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A B S T R A C T

Reducing stationary or very slowly moving queues is one way of reducing congestion, pollution,
inefficient stop–start travel and carbon emissions in cities. This paper considers traffic signal
control and road pricing together; aiming to eliminate queueing in at least a subnetwork. Link-
exit green-times and link-exit bottleneck delays are considered first in some detail; largely using
a simple network. The paper then shows that policy 𝑃0, specified in Smith (1980, 2015), is
capacity-maximising for a general network with vertical queueing delays. Then link exit prices,
co-ordinated with green-times and also red times, are considered. It is shown that using prices
(instead of delays) in the 𝑃0 control policy maximises the capacity of a general steady state
network, with zero queues. This steady state capacity-maximisation + zero-queue result is then
extended to dynamic networks in two ways; an equilibrium extension and a day-to-day stability
extension. The equilibrium extension shows that 𝑃0-with-prices maximises network capacity
with zero queues in a dynamic network and the stability extension shows that a smoothed
version of the 𝑃0-with-prices policy, called 𝑃 𝐟

0 , is able to deliver some stability as well as
zero queue capacity maximisation. A simple example network has been given to illustrate
several of the control-with-prices policies. It is shown that a biased version of 𝑃0-with-prices,
𝑃𝐡-with-prices, yields, for this simple network, higher utility than 𝑃0-with-prices itself.

1. Introduction

Reducing vehicle queues is one way of reducing congestion, pollution and carbon emissions in cities, because these are typically
significantly correlated with vehicle queue volumes.

This paper seeks combined traffic signal control and road pricing strategies which allow a maximum network throughput, at a
user-equilibrium, while maintaining zero queues. It is envisaged that this may be achieved within an entire given network or within
selected subsets of a given network. Both general steady state and dynamic network models are considered. The dynamic model
utilises a continuum model of traffic signal control.

A simple example network is also considered. For this network several zero-queue throughput maximising policies are stated,
including one policy which is, for this simple network, not only zero-queue and throughput maximising but also utility maximising,
at a user equilibrium, with a natural definition of utility.

✩ This article belongs to the Virtual Special Issue on ‘‘Dynamic Network 2020’’.
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Maximising throughput is a well-known objective for signal-control strategies and requires little introduction or justification.
here are many advantages of having throughput maximising control strategies available. For example, compared to other strategies,
throughput maximising control strategy allows more network road capacity to be allocated to pedestrians while maintaining a

iven vehicular throughput.

.1. A brief justification of the user-equilibrium constraint

Smith et al. (2019b) specifies signal control strategies which maximise network throughput when there is no route choice and
t a user-equilibrium when there is route choice even if demand exceeds network capacity, but only for certain simple networks.

Seeking to maximise throughput at a user equilibrium flow pattern is natural: if the throughput-maximising flow pattern is not a
user equilibrium then travellers will naturally swap routes as time passes, so the flow pattern will not be stable. The purpose of
the user equilibrium constraint is to avoid the possibility that drivers are encouraged to switch routes tomorrow to a set of route
choices with less throughput.

There are many other stability issues which arise in this paper, and including the user equilibrium constraint is one natural
response to the need for stability with respect to routes choices.

1.2. A justification of the zero-queue constraint

This paper seeks control policies, using signal green-times and prices together, which eliminate queueing in at least a subnetwork
at a user equilibrium, while still maximising throughput. There are several reasons for seeking zero queues or small queues. Reducing
queue volumes in a network to zero, or even to close to zero, may be expected to have a substantial impact on congestion, pollution
and carbon emissions in that network. Reducing congestion should of course reduce public transport running times and costs.

To further justify aiming to reduce queues to zero or close to zero, we now consider the negative impacts of queues in more detail.
We consider six aspects. Firstly, queues typically represent delays and stop–start travel which are both inefficient for travellers and
also more energy consuming than non-queueing travel. Secondly, queueing vehicles pollute the environment by producing micro-
size particulates when vehicles brake and, in the case of internal combustion powered vehicles, exhaust emissions when vehicles
accelerate. Thirdly, long queues may block upstream junctions and such blockages may, and often will, severely reduce network
efficiency. Fourthly, in certain sensitive locations, usually in towns like the City of York, UK, but also elsewhere (for example
Stonehenge), queues of motorised vehicles obstruct and detract from the visual prospect of inspiring architecture. Fifthly, queues
take up road space, so removing queues will on many occasions release some roadspace for other uses, perhaps for active travel
including pedestrians and cyclists, as extra convivial space outside popular restaurants or as locations for cycle racks. Sixthly, public
transport is currently often impeded by general traffic queues, so in these cases removing queues will reduce running time for public
transport vehicles. In this last instance the greatest benefits to public transport will arise from reductions of queues on those parts
of the network where there are no bus lanes which allow public transport vehicles to bypass queues.

Much research has been devoted to all of the six aspects of queueing above. Here we mention just two. The following studies each
consider one of the aspects above, but in quite different ways. Gao et al. (2020) demonstrate empirically the link between [speed
changes and acceleration] and [fuel consumption and emissions]. This study shows the disbenefits of stop–start travel associated
with queueing, which is our first aspect in the previous paragraph. This study concentrates on diesels, but presumably petrol results
will be similar. Ngoduy et al. (2016) demonstrate, theoretically and computationally, that distributing queues more evenly across
a network helps to avoid spillbacks, reducing large queues in damaging locations. This study addresses the third aspect discussed
in the previous paragraph.

This paper seeks controls which allow a maximum network throughput subject to (i) zero queueing and (ii) user equilibrium.
The paper may be regarded as an initial study of this combination and leaves open many opportunities for further study.

1.3. A short technical background

This subsection gives a short technical traffic control background.
There is a large literature on traffic signal control and on road user charging; but much less on their combination. Bell (1992)

suggested using traffic signal control and automatic debiting and Smith et al. (1994a) is one of the few papers which has considered
this combination of network controls in detailed network models.

Many local responsive traffic signal control policies have been considered, by Wongpiromsarn et al. (2012), Varaiya (2013a,b)
(the ‘‘maxpressure’’ or MP policy), Gregoire et al. (2014), Kouvelas et al. (2014) and Le et al. (2015). This work has been motivated
by research in telecommunication networks; including especially the classic paper by Tassiulas and Ephremides (1992). The main aim
of all these policies is to make the most of the capacity of a given network; or to maximise network throughput when network inflows
are within the network capacity and route choices or turning proportions are fixed and known. In this work the user equilibrium
condition is not imposed.

Wada (2013), Wada and Akamatsu (2012) show how control and tradeable permits might work together. Road pricing has
also been studied in Tan et al. (2015) and Zhou et al. (2015). Yang et al. (2019) consider congestion pricing and perimeter
control. Cantarella et al. (2019) study deterministic and stochastic traffic assignment. It would be interesting to combine some
2

of the ideas presented in these papers with the capacity-maximising control approach taken here.
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Recently there have been considerations of how newly available data, sometimes including data obtained from connected
ehicles, may be best utilised within urban traffic control. This is a large subject and here we just mention three studies.

Mohebifard et al. (2019) present a formulation and a distributed solution technique for cooperative signal control and perimeter
raffic metring in urban street networks, allowing for varying numbers of connected vehicles. In case studies using implementation
n Vissim the cooperative signal timing and perimeter control yielded significant improvements in traffic operations, compared to
ndependent signal control and perimeter control.

Ma et al. (2020) consider how vehicle trajectory data may be utilised to optimise fixed time signal timings at isolated
ntersections. Approximately uniform arrivals during a time period are assumed, but the method might also be applied to different
ime periods. The paper suggests that, instead of total delay or total travel time as the control objective to be minimised by a control
ystem, the number of oversaturated stages might be utilised instead. The control design in this paper aims at minimising the number
f oversaturated stages.

Mercader et al. (2020) envisage using travel times recorded by mobile phones as inputs to distributed traffic control systems,
ncluding especially backpressure control systems. The paper suggests theoretical work to help design suitable control responses
o this increasingly available data. The data used here might also be used to implement control/pricing strategies such as those
uggested in this paper.

Zhu et al. (2020) considers a combined equilibrium model with users of cars and electric bicycles; it would be interesting to
xtend the control ideas in this paper to that two-mode situation.

This paper has strong connections to work on the control of telecommunication networks. See for example Eryilmaz and
rikant (2006) who describe and analyse a joint scheduling, routing and congestion control mechanism for wireless networks, that
symptotically guarantees stability of the buffers and fair allocation of the network resources. The authors prove the asymptotic
ptimality of a primal–dual congestion controller, in which queue-lengths serve as common information. The connections between
he primal dual algorithm here and the work in this paper merits further study.

.4. Outline and the main contributions of this paper

Initially this paper considers signal-controlled networks with a steady demand and vertical queueing delays. Such networks
re simple ‘‘quasi-dynamic networks", where queueing is represented but demand is constant. See Bliemer et al. (2012), Nesterov
nd de Palma (2003) and Smith et al. (2019a). This paper gives control policies using just signal green-time proportions, and not
nvolving prices, which, when there is vertical queueing, maximise network capacity at a user-equilibrium in these quasi-dynamic
ases.

It is shown that under certain conditions prices may be used to replace the equilibrium delays arising from the vertical queues,
ielding a user equilibrium with zero queueing, provided a particular policy for determining green-time proportions in terms of prices,

instead of delays, is followed.
The paper then considers dynamic networks and again gives (green-time)-price policies which maximise network capacity at a

user equilibrium with zero queueing. Some of the ideas utilised here are simple, special, versions of those utilised by Mounce (2006,
2009).

Finally the paper shows that there is a spectrum of responsive (green-time)-price control policies which provide stability of the
zero-queue equilibrium in a dynamic case. In each case considered here the (green-time)-price policy depends on a suitable ‘‘barrier
function’’ 𝐟 , and there are many of these.

1.5. Main conditions and assumptions in the paper, and some complicating issues

It is assumed that on each day travellers face locally determined variable link-exit prices as well as locally determined variable
link-exit green-times.

The main additional conditions or assumptions in the paper are:
(a) that on each day the same unknown demand, within the network capacity with zero queues, occurs;
(b) that travellers swap to cheaper routes as day succeeds day; and
(c) that over time green-time proportions and prices change according to the relevant 𝑃0-with-prices policy. Sometimes red-time

proportions are utilised instead of green-time proportions.
The motivation here is that day-to-day travel is often repetitive with the same or similar journeys undertaken day after day.
The dynamic modelling utilises a continuum model of signal control where green-time proportions and flows are defined at each

time instant. Such models have often been used in signal control studies; see, for example, Han and Gayah (2015).
Given the results obtained in this paper it would be natural to seek to relax the conditions used to obtain our results. For example,

it would be natural to consider on-and-off, instead of continuum, models of signal control and then either (i) aim for zero overflow
queues rather than zero queues or (ii) allow the link traversal times, which are constant here, to vary; aiming now to adjust platoon
trajectories so that they pass smoothly through a signal-controlled junction with zero queueing. Here the overflow queue on an
approach to a signal is the queue at the end of the green-period.

To operate the control system here fully the vehicles, or possibly the vehicle occupants, must be connected to the traffic signal control
system and must be automatically debited when a congested signal controlled link is exited.

When practical implementation is considered there are many complicating aspects of this zero queue control/pricing scheme.
3

These complicating aspects include:
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Fig. 1. A simple two route signal controlled network; link 2 is wider and longer than link 1.

(i) What happens if an incident causes queues to arise?
(ii) How should very large input flows be treated?
(iii) How do we ensure that location information is anonymous but still useful?
These and other questions will be the subject of further research; the paper will leave many opportunities open for further

consideration.

2. Network control with variable green-times and vertical queueing delays or prices

A simple network model is used in this section to illustrate the main themes in the paper, including especially (a) ‘‘network capacity-
maximisation’’ and (b) the need for a supply-feasibility constraint, ensuring that demand is not too large. (a) and (b) are illustrated in
Sections 2.2.2 and 2.2.3.

Aside from Sections 2.2.2 and 2.2.3, this section contains only a simple example and related definitions and concepts.

2.1. A simple network example

Consider the network in Fig. 1 in a steady state equilibrium with vertical queues. Let

𝑠1 = the saturation flow at the link 1 exit (in vehicles per second);
𝑠2 = the saturation flow at the link 2 exit (in vehicles per second);
𝐶1 =the freeflow time of travel via route 1 (in seconds; constant);
𝐶2 =the freeflow time of travel via route 2 (in seconds; constant);
𝑏1 = the bottleneck delay at the link 1 exit (in seconds);
𝑏2 = the bottleneck delay at the link 2 exit (in seconds);
𝐛 = the vector [𝑏1, 𝑏2];
𝑝1 = the price paid at the link 1 exit (in seconds);
𝑝2 = the price paid at the link 2 exit (in seconds);
𝑄1 =the queue volume on link 1 (in vehicles);
𝑄2 =the queue volume on link 2 (in vehicles);
𝑋1 =the steady flow on route 1 (in vehicles per second);
𝑋2 =the steady flow on route 2 (in vehicles per second);
𝐗 = the vector [𝑋1, 𝑋2];
𝐺1 =the duration of stage 1 (dimensionless) as a proportion;
𝐺2 =the duration of stage 2 (dimensionless) as a proportion;
𝐆 = the vector [𝐺1, 𝐺2];
𝑔1 = the proportion of time that link 1 is green (dimensionless);
𝑔2 = the proportion of time that link 2 is green (dimensionless);
𝐠 = the vector [𝑔1, 𝑔2];
𝑇 = a given steady flow from the origin to the destination (vehicles per second).

Prices are measured in seconds. Here we assume that all travellers have the same value of time.
In the equilibrium model described here the bottleneck delays on unsaturated link exits will be zero and the bottleneck delays

on saturated link exits will be determined by a steady state equilibrium condition (that more costly routes are not used); they are
not determined by a cost-flow function. Thus at equilibrium queueing delays balance the travel costs along different routes. In this
case there are just two routes.

With vertical queueing the cost of traversing route 1 is 𝐶1 + 𝑏1 (seconds) and the cost of traversing route 2 is 𝐶2 + 𝑏2 (seconds).
Suppose given a steady demand 𝑇 (vehicles per second) and that

𝑋1 +𝑋2 = 𝑇 ,𝑋1 ≥ 0, 𝑋2 ≥ 0. (1)

Suppose green-times satisfy:
4

𝐺1 + 𝐺2 = 1, 𝐺1 ≥ 0, 𝐺2 ≥ 0. (2)
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These suppositions apply to this small network and similar assumptions apply throughout the paper. Suppose for definiteness here
that route 2 is longer and wider than route 1; so that

𝑠1 < 𝑠2 and 𝐶1 < 𝐶2.

uppose finally that

𝑠1 < 𝑇 ≤ 𝑠2.

he question then arises: for given 𝑇 which stage green time vector 𝐆 should be chosen?
It is also natural to seek responsive control policies which have the chance of responding favourably using only local data; and

also, hopefully, simple calculations. However it is not always clear that locally determined signal control policies achieve sound
network-wide consequences. One policy which has been designed to achieve sound network-wide effects, under certain conditions,
is policy 𝑃0. In this paper we look at how the responsive policy 𝑃0 may be used and then show how 𝑃0 may be used effectively with
prices rather than delays. The following sections outline the original form of 𝑃0 using this simple network and show how prices
may be introduced in this simple case.

2.2. The 𝑃0 responsive control policy for this simple network, capacity-maximisation and supply-feasibility

2.2.1. The original 𝑃0 control policy
For this network the original 𝑃0 signal control policy may be stated as follows: choose stage green-times 𝐺1 and 𝐺2 so that

𝑠1𝑏1 = 𝑠2𝑏2. If for example delays 𝑏1, 𝑏2 are given by 𝑏1 = 𝑄1∕(𝑠1𝐺1) and 𝑏2 = 𝑄2∕(𝑠2𝐺2) then 𝑃0 green-times 𝐺1, 𝐺2 are determined
by:

𝑄1∕𝐺1 = 𝑠1𝑏1 = 𝑠2𝑏2 = 𝑄2∕𝐺2

or (provided queues are positive)

𝐺1 = 𝑄1∕(𝑄1 +𝑄2) and 𝐺2 = 𝑄2∕(𝑄1 +𝑄2).

This definition is given in Smith (1980) and Smith (1979b). For further information see Smith (2015), Smith et al. (2015) and Smith
et al. (2019a).

We now use this simple network model to demonstrate, in Section 2.2.2, a capacity maximising property of 𝑃0. We also demonstrate,
in Section 2.2.3, the need for a supply-feasibility constraint. Both capacity-maximisation and supply-feasibility constraints are relevant
throughout the paper.

2.2.2. A capacity-maximising effect of 𝑃0 on this network
In this simple network model, described in Section 2.1, the demand 𝑇 satisfies 𝑠1 < 𝑇 ≤ 𝑠2 and, with vertical queueing, the travel

time via route 𝑖 is here defined to be 𝐶𝑖 + 𝑏𝑖 (𝑖 = 1, 2). Here we agree that (𝐗,𝐆,𝐛) is a feasible equilibrium if

(1) and (2) hold, 𝑋1 ≤ 𝑠1𝐺1 and 𝑋2 ≤ 𝑠2𝐺2, and 𝐶1 + 𝑏1 = 𝐶2 + 𝑏2.

