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ABSTRACT

This paper presents a distributed multi-class Gaussian process (MCGP) algorithm for ground vehicle classification
using acoustic data. In this algorithm, the harmonic structure analysis is used to extract features for GP
classifier training. The predictions from local classifiers are then aggregated into a high-level prediction to
achieve the decision-level fusion, following the idea of divide-and-conquer. Simulations based on the acoustic-
seismic classification identification data set (ACIDS) confirm that the proposed algorithm provides competitive
performance in terms of classification error and negative log-likelihood (NLL), as compared to an MCGP based
on the data-level fusion where only one global MCGP is trained using data from all the sensors.

Keywords: Machine learning, Gaussian process, acoustic data, classification, surveillance

1. INTRODUCTION

A vehicle classification system captures the signals emitted from passing vehicles using varying types of sensors
including RADAR, LIDAR, magnetic, and acoustic sensors1, and identify the categories of the vehicles in terms
of the captured signals. To solve the classification problem, the acoustic sensors which collect audio signals using
microphone arrays have been an attractive option for several reasons. First, this modality is cost-effective as
compared to other kinds of sensors. Second, audio data collection does not suffer from the existence of obstacles.
Finally, this type of sensor is less invasive than other methods in terms of privacy2.

However, since the performance of the acoustic sensors can be easily contaminated by environment noise, how
to extract effective features that represent the characteristic of the audio signal is a non-trivial task. Multiple
methods based on harmonic line association (HLA)3, discrete wavelet transform4, and wavelet packet transform5

have been proposed for extracting features from acoustic signals. Besides the environment noise, the non-
stationary phenomena during recording, including vehicle state, recording conditions, and testing sites, make
the classification task even more challenging. Thus advanced classification algorithms are necessary to ensure
reliable classification performance.

Various machine learning algorithms have been applied to solve the classification problem. For example,
estimated harmonics’ amplitudes have been used as the features and a multi-layer neural network was trained
for decision making6. A fuzzy logic rule-based classifier was designed based on the HLA feature vector7. There
are also other methods to solve the acoustic classification problem, such as using Gaussian mixture models8, and
support vector machine9. Recently, deep learning-based classification methods are also proposed for acoustic
classification. For example, convolutional networks are used to decide the class of an audio clip, trained on log
mel spectrogram10.

Although the ground vehicle classification problem has been extensively studied in terms of feature extraction
and decision making, there are few works about introducing probabilistic learning methods to solve the problem
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by producing outputs with uncertainty quantification. Multi-class Gaussian process (MCGP)11,12, as a Bayesian
non-parametric classification method, has been studied in the past few years and is a promising option for vehicle
classification. Particularly, the recent works in distributed Gaussian process (DGP)13,14 provide an approach
to aggregate predictions from local GP classifiers, which can be treated as a promising way to achieve decision
fusion in wireless sensor networks.

Inspired by these novel techniques13–15, in this paper, a distributed MCGP algorithm is proposed to solve the
ground vehicle classification problem using acoustic data. The proposed algorithm achieves a robust performance
regardless of the vehicle speed, recording distance, and the test site. By introducing a tractable decision-level
fusion, the classifier is designed to be resilient to environmental noise. In addition, via a sparse representation of
GP and by considering training multiple local GP classifiers for each information source instead of a single and
global one (based on the whole data set), the scalability of MCGP is further improved. The proposed algorithm
is evaluated on the acoustic-seismic classification identification data set (ACIDS).

In brief, the main contributions of this work are the followings: 1) we adopt an MCGP method to classify
noisy and non-stationary acoustic data from multiple classes of ground vehicles; 2) a distributed Gaussian
process method is introduced to achieve the decision-level fusion which helps the classifier to be resilient to
environmental noises and reduces computational costs; 3) the proposed algorithm is validated over a real data
set. The distributed MCGP classification method offers competitive performance as compared to the MCGP
based on the data-level fusion where only one global MCGP is trained using data from all the sensors

The remaining part of this paper is structured as follows. Section 2 gives a formulation of the considered
MCGP classification problem as specified in.15 Section 3 presents DGP methods which we use to achieve a
decision-level fusion for ground vehicle classification, followed by performance evaluation in Section 4. Finally,
Section 5 summarizes this paper and discusses future work.

2. MULTI-CLASS GAUSSIAN PROCESS CLASSIFICATION

Below we describe the MCGP classification framework, the formulation adopted in this paper is from15.

