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Abstract

A central goal in sensory neuroscience is to understand the neuronal signal processing

involved in the encoding of natural stimuli. A critical step towards this goal is the develop-

ment of successful computational encoding models. For ganglion cells in the vertebrate ret-

ina, the development of satisfactory models for responses to natural visual scenes is an

ongoing challenge. Standard models typically apply linear integration of visual stimuli over

space, yet many ganglion cells are known to show nonlinear spatial integration, in particular

when stimulated with contrast-reversing gratings. We here study the influence of spatial

nonlinearities in the encoding of natural images by ganglion cells, using multielectrode-array

recordings from isolated salamander and mouse retinas. We assess how responses to natu-

ral images depend on first- and second-order statistics of spatial patterns inside the recep-

tive field. This leads us to a simple extension of current standard ganglion cell models. We

show that taking not only the weighted average of light intensity inside the receptive field

into account but also its variance over space can partly account for nonlinear integration and

substantially improve response predictions of responses to novel images. For salamander

ganglion cells, we find that response predictions for cell classes with large receptive fields

profit most from including spatial contrast information. Finally, we demonstrate how this

model framework can be used to assess the spatial scale of nonlinear integration. Our

results underscore that nonlinear spatial stimulus integration translates to stimulation with

natural images. Furthermore, the introduced model framework provides a simple, yet pow-

erful extension of standard models and may serve as a benchmark for the development of

more detailed models of the nonlinear structure of receptive fields.

Author summary

For understanding how sensory systems operate in the natural environment, an important

goal is to develop models that capture neuronal responses to natural stimuli. For retinal
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ganglion cells, which connect the eye to the brain, current standard models often fail to

capture responses to natural visual scenes. This shortcoming is at least partly rooted in the

fact that ganglion cells may combine visual signals over space in a nonlinear fashion. We

here show that a simple model, which not only considers the average light intensity inside

a cell’s receptive field but also the variance of light intensity over space, can partly account

for these nonlinearities and thereby improve current standard models. This provides an

easy-to-obtain benchmark for modeling ganglion cell responses to natural images.

Introduction

Much of our knowledge about how neurons in sensory systems operate stems from investiga-

tions with simplified, artificial sensory stimuli, whose properties can be specifically selected

depending on the research question at hand [1]. Investigating the relevance of the inferred sig-

nal processing for real-life scenarios, however, requires examining responses of sensory neu-

rons to natural stimuli [2–5]. An important step for this transition to natural stimuli is the

design of appropriate computational models for the stimulus-response relation of sensory neu-

rons in order to capture the observed signal processing operations and test them on responses

to complex or natural stimuli [6–15].

A fundamental ingredient for such models is typically the receptive field, which describes

the region in stimulus space that affects a neuron’s response. For retinal ganglion cells, the out-

put neurons of the retina, spatial receptive fields are commonly used to capture how the cells

respond to light spots of different sizes or to spatially structured visual stimuli, often by assum-

ing that the cells linearly integrate signals over their receptive fields. Yet, responses under con-

trast-reversing spatial gratings have long revealed that many ganglion cells can display

nonlinearities in their spatial signal integration [16–21].

It is thought that these spatial nonlinearities are also important under natural stimulation

[22–24], even though most natural stimuli have smaller spatial contrast levels than the high-

contrast reversing gratings that are typically used to study nonlinear integration and correla-

tions in natural stimuli lead to a prevalence of low spatial frequencies and larger regions of

fairly homogeneous illumination. In ON parasol cells of macaque retina, for example, spatial

nonlinearities are pronounced under reversing gratings, yet nearly absent under natural sti-

muli [9]. Yet, sharp light intensity transitions occur also in natural visual scenes, for example,

in conjunction with object boundaries, and spatial nonlinearities under natural stimuli have

been demonstrated in different ganglion cells of macaque, mouse, and rabbit retina

[8,9,25,26].

The source of the spatial nonlinearities appears to be the presynaptic bipolar cells [10,27–

29], which provide the excitatory input to the ganglion cells and whose neurotransmitter

release can show partial rectification with respect to light intensity [28,30]. This rectification

occurs despite the graded, non-spike-dependent synaptic exocytosis at bipolar-cell terminals

and likely follows from nonlinear dependence of synaptic exocytosis on presynaptic mem-

brane potential and on calcium concentration [30], which may be supported by the ribbon

synapse’s multivesicular release [31,32]. Yet, incorporating nonlinear bipolar cell input into

computational models has been difficult because determining the layout of bipolar cells and

the nature of their nonlinearities either requires detailed anatomical knowledge [28] or data-

intensive inference methods [10,12,33–37].

We therefore here seek a direct assessment and visualization of the importance of nonlinear

spatial integration under stimulation with natural images and evaluate this for ganglion cells of
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the salamander retina. Based on the observed sensitivity to spatial contrast, we then introduce

a simple model that phenomenologically incorporates effects of nonlinear spatial stimulus

integration and whose parameters can be obtained with relatively small amounts of data. The

approach is based on identifying the receptive field of a ganglion cell and evaluating not only

the (weighted) mean of light intensity across the receptive field, but also the variability of light

intensity over space, measured by the (weighted) second-order statistics of the stimulus. Evalu-

ated on recordings from salamander ganglion cells under flashed natural images, we find that

this analysis reveals nonlinear spatial stimulus integration and provides a simple way to

improve standard receptive-field-based models of ganglion cell activity. Furthermore, applica-

tion to a dataset of mouse retinal ganglion cell recordings affirms the general applicability of

the introduced analysis and modeling approach.

Results

Ganglion cell responses under stimulation with natural images

To investigate responses of retinal ganglion cells to flashed natural images, we projected photo-

graphic images onto isolated salamander retinas and recorded the spiking activity of ganglion

cells with multielectrode arrays. The images were presented individually in a pseudo-random

sequence for 200 ms each, with an inter-stimulus-interval of 800 ms (Fig 1A). Fig 1B shows an

example of one of the images, overlaid with the receptive field outline of a sample ganglion

cell, and the spike patterns of this cell measured for 13 individual presentations of the image. A

simple measure of the response is given by the total spike count elicited by the image presenta-

tion. To obtain the spike count, we used a temporal window ranging from image onset to 100

ms after image offset. Given the response latency of around 100 ms in these neurons [35], this

window typically includes all spikes elicited by the image presentation, but excludes potential

spikes that might be elicited by the withdrawal of the image.

Based on this spike count response measure, we found that stimulation with different

images generated diverse, yet reliable response patterns: for a given ganglion cell, the range of

spike counts typically varied between zero and around 10 to 15, showing that a wide range of

response strengths was elicited. For a given image, on the other hand, spike counts were highly

reliable, with typical standard deviations of the spike count over repeated presentations of

around one spike. Fig 1C shows the spike count responses to all 300 images for the sample gan-

glion cell. For each image, the variance of spike count over repeated trials was typically small

and below the variability of a Poisson process (represented by the gray line), as also reflected

by the per-image Fano factors (inset), which are mostly far below unity. Similar sub-Poisso-

nian response variability had also previously been observed with artificial stimuli [38,39].