Consider the following values of 𝐺1, 𝐺2, 𝑋1, 𝑋2, 𝑏1, 𝑏2, where 𝛥 = 𝐶2 − 𝐶1 > 0:

𝐺1 = (𝑠2 − 𝑇 )∕(𝑠2 − 𝑠1), 𝐺2 = (𝑇 − 𝑠1)∕(𝑠2 − 𝑠1), 𝑋1 = 𝑠1𝐺1, 𝑋2 = 𝑠2𝐺2, 𝑏1 = 𝑠2𝛥∕(𝑠2 − 𝑠1), 𝑏2 = 𝑠1𝛥∕(𝑠2 − 𝑠1).

t is easy to check that these values constitute a feasible equilibrium as defined above and also satisfy policy 𝑃0 because 𝑠1𝑏1 = 𝑠2𝑏2.
o policy 𝑃0 holds too. Thus the extra condition imposed by policy 𝑃0 (𝑠1𝑏1 = 𝑠2𝑏2 here) does not prevent the existence of an
quilibrium (𝐗,𝐆,𝐛) and, for this reason, we say in this paper that 𝑃0 maximises the capacity of this simple network.

More generally applicable definitions of capacity maximisation are given in Section 3 below.

.2.3. A more generally applicable feasibility constraint
Section 2.2.2 above shows that if 𝑇 ≤ 𝑠2 then there is a feasible equilibrium consistent with 𝑃0; such a feasible equilibrium

s specified in 2.2.2 above. To obtain such capacity-maximisation results in more general networks, we now write the feasibility
onstraints here, including 𝑇 ≤ 𝑠2, in a more generally applicable way, as follows. We let:

𝐷 = {𝐗;𝑋1 +𝑋2 = 𝑇 ,𝑋1 ≥ 0, 𝑋2 ≥ 0}, 𝐹 = {𝐆;𝐺1 + 𝐺2 = 1, 𝐺1 ≥ 0, 𝐺2 ≥ 0},

𝑆 = {(𝐗,𝐆);𝑋1 ≤ 𝑠1𝐺1 and 𝑋2 ≤ 𝑠2𝐺2},

nd then consider the feasibility condition:

(𝐷 × 𝐹 ) ∩ 𝑆 is non-empty.

his will be the constraint we use throughout the paper, with more general specifications of 𝐷, 𝐹 and 𝑆. This constraint will always ensure
hat the demand is not too large for the network being considered. In the case of this simple network it is easy to see that this
onstraint implies that 𝑇 ≤ 𝑠 .
5
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2.3. A dynamical extension of the 𝑃0 policy

Here we utilise a dynamical version of the 𝑃0 policy as stated in Section 2.2.1 above. In this dynamical version only the stage
reen-time dynamics are specified, assuming given delays. Delay changes will be considered later.

For given delays 𝑏1 and 𝑏2 and given stage green-times 𝐺1 and 𝐺2:

1. if 𝑠1𝑏1 > 𝑠2𝑏2 and 𝐺2 > 0, swap green time from stage 2 to stage 1,
2. if 𝑠1𝑏1 < 𝑠2𝑏2 and 𝐺1 > 0. swap green time from stage 1 to stage 2, and
3. otherwise, keep the green times constant.

Here, in this section, we say that the stage green-time vector 𝐆 satisfies the 𝑃0 policy for this network if and only if no green-time
motion is possible fitting in with 1–3 above. This is the case if and only if:

1. 𝑠1𝑏1 > 𝑠2𝑏2 and 𝐺2 = 𝑔2 = 0, or
2. 𝑠1𝑏1 < 𝑠2𝑏2 and 𝐺1 = 𝑔1 = 0, or
3. 𝑠1𝑏1 = 𝑠2𝑏2.

This condition is the original, equilibrium, version of the 𝑃0 policy (with queues) for this simple network and may be written
equivalently as shown below, as a variational inequality, in Section 4.2.

In the next subsection we introduce 𝑃0-with-prices.

2.4. The 𝑃0-with-prices responsive control policy for the simple network in Fig. 1

Here only the green-time dynamics are described; the changes in the prices will be discussed below. For given prices 𝑝1 and 𝑝2
and given stage green-times 𝐺1 and 𝐺2:

1. if 𝑠1𝑝1 > 𝑠2𝑝2 and 𝐺2 > 0, swap green time from stage 2 to stage 1,
2. if 𝑠1𝑝1 < 𝑠2𝑝2 and 𝐺1 > 0. swap green time from stage 1 to stage 2, and
3. otherwise, keep the green times constant.

Here, in this section, we say that the stage green-time vector 𝐆 satisfies the 𝑃0-with-prices policy for this network if and only if no
green-time motion is possible fitting in with 1–3 above. This is the case if and only if:

1. 𝑠1𝑝1 > 𝑠2𝑝2 and 𝐺2 = 𝑔2 = 0, or
2. 𝑠1𝑝1 < 𝑠2𝑝2 and 𝐺1 = 𝑔1 = 0, or
3. 𝑠1𝑝1 = 𝑠2𝑝2.

This condition is the equilibrium version of the 𝑃0-with-prices policy for this simple network and may be written equivalently as
shown below, as a variational inequality, in Section 4.3.

2.5. Contribution

This Section 2 has given definitions of policy 𝑃0, illustrated a capacity-maximising effect of this control policy on a simple
network and also defined the 𝑃0-with-prices policy. In Section 2.2.3 we have illustrated the feasibility constraint: (𝐷 × 𝐹 ) ∩ 𝑆 is
non-empty. This feasibility constraint is utilised in the proofs of Theorems 1–4.

3. Capacity maximising traffic signal control policies

Capacity maximising traffic signal control policies are central elements of this paper. These policies typically are not delay-minimising. In
this section we define this capacity-maximising concept in three scenarios: the first uses vertical queueing, route-flows and stage green-times,
the second uses vertical queueing, link-flows and link green-times and the third uses prices, link flows and link green-times. These three
definitions apply to the simple network in Section 2 and we later show how to utilise these definitions with more general networks. The
policies shown to be capacity-maximising in Theorem 1–4 below are fairly simple and take reasonable account of traffic re-routeing, as
illustrated in Section 2

3.1. Three definitions

Suppose given a capacitated signal-controlled network with specified routes and signal stages, and a control policy 𝑃𝑠𝑡𝑎𝑔𝑒
determining the stage green-time vector 𝐆 in terms of the vertical queueing delay vector 𝐛.

Definition 1. For a given network with traffic signals, the control policy 𝑃𝑠𝑡𝑎𝑔𝑒 ‘‘maximises network capacity with vertical queueing
delays" will here mean: if an inelastic demand is such that there is a route-inflow vector 𝐗, stage green-time vector 𝐆 which together meet
the inelastic demand and are within the capacity limitations of the given network then there is a route-inflow vector 𝐗∗, a vertical delay
vector 𝐛∗ and a stage green-time vector 𝐆∗ which meet the given inelastic demand, are within the capacity limitations of the given network,
6

and also satisfy:
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(a) 𝐗∗ is a Wardrop equilibrium with vertical queueing delay when the delay vector is 𝐛∗ and
(b) 𝐆∗ satisfies the control policy 𝑃𝑠𝑡𝑎𝑔𝑒 when the delay vector is 𝐛∗.

There is an equivalent link formulation as follows. Suppose given a control policy 𝑃 determining the link green-time vector 𝐠 in
erms of vertical queueing delay b. This definition also applies to the network in Fig. 1 and to a general network.

efinition 2. The control policy 𝑃 ‘‘maximises network capacity with vertical queueing delays" will here mean: if an inelastic demand
is such that there is a link-flow vector 𝐱, link green-time vector 𝐠 which together meet the inelastic demand and are within the capacity
imitations of the given network then there is a link flow vector 𝐱∗, a vertical queueing delay vector 𝐛∗ and a link green-time vector 𝐠∗ which
meet the given inelastic demand, are within the capacity limitations of the given network, and also satisfy:

(a) 𝐱∗ is a Wardrop equilibrium with vertical queueing delay when the delay vector is 𝐛∗ and
(b) 𝐠∗ satisfies the control policy 𝑃 when the delay vector is 𝐛∗.

It is obvious here, with our simple network, that these two definitions are equivalent since the stage green-times = the link
green-times and there is also a similar simple connection between route flows and link flows. Under certain conditions it is easy
to generalise this to a more general network where each link green-time equals the sum of certain stage green-times and each link
flow equals the sum of certain route-flows. In this case too the two definitions are equivalent. See for example Smith (2015).

In this paper we also seek to use prices and green-times; aiming to reduce queueing delays. Thus we are led to the following
variation of Definition 2, where prices, instead of delays, control green-times. This allows the possibility of reducing queueing delays
to zero or to small values, while still allowing equilibrium. To consider this possibility we now consider the following Definition 3.

In Definition 3 we suppose given a control policy 𝑃 determining the link green-time vector 𝐠 in terms of the vector 𝐩 of prices
charged to exit the approaches at each junction. This definition also applies to the network in Fig. 1 and to a general network.

Definition 3. The control policy 𝑃 ‘‘maximises network capacity with prices (and zero queueing delays)" will here mean: if an inelastic
demand is such that there is a link-outflow vector 𝐱 and a link green-time vector 𝐠 which together meet the inelastic demand and are within
the capacity limitations of the given network with zero queues then there is a link outflow vector 𝐱∗, a price vector 𝐩∗ and a link green-time
vector 𝐠∗ which meet the given inelastic demand, are within the capacity limitations of the given network with zero queues, and also satisfy:

(a) 𝐱∗ is a Wardrop equilibrium with prices when the price vector is 𝐩∗ and
(b) 𝐠∗ satisfies the control policy 𝑃 when the price vector is 𝐩∗.

This Definition 3 may be thought of with reference to steady state and dynamic demand. In the dynamic case the given demand
varies with time and x, g, p are vector functions of time. An explicitly dynamic definition is given as Definition 13 below in
Section 11.

3.2. Contribution

Capacity maximising traffic signal control policies, utilising queueing delays and prices, have been defined. The three definitions
here apply to the simple network in Section 2 and we later show how to utilise these definitions with more general networks. The
control policies shown to be capacity-maximising in this paper, in Theorem 1- 4 below, are fairly simple and take reasonable account
of traffic re-routeing, as illustrated in Section 2. The feasibility constraint: ‘‘(𝐷×𝐹 )∩𝑆 is non-empty" (introduced in Section 2) ensures
that the given demand is ‘‘within the capacity limitations of the given network", and is utilised in the proofs of Theorems 1–4.

4. Normality, variational inequalities and more general statements of 𝑷𝟎 and 𝑷𝟎-with-prices

This section gives some geometrical definitions which are the basis of the central results in this paper, and then uses these to specify
various signal control policies developed from 𝑃0. Throughout this section 𝐷 is to be a closed bounded convex set.

4.1. Normality and variational inequalities

Let 𝐷 be a closed bounded convex subset of some Euclidean space. Let 𝐯 and 𝐱∗ be points (vectors) in the Euclidean space. Let
𝐱∗ ∈ 𝐷.

Definition 4. The statement that

𝐯 is normal at 𝐱∗ to the set 𝐷

means that
( ∗)
7

𝐯 ⋅ 𝐱 − 𝐱 ≤ 0 for all 𝐱 ∈ 𝐷.
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Fig. 2. The diagonal faint line 𝐿 makes a right angle with 𝐯 and all 𝐷 is in the upper half plane determined by the line 𝐿.

Fig. 2 illustrates this statement in two dimensions. The vector 𝐯 is based at 𝐱∗ and joins 𝐱∗ to 𝐱∗ + 𝐯: the dot product of 𝐯 and
𝐱 − 𝐱∗ is never positive for any choice of 𝐱 ∈ 𝐷.

Each of the following statements is a variational inequality:

𝐱∗ ∈ 𝐷 and 𝐯 is normal at 𝐱∗ to the set 𝐷;

𝐱∗ ∈ 𝐷 and 𝐯 ⋅
(

𝐱 − 𝐱∗
)

≤ 0 for all 𝐱 ∈ 𝐷.

These both say that if you stand at 𝐱∗ and look in direction 𝐯 there will be no point in 𝐷 in front of you. Usually in a variational
inequality like this the vector 𝐯 will be a function of 𝐱∗.

4.2. The 𝑃0 policy redefined as a variational inequality for the simple network in Fig. 1

For our simple network let 𝐹 = {𝐠; 𝑔1 + 𝑔2 = 1, 𝑔1 ≥ 0, 𝑔2 ≥ 0}.

Definition 5. We shall say that ‘‘𝐠 satisfies the 𝑃0 control policy when the vertical queueing delay vector is 𝐛" for our simple
network if and only if

𝐠 ∈ 𝐹 and (𝑠1𝑏1, 𝑠2𝑏2) is normal at 𝐠 to 𝐹 .

See the previous section for a definition of ‘‘the vector 𝐯 is normal at 𝐱∗ to the set 𝐷". Here of course

𝐯 = (𝑠1𝑏1, 𝑠2𝑏2), 𝐱∗ = 𝐠 and 𝐷 = 𝐹 .

Thus the equilibrium form of 𝑃0 in the second paragraph of Section 2.3 has been expressed as a variational inequality; this variational
inequality summarises the three conditions specifying the equilibrium form of the 𝑃0 policy in the third paragraph of Section 2.3.

4.3. The 𝑃0-with-prices policy redefined as a variational inequality for the simple network in Fig. 1

Definition 6. We shall say that ‘‘𝐠 satisfies the 𝑃0-with-prices control policy when the price vector is 𝐩" for our simple network if
and only if

𝐠 ∈ 𝐹 and (𝑠1𝑝1, 𝑠2𝑝2) is normal at 𝐠 to 𝐹 .

See the previous section for a definition of ‘‘the vector 𝐯 is normal at 𝐱∗ to the set 𝐷". Here of course

𝐯 = (𝑠1𝑝1, 𝑠2𝑝2), 𝐱∗ = 𝐠 and 𝐷 = 𝐹 .

Thus the equilibrium form of 𝑃0-with-prices in Section 2.4 has been expressed as a variational inequality; this variational inequality
summarises the three conditions specifying the equilibrium form of the 𝑃0-with-prices policy in Section 2.4.

4.4. Contribution

This section has given some geometrical definitions, involving variational inequalities, which are the basis of the central results
in this paper. This section has also redefined, for the simple network, the equilibrium forms of (i) policy 𝑃0 with vertical queueing
8

delay and (ii) policy 𝑃0-with-prices; using variational inequalities.
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5. Definition of equilibrium with vertical queueing delay vector 𝐛 in a more general network

This section introduces a general network with traffic signals and using this gives a more general definition of a Wardrop equilibrium
with vertical queueing delay.

5.1. A more general network with delays and prices

In this section we suppose given a more general single mode network with capacitated links and signal controlled junctions,
each with a specified set of signal stages. We will exploit the geometry described in Section 4 to generalise the results in Section 2
so that they apply to this more general network. We consider a steady state and follow the line adopted with the simple network
above.

We suppose that our given more general single-mode network has:
(i) for each OD pair, given routes (these are loop-free sets of contiguous links) joining that OD pair; and
(ii) for each junction, given sets of links which are shown green simultaneously during each signal stage at that junction.
We let:

𝑠𝑖 = the saturation flow at the link 𝑖 exit (in vehicles per second);
𝑐𝑖 = the freeflow time of travel via link 𝑖 (in seconds; constant);
𝑋𝑟 =the steady flow of vehicles on route 𝑟;
𝑥𝑖 = the steady flow of vehicles on link 𝑖 (in vehicles per second);
𝐺𝑘 =proportion of time that stage 𝑘 is green (dimensionless);
𝑔𝑖 = proportion of time that link 𝑖 is green (dimensionless);
𝑏𝑖 = queueing delay at the link 𝑖 exit (secs);
𝑝𝑖 = price paid at the link 𝑖 exit (secs); and
𝑑𝑖𝑗 =the steady demand for travel from node 𝑖 to node 𝑗 (vehicles per second).

We suppose that there are 𝐾1 routes and 𝐾2 stages. We also suppose that there are defined:
(iii) a set 𝐷+ of non-negative route flow vectors 𝐗 with 𝐾1 co-ordinates 𝑋𝑟 ≥ 0 meeting all the given origin–destination demands

𝑑𝑖𝑗 ; and
(iv) a set 𝐹+ of stage green-time vectors 𝐆 with 𝐾2 co-ordinates 𝐺𝑘 ≥ 0, where the stage green-times at each junction add to 1.
These sets are defined as follows: Given the demands 𝑑𝑖𝑗 the set 𝐷+ is to be given by:

𝐷+ = {𝐗 ≥ 𝟎; for each OD pair 𝑖𝑗,
∑

{𝑟; route 𝑟 joins node 𝑖 to node 𝑗}
𝑋𝑟 = 𝑑𝑖𝑗} ⊂ 𝑅𝐾1

,

nd the set 𝐹+ is to be given by:

𝐹+ = {𝐆 ≥ 𝟎; for each junction 𝑗,
∑

{𝑘; stage 𝑘 is at junction 𝑗}
𝐺𝑘 = 1} ⊂ 𝑅𝐾2

.

Given 𝐷+ above we now specify a set 𝐷 of link flow vectors 𝐱 with co-ordinates 𝑥𝑖 ≥ 0 meeting all the given origin–destination
emands 𝑑𝑖𝑗 , and given 𝐹+ above we now specify a set 𝐹 of feasible link green-time vectors 𝐠 with co-ordinates 𝑔𝑖 ≥ 0 (arising by
dding certain stage green-times 𝐺𝑘 at each junction, as specified below and illustrated below in Section 5.2).

Given 𝐷+, for any route-flow vector 𝐗 of route flows in 𝐷+, the link 𝑖 flow is defined by:

𝑥𝑖(𝐗) =
∑

{𝑟; route 𝑟 traverses link 𝑖}
𝑋𝑟,

nd then the set 𝐷 is defined by:

𝐷 = {𝐱(𝐗);𝐗 ∈ 𝐷+}.

lso, given 𝐹+, for any vector 𝐆 of stage green-times in 𝐹+, the link 𝑖 green-time is defined by:

𝑔𝑖(𝐆) =
∑

{𝑘; stage 𝑘 shows green to link 𝑖}
𝐺𝑘,

nd then the set 𝐹 is defined by:

𝐹 = {𝐠(𝐆);𝐆 ∈ 𝐹+}.

