
This is a repository copy of Atomic model validation using the CCP-EM software suite.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/184535/

Version: Published Version

Article:

Joseph, Agnel Praveen, Olek, Mateusz, Malhotra, Sony et al. (4 more authors) (2022) 
Atomic model validation using the CCP-EM software suite. Acta Crystallographica Section 
D: Structural Biology. pp. 152-161. ISSN 2059-7983 

https://doi.org/10.1107/S205979832101278X

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



research papers

152 https://doi.org/10.1107/S205979832101278X Acta Cryst. (2022). D78, 152–161

Received 29 June 2021

Accepted 1 December 2021

Edited by D. J. Rigden, University of Liverpool,

United Kingdom

Keywords: cryo-EM; model validation; CCP-EM;

SARS-CoV-2; model geometry.

Supporting information: this article has

supporting information at journals.iucr.org/d

Atomic model validation using the CCP-EM

software suite

Agnel Praveen Joseph,a* Mateusz Olek,b,c Sony Malhotra,a Peijun Zhang,c

Kevin Cowtan,b Tom Burnleya and Martyn D. Winna*

aScientific Computing Department, Science and Technology Facilities Council, Didcot, United Kingdom, bDepartment of

Chemistry, University of York, York, United Kingdom, and cElectron BioImaging Center, Diamond Light Source,

Rutherford Appleton Laboratory, Didcot, United Kingdom. *Correspondence e-mail: agnel-praveen.joseph@stfc.ac.uk,

martyn.winn@stfc.ac.uk

Recently, there has been a dramatic improvement in the quality and quantity

of data derived using cryogenic electron microscopy (cryo-EM). This is also

associated with a large increase in the number of atomic models built. Although

the best resolutions that are achievable are improving, often the local resolution

is variable, and a significant majority of data are still resolved at resolutions

worse than 3 Å. Model building and refinement is often challenging at these

resolutions, and hence atomic model validation becomes even more crucial to

identify less reliable regions of the model. Here, a graphical user interface for

atomic model validation, implemented in the CCP-EM software suite, is

presented. It is aimed to develop this into a platform where users can access

multiple complementary validation metrics that work across a range of

resolutions and obtain a summary of evaluations. Based on the validation

estimates from atomic models associated with cryo-EM structures from SARS-

CoV-2, it was observed that models typically favor adopting the most common

conformations over fitting the observations when compared with the model

agreement with data. At low resolutions, the stereochemical quality may be

favored over data fit, but care should be taken to ensure that the model agrees

with the data in terms of resolvable features. It is demonstrated that further re-

refinement can lead to improvement of the agreement with data without the loss

of geometric quality. This also highlights the need for improved resolution-

dependent weight optimization in model refinement and an effective test for

overfitting that would help to guide the refinement process.

1. Introduction

Over the last decade, there has been a rapid increase in the

number of structures solved using cryogenic electron micro-

scopy (cryo-EM; Callaway, 2020; Subramaniam, 2019; Kühl-

brandt, 2014). The resolution of cryo-EM reconstructions has

also improved significantly, thanks to technological advances

in sample imaging and software for map reconstruction.

Currently, the best resolution achieved is 1.15 Å (Yip et al.,

2020) and efforts are ongoing to determine cryo-EM recon-

structions at atomic resolutions (Nakane et al., 2020). Never-

theless, nearly 40% of all reconstructions deposited in the

Electron Microscopy Data Bank (EMDB; Patwardhan, 2017)

are in the resolution range 3–5 Å and about 48% are at worse

than 5 Å.

The need for cryo-EM map and model validation has been

recognized in recent years (Afonine et al., 2018; Rosenthal &

Rubinstein, 2015; Lawson et al., 2021), and the EMDR

(EMDataResource) map and model challenges (Lawson et al.,

2021; Lawson & Chiu, 2018) have played a very useful role

in comparing existing validation metrics, identifying new

requirements and providing data sets for further developments.
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EM targets have been included in the CASP (Critical

Assessment of Protein Structure Prediction) competition since

round 13, and the community is invited to submit atomic

models for cryo-EM targets (Kryshtafovych et al., 2019).