The high spike-count reliability was observed for most cells. Fig 1D shows for each analyzed

cell the average spike count variance (averaged over all images) as a measure of trial-by-trial

noise in comparison to the average spike count over all images and trials as a measure of the

average response strength. As for the sample cell in Fig 1C, the spike count variance was on

average much smaller than the average spike count for most cells, as also indicated by the aver-

age Fano factors below unity (inset), indicating sub-Poissonian noise and high response reli-

ability for individual images. Furthermore, the noise level was generally much smaller than the

signal range covered by different images, as shown in Fig 1E. For nearly all cells, the trial-by-

trial variability (again measured as the single-image spike-count variance averaged over

images) was much below the signal range, as measured by the variance over images of the

mean spike counts.
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Fig 1. Overview of salamander ganglion cell responses to natural images. A) Schematic of the sequence of 300

natural images presented individually in a pseudo-random fashion for 200 ms each, with an inter-stimulus-interval of

800 ms. B) Left: One of the 300 natural images, overlaid with the 3-sigma outline of the receptive field of a sample

retinal ganglion cell. Right: Raster plot of spike times recorded from the sample cell for 13 repeated presentations of

this image. Every row corresponds to one image presentation. At the bottom, the timeline of stimulus presentation is

shown, indicating the 200-ms presentation time, surrounded by periods of gray illumination. The vertical gray line at

300 ms marks the end of the applied window for counting spike numbers. C) Spike count variance (y-axis) vs. average

spike count (x-axis) from the sample cell for each of the 300 images. The gray line denotes the expected relation of

variance and average spike count for a Poisson process. Inset: Histogram of Fano factors for each image, excluding

those with zero spikes. D) Average over images of the single-image spike count variance as a measure of response noise

(y-axis) vs. the average spike count over all images as a measure of typical signal size (x-axis), shown for each recorded

cell. Inset: Histogram of Fano factors for each cell, averaged over images. N = 156 cells from 9 retinas. E) Average over

images of the single-image spike count variance as a measure of response noise (y-axis) vs. variance over images of the

average spike count per image as a measure of response range (x-axis), shown for each recorded cell. The sample cell is

marked in red in D and E.

https://doi.org/10.1371/journal.pcbi.1009925.g001
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Local spatial contrast shapes ganglion cell responses

To assess the relation of a cell’s response to the presented natural image, we tested how the

cell’s spike count depended on simple image statistics inside the cell’s receptive field. To do so,

we first determined the receptive field of a cell by standard reverse correlation [40]. The retina

was visually stimulated with spatiotemporal white noise to calculate the average stimulus

sequence that preceded a spike (“spike-triggered average”). Then, singular value decomposi-

tion was used to separate the spike-triggered average into a spatial and a temporal component.

Finally, a two-dimensional Gaussian function was fitted to the spatial receptive field compo-

nent to determine the center, size, and shape of the receptive field.

For a given image, we obtained the local stimulus for a cell by weighting the image with the

2D Gaussian representation of the receptive field. We then first considered the mean stimulus

intensity (Imean) inside the receptive field by computing the mean pixel intensity of the local

stimulus, corresponding to a linear integration of the stimulus across the receptive field. Fig

2A displays the relation between Imean and the measured spike count for a sample cell, which

can be fitted by a parameterized rectifying nonlinear function (see Materials and Methods).

Together, the linear image filtering by the receptive field and the nonlinear function constitute

a classical linear-nonlinear (LN) model. To assess model performance, we used the coefficient

of determination R2 between the spike count data and the model’s prediction for the images in

a test set of 150 held-out images, which were not used for fitting the nonlinear function. For

the displayed sample cell, Imean alone already had considerable predictive power (R2 = 0.65)

but did not completely specify the measured spike count.

We then asked whether—beyond mean stimulus intensity in the receptive field—spatial

contrast contributed to determining the spike count. To do so, we assessed for each image the

local spatial contrast (LSC) inside the receptive field by computing the standard deviation of

pixel values in the local stimulus. Concretely, we weighted the image with the Gaussian repre-

sentation of the receptive field and then computed the standard deviation of the pixels within

the 3-sigma contour of the Gaussian.

Before including the local spatial contrast in a somewhat abstract model for predicting gan-

glion cell responses, we aimed at directly assessing and visualizing to what extent it influences

ganglion cell responses to natural images. In this respect, however, it is important to note that

the LSC is not independent of the mean stimulus intensity Imean. As depicted in Fig 2B, the

LSC tended to be larger when Imean deviated more strongly from zero; both large positive and

large negative deviations from mean light level favored a larger range of pixel intensities, as

should be expected. Thus, a direct comparison of the LSC with the measured spike count, as

shown for the sample cell in Fig 2C, is not suited to determine whether the LSC itself affects

the cell’s response. High spike counts for large LSC values and positive correlations between

LSC and spike count might have simply resulted from higher Imean values for the correspond-

ing images.

To test more directly for how the LSC affected the spiking response, we aimed at assessing

whether it influenced the response beyond the effect of Imean. We therefore analyzed pairs of

images that, for a given cell, yielded approximately equal Imean values and then computed the

differences in spike count and in LSC for such image pairs [26]. Concretely, we ordered all

images for a given cell according to their Imean value and compared spike count and LSC by

calculating the differences in spike counts (ΔSpikes) and local spatial contrast (ΔLSC) for each

pair of neighbors in this ordered sequence. To verify that the residual differences in Imean did

not have a major influence in this analysis, we also calculated their difference values ΔImean for

the image pairs.
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The scatter plots of ΔImean vs. ΔSpikes (Fig 2D) and ΔImean vs. ΔLSC (Fig 2E) confirmed

that the effects of mean stimulus intensity for the sample cell were abolished in this analysis.

The residual Imean signal had no detectable influence on the spike count differences ΔSpikes

and was not correlated with ΔLSC. We then found that the local spatial contrast systematically

affected the spike count: ΔLSC and ΔSpikes displayed a pronounced correlation with R = 0.52

(Fig 2F). As evident from the plot, the systematic effect of the LSC for this cell was to increase

or reduce responses (relative to the response determined by the mean stimulus intensity) by

up to about three spikes over the range of images tested here.

To test the generalizability of the findings, we performed the same analysis on all recorded

salamander OFF ganglion cells. ON cells were not considered, as these are much less frequent

Fig 2. Effect of local spatial contrast on ganglion cell responses. A) Scatter plot of spike count vs. Imean for all 300

images for the sample cell of Fig 1B and 1C. The orange line shows the nonlinearity fitted on the 150 training images,

with the stated R2 value (obtained from the 150 test images) used as an evaluation of the quality of the fit. B) LSC vs.