Given the above variables we now specify the set 𝑆 of supply feasible (link flow vector, link green-time vector)
[

𝐱, 𝐠
]

pairs to
e those pairs for which each link flow 𝑥𝑖 is no greater than the saturation flow 𝑠𝑖 multiplied by the link green-time proportion 𝑔𝑖.
hus we put:

𝑆 = {(𝐱, 𝐠); 𝑥𝑖 − 𝑠𝑖𝑔𝑖 ≤ 0 for all 𝑖}.

ere, there are no non-negativity constraints such as 𝑥 ≥ 0, 𝑔 ≥ 0.
9
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Fig. 3. A signal-controlled T-junction with 3 stages, 6 approaches and 6 turning movements.

.2. An example of a signal-controlled junction; showing how link green-times 𝑔𝑖 are related to stage green-times 𝐺𝑘

Fig. 3 shows a junction with approach links or lanes 1, 2, 3, 4, 5 and 6. Each approach lane has an arrow at the lane exit showing
he turn which is permitted when exiting the lane. The signal has 3 stages: stage 1, stage 2 and stage 3; the approach links given
reen during the three stages are as follows:

Thus, for example, the green-time awarded to approach link 1 = stage 1 green-time + stage 2 green-time. All six link green
times are shown below, in terms of the three stage green times:

𝑔1 = 𝐺1 + 𝐺2 𝑔4 = 𝐺3

𝑔2 = 𝐺2 𝑔5 = 𝐺2 + 𝐺3

𝑔3 = 𝐺1 𝑔6 = 𝐺3

We suppose that the sum of stage green-times at each junction = 1 and that stage green-times are non-negative.

5.3. Wardrop equilibrium with queueing delays

Suppose given a general network with sets 𝐷,𝐹 and 𝑆 as specified above in Section 5.1. Suppose that

(𝐷 × 𝐹 ) ∩ 𝑆 is non-empty.

This condition is a more generally applicable version of the same statement in Section 2.2.2, because the specifications of 𝐷, 𝐹 and
𝑆 are here more general. Then in this steady state case we have the following generally applicable definition of Wardrop equilibrium
with vertical queueing delays.

Definition 7. Following Smith (1987) we here agree that 𝐱∗ is a Wardrop equilibrium with vertical queueing delay vector 𝐛 if

𝐱∗ ∈ 𝐷 and −(𝐜 + 𝐛) is normal at 𝐱∗ to 𝐷.

This is a Variational Inequality or a 𝑉 𝐼 , and is illustrated in Fig. 2 by letting

𝐯 = −(𝐜 + 𝐛.)

This definition is equivalent to the usual definition of a Wardrop equilibrium: ‘‘no traveller has a quicker route", provided that all
travellers have the same value of time and the link 𝑖 travel time 𝑡𝑖 is given by:

𝑡𝑖 = 𝑐𝑖 + 𝑏𝑖

seconds. The, standard, proof of this is essentially given in Smith (1979a) and elsewhere.
Some account may be taken of spatial as opposed to vertical queuing by using the link travel time formula:

𝑡𝑖 = 𝑐𝑖 + 𝑘𝑖𝑏𝑖 instead of 𝑡𝑖 = 𝑐𝑖 + 𝑏𝑖

where 𝑘𝑖 < 1. See Smith et al. (2019a). We do not do this in this paper.

5.4. Contribution

This section has introduced a general network with traffic signals and either queueing delays or prices. Using this network we
give a more general definition of a Wardrop equilibrium with vertical queueing delay.
10
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6. Proof that 𝑷𝟎 is capacity-maximising in the general network above, with vertical queueing

In this section (i) we extend the equilibrium definition of 𝑃0 in Section 2.2.1 to allow for the general network specified in Section 5.1.
Then (ii) we show that 𝑃0 is capacity maximising with vertical queueing. The variational inequalities defined in Section 4 are central to both
(i) and (ii).

Suppose that the general network has 𝑛 links with link saturation flows 𝑠𝑖, vertical bottleneck delays 𝑏𝑖 and link green-times 𝑔𝑖.
Let:

𝐬 =
[

𝑠1, 𝑠2, 𝑠3,… , 𝑠𝑛−1, 𝑠𝑛
]

,𝐛 =
[

𝑏1, 𝑏2, 𝑏3,… , 𝑏𝑛−1, 𝑏𝑛
]

and 𝐠 =
[

𝑔1, 𝑔2, 𝑔3,… , 𝑔𝑛−1, 𝑔𝑛
]

.

A general definition of the 𝑃0 policy is then as follows.

Definition 8. Given the general network above in Section 5.1, and given (𝐬, 𝐠,𝐛),

the 𝑃0 control policy is satisfied at (𝐠,𝐛)

if and only if:

𝐠 ∈ 𝐹 and 𝐬◦𝐛 =
[

𝑠1𝑏1, 𝑠2𝑏2 … , 𝑠𝑛−1𝑏𝑛−1, 𝑠𝑛𝑏𝑛
]

is normal at 𝐠 to 𝐹 . (3)

Here 𝐹 is the set of feasible link green-time vectors specified in Section 5.1. Condition (3) is a Variational Inequality and is
illustrated in Fig. 2 by letting

𝐯 = 𝐬◦𝐛, 𝐱∗ = 𝐠 and 𝐷 = 𝐹 .

Theorem 1. The 𝑃0 control policy specified in Definition 8 is capacity-maximising for the general single-mode network with vertical queueing
in Section 5.1.

Proof. Suppose that

(𝐷 × 𝐹 ) ∩ 𝑆 is non-empty.

To prove the theorem we need to show that, on this assumption, there is an equilibrium with vertical queueing delay consistent
with policy 𝑃0. Equilibrium with vertical queueing delay and policy 𝑃0 are defined in Definitions 7 and 8.

To do this, for (x, g) ∈ (𝐷 × 𝐹 ) ∩ 𝑆, let

𝑍(𝐱, 𝐠) =
∑

𝑖
𝑐𝑖𝑥𝑖.

Consider the following Variational Inequality Problem.
VI problem 1:

Find (𝐱∗, 𝐠∗) ∈ (𝐷 × 𝐹 ) ∩ 𝑆 such that
− (𝐜, 𝟎) = −𝑔𝑟𝑎𝑑𝑍(𝐱∗, 𝐠∗) is normal at (𝐱∗, 𝐠∗) to (𝐷 × 𝐹 ) ∩ 𝑆.

This is an LP. VI problem 1 has a solution since 𝑍 is continuous and (𝐷×𝐹 )∩𝑆 is non-empty and compact and so 𝑍 has a minimum
over the set (𝐷 × 𝐹 ) ∩ 𝑆. If (𝐱∗, 𝐠∗) is any such 𝑍-minimiser then (𝐱∗, 𝐠∗) must satisfy variational inequality 1; if this were not true
then there would be a descent direction for 𝑍 at (𝐱∗, 𝐠∗) and this cannot be so since (𝐱∗, 𝐠∗) is a minimiser of 𝑍.

Let (𝐱∗, 𝐠∗) solve variational inequality problem 1. Then

−(𝐜, 𝟎) (= −𝑔𝑟𝑎𝑑𝑍(𝐱∗, 𝐠∗)) is normal at (𝐱∗, 𝐠∗) to (𝐷 × 𝐹 ) ∩ 𝑆.

o

− (𝐜, 𝟎) = (𝐧𝐷,𝐧𝐹 ) + 𝐧𝑆 (4)

here

𝐧𝐷 is normal at 𝐱∗ to 𝐷,𝐧𝐹 is normal at 𝐠∗ to 𝐹 and 𝐧𝑆 is normal at (𝐱∗, 𝐠∗) to 𝑆.

Now

𝑆 = 𝑆1 × 𝑆2 × 𝑆3 ×⋯ × 𝑆𝑛−1 × 𝑆𝑛 where 𝑆𝑖 = {(𝑥𝑖, 𝑔𝑖); 𝑥𝑖 − 𝑠𝑖𝑔𝑖 ≤ 0}.

𝑖 has no non-negativity constraints such as 𝑥𝑖 ≥ 0, 𝑔𝑖 ≥ 0. Therefore any normal to 𝑆𝑖 is of the form 𝑏𝑖(1,−𝑠𝑖) = (𝑏𝑖,−𝑠𝑖𝑏𝑖), where 𝑏𝑖 ≥ 0,
nd so any normal to 𝑆 is of the form

𝐧𝑆 = (𝐛,−𝐬◦𝐛)

or some vector 𝐛 where all the co-ordinates 𝑏𝑖 ≥ 0. Therefore, using (4),

− (𝐜, 𝟎) = (𝐧 ,𝐧 ) + 𝐧 = (𝐧 ,𝐧 ) + (𝐛,−𝐬◦𝐛) (5)
11
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Subtracting 𝐧𝑆 = (𝐛,−𝐬◦𝐛) from both sides of (5) yields:

(−(𝐜 + 𝐛), 𝐬◦𝐛) = (𝐧𝐷,𝐧𝐹 ) is normal at (𝐱∗, 𝐠∗) to 𝐷 × 𝐹 ,

and so

−(𝐜 + 𝐛) = 𝐧𝐷 is normal at 𝐱∗ to 𝐷 (6)

and

𝐬◦𝐛 = 𝐧𝐹 is normal at 𝐠∗ to 𝐹 . (7)

Thus:

by (6), 𝐱∗ is a Wardrop equilibrium with delay vector 𝐛 as defined in definition 7 in section 5.3
and

by (7), 𝐠∗ satisfies policy 𝑃0 with delay vector 𝐛 as defined in definition 8 early in this section 6.

We have now proved Theorem 1, that policy 𝑃0 is capacity maximising with vertical queueing delays; see Definition 2 above
in Section 3. This theorem may be extended somewhat (i) by allowing for spatial queueing as in Smith et al. (2019a) and (ii) by
redefining 𝑏𝑖 as the excess of the actual link travel time 𝑡𝑖 over 𝑐𝑖; that is by re-defining 𝐛 to be that vector 𝐛 satisfying 𝐛 = 𝐭 − 𝐜,
where the 𝑡𝑖 are measured.

6.1. Contribution

In this section (i) we extended the equilibrium definition of 𝑃0 in Section 2.3 to allow for the general network specified in
Section 5.1. Then (ii) we have shown that 𝑃0 is capacity maximising if queueing is vertical. The variational inequalities defined in
Section 4 are central to both (i) and (ii). In the next sections we show how queueing delays may be replaced by prices under certain
conditions.

7. Definition of wardrop equilibrium with a price vector 𝐩

In this section we define Wardrop equilibria with prices using the variational inequalities introduced in Section 4.
Consider the general network described in Section 5.1. Here we use prices 𝑝𝑖 instead of vertical delays 𝑏𝑖, supposing that all

𝑏𝑖 = 0 and

(𝐷 × 𝐹 ) ∩ 𝑆 is non-empty.

We follow Definition 7 above in Section 5.3,

Definition 9. Given the general network above in Section 5.1, and given 𝐩, we here agree that

𝐱∗ is a Wardrop equilibrium with price vector 𝐩

if and only if:

𝐱∗ ∈ 𝐷 and −(𝐜 + 𝐩) is normal at 𝐱∗ to 𝐷. (8)

Condition (8) is a Variational Inequality or a 𝑉 𝐼 , as illustrated in Fig. 2 with

𝐯 = −(𝐜 + 𝐩).

Again this definition is equivalent to the usual ‘‘more costly routes are not used".

8. Proof that the 𝑷𝟎-with-prices policy is capacity-maximising (with zero queueing delays) in the general single-mode
network with prices in Section 5.1

In this section (i) we extend the equilibrium definition of 𝑃0-with-prices in Section 2.4 to allow for the general network specified in
Section 5.1. Then (ii) we show that 𝑃0-with-prices is capacity maximising. The variational inequalities defined in Section 4 are central to
both (i) and (ii).
12
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8.1. The 𝑃0-with-prices control policy, in link form, as a solution to a VI

Here we extend the equilibrium definition of 𝑃0-with-prices in Section 2.4 to allow for the general network specified in Section 5.1
bove. Suppose that the general network has 𝑛 links with link saturation flows 𝑠𝑖, link bottleneck prices 𝑝𝑖 and link green-times 𝑔𝑖.
et:

𝐬 =
[

𝑠1, 𝑠2, 𝑠3,… , 𝑠𝑛−1, 𝑠𝑛
]

,𝐩 =
[

𝑝1, 𝑝2, 𝑝3,… , 𝑝𝑛−1, 𝑝𝑛
]

and 𝐠 =
[

𝑔1, 𝑔2, 𝑔3,… , 𝑔𝑛−1, 𝑔𝑛
]

.

A general definition of the 𝑃0-with-prices policy is then as follows.

Definition 10. Given the general network above in Section 5.1, and given (𝐬, 𝐠,𝐩),

the 𝑃0-with-prices control policy is satisfied at (𝐠,𝐩)

if and only if:

𝐠 ∈ 𝐹 and 𝐬◦𝐩 =
[

𝑠1𝑝1, 𝑠2𝑝2 … , 𝑠𝑛−1𝑝𝑛−1, 𝑠𝑛𝑝𝑛
]

is normal at 𝐠 to 𝐹 . (9)

This definition may be compared with Definition 8; the vertical bottleneck delays in Definition 8 become prices in Definition 10
here.

8.2. The 𝑃0-with-prices control policy is capacity-maximising

Theorem 2. The 𝑃0-with-prices control policy is capacity-maximising for the general single-mode network with prices and zero delays in
Section 5.1. Here capacity-maximising is defined in Definition 3.
Outline Proof. Replace the vertical bottleneck delay vector 𝐛 in the proof of Theorem 1 with the price vector 𝐩; associated parallel changes
must be made to certain words. Or apply theorem 3 with 𝐡 = 𝟎.

8.3. Contribution

In this section (i) we extended the equilibrium definition of 𝑃0-with-prices in Section 2.4 to allow for the general network
specified in Section 5.1. Then (ii) we have shown that 𝑃0-with-prices is capacity maximising. The variational inequalities defined
in Section 4 are central to both (i) and (ii).

9. A generalisation of the 𝑷𝟎-with-prices control policy for a general single-mode network

With the same general single-mode network in Section 5.1, we now generalise policy 𝑃0-with-prices slightly and prove that each of the
more general policies is also capacity-maximising.

Let

𝐡 =
[

ℎ1, ℎ2, ℎ3 … , ℎ𝑛−1, ℎ𝑛
]

be any constant 𝑛-vector 𝐡. Then, for any price vector 𝐩,

𝐬◦𝐩 + 𝐡 =
[

𝑠1𝑝1 + ℎ1, 𝑠2𝑝2 + ℎ2, 𝑠3𝑝3 + ℎ3,… , 𝑠𝑛−1𝑝𝑛−1 + ℎ𝑛−1, 𝑠𝑛𝑝𝑛 + ℎ𝑛
]

.

We follow previous definitions.

Definition 11. Given the general network above in Section 5.1, and given (𝐬, 𝐠,𝐩),

the 𝑃𝐡-with-prices control policy is satisfied at (𝐠,𝐩)

if and only if:

𝐠 ∈ 𝐹 and 𝐬◦𝐩 + 𝐡 is normal at 𝐠 to 𝐹 . (10)

Theorem 3. For any 𝑛-vector h the 𝑃𝐡-with-prices control policy is capacity-maximising, with zero queueing delays, in the general
single-mode network with prices in Section 5.1. The definition of capacity-maximising here is given in Definition 3.

Proof. This is given in Appendix A.

9.1. Contribution

We have generalised policy 𝑃0-with-prices to the policies 𝑃𝐡-with-prices, and proved that each of the 𝑃𝐡-with-prices policies is
13

also capacity-maximising.
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Fig. 4. Comparative performances of the pricing control policies 𝑃𝑃0 , 𝑃𝑃ℎ , 𝑃𝑃ℎ𝑅.

10. Comparative equilibrium evaluation of three price control policies on a small network

This section compares the equilibrium performances of several 𝑃ℎ-with-prices policies on the simple network.
Most of the calculations in this section are provided explicitly in detail in Smith et al. (2019a). Consider the network in Fig. 1;

suppose that prices 𝑝1, 𝑝2 are charged at the exits of links 1 and 2. We here consider the pricing control policies 𝑃𝟎-with-prices,
𝑃𝐡-with-prices and a third policy stated below.

Let 𝐸𝐶(𝑇 ) denote the ‘‘excess travel cost’’ (in seconds) experienced at equilibrium by each traveller when 𝑇 travellers per second
are entering the network and leaving the network. This is the excess over 𝐶1 (seconds) and includes any prices paid on links 1 and
2. 𝐶1 (seconds) is the least possible travel cost on this network.

We suppose that all travellers have the same value of time and we express all travel costs in seconds. Thus (in seconds):

𝐸𝐶(𝑇 ) = travel cost felt by each traveller at equilibrium minus 𝐶1

= 𝐶1 + 𝑝1 − 𝐶1 = 𝑝1
= 𝐶2 + 𝑝2 − 𝐶1 = 𝐶2 − 𝐶1 + 𝑝2 = 𝛥 + 𝑝2.

where 𝛥 = 𝐶2 − 𝐶1. We focus on only those 𝑇 which satisfy: 𝑠1 < 𝑇 ≤ 𝑠2.
Now suppose that for policy 𝑃𝐡-with-prices there is the possibility of modifying the policy by returning the financial equivalent

of 𝑅 seconds to each traveller; whether that traveller used the narrow road, link 1, or the longer wider road, link 2. Here we only
consider returning 𝑅 seconds where 𝑅 = the average of all prices paid = [𝑥1𝑝1+𝑥2𝑝2]∕[𝑥1+𝑥2]. Other values of 𝑅 may be considered.