Atomic model assessment and validation span different

aspects, including model geometry, fit to data, tests for over-

fitting and model bias. Approaches that evaluate stereo-

chemical properties of the atomic model, such as MolProbity

(Williams, Headd et al., 2018) and CaBLAM (Prisant et al.,

2020), PROCHECK (Laskowski et al., 1993) and WHAT_

CHECK (Hooft et al., 1996), aim to detect potential issues

with the geometry of the model by assessing stereochemical

properties and comparison with expected standards. Outliers

should ideally be fixed where possible prior to automated

model refinement (Richardson et al., 2018). The Ramachan-

dran Z-score (Sobolev et al., 2020; Hooft et al., 1997) is very

useful for detecting an ‘unusual’ ’/ dihedral distribution in

the model, which is often caused by refinement approaches

that overfit the backbone ’/ angles to the centroid of allowed

Ramachandran space. Another set of methods evaluate each

residue in the atomic model based on the local structural

neighborhood (Eisenberg et al., 1997; Sippl, 1993), which is

especially useful to detect errors in the sequence register.

It is also crucial to assess the quality of modeled interfaces

between subunits in the cryo-EM-derived assemblies, as they

often involve inter-subunit steric clashes, loose interface

packing etc. (Malhotra et al., 2021). A recently published score,

the Protein Interface score (PI-score), is a metric which can

help to distinguish ‘native-like’ interfaces at low-to-inter-

mediate resolution (Malhotra et al., 2021).

The most common metric used to quantify agreement of the

atomic model with the cryo-EM map is the cross-correlation

coefficient (CCC; Volkmann & Hanein, 1999; Roseman, 2000;

Rossmann, 2000). In Fourier space, the correlation calculated

in each resolution shell (Fourier shell correlation; FSC)

reflects the agreement of features at each resolution (Brown et

al., 2015). Several other metrics have been tested (Afonine et

al., 2018; Joseph et al., 2017; Ramı́rez-Aportela et al., 2021) and

some were found to perform better than others in different

resolution ranges and at different degrees of overlap (Joseph

et al., 2017). With data resolution becoming better, multiple

methods have been developed to evaluate the agreement with

the map at the residue level. The local agreement is either

quantified as the real-space CCC in the Phenix local CCC

(Afonine et al., 2018), the Manders’ overlap coefficient in

SMOC (Joseph et al., 2016) or a score of atomic resolvability in

map Q (Pintilie et al., 2020). The absolute values of most of

these metrics vary with the map resolution (Lawson et al.,

2021). The recently introduced FSC-Q score applies normal-

ization to the local FSC to account for local resolution

variation (Ramı́rez-Aportela et al., 2021).

Another set of metrics evaluate whether atoms in the model

are positioned within the molecular contour of the map. The

atom-inclusion score (Lagerstedt et al., 2013) implemented as

part of the EMDB validation analysis pages identifies residues

that are outside the author-recommended contour of the map.

More recently, we developed a tool for assessing the backbone

atom positions in the map (Olek & Joseph, 2021) based on the

false-discovery rate-control approach for segregating back-

ground noise from molecular volume at a range of resolutions

(Beckers et al., 2019).

Some of the metrics used for model assessment are intrin-

sically optimized by automated model-refinement approaches,

and hence the use of multiple and/or independent metrics is

recommended for validation purposes. Atomic model-building

and refinement approaches aim to maximize the agreement

with map data while satisfying restraints on geometry

(Afonine et al., 2018; Nicholls et al., 2018). Relative weights for

geometry and fit to data are often estimated automatically

depending on the data quality. Ideally, the estimated weights

are expected to result in an optimal fit to data without over-

fitting and distorting geometry. Here, we assess the stereo-

chemical quality and fit to data of the deposited models in

order to better understand the effect of weights estimated in

refinement.