2.1 Labeling Rule

Assume there is a data set of N instances. The input data can be defined as X = (x1,x2, · · · ,xN )⊺ and the
corresponding target class label can be defined as y = (y1, y2, · · · , yN )⊺. In a multi-class classification problem,
denote C as the number of classes, for a target label i, we have yi ∈ (1, 2, · · · , C). The aim is to train a classifier
to predict the label y∗ of any test input x∗.

To formulate an MCGP classification problem, we first define C latent functions as fc(·), with c ∈ C =
{1, 2, · · · , C}. Each of them corresponds to a different class. Based on the latent functions, the labeling rule can
be written as

yi = argmax
c∈C

fc(xi). (1)

The rationale of assigning a label behind this rule is based on the value of the latent function which has the
largest output at input xi.

Following the labeling rule, define f(xi) = (f1(xi), f2(xi), · · · , fC(xi))
⊺ as the set of values of C latent

functions, the distribution of the label yi conditional on f(xi) can be given by

p(yi|f(xi)) =
∏

c 6=yi

H(fyi
(xi)− fc(xi)), (2)

where H(·) is a unit step function.
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2.2 Gaussian Process for Classification

In order to solve the multi-class classification problem via GP, a GP prior is placed on each latent function,
which can be represented as

fc(x) ∼ GP(0, kx,x′), (3)

where kx,x′ denotes the covariance function.

Define f = {fi}
N

i=1. To make predictions of the latent functions and further classify any test data, based on
the likelihood (2) and the GP prior (3), assuming independence among the latent functions fc, we can derive the
posterior distribution following Bayes’ rule as

p(f |y) ∝ p(y|f)p(f) =
N
∏

i=1

p(yi|f(xi))

C
∏

c=1

p(fc), (4)

where fc = (fc(x1), fc(x2), · · · , fc(xN ))⊺.

The likelihood presented in (2) is non-Gaussian, which leads to an intractable inference since computing the
exact posterior is infeasible. Therefore, the posterior (4) needs to be approximated.

2.3 Sparse Gaussian Process

In addition to the non-Gaussian likelihood problem discussed in the previous section, another major difficulty
in the GP-based MCGPC method is that the computational complexity related to prediction grows cubically
in the number of data points due to the inversion and determinant of the prior covariance matrix. This limits
the scalability of GP and makes it inefficient to solve classification and regression problems with large-scale data
sets.

One popular and reliable approach to reduce the computational cost is to obtain a sparse approximation of
the original N ×N covariance matrix to summarize the dependence of the whole training data using M inducing
points (also referred to as pseudo points)16. Define Zc = (z1, z2, · · · , zM ) as a set of inducing points for each
latent function, which will lie in the same space as the training input. Associated with the inducing points, we
define the corresponding outputs (inducing variables) as uc. The value of the latent function at xi can then be
obtained from the predictive distribution of a Sparse GP as

p(fc | uc) = N
(

fc|K
c
X,Zc

(Kc
Zc,Zc

)−1uc,K
c
X,X −Kc

X,Zc
(Kc

Zc,Zc
)−1Kc

Zc,X

)

, (5)

where Kc
X,Zc

is a N × M covariance matrix of function (fc) between the values at the data inputs X and
the inducing points Zc. Kc

Zc,Zc
is the covariance matrix among the inducing points. Importantly, now only

the M × M covariance matrix Kc
Zc,Zc

needs to be inverted, and the computational complexity is reduced to

O(NM2), which is significantly low considering M ≪ N . Under sparse GP, the prior distribution of uc can be
written as p(uc) = N (uc | 0,Kc

Zc,Zc
).

In practice, the values of the inducing variables uc are unknown and are treated as latent variables which can
be approximated as a Gaussian distribution q(uc). The approximated distribution can be learned via variational
inference, which will be described in Section 2.5.

2.4 Multi-Class GP Classification

Combining all the aspects discussed in the previous sections, the joint distribution of all the latent variables and
observed variables can be written as

p(F,U,y) =

N
∏

i=1

p(yi|f(xi))

C
∏

c=1

p(fc|uc)p(uc), (6)

where F = (f1, f2, · · · , fN )⊺ is the matrix of latent function values at inputs X = (x1,x2, · · · ,xN )⊺. U =
(u1,u2, · · · ,uC)

⊺ is the matrix of inducing variables, and y is the vector of labels.

The posterior distribution of the latent variables F and U can be acquired via Bayes’s rule as

p(F,U | y) =
p(F,U,y)

p(y)
(7)
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2.5 Posterior Approximation based on Variational Inference

In this section, the posterior distribution is approximated using variational inference. The approximation (which
is also referred to as variational distribution) to the exact posterior (7) can be written as

q(F,U) =

C
∏

c=1

p(fc|uc)q(uc), (8)

where q(uc) is Gaussian distributions.