10.1. Notation

We will use the following notation:

Policy 𝑃𝟎-with-prices will be written 𝑃𝑃𝟎.

Policy 𝑃𝐡-with-prices will be written 𝑃𝑃𝐡.

Policy 𝑃𝐡𝑅-with-prices will be written 𝑃𝑃𝐡𝑅.

Here 𝑅 stands for ‘‘RETURN’’: Pricing policy 𝑃𝑃𝐡𝑅 is the same as 𝑃𝑃𝐡 except that the total of all prices paid is re-distributed equally
to each traveller. So, with 𝑃𝐡𝑅,

in the evaluation below each traveller receives a rebate equal to the financial equivalent of 𝑅 seconds

where 𝑅 seconds = the average of all prices paid.
We now suppose that 𝐡 = [𝑠1𝐶1, 𝑠1𝐶2].

10.2. Comparative equilibrium evaluation of the policies 𝑃𝑃𝟎, 𝑃𝑃𝐡, 𝑃𝑃𝐡𝑅

We are now in this section supposing that 𝐡 = [𝑠1𝐶1, 𝑠1𝐶2].
To allow for the return 𝑅 in the comparative evaluation of the original policies 𝑃𝑃𝟎, 𝑃𝑃𝐡 and the modified policy 𝑃𝑃𝐡𝑅 we now

consider the objective function 𝐸𝐶(𝑇 ) − 𝑅 instead of 𝐸𝐶(𝑇 ) itself. Of course with 𝑃𝑃𝟎, 𝑃𝑃𝐡 there is no returning, 𝑅 = 0, and for
these policies 𝐸𝐶(𝑇 )−𝑅 = 𝐸𝐶(𝑇 ). Fig. 4 illustrates the comparative equilibrium performances of both the original policies 𝑃𝑃𝟎, 𝑃𝑃𝐡
and the modified policy 𝑃𝑃𝐡𝑅 using this performance measure 𝐸𝐶(𝑇 ) − 𝑅, which may be thought of as the disutility felt by each
traveller.

In Fig. 4 we suppose that 𝑠1 < 𝑇 ≤ 𝑠2. The solid lines show how the equilibrium value of 𝐸𝐶(𝑇 ) − 𝑅 varies with 𝑇 for all three
olicies. For the original pricing policies 𝑃𝑃𝟎 and 𝑃𝑃𝐡, 𝐸𝐶(𝑇 ) −𝑅 stays constant as 𝑇 varies (and 𝑅 = 0 as prices are not returned
o travellers under these policies). These results are proved in Smith et al. (2019a).
14
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For the modified policy, if 𝑇 > 𝑠1 but only slightly greater than 𝑠1, since we return just sufficient to make the policy revenue
neutral and almost all travellers use the lower route and pay a toll = 𝛥 secs, nearly 𝑇𝛥 seconds is returned and so nearly 𝛥 seconds
is returned to each traveller. So 𝐸𝐶(𝑇 ) − 𝑅 must be very close to zero if 𝑇 is just slightly larger than 𝑠1, as illustrated in Fig. 4.

On the other hand if 𝑇 is very close to, but less than, 𝑠2 very few travellers use the lower short route and pay; thus in this case
there is very little returning, 𝑅 is close to 0 and 𝐸𝐶(𝑇 )−𝑅 must be very close to 𝛥, as illustrated in Fig. 4. (In this latter case almost
all travellers are on the long upper route at equilibrium.)

The return of prices must not affect route choices, which is why we have returned the same 𝑅 seconds to all travellers whether
they used the longer or the shorter route.

Returning all the prices paid in this way makes the new policy 𝑃𝑃𝐡𝑅 less expensive for travellers; which should enhance the
attractiveness of the pricing/control policy. Returning all the prices paid makes 𝑃𝑃𝐡𝑅 revenue neutral, of course.

Fig. 4 illustrates a wide performance disparity between the different policies.

10.3. Utility maximisation

For this network, define the utility of an individual traveller by:

traveller utility = 𝑈 = 𝑅 − 𝐸𝐶(𝑇 ).

Then plainly, the value of 𝑈 depends on the policy adopted and from the graphs in Fig. 3 it is plain that, for every 𝑇 satisfying
𝑠1 < 𝑇 < 𝑠2,

𝑈 [𝑃𝑃𝟎] < 𝑈 [𝑃𝑃𝐡] < 𝑈 [𝑃𝑃𝐡𝑅].

Thus, of the three policies considered, 𝑃𝑃𝐡𝑅 yields the maximum traveller utility for this network. A little thought shows that no
other pricing and green-time policy, with non-negative total revenue, can yield a higher traveller utility and so 𝑃𝑃𝐡𝑅 is utility
maximising for this particular network and this particular definition of utility.

For this network only, this result is easily generalised to cover elastic demand, where 𝑇 depends on the cost of travel; by adding
the graph of an inverse demand function to Fig. 4. The standard utility is then maximised for this particular network by control policy
𝑃𝑃𝐡𝑅.

If returning prices paid is not permitted then 𝑃𝑃𝐡 yields, for this network, the maximum traveller utility of the two no-return
policies; since the price on the longer route is zero with this policy and so the total of the prices paid is least. Again this result may
be generalised to include a standard elastic demand: for this network, if there is a standard elastic demand then the standard utility
is maximised by policy 𝑃𝑃𝐡.

10.4. Contribution

This section has compared the equilibrium performances of several green-time-pricing policies 𝑃𝑃𝐡 and a policy 𝑃𝑃𝐡𝑅 which
returns all of the prices paid, on the simple network. By Theorem 3, all the 𝑃𝑃𝐡 policies are capacity-maximising; however there
is a wide disparity in the results in this section. For example, if 𝐡 = [𝑠1𝐶1, 𝑠1𝐶2] then the policy 𝑃𝑃𝐡𝑅 gives typically much greater
utility than some of the other 𝑃𝑃𝐡 policies, where prices are not returned and 𝐡 ≠ [𝑠1𝐶1, 𝑠1𝐶2].

11. A zero queue window-constrained dynamic control model with green-times and prices

In this section we extend one of the previous steady state results to certain dynamic networks, using similar methods including variational
inequalities as central elements. We show that 𝑃0-with-prices maximises the capacity of a dynamic network with zero queues.

11.1. Introduction and notation

The previous green-time/pricing results may be generalised in various different ways to design controls for dynamic networks.
There are very many possibilities and here we consider one dynamic development which is surely one of the most simple; in part
because it involves finite dimensional Euclidean space and avoids functional analysis. The model is a time-slice model.

We suppose given a network, a positive 𝛿 and 𝑀 time-slices of duration 𝛿 seconds:

(0𝛿, 1𝛿], (1𝛿, 2𝛿],… , ((𝑚 − 1)𝛿, 𝑚𝛿],… , ((𝑀 − 1)𝛿,𝑀𝛿]. (11)

In the model below all journeys must be started and completed within the overall time window (0, 𝑇 ] = (0, 𝛿𝑀].
The overall time window (0, 𝑇 ] = (0, 𝛿𝑀] might be the whole day and might be a time period in which motor vehicles are

permitted to service a large City Centre. A third example might be where a major event has specified latest times of arrival, say
10 min before kick-off, and travellers departure times from home are also restricted. Future extensions of the setup here might
include commuters with fixed windows in which to travel to work; with both their departure times and their arrival times subject
to hard constraints; and a further extension might then include soft constraints or targets with penalties for early and late arrival
at work.

Suppose that the given network has 𝑁 links, a given set of 𝐾2 signal stages or phases and a given set of 𝐾1 routes; each route
15
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route-inflow rate to a single route 𝑟 during time-slice 𝑚 is constant over the time-slice and = 𝑋𝑟𝑚. The green-time proportion awarded
to stage 𝑘 during time-slice 𝑚 is constant over the time-slice and = 𝐺𝑘𝑚.

A complete list of the notation in this section is as follows.Note: In the expressions below for the link travel times 𝑐𝑖𝛿, the partial
route travel times 𝐶𝑖𝑟𝛿 and the whole route travel times 𝐶𝑟𝛿; 𝑐𝑖, 𝐶𝑖𝑟 and 𝐶𝑟 are all fixed positive integers.

𝑠𝑖𝑚 = the saturation flow at the link 𝑖 exit during time-slice 𝑚 (in vehicles per second);
𝐬 = [𝑠𝑖𝑚] = the 𝑁𝑀 vector with co-ordinates 𝑠𝑖𝑚;
𝑐𝑖𝛿 = the freeflow time of travel via link 𝑖 (in seconds; each 𝑐𝑖 is a constant positive integer);
𝐶𝑖𝑟𝛿 = the freeflow time of travel from the entry point of route 𝑟 to the exit of link 𝑖 (seconds);
𝐶𝑟𝛿 = the freeflow time of travel from the entry point of route 𝑟 to the exit of route 𝑟 (seconds);
𝑥𝑖𝑚 = the out-flow rate of vehicles from link 𝑖 during time interval 𝑚 (in vehicles per second);
𝐱 = [𝑥𝑖𝑚] = the 𝑁𝑀 vector with co-ordinates 𝑥𝑖𝑚;
𝑋𝑟𝑚 = the in-flow rate of vehicles to route 𝑟 during time-slice 𝑚 (in vehicles per second);
𝐗 = [𝑋𝑟𝑚] = the 𝐾1𝑀 vector with co-ordinates 𝑋𝑟𝑚;
𝑔𝑖𝑚 = proportion of time that link 𝑖 is green during time interval 𝑚 (dimensionless);
𝐠 = [𝑔𝑖𝑚] = the 𝑁𝑀-vector with co-ordinates 𝑔𝑖𝑚;
𝐺𝑢𝑚 = the proportion of time stage 𝑢 is green in time-slice 𝑚 (dimensionless)
𝐆 = [𝐺𝑢𝑚] = the 𝐾2𝑀-vector with co-ordinates 𝐺𝑢𝑚;
𝑝𝑖𝑚 = price paid at the link 𝑖 exit during time interval 𝑚; and
𝑑𝑎𝑖 ,𝑎𝑗 ,𝑚 =outflow rate from node 𝑎𝑖 during time-slice 𝑚 heading toward node 𝑎𝑗 .

Here 𝑐𝑖 is a constant positive integer, 𝐶𝑖𝑟 is the sum of the 𝑐𝑗 over all links 𝑗 on route 𝑟 up to and including link 𝑖, and 𝐶𝑟 is the
sum of all the 𝑐𝑗 over all links 𝑗 in route 𝑟.

11.2. Zero queue time-constrained demand in link flow form

We suppose given a demand 𝑑𝑎𝑖 ,𝑎𝑗 ,𝑚 for travel from each node 𝑎𝑖 to each node 𝑎𝑗 which sets out during time-slice 𝑚. These given
demands give rise to an initial set of route-inflow vectors as follows:

𝐷++ = {𝐗 ≥ 𝟎;
∑

𝑟 joins node 𝑎𝑖 to node 𝑎𝑗

𝑋𝑟𝑚 = 𝑑𝑎𝑖 ,𝑎𝑗 ,𝑚} ⊂ 𝑅𝐾1𝑀 . (12)

Consider 𝑋𝑟𝑚, a particular constant route-inflow rate over time-slice 𝑚 = (𝛿(𝑚 − 1), 𝛿𝑚]. For each link 𝑖 in route 𝑟; the constant
route-inflow rate 𝑋𝑟𝑚 over time-slice 𝑚 gives rise to a constant contribution to certain link 𝑖 outflow rates during certain future
time-slices. These contributions are here calculated by assuming there is no queueing; and, further, that the link 𝑗 traversal time
is always given by the constant 𝛿𝑐𝑗 (where 𝑐𝑗 is a positive integer). Thus, for example, if route 𝑟 comprises the 4 links numbered
1, 2, 3, 4, the contributions of the time-slice 1 inflow rate 𝑋𝑟1 to the outflow rates from these links 1, 2, 3, 4 during certain subsequent
time-slices are as follows:

the contribution of inflow rate 𝑋𝑟1 to the link 1 outflow rate 𝑥1(𝑐1+1) = 𝑋𝑟1,

the contribution of inflow rate 𝑋𝑟1 to the link 2 outflow rate 𝑥2(𝑐1+𝑐2+1) = 𝑋𝑟1,

the contribution of inflow rate 𝑋𝑟1 to the link 3 outflow rate 𝑥3(𝑐1+𝑐2+𝑐3+1) = 𝑋𝑟1,

the contribution of inflow rate 𝑋𝑟1 to the link 4 outflow rate 𝑥4(𝑐1+𝑐2+𝑐3+𝑐4+1) = 𝑋𝑟1.

The route-𝑟-time-slice-1 inflow rate, or the 𝑟1 inflow rate, 𝑋𝑟1 enters link 1 during time-slice 1. The first line here says that the leading
edge of 𝑋𝑟1 reaches the exit of link 1 after 𝑐1 time-slices of duration 𝛿, and then all of the length and volume of the route-inflow
rate 𝑋𝑟1 exits link 1 in the next time-slice (𝛿𝑐1, 𝛿(𝑐1 + 1)] of duration 𝛿. This is time-slice 𝑐1 + 1. Similarly the contributions of the
route-𝑟-timeslice-1 inflow rate 𝑋𝑟1 to the exit flows from links 2, 3 and 4 during the time-slices 𝑐1 + 𝑐2 + 1, 𝑐1 + 𝑐2 + 𝑐3 + 1 and
𝑐1 + 𝑐2 + 𝑐3 + 𝑐4 +1 are also 𝑋𝑟1 as shown above. For any other [link 𝑖 / time-slice 𝑚] the contribution of 𝑋𝑟1 to outflow rate 𝑥𝑖𝑚 = 0.
Thus (the contribution of 𝑋𝑟1 to outflow rate 𝑥𝑖𝑚) = 0 unless

(𝑖, 𝑚) ∈ {(1, 𝑐1 + 1), (2, 𝑐1 + 𝑐2 + 1), (3, 𝑐1 + 𝑐2 + 𝑐3 + 1), (4, 𝑐1 + 𝑐2 + 𝑐3 + 𝑐4 + 1)}. (13)

In this case (where route 𝑟 comprises links 1, 2, 3, 4), since link 4 is the last link in route 𝑟, the time taken for the whole of the inflow
𝑋𝑟1 to leave the whole route also = (𝑐1 + 𝑐2 + 𝑐3 + 𝑐4 +1)𝛿. The leading edge of 𝑋𝑟1 takes 𝛿(𝑐1 + 𝑐2 + 𝑐3 + 𝑐4) seconds to reach the end
of the route and then this 𝑟1 entry flow takes a further 𝛿 seconds to leave the route. We now agree that, here, with our four link
route 𝑟 and just looking at the 𝑟1 inflow (the route-𝑟 inflow rate during time-slice 1),

𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑎𝑡 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑒 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑎𝑡 𝑤ℎ𝑖𝑐ℎ 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑟1 𝑖𝑛𝑓 𝑙𝑜𝑤 ℎ𝑎𝑠 𝑒𝑥𝑖𝑡𝑒𝑑 𝑡ℎ𝑒 𝑟𝑜𝑢𝑡𝑒 𝑟.

Here this time at which the destination is reached = the time for all inflow 𝑋𝑟1 to leave the route 𝑟 = (𝑐1 + 𝑐2 + 𝑐3 + 𝑐4 + 1)𝛿.
The above detailed analysis applies also to the route-𝑟-timeslice-𝑚 inflow 𝑋𝑟𝑚 where 𝑚 > 1. In this case the time to reach the

destination is still (𝑐1 + 𝑐2 + 𝑐3 + 𝑐4 + 1)𝛿 and so the time at which the destination is reached is now (𝑚 − 1 + 𝑐1 + 𝑐2 + 𝑐3 + 𝑐4 + 1)𝛿.
This answer agrees with that given above when 𝑚 = 1.
16
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The analysis also applies to a general route 𝑟 with 𝑛(𝑟) links and with link traversal times

{𝑐𝑖1𝛿, 𝑐𝑖2𝛿,… , 𝑐𝑖𝑛(𝑟)𝛿}, (14)

entered during time-slice 𝑚. In this case the time to reach the destination is

(𝑐𝑖1 + 𝑐𝑖2 + 𝑐𝑖3 +… ,+𝑐𝑖𝑛(𝑟) + 1)𝛿 (15)

and so the time at which the destination is reached is now

(𝑚 − 1 + 𝑐𝑖1 + 𝑐𝑖2 + 𝑐𝑖3 +…+ 𝑐𝑖𝑛(𝑟) + 1)𝛿.

(This answer agrees with that given above when 𝑚 = 1 and 𝑛(𝑟) = 4.) For this route 𝑟, define the route 𝑟 traversal time to be 𝐶𝑟𝛿
where:

𝐶𝑟 = 𝑐𝑖1 + 𝑐𝑖2 + 𝑐𝑖3 +…+ 𝑐𝑖𝑛(𝑟). (16)

Then the 𝑟𝑚 inflow 𝑋𝑟𝑚 reaches the destination at time

(𝑚 − 1 + 𝑐𝑖1 + 𝑐𝑖2 + 𝑐𝑖3 +…+ 𝑐𝑖𝑛(𝑟) + 1)𝛿 = (𝑚 + 𝐶𝑟)𝛿.