Overfitting is an important factor to consider while trying

to optimize the model fit to map. Over the years, several

approaches for cross-validation have been proposed to detect

overfitting (DiMaio et al., 2013; Falkner & Schröder, 2013;

Cossio, 2020; Brown et al., 2015). However, the requirement

for a sufficiently large independent data set has been the

primary factor limiting the development of a standardized

cross-validation approach, as Rfree is for X-ray crystallography

(Brünger, 1992).

Here, we describe a user-friendly graphical interface which

aims to integrate multiple tools for validation that are

complementary and/or work on different resolution ranges.

The interface is provided as a task within the Collaborative

Computational Project for Electron cryo-Microscopy (CCP-

EM) software suite (Burnley et al., 2017). We also discuss

trends from the validation of atomic models determined from

SARS-CoV-2 and demonstrate the importance of model

agreement with data with the help of a few examples.

2. Atomic model-validation task in CCP-EM

The CCP-EM software suite incorporates a range of func-

tionalities for structure solution under different user inter-

faces. The atomic model-validation interface (Validation:

model) in CCP-EM currently integrates multiple tools and

metrics that evaluate the geometry of the model and the fit to

data. The minimal input for the interface is an atomic model(s)

in PDB or mmCIF format that needs to be evaluated for

geometry. Computation of scores that quantify the fit to data

requires a map and its global resolution as additional inputs

(Fig. 1a). Before calculating the fit-to-data scores, ensure that

the model coordinates align with the map grid. Tools for

assessing the map quality are not included in this task, but can

be found elsewhere in the CCP-EM software suite.

The fit-to-data metrics that are part of the task (see below)

are sensitive to one or more of the map-processing techniques,

including sharpening, filtering, denoising and masking. For a

well fitted model, reducing the noise and artifacts (for example

from tight masks or over-sharpening) while preserving the
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signal should ideally improve the fit-to-data scores. Density-

modification approaches have been shown to help with

refinement and to improve the agreement between the model

and map (Terwilliger et al., 2020; Sanchez-Garcia et al., 2021;

Jakobi et al., 2017). When using post-processed maps as input,

we recommend a careful inspection of the map prior to model

validation. Comparison with scores calculated against the raw

map might also help to understand any significant effects of
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Figure 1
Model-validation task (Validation:model) interface in the CCP-EM software suite. The task can be accessed from the list of tasks in the main CCP-EM

window. The figure shows the ‘Setup’ and ‘Results’ tabs of the interface for calculations on the atomic model of hemoglobin (PDB entry 5ni1) derived
from a cryo-EMmap at 3.2 Å resolution (Khoshouei et al., 2017). (a) The input setup page lists all input and parameter requirements. Users can choose a
selection of assessment tools listed under ‘Method Selection’. (b) Global results tab under ‘Results’ showing a list of sections with global statistics
returned by different tools. The atomic B-factor distribution plot is highlighted. (c) Local results tab under ‘Results’ showing a list of sections with outlier
details returned by different tools. A per-residue plot of SMOC and FDR-backbone scores is provided under ‘Per-residue scores’. The outlier positions
are marked in different colors in this plot.



post-processing. To compute the FDR-backbone score (see

Section 2.2.2), an unmasked input map is required.

The user interface includes graphical tabs allowing access to

input parameters, program logs, output files and results. Under

the ‘Results’ tab the results are presented for both global and

local assessment of the model (Fig. 1b). It is important to

ensure that the atomic B factors of the model are refined, as

the features of the calculated map are affected by the atomic B

factors. Hence, the scores may vary significantly depending on

whether or not the model B factors are refined. A plot of the

atomic B-factor distribution is provided in the output, and a

warning message is displayed when multiple peaks are

detected in the distribution. Multiple peaks might indicate

partial occupancies or large domain motions, but can also

point to inconsistencies in the atomic B-factor refinement. The

theoretical map calculation from the map is performed using

REFMAC5 (Nicholls et al., 2018) by default. If it is turned off,

then TEMPy global scores use a more simplistic Gaussian

approximation of atoms for map calculation. More systematic

approaches for evaluating atomic B-factor distributions have

recently been developed (Masmaliyeva et al., 2020) and we

plan to integrate such approaches in the future.

