condition’ does
not always mean fault condition. When peak performance is not required, it is possible
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to only partially excite the machine to improve efficiency by reducing copper, iron and
inverter (switching and conduction) losses. Hence, better electromagnetic performance
under the 3-ph OC condition even denotes more than just better fault-tolerant capability.

4.1. Winding Layouts

Firstly, assuming one of the two winding sets in DTP-SF and DTP-DS machines are
open-circuited, the layouts of the remaining winding set are shown in Figure 36. It can
be observed that the opposite parts of the stator are wound by the same phase windings.
Thus, the radial forces produced by the opposite windings are balanced, and there will
be no unbalanced radial force in the two machines under the three-phase OC condition.
Additionally, it also should be noticed that the layout of the remaining windings in the
DTP-DS machine is identical to that of the original windings in the Toyota Prius 2010
IPM machine. It is expected that the DTP-DS winding configuration can have a good
performance under this condition.
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Figure 36. Winding layouts of remaining winding set in DTP machines: (a) DTP-SF; (b) DTP-DS.

4.2. Torque

4.2.1. Instantaneous Torque Waveforms

As discussed before, the instantaneous torque characteristics of the two winding
configurations are examined under the maximum torque condition. The phase currents in
the remaining windings are 118 Apk, and the current advancing angle is set to produce the
highest output torque. The waveforms and spectra of the instantaneous torque under this
condition are shown in Figure 37, and the key characteristics are listed in Table 9. From
Figure 37 and Table 9, it can be seen that the average output torque of the DTP-DS winding
configuration is higher than that of the DTP-SF counterpart, while the torque pulsation of
the DTP-DS winding configuration is lower. From Figure 37b, it is observed that the sixth
torque harmonics cannot be eliminated in both machines under this condition, and the
amplitude of the sixth torque harmonic in the DTP-SF machine is higher than that in the
DTP-DS machine. In fact, it is expected that the torque harmonics in the DTP-SF machine
are relatively abundant because the winding factors for all harmonic orders are 1 in full-
pitched windings. However, the winding factors for the fifth and seventh harmonics are
reduced by the short-pitched windings in the DTP-DS winding configuration. Hence, from
the viewpoint of the instantaneous torque characteristic, the DTP-DS winding configuration
is better under this condition.
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Figure 37. Instantaneous torque characteristics of different winding configurations under three-phase

OC maximum torque condition: (a) waveforms; (b) spectra.

Table 9. Comparison of instantaneous torque characteristics of different winding configurations

under the three-phase OC maximum torque condition.

DTP-SF DTP-DS

Average torque (Nm) 132.35 135.56
Torque ripple (Nm) 25.76 18.49
Torque ripple (%) 19.46 13.64

4.2.2. Average Torque and Torque Ripple–Current Amplitude Characteristics

The variations of average torque and torque ripple with phase current amplitude are
also considered, as shown in Figure 38. From Figure 38a, it can be seen that when the
phase current amplitude is less than 50A, the average torque produced by the two winding
configurations is very similar. However, when the phase current amplitude is higher than
75A, the DTP-DS machine can always produce higher average torque than the DTP-SF
counterpart. When it comes to torque ripple, it is obvious that the torque ripple in the
DTP-DS machine is lower than that in the DTP-SF machine. In Figure 38b, it can be seen
that the torque ripple in DTP-SF is decreased with the increase in phase currents. However,
even with the 118 Apk phase currents, the torque ripple in the DTP-SF machine is still
higher than that in the DTP-DS machine.
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Figure 38. Torque-current amplitude characteristics of different winding configurations with MTPA

strategy under the three-phase OC condition: (a) average torque; (b) torque ripple.

In [23], it is mentioned that the phase currents in the remaining winding set can be
doubled to try to keep the original output torque. In Figure 39, the variations of average
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torque and torque ripple with phase current amplitude are examined up to phase current =
250 Apk. From Figure 39a, the average torque produced by the DTP-DS machine is even
higher than the DTP-SF machine with high phase currents. In Figure 38b, it seems that
the torque ripple in the DTP-SF machine is decreased with the increase in phase current
amplitude. However, from Figure 39b, it can be found that the torque ripple in the DTP-SF
machine reaches its minimum value around phase current = 150 Apk. Even under this
condition, the torque pulsation in the DTP-SF machine is still higher than that in the DTP-
DS counterpart. Thus, it can be concluded that the DTP-DS machine always has lower
torque pulsation under the three-phase OC condition, no matter what the excitation is.
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Figure 39. Torque-current amplitude characteristics of different winding configurations with the

MTPA strategy under the three-phase OC condition considering over-loading: (a) average torque;

(b) torque ripple.