We now impose a time-window constraint on the set of route-inflow vectors. If the (route 𝑟, time-slice 𝑚) combination is such
that the whole 𝑟𝑚 route-inflow 𝑋𝑟𝑚 reaches the destination after time 𝑇 = 𝑀𝛿 then in this case we impose the condition that 𝑋𝑟𝑚 = 0.
Thus this route-inflow 𝑟𝑚 is in this case here essentially prohibited. We now define demand sets which explicitly ensure that such
late-arriving route 𝑟 time-slice 𝑚 inflows are zero. Let 𝐷+ be the subset of 𝐷++ containing all route inflow vectors 𝐗 = [𝑋𝑟𝑚] ∈ 𝐷++

which also satisfy:

𝑋𝑟𝑚 = 0 whenever (𝑚 + 𝐶𝑟)𝛿 > 𝑇 . (17)

For each single route-inflow 𝐾1𝑀-vector 𝐗 ∈ 𝐷+, corresponding link 𝑖 outflow 𝑥𝑖𝑚(𝐗) in time-slice 𝑚 ≤ 𝑀 is then obtained by
addition over all the co-ordinates 𝑋𝑟𝑚′ of 𝐗 for those 𝑟𝑚′ inflows which exit link 𝑖 in time-slice 𝑚 using the equation:

𝑥𝑖𝑚(𝐗) =
∑

{𝑟𝑚′;1≤𝑟≤𝐾1 , route 𝑟 traverses link 𝑖 and 𝑚′=𝑚−𝐶𝑖𝑟}

𝑋𝑟𝑚′ . (18)

If 𝐗 ∈ 𝐷 and 𝑥𝑖𝑚 is given by (18), then 𝑥𝑖𝑚 = 0 if 𝑚 > 𝑀 . Because, for all routes 𝑟 passing through link 𝑖,

𝑚 > 𝑀 implies 𝑚′ = 𝑚 − 𝐶𝑖𝑟 > 𝑀 − 𝐶𝑖𝑟 implies 𝑚′ + 𝐶𝑟 ≥ 𝑚′ + 𝐶𝑖𝑟 > 𝑀 implies (𝑚′ + 𝐶𝑟)𝛿 > 𝑀𝛿 = 𝑇 ,

which ensures, by the definition of 𝐷+ above, that 𝑋𝑟𝑚′ = 0. Thus the link-outflow created by (18) contains no positive late-arriving
elements 𝑥𝑖𝑚, or 𝑋𝑟𝑚, and so no part of the 𝑋𝑟𝑚 inflow fails to reach its destination by time 𝑇 = 𝑀𝛿.

These co-ordinates 𝑥𝑖𝑚(𝐗) defined by (18) fit together to create the link outflow 𝑁𝑀-vector 𝐱(𝐗) = [𝑥𝑖𝑚(𝐗)] generated by 𝐗.
Note that x(X) is a linear function of the 𝐾1𝑀-vector X.

We may now define the demand set 𝐷, in a link outflow form, by putting:

𝐷 = {𝐱(𝐗);𝐗 ∈ 𝐷+}.

𝐷 is the set of demand-feasible link outflow vectors 𝐱, with co-ordinates 𝑥𝑖𝑚 ≥ 0, meeting the given inelastic origin–destination
demands 𝑑𝑎𝑖 ,𝑎𝑗 ,𝑚, within the time interval (0, 𝑇 ] = (0,𝑀𝛿], with zero queues.

As shown above, the co-ordinates 𝑥𝑖𝑚(𝐗) specified in (18) are automatically zero if 𝑚 > 𝑀 , by the definition of 𝐷+, and so all
inflows reach their destinations by time 𝑇 .

11.3. Green-time constraints and red-time constraints

Suppose also given a set 𝐹 of feasible link green-time vectors 𝐠 with co-ordinates 𝑔𝑖𝑚 ≥ 0 (arising from stage green-times at each
junction which add to 1 for each time-slice 𝑚 and are non-negative). Given 𝐹 we define the set 𝐹𝑟𝑒𝑑 of feasible red-time vectors 𝐫
by the equation:

𝐹𝑟𝑒𝑑 = {𝐫 = [𝑟𝑖𝑚]; 𝑟𝑖𝑚 = 1 − 𝑔𝑖𝑚 where 𝐠 ∈ 𝐹 }.

11.4. All the link variables

Suppose that prices 𝑝𝑖𝑚 ≥ 0 may be charged for exiting link 𝑖 during time-slice 𝑚. For any link outflow rates 𝑥𝑖𝑚, saturation flows
𝑠𝑖𝑚, prices 𝑝𝑖𝑚 and green-times 𝑔𝑖𝑚 (for 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑚 ≤ 𝑀), define the 𝑁𝑀−vectors 𝐱, 𝐬,𝐩, 𝐠 as follows:

𝐱 =
[

𝑥𝑖𝑚
]

=
[

𝑥1,1, 𝑥1,2,… , 𝑥1,𝑀−1, 𝑥1,𝑀 ,… , 𝑥𝑖,1, 𝑥𝑖,2,… , 𝑥𝑖,𝑀−1, 𝑥𝑖,𝑀 ,… , 𝑥𝑁,1, 𝑥𝑁,2,… , 𝑥𝑁,𝑀−1, 𝑥𝑁𝑀
]

,

𝐬 =
[

𝑠𝑖𝑚
]

=
[

𝑠1,1, 𝑠1,2,… , 𝑠1,𝑀−1, 𝑠1,𝑀 ,… , 𝑠𝑖,1, 𝑠𝑖,2,… , 𝑠𝑖,𝑀−1, 𝑠𝑖,𝑀 ,… , 𝑠𝑁,1, 𝑠𝑁,2,… , 𝑠𝑁,𝑀−1, 𝑠𝑁𝑀
]

,

𝐩 =
[

𝑝𝑖𝑚
]

=
[

𝑝1,1, 𝑝1,2,… , 𝑝1,𝑀−1, 𝑝1,𝑀 ,… , 𝑝𝑖,1, 𝑝𝑖,2,… , 𝑝𝑖,𝑀−1, 𝑝𝑖,𝑀 ,… , 𝑝𝑁,1, 𝑝𝑁,2,… , 𝑝𝑁,𝑀−1, 𝑝𝑁𝑀
]

,

17

and
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𝐠 =
[

𝑔𝑖𝑚
]

=
[

𝑔1,1, 𝑔1,2,… , 𝑔1,𝑀−1, 𝑔1,𝑀 ,… , 𝑔𝑖,1, 𝑔𝑖,2,… , 𝑔𝑖,𝑀−1, 𝑔𝑖,𝑀 ,… , 𝑔𝑁,1, 𝑔𝑁,2,… , 𝑔𝑁,𝑀−1, 𝑠𝑁𝑀
]

.

(Here: 𝑥𝑖,𝑚 = 𝑥𝑖𝑚, 𝑠𝑖,𝑚 = 𝑠𝑖𝑚, 𝑝𝑖,𝑚 = 𝑝𝑖𝑚, and 𝑔𝑖,𝑚 = 𝑔𝑖𝑚.)
Also define the Hadamard or Schur products of 𝐬 =

[

𝑠𝑖𝑚
]

and 𝐩 =
[

𝑠𝑖𝑚
]

by

𝐬◦𝐩 =
[

𝑠𝑖𝑚
]

◦
[

𝑝𝑖𝑚
]

=
[

𝑠𝑖𝑚𝑝𝑖𝑚
]

.

(Multiplication here is co-ordinate-wise.) Similarly let

𝐬◦𝐠 =
[

𝑠𝑖𝑚
]

◦
[

𝑔𝑖𝑚
]

=
[

𝑠𝑖𝑚𝑔𝑖𝑚
]

.

Given the above variables 𝑥𝑖𝑚, 𝑠𝑖𝑚, 𝑔𝑖𝑚 define the set 𝑆 of supply feasible (link outflow vector, link green-time vector)
[

𝐱, 𝐠
]

pairs;
for which each link flow 𝑥𝑖𝑚 is no greater than the saturation flow 𝑠𝑖𝑚 multiplied by the link green-time proportion 𝑔𝑖𝑚, as follows:

𝑆 = {(𝐱, 𝐠); 𝑥𝑖𝑚 − 𝑠𝑖𝑚𝑔𝑖𝑚 ≤ 0 for all 𝑖, 𝑚 such that 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑚 ≤ 𝑀}. (19)

NOTE: 𝑆 has no non-negativity constraints such as 𝑥𝑖𝑚 ≥ 0, 𝑔𝑖𝑚 ≥ 0.

11.5. Zero queue window-constrained wardrop equilibrium with prices

Definition 12. We here agree that 𝐱∗ is a dynamic window-constrained Wardrop equilibrium with price vector 𝐩 if

𝐱∗ ∈ 𝐷 and −(𝛿𝐜 + 𝐩) is normal at 𝐱∗ to 𝐷. (20)

Condition (20) is a Variational Inequality or a 𝑉 𝐼 , as illustrated in Fig. 2 with

𝐯 = −(𝛿𝐜 + 𝐩).

This definition is equivalent to ‘‘at each time-slice 𝑚, if (𝑚 + 𝐶𝑟)𝛿 > 𝑇 then 𝑋𝑟𝑚 = 0 and more costly permitted route-inflows are
zero". This is an extension of the usual Wardrop equilibrium condition ‘‘more costly routes are not used" to take account of the time
window here.

11.6. Capacity-maximising policies in a dynamic framework with time-windows and zero queues

Suppose given a network as above, with 𝑁 links and 𝑀 time slices of duration 𝛿 seconds where 𝛿 > 0. Suppose also given a
control policy 𝑃 determining a link green-time vector 𝐠 in terms of the vector 𝐩 of prices charged to exit the approaches at each
junction. In this time-window setting we have the following definition.

Definition 13. The control policy 𝑃 with prices ‘‘maximises the dynamic network capacity with zero queues" will mean the following.
If an inelastic dynamic demand 𝐷 is such that there is a link out-flow vector 𝐱∈𝐷 and a link green-time vector 𝐠 ∈ 𝐹 such that (𝐱, 𝐠) ∈ 𝑆
(with zero queues); then there is a link out-flow vector 𝐱∗ ∈ 𝐷, a link-exit price vector 𝐩∗ ≥ 0, and a link green-time vector 𝐠∗ ∈ 𝐅
such that (𝐱∗, 𝐠∗) ∈ 𝑆 and also:

(a) 𝐱∗ is a dynamic window-constrained Wardrop equilibrium with prices when the link-exit price vector is 𝐩∗ and
(b) 𝐠∗ satisfies the control policy 𝑃 when the link-exit price vector is 𝐩∗.

11.7. The 𝑃0-with-prices control policy, in link form in a dynamic context, as a solution to a VI

Definition 14. Given 𝐬, the 𝑃0-with-prices control policy here is satisfied at (𝐠,𝐩) if and only if:

𝐠 ∈ 𝐹 and 𝐬◦𝐩 =
[

𝑠𝑖𝑚𝑝𝑖𝑚
]

is normal at 𝐠 to 𝐹 . (21)

Compare with Definition 10 of 𝑃0-with-prices in the steady state.

Theorem 4. The 𝑃0-with-pricing control policy is capacity-maximising with zero queues and a time-window for the dynamic network with
time-slices described above.

Proof. Suppose that

(𝐷 × 𝐹 ) ∩ 𝑆 is non-empty.

To prove the theorem we need to show that, in the model described above and under this condition, there is an equilibrium (with
prices) consistent with 𝑃0-with-prices.

To do this, for (x, g) ∈ (𝐷 × 𝐹 ) ∩ 𝑆, let

𝑍(𝐱, 𝐠) =
∑

1≤𝑖≤𝑁 and 1≤𝑚≤𝑀
𝛿𝑐𝑖𝑥𝑖𝑚.

Consider the following Variational Inequality Problem.
18
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VI problem 3:

Find (𝐱∗, 𝐠∗) ∈ (𝐷 × 𝐹 ) ∩ 𝑆 such that
− (𝛿𝐜, 𝟎) = −𝑔𝑟𝑎𝑑𝑍(𝐱∗, 𝐠∗) is normal at (𝐱∗, 𝐠∗) to (𝐷 × 𝐹 ) ∩ 𝑆.

VI problem 3 has a solution since 𝑍 is continuous and (𝐷×𝐹 ) ∩𝑆 is non-empty and compact and so 𝑍 has a minimum over the set
(𝐷 × 𝐹 ) ∩ 𝑆. Let (𝐱∗, 𝐠∗) solve variational inequality problem 3. Then

−(𝛿𝐜, 𝟎) (= −𝑔𝑟𝑎𝑑𝑍(𝐱∗, 𝐠∗)) is normal at (𝐱∗, 𝐠∗) to (𝐷 × 𝐹 ) ∩ 𝑆.

So

− (𝛿𝐜, 𝟎) = (𝐧𝐷,𝐧𝐹 ) + 𝐧𝑆 (22)

where

𝐧𝐷 is normal at 𝐱∗ to 𝐷,𝐧𝐹 is normal at 𝐠∗ to 𝐹 and 𝐧𝑆 is normal at (𝐱∗, 𝐠∗) to 𝑆.

Now, by (19),

𝑆 = 𝑆1,1 × 𝑆1,2 ×⋯ × 𝑆1,𝑀−1 × 𝑆1,𝑀 × 𝑆2,1 × 𝑆2,2 ×⋯𝑆2,𝑀 ×⋯ × 𝑆𝑁,1 × 𝑆𝑁,2 ×⋯ × 𝑆𝑁,𝑀−1 × 𝑆𝑁,𝑀

where 𝑆𝑖,𝑚 = {(𝑥𝑖𝑚, 𝑔𝑖𝑚); 𝑥𝑖𝑚 − 𝑠𝑖𝑚𝑔𝑖𝑚 ≤ 0}. We will often now put 𝑆𝑖,𝑚 = 𝑆𝑖𝑚.
Any normal to 𝑆𝑖𝑚 is of the form 𝑝𝑖𝑚(1,−𝑠𝑖𝑚) = (𝑝𝑖𝑚,−𝑠𝑖𝑚𝑝𝑖𝑚), where 𝑝𝑖𝑚 ≥ 0, and so any normal to 𝑆 is of the form

𝐧𝑆 = (𝐩,−𝐬◦𝐩)

or some vector 𝐩 where all the co-ordinates 𝑝𝑖𝑚 ≥ 0. Therefore, using (22),

− (𝛿𝐜, 𝟎) = (𝐧𝐷,𝐧𝐹 ) + 𝐧𝑆 = (𝐧𝐷,𝐧𝐹 ) + (𝐩,−𝐬◦𝐩). (23)

Subtracting 𝐧𝑆 = (𝐩,−𝐬◦𝐩) from both sides of (23) yields:

(−(𝛿𝐜 + 𝐩), 𝐬◦𝐩) = (𝐧𝐷,𝐧𝐹 ) is normal at (𝐱∗, 𝐠∗) to 𝐷 × 𝐹 ,

and so

−(𝛿𝐜 + 𝐩) = 𝐧𝐷 is normal at 𝐱∗ to 𝐷 (24)

and

𝐬◦𝐩 = 𝐧𝐹 is normal at 𝐠∗ to 𝐹 . (25)

Thus:

by (24), 𝐱∗ is a window-constrained dynamic Wardrop equilibrium with price vector 𝐩

as defined in the definition (12),
and,

by (25), 𝐠∗ satisfies policy 𝑃0-with-prices when the price vector is 𝐩

as defined in definition (14).

We have shown that policy 𝑃0-with-prices is capacity maximising with zero queues in this dynamic context with time windows, as
defined in definition (13). We have proved Theorem 4.

11.8. Contribution

In this section we have extended one previous steady state capacity-maximising result to certain dynamic networks, using similar
methods including variational inequalities as central elements. Further extensions may be easily stated and proved.

12. The dynamic control policy 𝑷 𝐟
𝟎 , a 𝑷𝟎-with-pricing policy: a stability result

The previous sections do not consider stability. Now we consider stability in one particular form: stability with respect to route choices
19

when the responsive control/pricing system outlined below is followed.
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12.1. The model

Throughout this section we use the dynamic continuum model of traffic signal control and pricing in the previous Section 11,
ncluding the notation. But here the control policy is different. To obtain this new control policy we extend Section 11 model a little,
dding a price-flow function to determine prices in terms of link out-flows and red-times. The effect of this is, as shown below, to
nsure that link-exit capacities are not approached too closely at or near equilibrium, and that there is some stability.

As in Section 11 we here suppose given a network, a fixed positive 𝛿 and 𝑀 time-slices of duration 𝛿 seconds:

(0𝛿, 1𝛿], (1𝛿, 2𝛿],… , ((𝑚 − 1)𝛿, 𝑚𝛿],… , ((𝑀 − 1)𝛿,𝑀𝛿].

lso as in Section 11, in the model below all route-inflow rates, all link outflow rates, all link green-time proportions and all link
ed-time proportions are constant over each time interval ((𝑚−1)𝛿, 𝑚𝛿]. As in Section 10, all journeys must be started and completed
ithin the overall time window (0, 𝑇 ] = (0, 𝛿𝑀].

Using the notation of Section 11, given a signal stage 𝑢 at a junction, antistage u is here defined to be the set of all links,
erminating at the same junction, NOT in stage 𝑢. In all timeslices 𝑚 the (constant) red-time proportion allocated to antistage 𝑢
quals the proportion of green-time allocated to stage 𝑢. (Anti-stage red-times are utilised in Smith et al. (2015).) Link red times
re sums of antistage red times, as link green times are sums of stage green times.