The validation tools that are currently part of the validation

interface are listed in Sections 2.1 and 2.2.

2.1. Model geometry

MolProbity (Williams, Headd et al., 2018) provides statistics

on the quality of bonds, angles and dihedrals and serious

atomic clashes. Outliers are detected by comparison to stan-

dard or expected distributions of geometric parameters.

Outlier types include Ramachandran map outliers, rotamer

outliers, serious clashes (clashscore), C� deviations, cis-

peptides and bond-length/angle and dihedral outliers. It is

important to ensure that the outliers in the model are justified

by the data. The outliers, when present, are often very relevant

in terms of the structure stabilization and/or function of the

protein.

MolProbity reports a single score (MolProbity score) which

is a weighted combination of clashscore and the percentage of

residues in the favorable region of the Ramachandran plot

and rotamer outliers. Lower values of the MolProbity score

reflect better geometry. For crystal structures, a score lower

than the crystallographic resolution suggests that the model is

better than other structures at this resolution (�0.25 Å) on

average. Percentiles associated with clashscore and the

MolProbity score are also provided to place the model relative

to other structures in this resolution range. For a correct

interpretation of the percentiles, it is important to ensure that

the PDB file header holds the information on data resolution.

CaBLAM (Prisant et al., 2020; Richardson et al., 2018;

Williams, Richardson et al., 2018) provides statistics on back-

bone quality based on pseudo-dihedrals consisting of conse-

cutive C� atoms and peptide carbonyls. Outliers are detected

based on the position in the pseudo-dihedral space formed by

the distribution observed in structures at similar resolutions.

In general, a model is expected to have less than 5% CaBLAM

outliers. CaBLAM is particularly useful for lower resolutions,

and it is less prone to being refined against.

PI-score (Malhotra et al., 2021) is a metric that evaluates

subunit interfaces in the atomic model and is map-indepen-

dent. The method computes the PI-score for all of the inter-

faces present in the input structure and detects potential

outliers based on a score cutoff of �0.5 (as recommended by

the authors). The chains forming the interfaces identified as

outliers are listed in a table under the ‘Global’ results tab. The

residues associated with the interface identified as an outlier

are also provided as a table under the ‘Local’ outlier tab.

Implementation of this score is included in the latest CCP-EM

nightly release.

Both global and local (outliers) statistics from MolProbity

and CaBLAM are included in the Results.

2.2. Fit to map

An atomic model is expected to provide the best repre-

sentation of experimental data and any interpretations based

on the atomic model are also supported by the data. Hence, it

is very important to assess the agreement of the model with

the data. The model-validation interface in CCP-EM inte-

grates approaches that provide both global and local evalua-

tion of the structures.

2.2.1. Global fit to map. REFMAC5 (Murshudov et al.,

2011) is used to calculate the model–map Fourier shell

correlation (FSC) between a theoretical map calculated from

the atomic model and the experimental map (Figs. 1b and 3c).

An FSCavg score is derived from the model–map FSC curve

by calculating an average of the FSC weighted by the number

of structure factors in each shell (Brown et al., 2015) up to the

reported resolution limit. Although higher FSCavg values

reflect a better fit, it is necessary to check whether the model

starts overfitting to noise. Brown et al. (2015) proposed an

approach to estimate model overfitting by comparing model–

map FSCs calculated on half maps. The validation interface

supports the input of other independent maps for comparing

the fit-to-data scores. This is useful as a test for overfitting if

the refinement is carried out in one (half) map and an inde-

pendent additional map input (for example the other half

map) can be used to compare the model-validation scores.

TEMPy (Cragnolini et al., 2021; Farabella et al., 2015) is

used to calculate the extent of model–map overlap (OV), real-

space cross-correlation coefficient (CCC) and mutual infor-

mation (MI) scores (Joseph et al., 2017; Figs. 1b and 3d). A

map contour threshold is applied prior to computation of

these scores. Users can provide a threshold for contouring the

map, which is recommended. The contour level should ideally

cover the molecular volume or mask out the background. The

choice of contour level is often subjective and for the maps

deposited in the EMDB authors often provide a ‘recom-

mended contour level’. The ‘Confidence map’ tool in the CCP-

EM software package can be used to automatically identify

voxels covering the molecular volume (Beckers et al., 2019).