Imean for all images for the same sample cell. C) Spike count vs. LSC for all images for the same sample cell. D)

Differences in Imean (ΔImean) vs. differences in spike count (ΔSpikes) for pairs of images that have neighboring values in

Imean, plotted for the sample cell (N = 299 image pairs). E) Same as D, but for differences in local spatial contrast

(ΔLSC) vs. ΔImean. F) Same as D and E, but for ΔSpikes vs. ΔLSC. The red line is obtained by linear regression, and the

Pearson correlation coefficient (R) is denoted in the plot. G) Distributions of the correlation coefficients R for ΔImean

vs. ΔSpikes (blue) and for ΔLSC vs. ΔSpikes (red) over the 156 recorded cells.

https://doi.org/10.1371/journal.pcbi.1009925.g002
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than OFF cells in the salamander retina [41–43] and were only rarely encountered in our

recordings. Furthermore, the few recorded ON-OFF cells were not considered here because of

the additional complications arising from the (nonlinear) integration of the two parallel input

pathways [44,45] and the non-monotonic contrast-response relationship. For the analyzed

OFF ganglion cells, the population analysis corroborated the findings obtained from the sam-

ple cell. When pairing images with similar mean stimulus inside a cell’s receptive field, the spa-

tial contrast differences ΔLSC (but not the residual mean intensity differences ΔImean) were

generally positively correlated to the spike count differences ΔSpikes (Fig 2G), supporting that

spatial contrast in the image can boost spike count beyond the effect of mean stimulus

intensity.

Spatial contrast model to incorporate sensitivity to spatial structure

Next, we analyzed whether this additional information contained in the LSC about the spike

count can improve the response prediction over the classical LN model. To do so, we set up a

spatial contrast (SC) model, which combines information from the mean intensity and from

the spatial contrast inside a cell’s receptive field. The processing chain is explained in Fig 3A.

The spatial receptive field is obtained from responses to spatiotemporal white-noise stimula-

tion and fitted by a 2D Gaussian. The Gaussian provides weights for each image pixel to extract

the local stimulus, whose distribution of pixel contrast values yields the local mean intensity

Imean as the mean of this distribution and the local spatial contrast LSC as the standard devia-

tion. The model’s linear activation is computed as a weighted sum of the Imean and LSC values

(Fig 3B, left). Like in the classical LN model, the activation is turned into a prediction of the

spike count through a nonlinear rectifying function. This function is fitted to the relation of

the weighted sum of Imean and LSC and the measured number of spikes (Fig 3B, right). The

weight factor that is multiplied to the LSC is an additional free parameter and is fitted together

with the parameters of the nonlinearity on the training data. The model is evaluated by com-

puting the squared correlation coefficient R2 on held-out images.

Fig 3B (right) shows the relation between the activation of the SC model, as obtained from

Imean and LSC together, and the measured spike counts for the sample cell of Fig 2. The nonlin-

ear function captured the spike counts more accurately than in the classical LN model (cf. Fig

2A). Including the spatial contrast information improved the model performance from R2 =

0.65 for the classical LN model to R2 = 0.76, as again assessed on the test set of 150 held-out

images.

Population analysis of the recorded OFF ganglion cells corroborated the improved model

performance of the SC model. The SC model had overall considerably better performance for

predicting spike counts of held-out test images than the classical LN model (Fig 3C; average R2

= 0.53±0.21, mean±SD for LN model and 0.65±0.14 for SC model; p<10−6, Wilcoxon signed-

rank test), in particular when the classical LN model originally had low performance. This is

also emphasized by plotting the prediction improvement, which we calculated as the ratio

between R2 from SC model and R2 from the classical LN model, against the performance of the

classical LN model (Fig 3D, left). Furthermore, the improvement was larger when the analysis

of spatial-contrast effects on spike count beyond the mean stimulus intensity (cf. Fig 2F)

revealed a sizeable correlation between ΔLSC and ΔSpikes (Fig 3D, center). And the impor-

tance of the spatial contrast information for this improvement is also reflected in accompa-

nying higher weights for the SC component in the model fits (Fig 3D, right). These results

suggest that spatial contrast inside the receptive field can exert a strong effect on spike

responses beyond the mean stimulus intensity, and including this information can yield

strongly superior models when the classical LN model fails.
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Dependence of SC model performance on ganglion cell response type

The comparison of model performance between the classical LN model and the SC model has

shown considerable diversity between individual cells. This variability raises the question

whether there are systematic differences between different classes of ganglion cells. For the sal-

amander retina, a general classification scheme of ganglion cells is still lacking [46], and physi-

ological classifications are typically based on preferred contrast (ON versus OFF) and

temporal filtering kinetics [10,41,47,48]. Following these lines, we here divided the recorded

OFF ganglion cells into four groups by a cluster analysis (see Materials and Methods), accord-

ing to their receptive field size and temporal filtering kinetics (Fig 4A). Two of the four classes

Fig 3. Modeling responses to natural images based on simple image statistics. A) Model for assessing the effect of

simple image statistics on the spike count. Stimulation with spatiotemporal flicker is used to calculate a ganglion cell’s

spatial receptive field, which is then fitted by a 2D Gaussian function. Each natural image is cropped to the 3-sigma

contour of the receptive field (red line) and weighted by the 2D Gaussian, yielding the local stimulus. The mean

stimulus intensity (Imean) and the local spatial contrast (LSC) are obtained as the mean and the standard deviation of

the pixel intensities in this local stimulus. Both measures are used in the prediction of the spike count response. B) Left:

Schematic depiction of the SC model, which uses a weighted sum of the extracted values of Imean and the LSC for a

given image. Right: Relationship between the linear signal of the SC model and the number of spikes recorded from the

sample cell of Fig 2 for all images. The orange line shows the fitted nonlinearity, with the stated R2 value used as an

evaluation of the quality of the fit. C) Coefficients of determination R2 compared for the classical LN model, which

takes only Imean as input, and the SC model, which takes into account both Imean and LSC, for all cells (N = 156). D)

Relative prediction improvement of the SC model over the classical LN model (computed as the SC model

performance normalized by the LN model performance) vs. model performance of the classical LN model (left), vs. the

correlation coefficients calculated from ΔLSC and ΔSpikes (center), and vs. the optimal LSC weights found in the fit of

the SC model. The sample cell is marked in red in C and D.

https://doi.org/10.1371/journal.pcbi.1009925.g003
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had larger receptive field diameters than the other two classes, and the two classes with larger

receptive fields as well as the two classes with smaller receptive field were each separated by the

shape of the temporal filters. For both receptive field sizes, one class had faster kinetics with an

earlier filter peak and a more biphasic filter shape.

When separating the obtained model performances according to the four cell classes (Fig

4B), we found that it was the large (fast and slow) Off cells whose response predictions benefit-

ted the most from including spatial contrast information (prediction improvement 2.3±1.5,

mean±SD, for large slow Off cells and 2.2±2.0 for large fast Off cells). The two classes of small

cells, on the other hand, often showed good LN model predictions with moderate improve-

ment from spatial contrast information (prediction improvement 1.1±0.2 for small slow OFF

cells and 1.3±0.3 for small fast Off cells).