Now in this section we modify the definition of the supply-feasible set of link outflow, green-time pairs in (19) to the following
efinition of the supply-feasible set of link outflow, red-time pairs:

𝑆𝑟𝑒𝑑 = {(𝐱, 𝐫); 𝑥𝑖𝑚 + 𝑠𝑖𝑚𝑟𝑖𝑚 < 𝑠𝑖𝑚 for all 𝑖, 𝑚 such that 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑚 ≤ 𝑀}. (26)

f course (19) and (26) are consistent since 𝑟𝑖𝑚 = 1 − 𝑔𝑖𝑚 for all relevant 𝑖𝑚;but note that (26) has a strict inequality and so 𝑆𝑟𝑒𝑑 does
not include its boundary. As before, 𝑆𝑟𝑒𝑑 , as given in Eq. (26), has no non-negativity constraints, such as 𝑥𝑖𝑚 ≥ 0.

12.2. Determining link-exit prices on day 𝑘 in the modified 𝑃0 with prices policy

Let (𝐗,𝐑) be the route-inflow, antistage red-time vector on day 𝑘, giving rise to link-exit flows 𝑥𝑖𝑚 and link red-times 𝑟𝑖𝑚 on day
𝑘.

First we now insist that there is given a positive number 𝑎 < 1 and that for each link 𝑖 and time-slice 𝑚 there is given a non-
decreasing continuous function 𝑓𝑖𝑚, defined for all 𝑢 such that 0 ≤ 𝑢 < 𝑠𝑖𝑚, taking the value 0 on [0, 𝑎𝑠𝑖𝑚], strictly increasing over
he set [𝑎𝑠𝑖𝑚, 𝑠𝑖𝑚) = {𝑢; 𝑎𝑠𝑖𝑚 ≤ 𝑢 < 𝑠𝑖𝑚} and satisfying:

∫

𝑠𝑖𝑚

0
𝑓𝑖𝑚(𝑢)𝑑𝑢 = +∞. (27)

uch a function may be thought of as a barrier function; and a graph of such a function is given in Fig. 5. One example of such a
unction is given in Eq. (28).

𝑓𝑖𝑚(𝑢) =

⎧

⎪

⎨

⎪

⎩

0 if 0 ≤ 𝑢 < 𝑎𝑠𝑖𝑚
1

1 − 𝑢∕𝑠𝑖𝑚
−

1
1 − 𝑎

if 𝑎𝑠𝑖𝑚 ≤ 𝑢 < 𝑠𝑖𝑚.
(28)

Now let 𝐟 have co-ordinate functions 𝑓𝑖𝑚 satisfying (27). Suppose that on day 𝑘:

(𝐷 × 𝐹𝑟𝑒𝑑 ) ∩ 𝑆𝑟𝑒𝑑 ≠ 𝜙

nd

(𝐱, 𝐫) ∈ (𝐷 × 𝐹𝑟𝑒𝑑 ) ∩ 𝑆𝑟𝑒𝑑 .

ere 𝑆𝑟𝑒𝑑 is given by (26), 𝐷 is defined in Section 11.2, and 𝐹𝑟𝑒𝑑 is defined in Section 11.3. Given the feasible (𝐱, 𝐫) on day 𝑘,
determine the day 𝑘 link-exit price vector 𝐩 by putting

𝑝𝑖𝑚 = 𝑓𝑖𝑚(𝑥𝑖𝑚 + 𝑠𝑖𝑚𝑟𝑖𝑚) (29)

for all 𝑖𝑚.

12.3. Determining antistage red-time costs 𝑅𝐶𝑤𝑚 and route-entry costs 𝐶𝑟𝑚 on day 𝑘

We are here supposing that on day 𝑘:

(𝐱, 𝐫) ∈ (𝐷 × 𝐹𝑟𝑒𝑑 ) ∩ 𝑆𝑟𝑒𝑑 .

For each (anti-stage, time-slice) pair 𝑤𝑚 define the antistage 𝑤 red-time cost 𝑅𝐶𝑤𝑚, in link flow terms, as follows:

𝑅𝐶𝑤𝑚(𝐱, 𝐫) =
∑

𝑠𝑖𝑚𝑝𝑖𝑚 =
∑

𝑠𝑖𝑚𝑓𝑖𝑚(𝑥𝑖𝑚 + 𝑠𝑖𝑚𝑟𝑖𝑚) (30)
20

{𝑖; 𝑖∈anti-stage 𝑤} {𝑖; 𝑖∈anti-stage 𝑤}



Transportation Research Part C 138 (2022) 103630M.J. Smith et al.

u

a

F
i

w
a

w

p

1
r

e
d
s

𝑅
p

o

Fig. 5. A barrier function for link exit i during time-slice m.

sing (29). The anti-stage 𝑤 red-time cost at time-slice 𝑚 is the sum of the terms 𝑠𝑖𝑚𝑓𝑖𝑚(𝑥𝑖𝑚 + 𝑠𝑖𝑚𝑟𝑖𝑚) over all links in anti-stage 𝑤.
Here the antistage 𝑤𝑚 red-time feels a redtime cost given by (30) (and (31) below) on day 𝑘.

To write Eq. (30) in terms of the route-inflow vector 𝐗 and anti-stage red-time vector 𝐑 on day 𝑘, let matrices 𝐀 and 𝐁 be defined
s follows.

𝐴𝑟𝑚,𝑖𝑚′ = 1 if route entry flow 𝑋𝑟𝑚 exits link 𝑖 during time-slice 𝑚′,

𝐴𝑟𝑚,𝑖𝑚′ = 0 otherwise,
𝐵𝑤𝑚,𝑖𝑚′ = 1 if antistage 𝑤 contains link 𝑖 and 𝑚′ = 𝑚, and
𝐵𝑤𝑚,𝑖𝑚′ = 0 otherwise.

or each (anti-stage, time-slice) pair 𝑤𝑚 define the antistage 𝑤 red-time cost 𝑅𝐶+
𝑤𝑚 in terms of route inflows and antistage red times,

nstead of link outflows and link red green-times, as follows:

𝑅𝐶+
𝑤𝑚(𝐗,𝐑) = 𝑅𝐶𝑤𝑚(𝐀𝐗,𝐁𝐑). (31)

here 𝑅𝐶𝑤𝑚 is given by (30). Again, the anti-stage 𝑤 red-time cost at time-slice 𝑚 is the sum of the terms 𝑠𝑖𝑚𝑓𝑖𝑚(𝑥𝑖𝑚 + 𝑠𝑖𝑚𝑟𝑖𝑚) over
ll links in anti-stage 𝑤 and the antistage 𝑤𝑚 red-time feels a redtime cost given by (30) and (31) on day 𝑘.

Now we turn to route costs. For each (route, time-slice) pair 𝑟𝑚 define the 𝑟𝑚 route-cost 𝐶+
𝑟𝑚 by putting:

𝐶+
𝑟𝑚 = 𝐶+

𝑟𝑚(𝐗,𝐑) = 𝐶𝑟𝛿 +
∑

{𝑖𝑚′;𝑋𝑟𝑚 exits link 𝑖 during time-slice 𝑚′}
𝑓𝑖𝑚′ (𝑥𝑖𝑚′ + 𝑠𝑖𝑚′ 𝑟𝑖𝑚′ ) (32)

here 𝐱 = AX and r = BR. Travellers on route 𝑟𝑚 feel a route cost 𝐶+
𝑟𝑚, given by (32), on day 𝑘.

Putting all route costs and anti-stage red-time costs together, we define 𝐂+(𝐗,𝐑) and 𝐑𝐂+(𝐗,𝐑), using Eqs. (31) and (32), by
utting:

𝐂+(𝐗,𝐑) = the vector with 𝐾1𝑀 components 𝐶+
𝑟𝑚(𝐗,𝐑) and (33)

𝐑𝐂+(𝐗,𝐑) = the vector with 𝐾2𝑀 components 𝑅𝐶+
𝑤𝑚(𝐗,𝐑). (34)

2.4. Swapping permitted route-inflows yielding permitted route-inflows on day 𝑘 + 1 and swapping antistage red-times yielding anti-stage
ed-times on day 𝑘 + 1

In this paper we suppose that the route-entry flows on day 𝑘 + 1 result from route-entry flows 𝑋𝑟𝑚 on day 𝑘 by natural route-
ntry flow swapping toward less costly permitted routes only. This re-routeing rule is designed as a simple model of rational day to
ay behaviour. Of course, route-inflow swaps from a particular route can only occur toward a less costly permitted route joining the
ame 𝑂𝐷 pair.

Also, under control policy 𝑃 𝐟
0 , we suppose that the anti-stage red-times on day 𝑘+1 are to be obtained from anti-stage red-times

𝑤𝑚 on day 𝑘 by natural anti-stage red-time swapping toward less costly antistages only. Of course, antistage red-time swaps from a
articular antistage can only occur toward a less costly antistage at the same junction.

We further suppose that these swaps toward less-costly permitted routes and anti-stages, from day 𝑘 to day 𝑘 + 1, depend only
n the day 𝑘 (route-inflow vector, antistage red-time vector) (𝐗,𝐑). Let the total effect of all these swaps be to change (𝐗,𝐑) on day
21
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𝑘 to (𝐗,𝐑) + (𝛥1(𝐗,𝐑), 𝛥2(𝐗,𝐑)) on day 𝑘 + 1. Here, for any (𝐗,𝐑) on day 𝑘, 𝛥1(𝐗,𝐑) only moves 𝐗 in 𝐷+ and 𝛥2(𝐗,𝐑) only moves
𝐑 in 𝐹+

𝑟𝑒𝑑 .
The total change vector (𝛥1(𝐗,𝐑), 𝛥2(𝐗,𝐑)) is to be a sum of swap vectors satisfying certain conditions including those described

above. The main condition has already been stated and is that all swaps must be toward less costly permitted routes and antistages.
This condition may be expressed more precisely as follows:

For each time-slice 𝑚, each OD pair 𝑜𝑑 and each route 𝑟 joining 𝑜𝑑, if 𝑋𝑟𝑚 > 0 and there is a less costly permitted route joining
𝑜𝑑, then on day 𝑘 + 1,

some of the route entry flow 𝑋𝑟𝑚 swaps but only to less costly permitted routes joining 𝑜𝑑, (35)

and, also, for each time-slice 𝑚, each junction 𝐽 and each antistage 𝑤 at that junction, if 𝑅𝑤𝑚 > 0 and there is a less costly antistage
at the junction 𝐽 , then on day 𝑘 + 1,

some of the antistage red-time 𝑅𝑤𝑚 swaps but only to less costly antistages at junction 𝐽 . (36)

Also if no swaps according to (35) are possible (perhaps because on day 𝑘, for each OD pair and each within-day time 𝑚, all permitted
routes have the same route cost), then the route-inflow vector 𝐗 remains the same on day 𝑘 + 1 and if no swaps according to (36)
are possible at any junction (perhaps because on day 𝑘, at all junctions and at all within-day time-slices 𝑚, all antistages have the
same antistage red-time cost), then 𝑃 𝐟

0 insists that the anti-stage red-time vector 𝐑 remains the same on day 𝑘 + 1.
(35) and (36) imply that (𝛥1(𝐗,𝐑), 𝛥2(𝐗,𝐑)) satisfies:

(𝛥1(𝐗,𝐑)) · [𝐂(𝐗,𝐑)] < 0 if 𝛥1(𝐗,𝐑) ≠ 𝟎 and (37)

(𝛥2(𝐗,𝐑)) · [𝐑𝐂(𝐗,𝐑)] < 0 if 𝛥2(𝐗,𝐑) ≠ 𝟎. (38)

We also require that

(𝐗,𝐑) ∈ (𝐷+ × 𝐹+
𝑟𝑒𝑑 ) ∩ 𝑆+

𝑟𝑒𝑑 implies (𝐗,𝐑) + (𝛥1(𝐗,𝐑), 𝛥2(𝐗,𝐑)) ∈ (𝐷+ × 𝐹+
𝑟𝑒𝑑 ) ∩ 𝑆+

𝑟𝑒𝑑 . (39)

This condition (39) ensures that origin–destination constraints, non-negativity and capacity constraints remain satisfied as days pass.
Our next vital condition on 𝛥1(𝐗,𝐑) and 𝛥2(𝐗,𝐑) is as follows:

(𝛥1(𝐗,𝐑), 𝛥2(𝐗,𝐑)) is a continuous function of (𝐗,𝐑) ∈ (𝐷+ × 𝐹+
𝑟𝑒𝑑 ) ∩ 𝑆+

𝑟𝑒𝑑 . (40)

Below we give an example of a possible (𝛥1(𝐗,𝐑), 𝛥2(𝐗,𝐑)).

12.4.1. Wardrop equilibria and 𝑃 𝐟
0 equilibria

Definition 15. Here, given (X, R) on day 𝑘, X is called a Wardrop equilibrium if and only if for each timeslice 𝑚 and each route
joining 𝑂𝐷 pair 𝑜𝑑 with 𝑋𝑟𝑚 > 0 there is no less costly permitted route joining 𝑜𝑑, using costs given by (32) and (33).

Definition 16. Here, given (X, R) on day 𝑘, R is called a 𝑃 𝐟
0 equilibrium if and only if for each time-slice 𝑚 and each antistage 𝑤

at junction 𝐽 with 𝑅𝑤𝑚 > 0 there is no less costly antistage at junction 𝐽 , using costs given by (31) and (34).

12.4.2. An example (𝛥1(𝐗,𝐑), 𝛥2(𝐗,𝐑)).
An example of a change vector (𝛥1(𝐗,𝐑), 𝛥2(𝐗,𝐑)), satisfying the above conditions (37)– (40), may be obtained by supposing

that route-inflow swaps away from route 𝑟 increase as route cost differences increase and that red-time swaps away from antistage
𝑤 increase also as red-time cost differences increase. The example follows Smith (1984) which was in a simpler no-control context.
In that paper it is supposed that, at each time-slice 𝑚, the swaps away from a more costly route 𝑟 are proportional to day 𝑘 route
inflows 𝑋𝑟𝑚. Here we extend that principle to antistage red-time swaps.

The example is as follows:

𝛥1(𝐗,𝐑) = 𝛼1(𝐗,𝐑)
∑

{(𝑟𝑚,𝑟′𝑚);1≤𝑟,𝑟′≤𝐾1 ,𝑟𝑚∼𝑟′𝑚,1≤𝑚≤𝑀}

𝑋𝑟𝑚[𝐶+
𝑟𝑚(𝐗,𝐑) − 𝐶+

𝑟′𝑚(𝐗,𝐑)]+𝛥
1
𝑟𝑚,𝑟′𝑚 and (41)

𝛥2(𝐗,𝐑) = 𝛼2(𝐗,𝐑)
∑

{(𝑤𝑚,𝑤′𝑚);1≤𝑤,𝑤′≤𝐾2 ,𝑤∼𝑤′ ,1≤𝑚≤𝑀}

𝑅𝑤𝑚[𝑅𝐶+
𝑤𝑚(𝐗,𝐑) − 𝑅𝐶+

𝑤′𝑚(𝐗,𝐑)]+𝛥
2
𝑤𝑚,𝑤′𝑚. (42)

where

𝐾1 = the number of routes traversing no link twice and 𝐾2 = the number of stages;
[𝐶+

𝑟𝑚(𝐗,𝐑) − 𝐶+
𝑟′𝑚(𝐗,𝐑)]+ = max{[𝐶+

𝑟𝑚(𝐗,𝐑) − 𝐶+
𝑟′𝑚(𝐗,𝐑)], 0};

[𝑅𝐶+
𝑤𝑚(𝐗,𝐑) − 𝑅𝐶+

𝑤′𝑚(𝐗,𝐑)]+ = max{[𝑅𝐶+
𝑤𝑚(𝐗,𝐑) − 𝑅𝐶+

𝑤′𝑚(𝐗,𝐑)], 0};

𝑅𝐶+
𝑤𝑚 is given by (31) and 𝐶+

𝑟𝑚 is given by (32);

𝑟𝑚 ∼ 𝑟′𝑚 means that route 𝑟 and route 𝑟′ are both permitted routes at 𝑚 joining the same OD pair;
′ ′
22
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𝛥1
𝑟𝑚,𝑟′𝑚 = the 𝐾1𝑀-vector with −1 in the 𝑟𝑚𝑡ℎ place, +1 in the 𝑟′𝑚𝑡ℎ place and zero elsewhere;

𝛥2
𝑤𝑚,𝑤′𝑚 = the 𝐾2𝑀-vector with −1 in the 𝑤𝑚𝑡ℎ place, +1 in the 𝑤′𝑚𝑡ℎ place and zero elsewhere;

𝛼1(𝐗,𝐑) > 0 is continuous and defined for all (𝐗,𝐑) ∈ (𝐷+ × 𝐹+
𝑟𝑒𝑑 ) ∩ 𝑆+

𝑟𝑒𝑑 and
𝛼2(𝐗,𝐑) > 0 is continuous and defined for all (𝐗,𝐑) ∈ (𝐷+ × 𝐹+

𝑟𝑒𝑑 ) ∩ 𝑆+
𝑟𝑒𝑑 .

𝛥1
𝑟𝑚,𝑟′𝑚 is called a swap vector (swapping inflow from permitted route 𝑟 to permitted route 𝑟′ in time-slice 𝑚).
𝛥2
𝑤𝑚,𝑤′𝑚 is called a swap vector (swapping red-time from antistage 𝑤 to antistage 𝑤′ in time-slice 𝑚).