By default, a level corresponding to 1.5� from the background

peak is used as the contour threshold. When three or more
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models are supplied as input, combined scores that integrate

both CCC and MI with extent of overlap (CCC_OV and

MI_OV; described in Joseph et al., 2017) are also calculated.

These scores make use of the score distribution to rescale the

individual scores before combining them; hence, the calcula-

tion requires more than two models.

2.2.2. Local fit to map. TEMPy is also used to calculate a

segment-based Manders’ overlap coefficient (SMOC) score

that quantifies the per-residue agreement between a theore-

tical map derived from the atomic model and the experimental

map (Joseph et al., 2016). To identify outliers or potential

misfits, we compute a Z-score for each residue relative to the

local neighborhood (residues within 12 Å). Residues asso-

ciated with Z-scores of <�1.5 are identified as potential

outliers.

The confidence-map tool developed by Beckers et al. (2019)

is used to assess the coordinate positions of backbone atoms in

the model (Olek & Joseph, 2021). The backbone validation

score reflects whether the residue backbone is traced in the

molecular volume or background noise. An unmasked map is

required as input for the successful computation of this score.

This score was demonstrated to be complementary to other

existing scores that quantify model agreement with maps.

Residues associated with scores lower than 0.9 usually require

attention and are designated as outliers. Implementation of

this score is included in the latest CCP-EM nightly release.

Supplementary Fig. S2 shows an example from the EMDB

Model Challenge 2019 (Lawson et al., 2021) where the FDR-

backbone score detects potential issues with the backbone

trace.

JPred4 is used to predict the secondary structure from the

sequence of the protein chain (Drozdetskiy et al., 2015). The

high-confidence predictions for helical and strand conforma-

tions are then compared against the secondary-structure type

observed in the atomic model as assigned usingDSSP (Kabsch

& Sander, 1983). Mismatches are reported as outliers,

although it is important to note that the accuracy of the

prediction from sequence is only about 80–85% (Buchan &

Jones, 2019; Drozdetskiy et al., 2015; Yang et al., 2018). Hence,

we recommend prioritizing cases where there is low agree-

ment with the map (outliers based on fit-to-data metrics) and a

mismatch with the secondary-structure prediction from the

sequence. In this case, it is possible that the modeled

secondary structure is incorrect and needs to be fixed.

In the CCP-EM model-validation interface, per-residue

SMOC and FDR-backbone scores are provided as a plot

under the local tab, and outliers identified are also highlighted

(Fig. 1c). Table 1 gives a summary of tools currently accessible

from the validation task.

2.3. Outlier clusters

Often, atomic models derived from cryo-EM data are

associated with a large number of outliers that arise from

different metrics and are distributed across the structure. To

highlight specific structural regions with the most serious

issues, we cluster outliers with C� atoms that are within 7 Å of

each other and provide a summary table with a list of clusters

ordered by cluster size (a validation ‘to-do’ list). Users can

proceed with examining the outliers in Coot (Emsley et al.,

2010) by clicking the button at the bottom of the Results page

(Fig. 2a). This opens the model and map in Coot along with the

list of outlier clusters (Fig. 2b). The issues can be fixed inter-

actively in Coot and flagged as complete when each residue is

fixed.

Access to MolProbity, CaBLAM and REFMAC5 via the

CCP-EM interface currently requires installation of the CCP4

software suite (Winn et al., 2011).

3. Assessment of cryo-EM structures from SARS-CoV-2

3.1. Assessment using the CCP-EM model-validation task

A set of 298 models derived from cryo-EM structures from

SARS-CoV-2 were available in the PDB at the end of March

2021. We filtered out models for which the coordinates do not

overlap with the map, reflecting potential issues with the

relative positioning of the map (grid origin) and model coor-

dinates in space (20/298). This resulted in a set of 278 models

that were assessed using the validation suite.