The stronger dependence of spatial contrast information in larger cells makes intuitive

sense, as these cells pool information over wider spatial ranges and may therefore experience

larger spatial variations in luminance. A similar relation of receptive field size and spatial con-

trast sensitivity is also seen in the primate retina where size as well as nonlinear effects increase

from midget via parasol to upsilon ganglion cells [19].

Application to mouse retinal ganglion cells

To test whether the SC model is also applicable to ganglion cell data from other species, we

analyzed an existing dataset of responses to natural images from mouse retinal ganglion cells

[26,49]. As for the salamander recordings, 300 natural images were flashed for 200 ms each,

and responses were measured as the elicited spike counts. Fig 5A shows for a sample cell that

the difference in spike count for pairs of natural images with similar mean luminance signals

in the receptive field can be strongly correlated with the difference in spatial contrast, similar

to the results for salamander retinal ganglion cells (cf. Fig 2F). For this sample cell, including

information about spatial contrast in the SC model led to a slightly better fit of the spike count

as compared to the classical LN model (Fig 5B).

In general, and similar to the salamander analysis (cf. Fig 3C), we observed a wide range of

model performances (Fig 5C), with some cells displaying already high LN model performance

and little improvement by spatial contrast information and other cells showing much better

predictions with the SC model than the LN model. The distributions of model performance

Fig 4. Evaluation of LN and SC model separately for four functional classes of salamander ganglion cells. A)

Scatter plot of receptive-field diameter versus the projection of the temporal filter on the first principal component of

all temporal filters. Temporal filters were obtained from the spike-triggered average under spatiotemporal white-noise

stimulation. The colors mark the four clusters that were determined by k-means clustering. B) Collection of all

temporal filters (top) and display of model performance values for the two models, separately for the four cell classes

(number of cells: 66 small slow OFF cells, 33 small fast OFF cells, 27 large slow OFF cells, 30 large fast OFF cells).

https://doi.org/10.1371/journal.pcbi.1009925.g004
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values indicate that predictions for some ON cells already benefitted from spatial contrast

information at intermediate LN model performances around R2 = 0.6, whereas predictions for

OFF cells improved substantially from spatial contrast information only when LN model per-

formance was low. Overall, however, model performance values between the two populations

were similar on average (R2 values for ON cells: 0.57±0.16, mean±SD, for LN model and 0.64

±0.17 for SC model; for OFF cells: 0.55±0.23 for LN model and 0.60±0.19 for SC model).

These analyses illustrate that spatial contrast information can be useful for predicting

responses of mouse ganglion cells to natural images and that the SC model is directly applica-

ble to the mouse retina.

Assessing the relevant spatial scale of local spatial contrast

We found that the LSC can be a useful predictor for ganglion cell spiking responses. So far, we

have calculated this measure based on the standard deviation of image intensities at the level of

individual pixels. This takes into account intensity variations at all available spatial frequencies.

Yet, it should be expected that spatial pooling by photoreceptors and bipolar cells prevents

nonlinear stimulus integration for high spatial frequencies. In other words, intensity values of

image pixels that are close together should be integrated linearly by the ganglion cell without

any effect of how the total intensity is distributed between these pixels. Thus, there should be

an optimal spatial scale for calculating the LSC, and this optimal spatial scale should be infor-

mative about the size of the relevant nonlinear subunits inside the receptive field, which are

thought to correspond to bipolar cell receptive fields [10,23,27,28].

Fig 5. Analysis of a dataset of mouse retinal ganglion cells. A) Receptive field center (3-sigma contour, red ellipse) of

a mouse ganglion cell, overlaid on a sample image (left), spiking responses of the cell to the sample image for ten trials

(center), and the cell’s spike-count differences versus differences in local spatial contrast for pairs of images with nearly

equal mean luminance information in the receptive field (right, N = 299 image pairs). B) Scatter plots of spike count

versus the linear signals of the LN model (left) and of the SC model (right) for all 300 images for the sample cell of A.

The orange lines show the nonlinearities, fitted on the 150 training images, with the stated coefficients of

determination (R2; obtained from the 150 test images) used as evaluation of the fit quality. C) R2 compared for the

classical LN model and the SC model, separately for mouse ON ganglion cells (left) and OFF ganglion cells. The data

from the sample cell is marked in red. N = 206 ON and 142 OFF cells from 9 retinas.

https://doi.org/10.1371/journal.pcbi.1009925.g005
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To test for the optimal spatial scale, we varied the way in which we measured the LSC and

searched for the highest predictive power of the SC model. Specifically, we looked at how spa-

tial smoothing of the image before computing the LSC affected the response prediction. We

expect that image predictions improve approximately as long as smoothing occurs on spatial

scales smaller than the subunits inside the receptive field, whereas smoothing at larger scales

should degrade the predictions. The reason for this is that the right level of smoothing allows

contrast variations on scales below the subunits to be averaged out (as we expect indeed occurs

inside the subunits), whereas contrast variations that span more than a single subunit do con-

tribute to spike count prediction and their smoothing should deteriorate model performance.

Fig 6A illustrates this spatial-scale analysis for a salamander retinal ganglion cell. The sam-

ple image on top, overlaid with the cell’s receptive-field outline, was blurred by circular Gauss-

ian filters with increasing spatial scale, ranging from 15 to 195 μm, and then pixel-wise

multiplied by the cell’s receptive field to yield the image patches shown below. In this way, we

extracted for each image the LSC from the smoothed versions and combined this with the

Imean from the original images to fit an SC model for each level of smoothing (Fig 6B). As

before, we assessed the model quality by the R2 values and evaluated the model improvement

(relative to the performance of the classical LN model) as a function of the spatial scale of

smoothing (Fig 6C). The spatial scale is here defined as three times the standard deviation of

the Gaussian, for direct comparability with our definition of receptive field size. The optimal

spatial scale is obtained as the spatial scale of smoothing for which R2 is maximal, which we

extracted using interpolation with a second-order polynomial fitted to the three data points

around the maximum data point (green line in Fig 6C).

We performed this analysis for each recorded salamander ganglion cell. The dependence of

the prediction improvement on spatial scale indeed typically showed a concave shape with a

maximum somewhere between 0 and 200 μm (Fig 6D). We extracted the optimal spatial scales

from the maximum for each cell and compared the findings across the four distinguished

functional classes. The distributions of optimal spatial scales (Fig 6E) all show broad peaks in

the range of 50–150 μm. This is consistent with the typical size of bipolar cell receptive fields in

the salamander retina [50,51]. There were no obvious differences between the four functional

classes (average optimal scales, mean±SD: 92±75 μm for small slow Off cells, 75±42 μm for

small fast Off cells, 79±51 μm for large slow Off cells, 80±51 μm for large fast Off cells, p = 0.5

two-sided Kruskal-Wallis test). Thus, cell classes with larger receptive fields did not show

larger optimal spatial scales of smoothing. For all classes, subunits may therefore be of compa-

rable size, and larger cells have more subunits rather than larger ones. This is also emphasized

when the optimal scale was normalized by the ganglion cell’s receptive field size (Fig 6F). The

peak positions in the distributions now differed between the four classes, and average values

tended to be smaller for the classes with larger receptive fields (average relative optimal scales,

mean±SD: 0.29±0.19 for small slow Off cells, 0.25±0.19 for small fast Off cells, 0.09±0.06 for

large slow Off cells, 0.13±0.17 for large fast Off cells).