12.5. Stability

To consider stability we utilise Beckmann-like Lyapunov functions 𝑉 , 𝑉 +.
𝑉 is defined as follows. For all (𝐱, 𝐫) ≥ (𝟎, 𝟎) such that (𝐱, 𝐫) ∈ 𝑆𝑟𝑒𝑑 :

𝑉 (𝐱, 𝐫) =
𝑚=𝑀
∑

𝑚=1

𝑖=𝑁
∑

𝑖=1
∫

𝑥𝑖𝑚+𝑠𝑖𝑚𝑟𝑖𝑚

0
𝑓𝑖𝑚(𝑢)𝑑𝑢 +

𝑚=𝑀
∑

𝑚=1

𝑖=𝑁
∑

𝑖=1
𝑐𝑖𝑚𝑥𝑖𝑚. (43)

(43) gives rise to the following formula for 𝑉 +. For all (𝐗,𝐑) ≥ (𝟎, 𝟎) such that (𝐗,𝐑) ∈ 𝑆+
𝑟𝑒𝑑 , let

𝑉 +(𝐗,𝐑) = 𝑉 (𝐀𝐗,𝐁𝐑). (44)

𝑉 is defined for all (𝐱, 𝐫) ∈ (𝐷 × 𝐹𝑟𝑒𝑑 ) ∩ 𝑆𝑟𝑒𝑑 and 𝑉 + is defined for all (𝐗,𝐑) ∈ (𝐷+ × 𝐹+
𝑟𝑒𝑑 ) ∩ 𝑆+

𝑟𝑒𝑑 . Clearly

𝑉 +(𝐗,𝐑) ≥ 0 for all (𝐗,𝐑) ∈ (𝐷+ × 𝐹+
𝑟𝑒𝑑 ) ∩ 𝑆+

𝑟𝑒𝑑 .

Further, since 𝑉 + is continuous and (27) holds, there is (𝐗∗,𝐑∗) ∈ (𝐷+ × 𝐹+
𝑟𝑒𝑑 ) ∩ 𝑆+

𝑟𝑒𝑑 and 𝑉𝑚𝑖𝑛 ≥ 0 such that

𝑉 +(𝐗∗,𝐑∗) = 𝑉𝑚𝑖𝑛 ≤ 𝑉 (𝐗,𝐑) for all (𝐗,𝐑) ∈ (𝐷+ × 𝐹+
𝑟𝑒𝑑 ) ∩ 𝑆+

𝑟𝑒𝑑 .

(𝐗∗,𝐑∗) is not necessarily unique.
Let

𝑀𝐼𝑁 = {(𝐗∗,𝐑∗) ∈ (𝐷+ × 𝐹+
𝑟𝑒𝑑 ) ∩ 𝑆+

𝑟𝑒𝑑 such that 𝑉 +(𝐗∗,𝐑∗) = 𝑉𝑚𝑖𝑛}.

Since each 𝑓𝑖𝑚 is non-decreasing, 𝑉 + is convex and so the set 𝑀𝐼𝑁 of 𝑉 +-minimising (𝐗∗,𝐑∗) is convex. Let (𝐗,𝐑) ∈ (𝐷+×𝐹+
𝑟𝑒𝑑 )∩𝑆

+
𝑟𝑒𝑑 ,

which fixes (𝛥1(𝐗,𝐑), 𝛥2(𝐗,𝐑)). Define

𝑇 (𝐗,𝐑) = (𝐗,𝐑) + (𝛥1(𝐗,𝐑), 𝛥2(𝐗,𝐑)). (45)

We assume that (37)–(40) hold. It therefore follows that 𝑇 is continuous and

𝑇 (𝐗,𝐑) ∈ (𝐷+ × 𝐹+
𝑟𝑒𝑑 ) ∩ 𝑆+

𝑟𝑒𝑑 for all (𝐗,𝐑) ∈ (𝐷+ × 𝐹+
𝑟𝑒𝑑 ) ∩ 𝑆+

𝑟𝑒𝑑 . (46)

Now

𝑉 +[𝑇 (𝐗,𝐑)] = 𝑉 +[(𝐗,𝐑) + (𝛥1(𝐗,𝐑), 𝛥2(𝐗,𝐑))]. (47)

for all (𝐗,𝐑) ∈ (𝐷+ × 𝐹+
𝑟𝑒𝑑 ) ∩ 𝑆+

𝑟𝑒𝑑 . We now make the following added assumption.

If 𝑇 (𝐗,𝐑) ≠ (𝐗,𝐑) then 𝑉 +[𝑇 (𝐗,𝐑)] = 𝑉 +[(𝐗,𝐑) + (𝛥1(𝐗,𝐑), 𝛥2(𝐗,𝐑))] < 𝑉 +(𝐗,𝐑). (48)

Bearing in mind (37) and (38), which together ensure that
(

𝛥1(𝐗,𝐑), 𝛥2(𝐗,𝐑)
)

is a descent direction for 𝑉 , this condition (48) is
saying that the vector

(

𝛥1(𝐗,𝐑), 𝛥2(𝐗,𝐑)
)

is a vector with small length. For any feasible start point (𝐗0,𝐑0) ∈ (𝐷+ × 𝐹+
𝑟𝑒𝑑 ) ∩𝑆+

𝑟𝑒𝑑 , on
day 0, we now consider the day to day dynamical system

(𝐗0,𝐑0), (𝐗1,𝐑1) = 𝑇 (𝐗0,𝐑0), (𝐗2,𝐑2) = 𝑇 (𝑇 (𝐗0,𝐑0)),… , (𝐗𝑘,𝐑𝑘) = 𝑇 𝑘(𝐗0,𝐑0),… . (49)

Condition (46) ensures that this sequence (49) does in fact go on for ever: it is an infinite sequence.
We are now able to state our stability result.

Theorem 5. Let 𝐷+ be the set of demand feasible route flow vectors defined in Section 11. Let 𝐹+
𝑟𝑒𝑑 be the set of feasible antistage red-time

vectors and let 𝑆+ be the set of supply feasible (route-inflow vector, antistage redtime vector) pairs. Suppose that

(𝐷+ × 𝐹+
𝑟𝑒𝑑 ) ∩ 𝑆+

𝑟𝑒𝑑 ≠ 𝜙.

Suppose that the following definitions, conditions and rules above hold: definition (26), condition (27), price specification (29), route-cost
and antistage red-time cost definitions (30)–(34), swapping rules (35), (36) and direction conditions (37), (38), (39) and (40). Suppose
that 𝑉 and 𝑉 + are specified by (43) and (44). Suppose that 𝑇 is defined by (45) and satisfies (46), (47) and (48). Then, under these
conditions, for any start point (𝐗0,𝐑0) ∈ (𝐷+ ×𝐹+

𝑟𝑒𝑑 )∩𝑆+
𝑟𝑒𝑑 , the sequence (49) converges to a non-empty set 𝐸+ of equilibria consistent with

control policy 𝑃 𝐟
0 . Here:

𝐸+ = {(𝐗,𝐑) ∈ (𝐷+ × 𝐹+
𝑟𝑒𝑑 ) ∩ 𝑆+

𝑟𝑒𝑑 ;𝐗 is a Wardrop equilibrium and 𝐑 is a 𝑃 𝐟
0 equilibrium.}

Proof . This is given in Appendix B.
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Fig. 6. CONTRAM results. Change in total queueing delay with delay-based pricing combined with three signal control policies.

Fig. 7. CONTRAM results. Change in total travel time with delay-based pricing combined with three signal control policies.

12.6. Contribution

We have shown that a responsive price-green-time policy and natural route choices yields a stable evolutionary system.

13. Related simulation results

Smith et al. (1994b) studies the impact on York and Cambridge of different combinations of pricing and control strategies.
The results in this paper show that delay-based road pricing combined with control policy 𝑃0 is likely to be much the best, of the
alternatives tested, for York.

Two simulation results are shown in Figs. 6 and 7. In both figures, delay-based pricing is utilised as the pricing system. Both
figures then compare the performances of three different traffic signal control policies when these are combined with delay-based
road pricing. Fig. 6 shows that control policy 𝑃0 (combined with delay-based pricing) yields very substantial decreases in total
queueing delay (of about 60 per cent) and Fig. 7 shows that total travel time is reduced by rather more than 20 per cent.

The 𝑃0 control policy combined with delay-based road pricing system, which gives rise to these simulation results, has been
extended in this paper to a price-control policy which reduces queues to zero or to small values.
24
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14. Conclusion

This paper has considered signal control and prices together, aiming to design a control system which maximises network capacity
nd also eliminates queueing (in at least a subnetwork). It has been shown that using prices (instead of delays) in the 𝑃0 control

policy specified in Smith (1980, 1987) maximises the capacity of a general steady state network, with zero queues.
This steady state capacity-maximisation + zero-queue result has been extended to dynamic networks, in two ways, giving an

equilibrium extension and a stability extension.
The equilibrium extension shows that 𝑃0-with-prices maximises network capacity with zero queues in a dynamic network and

the stability extension shows that 𝑃 𝐟
0 is able to deliver some stability as well as zero queue capacity maximisation.

A simple example has been given to illustrate several of the policies. It is shown that a biased version, 𝑃𝐡-with-prices, yields, for
a very simple network higher utility than 𝑃0-with-prices itself.

There are many open areas for research; including for example optimising access prices and controls to make sure the network
is not flooded by external inputs. Combining the strategies here with perimeter control is likely to be very interesting and effective
in practice (we believe). Equity is an important area which has not been addressed at all in this paper. It would be interesting to see
whether the change to 𝑃𝐡 increases utility in more general networks than the network in Section 10 here. Stability requires much
more detailed study.

It is also important to seek to weaken the assumptions here, (i) to allow on-and-off signal control, perhaps by allowing the 𝑐𝑖
to vary, (ii) to allow a spectrum of travellers, including non-repetitive, random elements and travellers with varying valuations of
travel time, (iii) to consider discrete versions which consider individual travellers and the values they ascribe to different forms of
mobility and (iv) to include the need to decarbonise travel networks.

The control + pricing strategies here must also be compared with more standard strategies such as cordon charging or distance
charging.
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Appendix A. Proof of Theorem 3

Theorem 3. The 𝑃𝐡-with-prices control policy is capacity-maximising, with zero queueing delays, in the general single-mode network with
prices in Section 5.1.

Proof. Suppose that, in the general network in Section 5.1,

(𝐷 × 𝐹 ) ∩ 𝑆 is non-empty.

To prove the theorem we need to show that, on this assumption, there is an equilibrium with prices consistent with the control policy
𝑃𝐡-with-prices; the definition of the 𝑃𝐡-with-prices policy is given in Definition 11. Here we show that there exists (𝐱∗, 𝐠∗) ∈ (𝐷×𝐹 )∩𝑆
and a price vector p such that:

𝐱∗ is a Wardrop equilibrium with price vector 𝐩, as defined in definition 9, and
𝐠∗ satisfies policy 𝑃𝐡-with-prices with price vector 𝐩, as defined in definition 11.

To do this, for (x, g) ∈ (𝐷 × 𝐹 ) ∩ 𝑆, let

𝑍𝐡(𝐱, 𝐠) =
∑

𝑖
[𝑐𝑖𝑥𝑖 − ℎ𝑖𝑔𝑖].

eneralise variational inequality problem 1 above to obtain variational inequality 2 below.

VI problem 2:

Find (𝐱∗, 𝐠∗) ∈ (𝐷 × 𝐹 ) ∩ 𝑆 such that
(−𝐜,𝐡) (= −𝑔𝑟𝑎𝑑𝑍𝐡(𝐱∗, 𝐠∗)) is normal at (𝐱∗, 𝐠∗) to (𝐷 × 𝐹 ) ∩ 𝑆.

𝑍𝐡 is continuous and (𝐷 × 𝐹 ) ∩ 𝑆 is non-empty and compact and so 𝑍𝐡 has a minimum over the set (𝐷 × 𝐹 ) ∩ 𝑆. Let (𝐱∗, 𝐠∗) be
he point which attains the minimum of 𝑍𝐡 over the set (𝐷×𝐹 ) ∩𝑆. Then (𝐱∗, 𝐠∗) solves VI problem 2; if this were not so then there
ould be a feasible descent direction for 𝑍𝐡 at (𝐱∗, 𝐠∗) and (𝐱∗, 𝐠∗) would not be a minimum of 𝑍𝐡 over the set (𝐷 × 𝐹 ) ∩ 𝑆.

Since (𝐱∗, 𝐠∗) solves variational inequality 2,

(−𝐜,𝐡) (= −𝑔𝑟𝑎𝑑𝑍(𝐱∗, 𝐠∗)) is normal at (𝐱∗, 𝐠∗) to (𝐷 × 𝐹 ) ∩ 𝑆.

o

25

(−𝐜,𝐡) = (𝐧𝐷,𝐧𝐹 ) + 𝐧𝑆 (50)
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where

𝐧𝐷 is normal at 𝐱∗ to 𝐷,𝐧𝐹 is normal at 𝐠∗ to 𝐹 and 𝐧𝑆 is normal at (𝐱∗, 𝐠∗) to 𝑆.

Now

𝑆 = 𝑆1 × 𝑆2 × 𝑆3 ×⋯ × 𝑆𝑛−1 × 𝑆𝑛 where 𝑆𝑖 = {(𝑥𝑖, 𝑔𝑖); 𝑥𝑖 − 𝑠𝑖𝑔𝑖 ≤ 0}.

𝑆𝑖 has no non-negativity constraints such as 𝑥𝑖 ≥ 0, 𝑔𝑖 ≥ 0. Therefore any normal to 𝑆𝑖 is of the form 𝑝𝑖(1,−𝑠𝑖) = (𝑝𝑖,−𝑠𝑖𝑝𝑖), where
𝑝𝑖 ≥ 0, and so any normal to 𝑆 is of the form

𝐧𝑆 = (𝐩,−𝐬◦𝐩)

for some vector 𝐩 where all the co-ordinates 𝑝𝑖 ≥ 0. Therefore, using (50),

(−𝐜,𝐡) = (𝐧𝐷,𝐧𝐹 ) + 𝐧𝑆 = (𝐧𝐷,𝐧𝐹 ) + (𝐩,−𝐬◦𝐩) (51)

Subtracting 𝐧𝑆 = (𝐩,−𝐬◦𝐩) from both sides of (51) yields:

(−(𝐜 + 𝐩),𝐡 + 𝐬◦𝐩) = (𝐧𝐷,𝐧𝐹 ) is normal at (𝐱∗, 𝐠∗) to 𝐷 × 𝐹 ,

and so

−(𝐜 + 𝐩) = 𝐧𝐷 is normal at 𝐱∗ to 𝐷 (52)

and

𝐡 + 𝐬◦𝐩 = 𝐧𝐹 is normal at 𝐠∗ to 𝐹 . (53)

Thus:

by (52), 𝐱∗ is a Wardrop equilibrium with price vector 𝐩 (see definition 9) and
by (53), 𝐠∗ satisfies policy 𝑃𝐡-with-prices with price vector 𝐩 (see definition 11).

We have now proved Theorem 3, that policy 𝑃𝐡-with-prices is capacity maximising; see Definition 3 in Section 3 above.

Appendix B. Proof of Theorem 5

Theorem 5. Let 𝐷+ be the set of demand feasible route flow vectors defined in Section 11. Let 𝐹+
𝑟𝑒𝑑 be the set of feasible antistage red-time

vectors and let 𝑆+ be the set of supply feasible (route-inflow vector, antistage redtime vector) pairs. Suppose that

(𝐷+ × 𝐹+
𝑟𝑒𝑑 ) ∩ 𝑆+

𝑟𝑒𝑑 ≠ 𝜙.

Suppose that the following definitions, conditions and rules above hold: definition (26), condition (27), price specification (29), route-cost
and antistage red-time cost definitions (30)–(34), swapping rules (35), (36) and direction conditions (37), (38), (39) and (40). Suppose
that 𝑉 and 𝑉 + are specified by (43) and (44). Suppose that 𝑇 is defined by (45) and satisfies (46), (47) and (48). Then, under these
conditions, for any start point (𝐗0,𝐑0) ∈ (𝐷+ ×𝐹+

𝑟𝑒𝑑 )∩𝑆+
𝑟𝑒𝑑 , the sequence (49) converges to a non-empty set 𝐸+ of equilibria consistent with

control policy 𝑃 𝐟
0 . Here:

𝐸+ = {(𝐗,𝐑) ∈ (𝐷+ × 𝐹+
𝑟𝑒𝑑 ) ∩ 𝑆+

𝑟𝑒𝑑 ;𝐗 is a Wardrop equilibrium and 𝐑 is a 𝑃 𝐟
0 equilibrium.}

Proof of Theorem 5. We assume that policy 𝑃 𝐟
0 holds; and that all the conditions in the theorem statement also hold.

Let (𝐗0,𝐑0) ∈ (𝐷+ × 𝐹+
𝑟𝑒𝑑 ) ∩ 𝑆+

𝑟𝑒𝑑 and consider sequence (49). We show first that sequence (49) converges, under the above
conditions, to the set

MIN = {(𝐗∗,𝐑∗) ∈ (𝐷+ × 𝐹+
𝑟𝑒𝑑 ) ∩ 𝑆+

𝑟𝑒𝑑 ;𝑉 (𝐗∗,𝐑∗) ≤ 𝑉 (𝐗,𝐑) for all (𝐗,𝐑) ∈ (𝐷+ × 𝐹+
𝑟𝑒𝑑 ) ∩ 𝑆+

𝑟𝑒𝑑}.

MIN is the set of 𝑉 -minimising (X, R) ∈ (𝐷+ × 𝐹+
𝑟𝑒𝑑 ) ∩ 𝑆+

𝑟𝑒𝑑 . Then we show that

MIN ⊂ 𝐸+ = {(𝐗,𝐑) ∈ (𝐷+ × 𝐹+
𝑟𝑒𝑑 ) ∩ 𝑆+

𝑟𝑒𝑑 ;𝐗 is a Wardrop equilibrium and 𝐑 satisfies 𝑃 𝐟
0 },

so that (49), in converging to MIN, must also converge to the set 𝐸+ of equilibria consistent with 𝑃 𝐟
0 which proves the theorem.