75% of the data set corresponded to models derived from

maps resolved at worse than 3.0 Å resolution. 44% of the

models had MolProbity scores better than 1.5 (Fig. 3a) and

36% had no Ramachandran outliers. A MolProbity score of

1.5 reflects that the model is of comparable geometric quality

to structures resolved at a crystallographic resolution of 1.5 Å

(Chen et al., 2010). However, in practice, with refinement

approaches becoming better and the addition of new models,

this correspondence may not be accurate. Nevertheless, the
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Table 1
List of tools currently included in the CCP-EM model-validation task.

Metric(s) Tool Evaluation

Ramachandran plot, rotamers, serious clashes,
bond lengths, bond angles, other dihedrals

MolProbity Global and local geometry

CaBLAM MolProbity Global and local backbone geometry
Protein Interface score PI-score Protein–protein interface quality
Model–map FSC, FSCavg REFMAC5 Global fit to data
CCC, MI, OV, CCC_OV, MI_OV TEMPy Global fit to data
SMOC TEMPy Local fit to data
FDR-backbone score FDR thresholding (confidence map),

FDR backbone validation tool
Local backbone trace

Secondary-structure prediction JPred4 Secondary structure (local)



score gives an indication of the quality of the model, which is

expected to vary with the data quality. The median of

MolProbity scores associated with structures better than 3.0 Å

resolution is 1.53 and the medians of the FSCavg and CCC

scores are 0.62 and 0.87, respectively. On the other hand, the

median of the MolProbity scores associated with structures

worse than 4.0 Å resolution is 1.54 and the medians of the

FSCavg and CCC scores are 0.50 and 0.47, respectively.

Clearly, the geometry is heavily restrained by refinement

approaches at low resolutions and the (implicit) inclusion of

Ramachandran restraints in refinement might have contrib-

uted to the absence of Ramachandran outliers in a significant

number of models. On the other hand, fit-to-data scores are

often poor, particularly for lower resolution structures. To

check whether the fit to data can be improved further, we

randomly selected 100 models from the data set. The models

were then subjected to 20 cycles of local refinement using the

REFMAC5 implementation in CCP-EM (Burnley et al., 2017;

Nicholls et al., 2018). In REFMAC5, automated weight esti-

mation (keyword: weight auto) identifies a relative weight

(geometry restraints versus fit to data) that maintains the

target bond r.m.s.d. within 0.01 and 0.02 Å. However, as

recommended in the REFMAC5 documentation (https://

www2.mrc-lmb.cam.ac.uk/groups/murshudov/content/refmac/

refmac_keywords.html), the relative weight for the data needs

to be optimized further for use with cryo-EM maps. New

developments in REFMAC (Yamashita et al., 2021) include

better weight estimation within the range 0.2–18.0, depending

on the resolution and the ratio of model to map volumes.

From our experience, a relative weight of between 2 and 4

works well at resolutions of 3 Å or worse. In this study, we

used a weight of 3 using the ‘weight auto 3’ keyword, which

sets a relatively lower starting weight of 3. Note that this

weight may not be optimal for all maps in the data set and

further interactive refinement and error fixes may be required

on a case-by-case basis after automated refinement. Never-

theless, we wanted to check whether the automated refine-

ment helps to improve agreement with the data without a

significant decline in geometric quality.

Using this automated protocol, FSCavg improved in 71% of

the re-refined models while 20% had a lower FSCavg score.

34% of the models had both a better FSCavg score and the

same or an improved MolProbity score (Fig. 3b). Where the

MolProbity score became worse, the change was not large

(less than 0.2 for all but five models), suggesting that the

majority of the re-refined models had comparable geometric

quality to the respective initial model.

Hence, the fit to data could be further improved in a

significant majority of these cases. Figs. 3(c)–3(e) show an

example (PDB entry 7df4) where the FSCavg improved from

0.42 to 0.65, with no significant change in the MolProbity

score. The global statistics from the CCP-EMmodel-validation

interface highlight the improvement based on multiple

metrics.