4.3. Loss and Efficiency

To make an all-around comparison between the DTP-SF and DTP-DS winding config-
urations, the loss and efficiency performances of them are compared with 118 Apk phase
currents, under the three-phase OC condition, as shown in Table 10. Due to the relatively
lower output torque, the output power is lower in the DTP-SF machine. In addition, the
copper loss in the DTP-SF machine is higher than that in the DTP-DS counterpart because
of the longer winding length. What is more, the PM eddy loss can be reduced by DTP-DS
windings with lower MMF harmonics. Thus, the overall efficiency of the DTP-DS wind-
ing configuration is higher than that of the DTP-SF counterpart by more than 2% under
this condition.

Table 10. Loss and efficiency of different winding configurations under three-phase OC maximum

torque condition.

DTP-SF DTP-DS

Speed (rpm) 3000 3000
Average torque (Nm) 132.35 135.56

Copper loss (W) 7283.49 6432.89
Iron loss (W) 245.53 247.14

PM eddy loss (W) 230.49 44.11
Mechanical loss (W) 93.20 93.20
Output power (W) 41578.68 42587.43

Total loss (W) 7852.70 6817.34
Input power (W) 49431.68 49404.77

Efficiency (%) 84.11 86.20
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4.4. Summary

Based on the analyses presented in this section, it can be summarized that the DTP-
DS winding configuration has better performance under the three-phase OC condition.
In general, the DTP-DS machine always has larger average torque and lower torque
pulsation than the DTP-SF counterpart. Furthermore, the efficiency of the DTP-DS winding
configuration is also higher than that of the DTP-SF counterpart.

5. Experimental Validation

According to the analyses shown in Sections 3 and 4, it can be concluded that both DTP-
SF and DTP-DS winding configurations can improve average torque and reduce torque
ripple in the Toyota Prius 2010 IPM machine, and the DTP-DS winding configuration
has better performance in torque and efficiency under high-speed and three-phase OC
conditions. To verify the analyses above, a Toyota Prius 2010 IPM machine equipped with
DTP-DS windings is manufactured and tested. The photos of the prototype and the test rig
are shown in Figure 40a,b, respectively.
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Figure 40. Photos of prototype and test rig: (a) prototype; (b) test rig.

The back EMF performance of the prototype is tested at 1000 rpm. The waveforms and
spectra of FE-predicted and tested results are shown in Figure 41. It should be mentioned
3D FE method is also utilized to improve the accuracy of FE simulations. Although the
tested back EMF is slightly lower than the FE-predicted values, it still can be found that the
tested results agree well with FE-predicted results, and the 3D FE results agree with the
experimental results better.
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Figure 41. Phase back EMF comparison between FE and measured results at 1000 rpm: (a) waveforms;

(b) spectra.
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It should be mentioned again that the magnet and core materials used in the FE
models are not the actual materials equipped in the prototype. The precision of the FE
simulations can be further improved with more accurate material characteristics. However,
the agreements between simulated results and tested results shown in Figure 41 are good
enough to confirm the correctness of the FE analyses.

The on-load experiment is carried out with 20 Apk phase currents firstly. The on-load
torque is measured using a torque transducer with a load machine. Since the torque trans-
ducer is connected to the prototype machine and the load machine by shaft couplings, the
measured torque is affected by shaft couplings and the load machine. Hence, the measure-
ment of instantaneous torque is very difficult. What is more, the torque pulsations in the
prototype machine can be reduced by the load machine and the shaft couplings. The mea-
sured torque ripple is lower than the real torque ripple produced by the prototype machine.

The waveforms and spectra of instantaneous torque under this condition are shown
in Figure 42 and compared with 2D and 3D FE analysis results. A good agreement between
FE-predicted and measured results can be found in Figure 42.
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Figure 42. Instantaneous torque comparison between FE and measured results @20 Apk phase

currents: (a) waveforms; (b) spectra.