Discussion

Current models of stimulus encoding by retinal ganglion cells often start with using a cell’s recep-

tive field as a spatial filter applied to incoming images. This is the case for the commonly applied

LN model and for many of its extensions such as the generalized linear model [52,53] or other

approaches for including spike-timing dynamics or feedback loops [54,55]. The single-spatial-fil-

ter approach remains popular because it is conceptually straightforward, amenable to simple

parameter-fitting approaches [40,52,53], and remarkably successful in capturing ganglion cell

responses under specific stimulus conditions or for certain subtypes of ganglion cells [6,9,26,52].
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Yet, an underlying assumption of the simple linear spatial filtering is that all relevant non-

linearities of the system can be subsumed into processing at the output stage, following after

stimulus integration over space (and time) has already taken place. This clashes with the wide-

spread finding of nonlinear spatial integration, as revealed, for example, by contrast-reversing

spatial gratings [16–20]. It is thought that this nonlinear spatial integration also affects

responses of retinal ganglion cells to natural stimuli, leading to failures of the model approach

with a single spatial filter [7–10,12,26,56].

Fig 6. Analysis of the optimal spatial scale for calculating the local spatial contrast. A) Sample image overlaid with

the 3-sigma outline of a sample cell’s receptive field (red curve). Below: Local stimuli after smoothing with a 2D

Gaussian filter with increasing spatial scale from 15 to 195 μm and pixel-wise weighting by the sample cell’s spatial

receptive field. The first image is without smoothing. B) Relation between linear signal of the SC model and measured

spike count, using the same Imean values, but LSC values derived from the differently smoothed images, displayed here

for the original image and for the images with spatial scales of smoothing of 60 and 195 μm, respectively. The orange

lines show the fitted nonlinearities, and the R2 values denote the corresponding model performance. C) Prediction

improvement as a function of the level of smoothing for the sample cell. The optimal spatial scale is defined as the

spatial scale at which R2 reaches its maximum (as determined by the 2nd-order polynomial fit around the maximal data

point; green line). D) Prediction improvement, normalized by the prediction improvement with no image smoothing,

as a function of the level of smoothing for all cells, shown separately for the four cell classes of Fig 4. The data from the

sample cell is shown in black. E) Distributions of optimal spatial scales. F) Distributions of optimal scales, normalized

by each cell’s receptive field size.

https://doi.org/10.1371/journal.pcbi.1009925.g006
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As the nonlinear spatial integration follows from the ganglion cell’s nonlinear pooling of

presynaptic bipolar cells with smaller receptive fields, the most principled way of constructing

improved models has been to explicitly include this network structure by using multiple spatial

filters—the model’s subunits—in parallel and nonlinearly transforming the subunit signals

before summation. This corresponds to a sequence of two LN models and is thus often

referred to as an LNLN model. Yet, despite recent progress in inferring the layout and struc-

ture of the subunits [10,12,28,36,37,57–59], obtaining such models remains challenging, and

current procedures typically require large amounts of data.

In this work, we therefore take a different approach by assessing nonlinear spatial integra-

tion through a simple phenomenological model that goes beyond the standard spatial filtering

by considering the local spatial contrast inside the receptive field. We defined the local spatial

contrast via the variability of stimulus intensities and found that it was positively correlated to

the spike count response of the recorded cells when effects of mean stimulus intensity were

removed (Fig 2). This analysis can serve as a simple and straightforward test for whether non-

linear spatial integration affects spike counts under natural stimuli, without the need to specify

a concrete model of the stimulus-response relation. The measured direct effect of spatial con-

trast on spike count led us to a simple extension of the classical LN model by including spatial

contrast as an additional model input. This yielded substantial improvements in predicting sal-

amander ganglion cell responses to natural images, in particular for cells where the perfor-

mance of the classical LN model was poor (Fig 3). Classification of the cells into different

functional groups revealed that it is cells with large receptive fields whose response predictions

profit most from including spatial contrast information (Fig 4), suggesting that the model

improvement depends on cell type. The method’s robustness to data from different species

was supported by analyzing a dataset of mouse retinal ganglion cells (Fig 5), with similar find-

ings as for the salamander retina. And finally, computing the spatial contrast measure after

smoothing the image can further improve the model predictions and serve to test different spa-

tial scales of nonlinear spatial integration (Fig 6).

The performance of the LN model and the improvement through the spatial contrast

model displayed considerable variability across the analyzed population of salamander gan-

glion cells. The dependence on receptive field size, suggests that cell-type specificity might play

a role in this variability, with larger cell types displaying stronger spatial nonlinearities, as has

also been suggested for other species [19,30]. In the primate retina, for example, the smaller

midget ganglion cells are more linear than the larger parasol cells and, in particular, the even

larger upsilon cells [19]. More generally, differences across cell types in the characteristics of

nonlinear spatial integration are a common observation. Under natural stimuli, OFF parasol

cells, for example, display stronger spatial nonlinearities than ON parasol cells [9], and in the

mouse retina, spatial nonlinearities in response to natural images also vary widely, with at least

some of this variability depending on cell type [26].

The spatial contrast model is phenomenological and does not provide much information

about the layout of subunits or the nonlinearities that act on the subunit output. The strength lies

in its simplicity, requiring only measurements of the receptive field and adding just a single free

parameter as compared to the classical LN model. Thus, the model may serve to assess and partly

capture effects of nonlinear spatial integration when little data is available. It may also be valuable

for providing a simple benchmark for comparison with more complex models of nonlinear spatial

integration when the classical LN model appears too simplistic for providing a baseline measure.

Future studies may compare the performance of the spatial contrast model with full-fledged

LNLN models, whose subunits of the first linear-filter stage are obtained by one of the cur-

rently developed inference techniques, including statistical analysis of spike-triggered stimuli

[10,12], direct model fits [37,58], and applications from artificial neural networks [56,60]. To
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date, however, obtaining a full LNLN model with inferred subunits under controlled regulari-

zation and, ideally, with optimized subunit nonlinearities is an open challenge. Besides sophis-

ticated inference techniques, it will likely require long, dedicated recordings, potentially using

spatiotemporal white-noise stimulation, to acquire suited data for parameter fitting. We expect

that the spatial contrast model will be a useful tool to aid these developments by providing

informative benchmarks and by illustrating the importance of spatial nonlinearities for pre-

dicting responses of a given ganglion cell.