3.2. Assessment of backbone tracing

We calculated the FDR-backbone scores for the data set of

atomic models associated with cryo-EM structures from

SARS-CoV-2. As the confidence-map calculation (Beckers et
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Figure 2
Summary table with outlier clusters. (a) Local results of the CCP-EM

model-validation task, highlighting the table with outliers clustered in
space. The clusters are ranked by size and the last row includes all
residues that are not part of any cluster. (b) Clicking the orange button at
the bottom of the local results page opens the map and the atomic model
in Coot and a window with a list of outliers that need fixing, again ordered
by clusters.



al., 2019) requires unmasked maps as input, we filtered out

maps deposited in EMDB that were post-processed with the

application of a mask. The backbone trace of the remaining

199 SARS-CoV-2 models were evaluated using the FDR-

backbone score (Olek & Joseph, 2021). The FDR-backbone

score allows us to easily identify and locate potential issues

with backbone tracing in the model. Residues with an FDR-

backbone score of lower than 0.9 are potentially misplaced

and might require additional refinement. The quality of the

model can be represented with an overall FDR-backbone

metric, which is calculated as the fraction of residues with a

score of higher than 0.9.

Fig. 4(a) shows the distribution of the overall FDR-

backbone metric. 143 of 199 models have the backbone atoms

correctly placed for at least 90% of the residues. 56 models out

of 199 had an overall FDR-backbone score of lower than 0.9.

Of the 147 models built from maps with reported resolution 3–

4 Å, 37 were associated with an overall FDR-backbone metric

of less than 0.9 (Fig. 4b), reflecting potential issues with the

backbone trace. We checked whether further re-refinement

could improve the FDR-backbone score. To demonstrate this,

we selected a model (PDB entry 7c2l) associated with a low

FDR-backbone score of 0.8. A region with several residues

with lower FDR-backbone scores (chain C, residues 568–571;

Fig. 4c) was re-refined using the real-space refinement tools in

Coot (Sphere and Zone Refine; Emsley et al., 2010; Fig. 4c). The

interactive refinement resulted in an improved fit of the resi-

dues in the map, which was also associated with improved
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Figure 3
Trends of model geometry versus fit to data for 252 deposited SARS-CoV-2 models. In (a) and (b), the points are colored based on the resolution of the
map, and the color bar on the right shows the colors with respect to resolution. (a) Distribution of MolProbity scores versus FSCavg. (b) Plot of
difference in scores (refined � initial) for a random set of 100 models that were re-refined: (c) model–map FSC curves and FSCavg calculated using
REFMAC5, (d) table with different scores on fit to data calculated using TEMPy and (e) comparison of MolProbity statistics.



FDR-backbone scores, with most

residues having a score of 1.0

(Fig. 4d).

3.3. Assessment of modeled

interfaces

We further assessed the quality

of protein interfaces in the fitted

models for the SARS-CoV-2

cryo-EM structures. The struc-

tures were subjected to quality

assessment using the Protein-

Interface quality score (PI-score;

Malhotra et al., 2021). PI-score is

a machine-learning-based score

which uses derived features of the

interfaces for training. Here, we

have retrained the PI-score

machine-learning model without

using sequence conservation as

one of the derived interface

features, as we have previously

shown that other features such as

shape complementarity were

ranked much higher than conser-

vation (Malhotra et al., 2021). The

calculation of residue conserva-

tion at the interface is a very

time-consuming step, as one

needs to collect homologs and

build a multiple sequence align-

ment. The model accuracy was

not significantly affected when

conservation was not used as one

of the derived interface features

(Supplementary Fig. S3).

All of the required features to

calculate PI-score were success-

fully calculated for 489 interfaces

from 178 SARS-CoV-2 cryo-EM-

derived structures. These inter-

faces were then assessed for their

interface quality using PI-score.

94% of the interfaces and even

those modeled from low-resolu-

tion data scored positive, indi-

cating the good-quality interfaces

modeled within the cryo-EM

structures (Figs. 5a and 5b).