To show that (49) converges to MIN, we suppose that (49) does not converge to MIN and show that this leads to a contradiction.
If (49) does converge to MIN then for all 𝜖 > 0

there is 𝑘∗∗ such that 𝑉 (𝑇 𝑘(𝐗0,𝐑0)) ≤ 𝑉 +
𝑚𝑖𝑛 + 𝜖 for all 𝑘 > 𝑘∗∗ (54)

where 𝑉 +
𝑚𝑖𝑛 is the minimum value of 𝑉 +(𝐗,𝐑) as (𝐗,𝐑) varies over (𝐷+ × 𝐹+

𝑟𝑒𝑑 ) ∩ 𝑆+
𝑟𝑒𝑑 .

Suppose now that (49) does not converge to MIN. Then for some 𝜖 > 0

∗∗ 𝑘 + ∗∗
26

there is no 𝑘 such that 𝑉 (𝑇 (𝐗0,𝐑0)) ≤ 𝑉𝑚𝑖𝑛 + 𝜖 for all 𝑘 > 𝑘 . (55)
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Now 𝑉 (𝑇 𝑘(𝐗0,𝐑0)) is non-increasing and so, for any 𝜖 satisfying (55),

𝑉 (𝑇 𝑘(𝐗0,𝐑0)) > 𝑉 +
𝑚𝑖𝑛 + 𝜖 for all 𝑘. (56)

t then follows, using (48), that, for any 𝜖 satisfying (55) (and hence (56)), and for all 𝑘 = 1, 2, 3,….,

𝑉 +(𝐗0,𝐑0) > 𝑉 +(𝑇 (𝐗0,𝐑0)) > 𝑉 +(𝑇 (𝑇 (𝐗0,𝐑0))) > … > 𝑉 +(𝑇 𝑘(𝐗0,𝐑0)) > … > 𝑉 +
𝑚𝑖𝑛 + 𝜖. (57)

e now show also that, for any 𝜖 satisfying (55) (and hence (56) and (57)),

there is 𝑘∗∗ such that 𝑉 (𝑇 𝑘(𝐗0,𝐑0)) < 𝑉 +
𝑚𝑖𝑛 + 𝜖 for all 𝑘 > 𝑘∗∗. (58)

To do this, for any 𝜖 satisfying (55) (and hence (56) and (57)), let

𝐻 = [(𝐷+ × 𝐹+
𝑟𝑒𝑑 ) ∩ 𝑆+

𝑟𝑒𝑑 ] ∩ {(𝐗,𝐑);𝑉 +(𝐗0,𝐑0) ≥ 𝑉 +(𝐗,𝐑) ≥ 𝑉 +
𝑚𝑖𝑛 + 𝜖}. (59)

By (57),

𝑇 𝑘(𝐗0,𝐑0) ∈ 𝐻 (60)

for all 𝑘.
Now 𝐻 is a closed bounded set and (𝛥1(𝐗,𝐑), 𝛥2(𝐗,𝐑)) is continuous and non-zero over this set. Therefore, by (57),

𝑉 +(𝐗,𝐑) − 𝑉 +[𝐗 + 𝛥1(𝐗,𝐑),𝐑 + 𝛥2(𝐗,𝐑)]

is continuous and positive over 𝐻 . It follows that there is ℎ > 0 such that

𝑉 +(𝐗,𝐑) − 𝑉 +[𝐗 + 𝛥1(𝐗,𝐑),𝐑 + 𝛥2(𝐗,𝐑)] > ℎ > 0

for all (𝐗,𝐑) ∈ 𝐻 and so, using (57),

𝑉 +(𝑇 𝑘(𝐗0,𝐑0)) − 𝑉 +(𝑇 𝑘+1(𝐗0,𝐑0)) > ℎ

for all 𝑘. Hence, for all 𝑘,

[𝑉 +(𝑇 0(𝐗0,𝐑0)) − 𝑉 +(𝑇 𝑘(𝐗0,𝐑0))]

= [𝑉 +(𝑇 0(𝐗0,𝐑0)) − 𝑉 +(𝑇 1(𝐗0,𝐑0))] + [𝑉 +(𝑇 1(𝐗0,𝐑0)) − 𝑉 +(𝑇 2(𝐗0,𝐑0))]

+ . . . . . + [𝑉 +(𝑇 𝑘−1(𝐗0,𝐑0)) − 𝑉 +(𝑇 𝑘(𝐗0,𝐑0))] > 𝑘ℎ.

(The sum above collapses.) Therefore:

[𝑉 +(𝐗0,𝐑0) − 𝑉 +(𝑇 𝑘(𝐗0,𝐑0))] = [𝑉 +(𝑇 0(𝐗0,𝐑0)) − 𝑉 +(𝑇 𝑘(𝐗0,𝐑0))] > 𝑘ℎ

for all 𝑘. Rearranging, it then follows that

𝑉 +(𝑇 𝑘(𝐗0,𝐑0)) < 𝑉 +(𝐗0,𝐑0) − 𝑘ℎ < 0 if 𝑘 > 𝑉 +(𝐗0,𝐑0)∕ℎ. (61)

Suppose now that 𝑘 > 𝑉 +(𝐗0,𝐑0)∕ℎ. Then

𝑉 +(𝑇 𝑘(𝐗0,𝐑0)) < 0 by (61) and 𝑉 +(𝑇 𝑘(𝐗0,𝐑0)) ≥ 0 by definitions (43) and (44). (62)

(62) is our contradiction, created by assuming that sequence (49) does not converge to MIN. It follows that sequence (49) must
converge to MIN.

We now show that MIN is the set of (X, R) where X is a Wardrop equilibrium when the red-time is R and R satisfies 𝑃 𝐟
0 when

the flow is X.
Let (𝐗,𝐑) ∈ MIN and so be a 𝑉 +− minimiser over the set (𝐷+ × 𝐹+

𝑟𝑒𝑑 ) ∩ 𝑆+
𝑟𝑒𝑑 . Thus at (𝐗,𝐑) there can be no descent direction of

𝑉 + remaining within the set (𝐷+ × 𝐹+
𝑟𝑒𝑑 ) ∩ 𝑆+

𝑟𝑒𝑑 , and hence

−[𝑔𝑟𝑎𝑑𝑉 +(𝐗,𝐑)] = −[𝐂,𝐑𝐂](𝐗,𝐑) is normal at (𝐗,𝐑) to (𝐷+ × 𝐹+
𝑟𝑒𝑑 ) ∩ 𝑆+

𝑟𝑒𝑑 . (63)

By (27), 𝑉 + tends to +∞ as (𝐗,𝐑) tends to the boundary of 𝑆+
𝑟𝑒𝑑 . Therefore a 𝑉 +-minimising (𝐗,𝐑) is a positive distance from the

boundary of 𝑆+
𝑟𝑒𝑑 . Hence (𝐗,𝐑) ∈ the interior of 𝑆+

𝑟𝑒𝑑 and it follows from (63) that

−[𝑔𝑟𝑎𝑑𝑉 +(𝐗,𝐑)] = −[𝐂,𝐑𝐂](𝐗,𝐑) is normal at (𝐗,𝐑) to (𝐷+ × 𝐹+
𝑟𝑒𝑑 ).

Hence:

−𝐂(𝐗,𝐑) is normal at 𝐗 to 𝐷+ (64)

and
+

27

−𝐑𝐂(𝐗,𝐑) is normal at 𝐑 to 𝐹𝑟𝑒𝑑 . (65)
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Now:

condition (64) implies that 𝐗 is a Wardrop equilibrium when the red-time vector is 𝐑
and
condition (65) implies that 𝐑 satisfies 𝑃 𝐟

0 when the route-entry vector is 𝐗.

Thus sequence (49) converges to the non-empty set 𝐸+ of equilibria consistent with control policy 𝑃 𝐟
0 . Here:

𝐸+ = {(𝐗,𝐑) ∈ (𝐷+ × 𝐹+
𝑟𝑒𝑑 ) ∩ 𝑆+

𝑟𝑒𝑑 ;𝐗 is a Wardrop equilibrium and 𝐑 satisfies 𝑃 𝐟
0 }.

We have proved Theorem 5.

ppendix C. A traffic signal control background

.1. Traffic control with fixed routes

Webster (1958) was one of the first to seek to model signal timings and their effect on traffic flow at a single junction; assuming
hat average flows are essentially fixed, not changed by signal timing changes. He considered mathematical and simulation models
f traffic signal control at a single junction, to design fixed time or time of day signal timings. He proposed the well-known

‘equisaturation’’ policy; at a signal controlled junction with just two conflicting approaches the equisaturation policy chooses green-
ime proportions which equalise the degrees of saturation of the two conflicting approaches. This is the same as choosing green-time
roportions which minimise the maximum of the degrees of saturation of the two approaches.

If a junction has many approaches and the signal cycle is divided into non-overlapping periods called stages in each of which
certain set of approaches have green and the rest have red, and these stages are separated by specified interstage periods and

rranged in a specified sequence so that each approach has green for just one period consisting of one or more stages (and if more
han one the intervening interstages), then the equisaturation policy may again be written: choose stage green time proportions to
inimise the maximum of the degrees of saturation of all the approaches. This type of rule has often been utilised in adaptive traffic

ontrol systems.
Allsop extended Webster’s model to enable calculation of practicable signal timings for a junction of any of a wide range of

ayouts to be expressed in terms of optimisation subject to linear constraints: this includes maximisation of capacity for known
atios of arrival rates on the various approaches by linear programming (Allsop, 1972) and minimisation of estimated delay for
rrival rates within that capacity by convex programming (Allsop, 1971). This approach was adopted internationally and later for
bout 20 years in the software package OSCADY (Burrow, 1987). Through the work of his colleagues and of Tully (1976) and Kimber
nd Hollis (1979), the requirements for the sequence of stages to be specified and the arrival rates to be within capacity to enable
stimated delay to be minimised were relaxed (Allsop, 1992).

Robertson (1969) gives a model of a whole network (TRANSYT) allowing whole network optimisation of traffic signals (for
nown Origin–Destination (OD) inputs and known route flows). Hunt et al. (1982) developed the real time control system SCOOT;
ssentially from the TRANSYT model.

Heydecker (2004) and Heydecker et al. (2007) propose an adaptive dynamic control system for traffic signals and also consider
ossible future objectives for traffic signal control. Aboudolas et al. (2009) outline a control designed to optimise a store and forward
etwork model.

.2. Traffic control with variable routes

It is striking that route choices are regarded as fixed in the design of most traffic control strategies; this is true of all the strategies
entioned above in Appendix C.1 and by far the majority of all strategies mentioned in this appendix.

Wardrop (1952) specified the two basic routeing principles: selfish routeing or user equilibrium routeing where travellers utilise
heir own best or quickest routes, and system optimal routeing where the routes are those which minimise total travel time.

Allsop (1974) pointed out the importance of allowing for route choices, and other choices, when considering the impacts of
ignal control changes; quoting Beckmann who emphasised that travellers are playing their own games while the signal-setter is
laying his. Allsop (1974) was one of the first to specify a network model with coherent traffic signal control variables and route
hoice variables, seeking to allow the interaction between traffic signal control policies and user-equilibrium, selfish, route choice
o be sensibly considered within a single network model.

To study the problem of optimising signal timings subject to reasonable estimates of route-choice behaviour, many researchers
ave used traffic assignment models where travel times depend on both traffic flows and green-times. Gartner (1976) studied the
nteraction between area traffic control and user equilibrium routeing.

Dickson (1981) showed that signal timings which minimise travel time for fixed routes do not necessarily minimise travel time
hen routeing is variable.

Optimisation of signal timings in signal-controlled networks, allowing route choices to vary, is considered by Fisk (1984)
nd Sheffi and Powell (1983). In this work queues are not explicitly represented; it is assumed that there is a cost function depending
n flow and green-time.
28
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C.3. Representing queues in traffic assignment and traffic control models

Seeking a simple representation of queues, within traffic assignment or routeing models and also within control models, vertical
ueueing assignment models were introduced by Thompson and Payne (1975). Vertical queue models have since been utilised, in
n assignment-and-control context by Smith (1987) and in an assignment context by Larsson and Patriksson (1995).

Nesterov and de Palma (2003) introduce steady state solutions of dynamic assignment models, and these are very close to the
riginal model of Thompson and Payne (1975). Bliemer et al. (2012) extends this steady state vertical queueing approach so as to
llow for a time-varying input demand and hence time-varying queues; this makes the solution of the traffic assignment problem
uch less straightforward.

The need for transport models with more realistic explicit queues has been emphasised by Bliemer et al. (2012), Daganzo (1998)
nd others.

A transfer of the vertical queueing traffic assignment theory introduced by Thompson and Payne to embrace some limited spatial
ueueing was developed in Smith et al. (2013) and further developed in Smith et al. (2019a).

.4. Traffic control with variable routes, queues and capacity maximising policies

Smith (1980) proposed the 𝑃0 distributed traffic signal control policy. This control policy is designed to encourage efficient
routeing and to maximise the capacity of many networks, while requiring very little on-line information and very little computation.
The policy has been developed in Smith (1979a,b, 1984, 2010, 2011, 2015) and Smith et al. (2015, 1987).

Smith and van Vuren (1993), Smith and Mounce (2011) and Liu et al. (2015) have considered the stability of route choice and
signal control, taken together; both with standard delay-minimising policies and with capacity-maximising policies such as 𝑃0. Much
of this work utilises vertical queueing.

Representing spatial queueing within control models affects the design and evaluation of variants of the 𝑃0 policy. Smith et al.
(2019a) gives the results of applying different variants of 𝑃0, including more spatially aware variants, on a very simple two route
network. While the network is very simple, quite complicated phenomena arise: for example if 𝑃0 is utilised and the assignment
of routes utilises spatial queueing, and not vertical queueing, then the equilibrium travel time is not a non-decreasing function of
the network input load. This implies that many traffic assignment and control models using 𝑃0 have multiple equilibria. Certain
variants of the 𝑃0 control policy avoid this problem by taking better account of horizontal queueing.

.5. Traffic control with variable routes; bilevel approaches

Chiou (1999, 2003) consider the interaction between traffic control and route choice, using the TRANSYT model of traffic
low. Van Vuren and Van Vliet (1992) includes the additional consideration of route guidance.

Yang and Yagar (1995) and Yang (1996) have considered in detail the interaction between signal control and routeing in
aturated road networks. Hu and Mahmassani (1997) have studied (within a model) day to day evolution of network flows under
eal-time information and reactive signal control.

Historically, assignment- or routeing-only models (at least those models designed for transportation planning purposes) have
een fixed point models without queueing; see for example Cantarella and Cascetta (1995) and Cantarella (1997). Cantarella et al.
1991) and Cantarella (2010) have considered signal setting as part of a dynamical assignment process involving re-routeing.
hey discuss the interaction between route choices and signal control in both a dynamical and an equilibrium setting. Cascetta
t al. (2006) have designed models and algorithms for optimising signals with SUE routeing. Meneguzzer (1996) has conducted
omputational experiments with a combined traffic assignment and control model with asymmetric cost functions. Maher et al.
2001) propose a bi-level programming approach for traffic control problems with SUE routeing and Lam and Zhang (2000) have
onsidered capacity-constrained traffic assignment in networks with residual queues.

.6. Traffic control within operational models

LINSIG (2010) software generates signal timings for given flows; this software is often used in real life for junctions and small
etworks, and may involve small scale routeing considerations. Schlaich and Haupt (2012) describe a large scale implementation
f the equisaturation policy within the VISUM assignment model; the aim is to generate fixed time signal timings over a wide area
aking some account of route choice. This has now been installed as part of the VISUM assignment model by Gentile and Meschini
2013). There is scope for using other traffic control policies such as the 𝑃0 policy.

C.7. Traffic control from a dynamical systems viewpoint

Taale (2008) has considered integrated anticipatory control of road networks, in a dynamic setting, using game theory. Mah-
massani et al. (2013) has considered the performance of urban traffic networks including gridlock and the dynamics of gridlock.

Xiao and Lo (2015) consider the combined route choice and adaptive traffic control as a day-to-day dynamical system
and Hajiahmadi et al. (2015) have considered how to optimally control perimeter and network control plans for urban traffic
29
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Han and Gayah (2015) have considered a ‘‘continuum’’ signalised junction model and utilised this model to help design signal
ontrols in dynamic traffic networks. This ‘‘continuum’’ model does not represent signal cycles but instead considers green-time
roportions as being defined at each time 𝑡. This paper utilises such a continuum control model.

Huang et al. (2016) has designed iterative optimisation procedures for estimating optimal anticipatory network traffic control;
ometimes utilising a dual approach and also real-time network estimation.

Keyvan-Ekbatani et al. (2016) has studied combining the traffic-responsive control policy 𝑃0 and perimeter gating control in
urban networks.

van den Berg et al. (2008) consider signal timings which aim to control routeing. Lammer and Helbing (2008) have considered the
possibility of self-control of traffic lights and vehicle flows in urban road networks, without an explicit re-routeing model. It would
be of interest to understand how the ideas in Lammer and Helbing (2008) connect to other parts of the literature on the distributed
control of signal-controlled networks and also whether the mixed integer linear programming method outlined in van den Berg et al.
(2008) can, at least for certain objectives, be written as a distributed control policy.

C.8. Traffic control reviews

There have been a number of reviews. Wood (1993) and Meneguzzer (1997) reviewed models combining traffic assignment
and signal control up to 1997. Taale and van Zuylen (2001) give a review of research on the combined traffic assignment and
control problem over the previous 25 years. Papageorgiou et al. (2003), give interesting reviews of road traffic control systems and
strategies actually utilised on-street. Yang and Bell (1998) give a review of models and algorithms for road network design.
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