To achieve an analytical approximation, the variational distribution needs to be as similar to the target
posterior as possible. This problem is solved by minimizing the Kullback-Leibler (KL) divergence between the
variational distribution q(F,U) and the target posterior distribution p(F,U| y). This can be solved equivalently
by maximizing the evidence lower bound (ELBO) 17, which can be written as

ELBO = Eq

[

log
p(F,U,y)

q(F,U)

]

=

N
∑

i=1

Eq [log p(yi|f(xi))]−
C
∑

c=1

KL(q(uc)|p(uc)), (9)

where KL(·|·) is the KL divergence and Eq[·] is the mathematical expectation operation. Please see Villacampa-
Calvo et al.15 for further details about how to compute a stochastic estimate of the ELBO and how to use the
posterior approximation for target class prediction.

3. DISTRIBUTED GAUSSIAN PROCESS

The previous section describes building an MCGP to solve the classification problem. In practice, the data
can be from multiple sources and fusing all the data to train a global classifier can incur high computational
costs and may overlook the potential local features of individual information sources. In this section, inspired
by the idea of divide-and-conquer13, the distributed GP (DGP) methods are introduced to achieve a decision-
level fusion, by first training local MCGPs based on data from each information source and then aggregating
predictions from local MCGPs to a more reliable high-level prediction. In addition, DGP can also help to reduce
the computational cost since each local GP only needs to deal with a part of the data.

The first type of DGP schemes is the product-of-experts (PoEs)18. The idea of this approach is to multiply
the local predictive distributions for an overall decision. Given the data D(s) collected by sensor s, the PoE
predicts a latent function value f(x∗) at a corresponding test input x∗ according to

p(f(x∗) | x∗,D) =

S
∏

s=1

ps(f(x∗) | x∗,D
(s)), (10)

where S is the number of local GPs (sensors). Moreover, µi(x∗) and σ2
i (x∗) represent the predicted mean and

variance of the s-th local GP. Since the product of these Gaussian predictions is proportional to a Gaussian
distribution, the closed form of the aggregated predicted mean and variance can be calculated as

µPoE
∗ = (σPoE

∗ )2
S
∑

s=1

σ−2
s (x∗)µs(x∗), (11)

(σPoE
∗ )−2 =

S
∑

s=1

σ−2
s (x∗). (12)

The PoE model provides a straightforward way to aggregate local predictions and sidesteps the weight as-
signment problem in other local approximated GP models such as the mixture-of-expert model19. However, this
model becomes overconfident when making predictions, especially in regions without any training data.

The generalised product-of-experts (GPoE) model20 improves PoE by adding weights β to the local predic-
tions, which can reflect the contributions of different local GPs. In this work, we consider using the number of
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training instances per class as the weight, which is then normalized by the size of the training data. This ensures
∑S

i βi = 1. The GPoE predicts a function value f(x∗) at a test input x∗. The predicted distribution and the
closed forms of the aggregated predicted mean and variance can be written as

p(f(x∗) | x∗,D) =
∏S

s=1
pβs

s (f(x∗) | x∗,D
(s)), (13)

µGPoE
∗ = (σGPoE

∗ )2
∑S

s=1
βsσ

−2
s (x∗)µs(x∗), (14)

(σGPoE
∗ )−2 =

∑S

s=1
βsσ

−2
s (x∗). (15)

The next section presents results from real data and performance validation of the algorithms.

4. PERFORMANCE EVALUATION AND VALIDATION

4.1 Acoustic-Seismic Classification Identification Data Set

The proposed method is evaluated on ACIDS, which is an ideal data set for developing and training acoustic
classification/identification algorithms. This data set contains acoustic and seismic time series data collected
from 9 different types of ground vehicles as they pass by a fixed location. A three-element equilateral triangular
microphone array and a seismic sensor located at the center of the array are used to record the sound from each
passing vehicle. The recordings were collected from four different test sites including desert, arctic, and mid-
Atlantic environments, with vehicle speeds ranging from 5 to 40 km/hour, and closest point of arrival distances
to the array ranging from 25 to 100 meters. Due to the varying data collection conditions, the length of the
recording ranges from 56 to 420 seconds.

We use the acoustic data from the three microphones only. The characteristic of the ACIDS is presented in
Table 1.

Table 1: The number of acoustic records for each type of vehicle

Vehicle type Class label Number of recordings

Heavy-tracked

1 62
2 37
8 35
9 21

Light-tracked 4 27

Heavy-wheeled
3 9
5 39

Light-wheeled
6 35
7 7

The following subsection 4.2 describes the harmonics model for features extraction.