Then, the torque-current amplitude characteristics of the prototype are also tested.
However, it should be mentioned that to simplify the operations, the Id = 0 control strategy
is utilized in the experiments instead of the MTPA strategy mentioned in Section 3. The
variations of average torque and torque ripple with phase current amplitude are summa-
rized and compared with FE-predicted results in Figure 43. It can be seen that the measured
average torque is slightly lower than the calculated results and the measured torque ripples
are relatively much lower than simulation results. It was mentioned above that the torque
transducer is implemented in the test rig with shaft couplings. The measured torque is not
the real output torque of the prototype since the measured torque is filtered by the shaft
and the whole test rig. Hence, the measured torque ripples are significantly lower than
the calculated results, especially when phase current is high. In general, the FE-predicted
average torques still agree well with measured ones, especially the 3D FE-predicted results.
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Figure 43. Torque-current amplitude characteristics comparison between FE and measured results

with the Id = 0 control strategy: (a) Average torque; (b) Torque ripple.

6. Conclusions

In this paper, the 48-slot/8-pole Toyota Prius 2010 IPM machine is analyzed, and two
DTP winding configurations (DTP-SF and DTP-DS) are introduced to convert it into a DTP
machine with a 30◦ phase shift. The electromagnetic performances of the machine with
ORG, DTP-SF, and DTP-DS windings are simulated by the FE method and compared in
detail by considering various conditions. Then, a Toyota Prius 2010 IPM machine equipped
with DTP-DS windings was manufactured to validate the FE analyses. Some new findings
can be obtained from this paper, including:

(1) Only the DTP-SF winding configuration can improve the winding factor of the ORG
machine. DTP-DS windings share the same winding factors as ORG windings.

(2) In the constant torque region, DTP-SF windings can produce higher torque than
DTP-DS and ORG windings. The output torque of the DTP-DS machine is only
slightly higher than that of the ORG machine in this region. Both DTP-SF and DTP-DS
winding configurations can reduce torque ripples significantly, and the torque ripple
in the DTP-DS machine is even lower.

(3) In the constant power region, the DTP-DS machine has the largest torque output
capacity and the lowest torque pulsation. However, the output torque of the DTP-SF
machine is lower than that of the ORG machine in this region.

(4) The full-pitched windings utilized in the DTP-SF machine result in the highest copper
loss among the three counterparts. Considering that the output torque of the DTP-DS
machine is slightly higher than that of the ORG machine, the DTP-DS machine has a
better efficiency performance than the ORG machine, and the DTP-SF machine shows
the worst efficiency performance.

(5) The electromagnetic performances of DTP-SF and DTP-DS machines under the three-
phase OC condition show that DTP-DS machine has better performance in almost all
aspects, including average torque, torque ripple, and efficiency.

(6) The stator and rotor cores and magnets of ORG, DTP-SF, and DTP-DS machines are
totally identical. The differences in overall costs only lie in the drive system and
winding topologies. Compared with the ORG machine, the DTP-SF and DTP-DS
machines need another two half-rating inverters and the DTP-DS machine needs more
copper wires due to the longer pitched windings.

Overall, the pros and cons of ORG, DTP-SF, and DTP-DS machines are summarized in
Table 11.
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Table 11. Pros and cons of different winding configurations under maximum torque conditions.

ORG DTP-SF DTP-DS

Pros
• Simple winding connections
• Simple drive system

• Highest torque under
healthy condition

• Lower torque pulsation under
healthy condition (Compare
with ORG)

• Ability to run under three-phase
OC condition

• Slightly higher torque under
healthy condition (Compare
with ORG)

• Lower torque pulsation under
healthy condition (Compare
with ORG)

• Slightly higher efficiency
(Compare with ORG)

• Highest torque under
high-speed healthy condition

• Ability to run under three-phase
OC condition

• Higher average torque and
lower torque pulsation under
three-phase OC condition
(Compare with DTP-SF)

Cons

• Lower average torque and
higher torque pulsation under
healthy condition

• Cannot run under three-phase
OC condition

• Complex winding connections
• Complex drive system
• Largest winding usage
• Worst efficiency performance
• Lowest torque under high-speed

healthy condition
• Worse torque performance

under three-phase OC condition
(Compare with DTP-DS)

• Complex winding connections
• Complex drive system

Although the DTP-SF winding configuration can increase the winding factor and pro-
duce slightly higher torque in the constant torque region, considering the advantages of the
DTP-DS winding configuration in average torque, torque ripple, and efficiency, especially
under high-speed and three-phase OC conditions, the DTP-DS winding configuration is
preferred for the DTP PM machines in EVs.
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