Structurally, the proposed model is similar to a generalized quadratic model (GQM), which

allows for a general quadratic function of the stimulus and a subsequent nonlinear transforma-

tion [61–63]. For the present case of natural image encoding, the stimulus is given as the set of

pixel intensity values, and the general quadratic function could therefore incorporate the mean

intensity via a linear component as well as the pixel standard deviation via a quadratic contri-

bution. The difference of our approach is that we here use a particular, simple quadratic func-

tion of pixel contrast values, which does not require extensive parameter fitting, and that we

use the standard deviation of pixel contrast values and thus supply the quadratic term with a

square root. This provides an equal scaling of contributions from mean stimulus intensity and

spatial contrast with overall stimulus contrast, which may be helpful considering the wide

range of contrast values encountered in natural stimuli. A direct comparison of the spatial con-

trast model with a fitted GQM would be an interesting endeavor. Similar to LNLN models,

however, fitting GQMs requires sufficiently large datasets and dedicated methods for regular-

izing or otherwise avoiding overfitting. This is of particular concern for high-dimensional sti-

muli, as is the case when spatial stimuli with sufficient resolution to assess contrast at fine

spatial scales are considered. Selecting appropriate stimuli and constraints for the models may

benefit from knowledge gained with the simpler spatial contrast model.

The simplicity of the spatial contrast model and its structural similarity to the LN model

also make it amenable to different extensions, such as incorporating temporal filtering of the

mean light intensity and the spatial contrast signal (either with identical or with potentially dif-

ferent filter shapes) and temporal feedback, such as gain control signals or post-spike filters

[54,64]. Moreover, it might serve as a useful, spatially nonlinear front end in more complex

cascades of cortical visual processing [65–67]. Conversely, it may help include additional,

often neglected nonlinear effects in models of the retina itself. This could be used, for example,

to capture nonlinear spatial integration in the receptive field surround [68], for which subunit

models have been difficult to set up, or nonlinear chromatic integration [69]. Similarly, using

spatial contrast directly as an additional input channel could help include nonlinear effects in

the outer retina, in the transmission from photoreceptors to bipolar cells [70–74]. Such a non-

linear front end could then be combined with the typical subunit model structure that is used

to capture downstream nonlinear spatial integration in the connection from bipolar to gan-

glion cells at the inner retina [10,12,17,18,22,23,28,37,75–77].

Materials and methods

Ethics statement

All experimental procedures were performed in accordance with national and institutional

guidelines and were approved by the institutional animal care committee of the University

Medical Center Göttingen (protocol number T11/35).

Electrophysiology

We used retinas from adult axolotl salamanders (Ambystoma mexicanum; pigmented wild

type) of either sex. Multielectrode array (MEA) recordings of ganglion cell spiking activity
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were obtained as described previously [78]. In brief, after dark-adaptation of the animal and

enucleation of the eyes, retinas were peeled out of the eyecup and cut in half. One retina half

was placed ganglion-cell-side-down on a planar multielectrode array (Multichannel Systems,

252 channels, 10-μm electrode diameter, 60-μm spacing) and perfused with oxygenated Ring-

er’s solution (110 mM NaCl, 2.5 mM KCl, 1.6 mM MgCl2, 1.0 mM CaCl2, 22 mM NaHCO3,

10 mM D-glucose, equilibrated with 95% O2 and 5% CO2). Recordings were performed at

room temperature (20˚C-22˚C). Potential spikes were detected by threshold crossing from the

amplified voltage signals after band-pass filtering (300 Hz to 5 kHz) and digitization at 10 kHz.

Spike sorting was performed with a Gaussian mixture model [79]. Only well-separated units

with a clear refractory period were used for further analysis.

Visual stimulation

Visual stimuli were projected onto the retina from a gamma-corrected miniature OLED moni-

tor (eMagin, OLED-XL series, 800 x 600 pixels with a refresh rate of 60 Hz). The monitor

image was focused onto the photoreceptor layer via a telecentric lens to a pixel size of 7.5 μm x

7.5 μm. Stimuli were generated with a custom-made software, based on Visual C++ and

OpenGL. All stimuli had a mean light level of 2.5 mW/m2, which was also used as a back-

ground light level presented between stimuli.

Receptive fields were obtained from measurements with spatiotemporal white noise on a

checkerboard layout with squares of 30 μm x 30 μm. For each square, light intensities were

chosen randomly at a rate of 30 Hz from a binary distribution (100% Michelson contrast).

From the recorded spikes, we computed the spike-triggered average (STA) for each recorded

ganglion cell [40], taking into account stimulus sequences of 660 ms before each spike. We

used singular-value decomposition [80,81] to decompose the STA into a temporal filter and a

spatial receptive field and normalized each to unit Euclidean norm. Finally, we fitted a two-

dimensional Gaussian function G xð Þ ¼ A 1

2p
ffiffiffiffi
jSj
p e� 1

2
ðx� μÞTS� 1 x� μð Þ þ B to the spatial receptive

field, where x = (x,y) denotes the position in the image pixel space. The fit was obtained by

least-squares optimization of the amplitude A, the receptive-field center position μ, the covari-

ance matrix S, and the offset B. For further analysis (see “Models and response predictions”
below), G(x) was normalized by setting A = 1 and B = 0. The effective diameter of the receptive

field was determined as d ¼
ffiffiffiffiffiffiffiffiffi
a � b
p

, where a and b are the major and minor axes of the

1.5-sigma contour of the fitted Gaussian.

To stimulate the retina with natural images, we selected a set of 300 natural photographs

from the McGill Calibrated Colour Image Database [82], displaying a wide range of natural

and artificial scenes and all consistent with spanning a field of view of around 20–40˚. Each

image had a spatial resolution of 256 x 256 pixels, covering a total area of 1920 μm x 1920 μm

on the retina. The images were converted into grayscale by a weighted average of the RGB-

color channels, using a ratio of R:G:B = 30:59:11. Subsequently, all pixel values were shifted

and scaled so that the mean pixel intensity of each image was equal to the background and the

standard deviation was 50% of the mean intensity. Pixel values were clipped at 0% and 100% of

the mean intensity to ensure compatibility with the light intensity range of the display. For

each of the selected images, this occurred for fewer than 0.1% of the pixels. For all analyses, sti-

muli are represented by the Weber contrast C at each pixel, C = (L−Lmean)/Lmean, where L is

the pixel light level and Lmean is the average light level over the image.

Images were presented individually for 200 ms each in a pseudo-random sequence, sepa-

rated by 800 ms of background illumination. Responses of individual ganglion cells were quan-

tified as the number of spikes over a 300-ms window following stimulus onset. Given the
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response latency of around 100 ms, this generally excludes spikes elicited by the disappearance

of the image after 200 ms.

Models and response predictions

To assess the relevance of spatial structure in natural images for shaping ganglion cell

responses, we compared two models for predicting spike counts. The first model is a classical

linear-nonlinear (LN) model, which takes the cell’s receptive field as a spatial filter that is

applied to the stimulus. The model thus integrates light intensity signals linearly over a gan-

glion cell’s receptive field. The second model, which we call spatial contrast (SC) model, has a

similar structure as the classical LN model, but takes an additional, second input besides the

linearly filtered light intensity. This second input is a measure of spatial contrast inside the

receptive field, which is obtained from the standard deviation of the (weighted) pixel

intensities.