4.2 Harmonic Structure Analysis

The harmonic model21 can extract the acoustic signal features for classification and we adopt this model here.
The extracted input features include the fundamental frequency, the number of harmonic components, and
the magnitude of each harmonic component. In this paper, we utilize a fast algorithm in Nielsen et al.22

for computing the non-linear least squares estimate (NLSE) of the fundamental frequency and the number
of harmonic components, based on which we can locate the harmonic frequency and its magnitude for each
component.
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(a) Time-frequency response of acoustic recording 6 (b) Time-frequency response of acoustic recording 29

Figure 1: Time (second)-frequency (Hz) responses of two acoustic recordings from class label 1 (i.e. heavy-tracked
vehicle).

4.2.1 Data Segmentation

The harmonic structure estimated from the recording is non-stationary since the distance between the vehicle
and the microphones is changing and the signal-to-noise ratio (SNR) of the data is varying. Therefore, it is
impractical to utilize the whole set of data as one training instance. Instead, inspired by Wu and Mendel7, the
estimated parameters are grouped into vectors representing a number of instances, with the length of 5 seconds
and 40% overlapping between contiguous blocks. Each block is treated as one training instance.

In addition, due to the different conditions under which the acoustic data is collected (e.g. different travelling
speeds and different environmental conditions), the length of each recording varies. When the vehicle is far away
from the microphone array, the acoustic data mainly consists of background noise, whereas when the vehicle
is closer to the array, namely in the middle part of a run, the data consist of acoustic emissions of the ground
vehicle as well as the noise. To eliminate the impact of background noise, we limit the training and testing data
to a 40-second window centered on the midpoint of the recording data.

4.2.2 Feature extraction

Based on the data segmentation in Section 4.2.1, we extract the features over each overlapping block. Specifically,
we take a Maximum a Posterior (MAP) estimate of the harmonic order over all overlapping blocks introduced in
Section 4.2.1, and then this MAP harmonic order is taken as input for the estimation of fundamental frequency
in each overlapping block. After obtaining the fundamental frequency, the Maximum likelihood (ML) estimation
of the linear weights of each harmonic component in the harmonic model is obtained, by which the magnitude
at each component can be calculated.

For some of the recordings, the applied harmonic analysis method can only identify a limited number of
harmonic components. As an example, here we present two time-frequency responses of the 6-th and 29-th
acoustic recordings from the same heavy-tracked ground vehicle with class label 1. We can see from Figure. 1
that the left recording’s quality is better than the right one, and it is also shown in the estimation result where
the 29-th recording has an underestimated harmonic order of 2, while the 6-th recording can identify 15 harmonic
components. Therefore, recordings with poor quality are excluded from the MGPC training and test process.
In this paper, by adjusting the threshold (number of harmonic components) of the exclusion, three data sets are
built for performance evaluation and the corresponding threshold value is set to be 5, 8, and 10.

4.3 Numerical Results

The data is collected from each sensor and preprocessed via the discussed method; then we spilt it equally into
the training and the test set. Since ACIDS contains three microphones, three local GP classifiers are trained
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independently using their local training data sets. After that, the three local classifiers make predictions based
on three different test data sets (from three microphones), respectively. The aggregation method is then applied
to fuse the local predictions into a global prediction. Table 2 shows the training error and the corresponding
negative log-likelihood (NLL) of each local classifier and a global MCGP classifier based on data from all the
sensors. The used training and test data are based on selecting recordings from the original ACIDS which meet
the exclusion threshold of having at least 5 harmonics. The test errors and NLLs of each local MCGP classifier,

Table 2: Average training error and NLL: harmonic threshold=5
Training set 1 Training set 2 Training set 3 Global MCGP

Training error 0.1814 0.2099 0.1908 0.2290
Training NLL 1.5071 1.8486 1.5741 1.8225

Table 3: Average test error and NLL: harmonic threshold=5

Test data set 1 Test data set 2 Test data set 3
Test error NLL Test error NLL Test error NLL