We further investigated one of

the interfaces which was scored

negative (PDB entry 7cac, chains

B and E, PI-score = �1.2, reso-

lution 3.55 Å). This interface is

between the receptor-binding

domain of the spike protein

(chain B) and the antibody heavy
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Figure 4
(a) Histogram of the overall FDR-backbone metric from the SARS-CoV-2 data set. (b) Plot of the overall
FDR-backbone metric versus resolution. (c) A region of the deposited model (residues 568–571, PDB entry
7c21) colored by the per-residue FDR-backbone scores. (d) The re-refined model colored by the per-
residue FDR-backbone scores.

Figure 5
Assessment of modeled interfaces in SARS-CoV2 cryo-EM assemblies. (a) Distribution of PI-score for the
SARS-CoV-2 assemblies. (b) Plot of PI-scores (averaged over all interfaces within a structure) against the
resolution of the structures. (c) Modeled interface between chain B (spike) and chain E (heavy chain of the
antibody) in one of the open-state structures (PDB entry 7cac; 3.55 Å resolution) which was scored
negative. (d) Re-refined structures for chains B and E of PDB entry 7cac, obtained using Coot real-space
refinement, show improved shape complementarity of the protein–protein interface.



chain (chain E). The interface was scored low on shape

complementarity (sc score 0.44; Lawrence & Colman, 1993)

and has clashes at the interface (Fig. 5c). We further re-refined

this structure in Coot (Sphere Refine), which helped to resolve

some of the clashes and improved the shape-complementarity

score (to 0.67; Fig. 5d). Subsequently, the re-refined structure

obtained a positive PI-score of 1.57. In this case, using the

CCC and SMOC score calculated on interface residues

(iSMOC), one cannot distinguish between the deposited

structure (CCC = 0.75 and iSMOC = 0.25) and the re-refined

structure (CCC = 0.74 and iSMOC = 0.26), whereas the

PI-score can help to locate the errors at the interface. Hence,

the PI-score provides complementary validation assessment

for protein–protein interfaces which can be very helpful in

cases such as these.

4. Availability and future perspectives

The interface for model validation (Validation:model) is

available in the CCP-EM software package, which is down-

loadable from https://www.ccpem.ac.uk/download.php. Based

on the assessment of cryo-EM structures from SARS-CoV-2,

we observe a clear bias towards model geometry when

compared with agreement with data. Although model

geometry may be favored at low resolutions due to the low

information content associated with the data, care should be

taken to ensure agreement with resolvable features in the

map. To this end, there is a need for validation tools that

evaluate the quality of low-resolution features of a model and

their agreement with the map. This is also relevant for

tomogram reconstructions and subtomogram averages from

cryo-electron tomography. Currently, there is a lack of a

robust test for overfitting that will help with the selection of

refinement weights (DiMaio et al., 2013) and optimization of

model fit to map. In fact, the models currently available from

the PDB might benefit from further re-refinement. In this

context, efforts such as CERES (Liebschner et al., 2021) and

the extension of PDB-REDO (Joosten et al., 2014) to models

derived from cryo-EM will be of increasing importance. As

most of the cryo-EM reconstructions suffer from variable local

resolution, an overall bias towards model geometry will affect

fit in the better resolved areas. To address this, local resolution-

dependent weight optimization for model refinement would

be a good step forward.

The pipeline underlying the validation task has been used to

evaluate all cryo-EM structures from SARS-CoV-2 and the

results have been deposited in the public repository main-

tained by the Coronavirus Structure Task Force (Croll et al.,

2021). In this study, we show examples where validation

metrics evaluate different features of the model and highlight

associated potential issues. These issues were then fixed using

interactive refinement in Coot.

The validation task in CCP-EM highlights the crucial areas

associated with more serious issues by clustering outliers in

space. The interface also provides a way to fix the outlier

clusters in Coot. In the future, we plan to expand the valida-

tion task with other validation tools including tools for the

validation of nucleic acids and carbohydrates. We also aim to

include functionality to recalculate these scores from the Coot

interface upon fixing the outliers.
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