Concretely, both models start with filter signals FLN and FSC, respectively. For a given

image, FLN was the mean stimulus intensity Imean, given by the average Weber contrast as seen

through the cell’s receptive field. This was obtained by filtering the image with the receptive-

field fit G(x):

FLN ¼ Imean ¼
1

N

XN

i¼1

GðxiÞ � CðxiÞ

where i enumerates all pixel locations xi within the 3-sigma contour of G(x), N is the number

of these pixels, and C(xi) is the corresponding pixel contrast.

FSC, on the other hand, received an additional input, given by the local spatial contrast

(LSC), which was computed as the standard deviation of the weighted pixel intensities:

LSC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN

i¼1

ðGðxiÞ � CðxiÞ � ImeanÞ
2

s

where i and N are defined as above. Note that the pixel contrast values C(xi) are again weighted

by the Gaussian profile G(xi) of the receptive field, so that the LSC is the pixel standard devia-

tion of the filtered image. Alternatively, the local spatial contrast could be computed as the

weighted standard deviation of the original image [26], but the difference between these mea-

sures is small.

The obtained measure of local spatial contrast was added to the filtered image signal with a

weight w as a free parameter:

FSC ¼ Imean þ w � LSC:

To turn FLN and FSC into predictions for natural images, we computed nonlinearities for

both models from the natural images. For each model, the average responses to a training set

of 150 of the natural images were used to fit a nonlinear “softplus” function of the form

rðFXÞ ¼ a1 � lnð1þ ea2 �ðFXþa3ÞÞ, where FX stands for FLN or FSC. The parameters a1, a2, and a3

(together with the weight w in the case of the SC model) were optimized according to a least-

squares criterion, using the Matlab function “fminsearch”. In case of the SC model, the param-

eters of the nonlinearity were fitted together with the weight w by repeatedly alternating the

least-squares optimizations of the nonlinearity and of the weight until convergence or a maxi-

mum of 500 iterations were reached. To avoid local minima, the fit was performed several

hundred times with different initial values, and the solution with the minimum residual error

was selected. The fitted functions were then used to obtain response predictions for the test set
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of another 150 held-out natural images. To quantify model performance, we computed for

each model the correlation coefficient R between prediction and measured spike count and

reported the explained variance R2.

We recorded 9 retinas to collect 215 cells. Using the spike numbers Nsp(B) and Nsp(W) in

response to full-field black and white stimulation (±100% contrast), respectively, we classified

cells into 169 OFF cells with Nsp(B)/Nsp(W)>3, 9 ON cells with Nsp(W)/Nsp(B)>3, and 37

ON-OFF cells otherwise. We excluded ON and ON-OFF cells from further analyses, as these

occurred much more rarely than OFF cells. We also excluded cells if the maximum of the aver-

age responses for the 300 natural images was smaller than 5 spikes, leaving us with 156 cells for

the final analysis.

For classifying the cells into functional groups, we compared their receptive field sizes

(measured by the effective diameter of the receptive field as explained above) and the kinetics

of their temporal filters (quantified by the projection of the temporal filter obtained under spa-

tiotemporal white-noise stimulation onto the first principal component of all temporal filters).

The four groups of Fig 4A were then obtained by k-means clustering in this two-dimensional

space.

Analysis of mouse retinal ganglion cells

The analyzed data of mouse retinal ganglion cells come from a publicly available dataset [49].

Details about the applied stimuli and data acquisition can be found in the corresponding pub-

lication [26]. The natural images that had been applied to obtain this dataset were taken from

the McGill Calibrated Colour Image Database [82], from the van Hateren Natural Image Data-

set [83], and from the Berkeley Segmentation Dataset [84]. The images had been presented

with a spatial resolution of 512 x 512 pixels in pseudo-randomized order for 200 ms each, sepa-

rated by 800 ms of homogeneous illumination at background light level. Responses were mea-

sured as the spike count between image onset and 50 ms past image offset.

To classify cells into ON, OFF, and ON-OFF classes, we assessed their average spike count

Ron over all images with a net positive contrast signal Imean in the receptive field and the aver-

age spike count Roff over images with negative Imean. ON cells were defined as cells with

Ron>2�Roff, OFF cells as cells with Roff>2�Ron, and all other cells as ON-OFF cells. For the anal-

ysis of the LN and SC models, we used information about the cells’ receptive fields. These had

been obtained by measuring the spike-triggered average (STA) under spatiotemporal white

noise and separating the STA into a spatial and temporal component by fitting a parameterized

model (see [26]) and extracting the Gaussian fit of the receptive field center from the model.

We excluded one experiment from the dataset, for which fewer than 300 images had been

presented. We furthermore excluded cells for which none of the images elicited at least 6 spikes

on average and for which responses to images were noisy, as detected by a symmetrized coeffi-

cient of determination of less than 0.5 between average image responses for odd versus even

trials [26]. We also excluded ON-OFF cells, which would require refined models to account

for the convergence of pathways and for the non-monotonic contrast-response function.

These criteria yielded a dataset of 206 ON and 142 OFF cells from 9 retinas.

Author Contributions

Conceptualization: Jian K. Liu, Tim Gollisch.

Data curation: Jian K. Liu, Dimokratis Karamanlis, Tim Gollisch.

Formal analysis: Jian K. Liu, Dimokratis Karamanlis.

Funding acquisition: Tim Gollisch.

PLOS COMPUTATIONAL BIOLOGY Simple Model for Nonlinear Spatial Integration

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009925 March 8, 2022 17 / 21

https://doi.org/10.1371/journal.pcbi.1009925


Investigation: Jian K. Liu.

Methodology: Jian K. Liu, Tim Gollisch.

Project administration: Tim Gollisch.

Resources: Tim Gollisch.

Software: Jian K. Liu.

Supervision: Tim Gollisch.

Visualization: Jian K. Liu.

Writing – original draft: Jian K. Liu, Tim Gollisch.

Writing – review & editing: Jian K. Liu, Dimokratis Karamanlis, Tim Gollisch.

References
1. Rust NC, Movshon JA. In praise of artifice. Nat Neurosci. 2005; 8: 1647–1650. https://doi.org/10.1038/

nn1606 PMID: 16306892

2. Felsen G, Dan Y. A natural approach to studying vision. Nat Neurosci. 2005; 8: 1643–1646. https://doi.

org/10.1038/nn1608 PMID: 16306891

3. Carandini M, Demb JB, Mante V, Tolhurst DJ, Dan Y, Olshausen BA, et al. Do we know what the early

visual system does? J Neurosci. 2005; 25: 10577–10597. https://doi.org/10.1523/JNEUROSCI.3726-

05.2005 PMID: 16291931

4. Simoncelli EP, Olshausen BA. Natural image statistics and neural representation. Annu Rev Neurosci.

2001; 24: 1193–1216. https://doi.org/10.1146/annurev.neuro.24.1.1193 PMID: 11520932

5. Rieke F, Rudd ME. The challenges natural images pose for visual adaptation. Neuron. 2009; 64: 605–

616. https://doi.org/10.1016/j.neuron.2009.11.028 PMID: 20005818

6. Nirenberg S, Pandarinath C. Retinal prosthetic strategy with the capacity to restore normal vision. Proc

Natl Acad Sci U S A. 2012; 109: 15012–15017. https://doi.org/10.1073/pnas.1207035109 PMID:

22891310

7. Freeman J, Field GD, Li PH, Greschner M, Gunning DE, Mathieson K, et al. Mapping nonlinear recep-

tive field structure in primate retina at single cone resolution. Elife. 2015; 4: e05241. https://doi.org/10.