Local MCGP 1st sensor 0.3179 2.1751 0.3013 2.1423 0.3014 2.0817
Local MCGP 2nd sensor 0.3298 2.4501 0.3319 2.3512 0.2972 2.2491
Local MCGP 3rd sensor 0.2982 2.0780 0.2782 2.0357 0.2965 1.9826
Distributed MCGP-PoE 0.3003 1.7653 0.2831 1.6427 0.2851 1.6082
Distributed MCGP-GPoE 0.2989 1.7600 0.2810 1.4555 0.2766 1.4467
Global MCGP 0.2968 2.1574 0.2789 2.0651 0.2645 1.9978

the distributed classifier based on two aggregation methods, and the global MCGP classifier are presented in
Table 3. We observe that as compared to the predictions from the local classifiers, the aggregated prediction
has a lower NLL and competitively well prediction performance. For the third test set, the aggregation result
outperforms the local classifier. In addition, by considering the weight of each local classifier, GPoE outperforms
PoE with both lower test error and test NLL. Finally, as compared to the case when only a global MCGP is
trained based on data of all the sensors, the proposed method performs competitively well in terms of the test
error and even achieves a smaller NLL. This demonstrates that when the data is relatively less representative,
DGP-based MCGP can achieve reliable classification with lower computational cost.

Table 4: Average training error and NLL: harmonic threshold=8
Training set 1 Training set 2 Training set 3 Global MCGP

Training error 0.0746 0.0711 0.0539 0.0699
Training NLL 0.3933 0.4844 0.4361 0.4817

Table 5: Average test error and NLL: harmonic threshold=8

Test data set 1 Test data set 2 Test data set 3
Test error NLL Test error NLL Test error NLL

Local MCGP 1st sensor 0.1153 0.5593 0.1283 0.6188 0.1633 0.8157
Local MCGP 2nd sensor 0.1294 0.5859 0.1446 0.6508 0.138 0.755
Local MCGP 3rd sensor 0.1211 0.6764 0.1242 0.7028 0.1263 0.7191
Distributed MCGP-PoE 0.1111 0.5815 0.1225 0.6024 0.1271 0.7104
Distributed MCGP-GPoE 0.1095 0.5720 0.1062 0.5068 0.1263 0.6556
Global MCGP 0.0887 0.5247 0.1013 0.5666 0.1128 0.6677
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Table 6: Average training error and NLL: harmonic threshold=10
Training set 1 Training set 2 Training set 3 Global MCGP

Training error 0.0248 0.0262 0.0250 0.0263
Training NLL 0.2189 0.2086 0.2056 0.1870

Table 7: Average test error and NLL: harmonic threshold=10

Test data set 1 Test data set 2 Test data set 3
Test error NLL Test error NLL Test error NLL

Local MCGP 1st sensor 0.1102 0.5585 0.1024 0.6087 0.1125 0.6436
Local MCGP 2nd sensor 0.0923 0.3907 0.0958 0.4251 0.0861 0.4049
Local MCGP 3rd sensor 0.1074 0.5163 0.1273 0.5972 0.0903 0.3784
Distributed MCGP-PoE 0.0964 0.4935 0.1024 0.5169 0.0819 0.4213
Distributed MCGP-GPoE 0.0895 0.4809 0.0853 0.4679 0.0611 0.3586
Global MCGP 0.0606 0.3066 0.0656 0.3340 0.0583 0.2831

Table 8: Training time in second

Harmonic threshold
5 8 10

Training set 1 987.69 842.45 513.93
Training set 2 993.40 847.02 533.40
Training set 3 1028.01 1173.35 505.81
Global MCGP 3026.36 2615.32 1536.58

The training and test results based on a new data set with the exclusion threshold of 8 are presented in Tables
4 and 5. This data set selects fewer recordings for training and testing as compared to the previous experiments,
which means this time fewer undesirable recordings are involved. From the results, we can find that overall the
training and test errors are greatly reduced due to less undesirable data being used. This also helps to improve
the aggregation process since now GPoE achieves the lowest test errors with all three test sets. The training and
test results based on a data set with the exclusion threshold of 10 are presented in Tables 6 and 7.

Based on all the three data sets built with different harmonic thresholds, the training time for the proposed
distributed classification algorithm and the global MCGP-based scheme is presented in Table 8. We can find
that the proposed decision-level fusion achieves a shorter training time for each training set as compared to the
case that the data from multiple microphones are first fused and then used for training a global MCGP. Due to
the fact that DGP can be implemented in parallel23, the computational efficiency can be greatly improved as
compared to the global MCGP-based scheme.

5. CONCLUSION

This paper proposes a distributed MCGP classification algorithm for ground vehicle identification using acoustic
signals. The harmonic structure analysis is used feature extraction. The predictions from local classifiers are
then aggregated into a high-level prediction to achieve the decision-level fusion. Simulations based on the ACIDS
confirm that the proposed algorithm can outperform local classifier in terms of classification error and NLL.
Particularly, it performs competitively well as compared to a global MCGP classifier based on the data-level
fusion.
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