7554/eLife.05241 PMID: 26517879

8. Heitman A, Brackbill N, Greschner M, Sher A, Litke AM, Chichilnisky EJ. Testing pseudo-linear models

of responses to natural scenes in primate retina. bioRxiv. 2016; 045336. https://doi.org/10.1101/045336

9. Turner MH, Rieke F. Synaptic rectification controls nonlinear spatial integration of natural visual inputs.

Neuron. 2016; 90: 1257–1271. https://doi.org/10.1016/j.neuron.2016.05.006 PMID: 27263968

10. Liu JK, Schreyer HM, Onken A, Rozenblit F, Khani MH, Krishnamoorthy V, et al. Inference of neuronal

functional circuitry with spike-triggered non-negative matrix factorization. Nat Commun. 2017; 8: 149.

https://doi.org/10.1038/s41467-017-00156-9 PMID: 28747662

11. Walker EY, Sinz FH, Cobos E, Muhammad T, Froudarakis E, Fahey PG, et al. Inception loops discover

what excites neurons most using deep predictive models. Nat Neurosci. 2019; 22: 2060–2065. https://

doi.org/10.1038/s41593-019-0517-x PMID: 31686023

12. Shah NP, Brackbill N, Rhoades C, Kling A, Goetz G, Litke AM, et al. Inference of nonlinear receptive

field subunits with spike-triggered clustering. Elife. 2020; 9: e45743. https://doi.org/10.7554/eLife.

45743 PMID: 32149600

13. Coen-Cagli R, Kohn A, Schwartz O. Flexible gating of contextual influences in natural vision. Nat Neu-

rosci. 2015; 18: 1648–1655. https://doi.org/10.1038/nn.4128 PMID: 26436902

14. Lesica NA, Jin J, Weng C, Yeh C-I, Butts DA, Stanley GB, et al. Adaptation to stimulus contrast and cor-

relations during natural visual stimulation. Neuron. 2007; 55: 479–491. https://doi.org/10.1016/j.neuron.

2007.07.013 PMID: 17678859

15. Rowekamp RJ, Sharpee TO. Cross-orientation suppression in visual area V2. Nat Commun. 2017; 8:

15739. https://doi.org/10.1038/ncomms15739 PMID: 28593941

16. Enroth-Cugell C, Robson JG. The contrast sensitivity of retinal ganglion cells of the cat. J Physiol. 1966;

187: 517–552. https://doi.org/10.1113/jphysiol.1966.sp008107 PMID: 16783910

PLOS COMPUTATIONAL BIOLOGY Simple Model for Nonlinear Spatial Integration

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009925 March 8, 2022 18 / 21

https://doi.org/10.1038/nn1606
https://doi.org/10.1038/nn1606
http://www.ncbi.nlm.nih.gov/pubmed/16306892
https://doi.org/10.1038/nn1608
https://doi.org/10.1038/nn1608
http://www.ncbi.nlm.nih.gov/pubmed/16306891
https://doi.org/10.1523/JNEUROSCI.3726-05.2005
https://doi.org/10.1523/JNEUROSCI.3726-05.2005
http://www.ncbi.nlm.nih.gov/pubmed/16291931
https://doi.org/10.1146/annurev.neuro.24.1.1193
http://www.ncbi.nlm.nih.gov/pubmed/11520932
https://doi.org/10.1016/j.neuron.2009.11.028
http://www.ncbi.nlm.nih.gov/pubmed/20005818
https://doi.org/10.1073/pnas.1207035109
http://www.ncbi.nlm.nih.gov/pubmed/22891310
https://doi.org/10.7554/eLife.05241
https://doi.org/10.7554/eLife.05241
http://www.ncbi.nlm.nih.gov/pubmed/26517879
https://doi.org/10.1101/045336
https://doi.org/10.1016/j.neuron.2016.05.006
http://www.ncbi.nlm.nih.gov/pubmed/27263968
https://doi.org/10.1038/s41467-017-00156-9
http://www.ncbi.nlm.nih.gov/pubmed/28747662
https://doi.org/10.1038/s41593-019-0517-x
https://doi.org/10.1038/s41593-019-0517-x
http://www.ncbi.nlm.nih.gov/pubmed/31686023
https://doi.org/10.7554/eLife.45743
https://doi.org/10.7554/eLife.45743
http://www.ncbi.nlm.nih.gov/pubmed/32149600
https://doi.org/10.1038/nn.4128
http://www.ncbi.nlm.nih.gov/pubmed/26436902
https://doi.org/10.1016/j.neuron.2007.07.013
https://doi.org/10.1016/j.neuron.2007.07.013
http://www.ncbi.nlm.nih.gov/pubmed/17678859
https://doi.org/10.1038/ncomms15739
http://www.ncbi.nlm.nih.gov/pubmed/28593941
https://doi.org/10.1113/jphysiol.1966.sp008107
http://www.ncbi.nlm.nih.gov/pubmed/16783910
https://doi.org/10.1371/journal.pcbi.1009925


17. Hochstein S, Shapley RM. Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. J Physiol.

1976; 262: 265–284. https://doi.org/10.1113/jphysiol.1976.sp011595 PMID: 994040

18. Demb JB, Haarsma L, Freed MA, Sterling P. Functional circuitry of the retinal ganglion cell’s nonlinear

receptive field. J Neurosci. 1999; 19: 9756–9767. https://doi.org/10.1523/JNEUROSCI.19-22-09756.

1999 PMID: 10559385

19. Petrusca D, Grivich MI, Sher A, Field GD, Gauthier JL, Greschner M, et al. Identification and characteri-

zation of a Y-like primate retinal ganglion cell type. J Neurosci. 2007; 27: 11019–11027. https://doi.org/

10.1523/JNEUROSCI.2836-07.2007 PMID: 17928443

20. Krieger B, Qiao M, Rousso DL, Sanes JR, Meister M. Four alpha ganglion cell types in mouse retina:

Function, structure, and molecular signatures. PLOS ONE. 2017; 12: e0180091. https://doi.org/10.

1371/journal.pone.0180091 PMID: 28753612

21. Crook JD, Packer OS, Dacey DM. A synaptic signature for ON- and OFF-center parasol ganglion cells

of the primate retina. Vis Neurosci. 2014; 31: 57–84. https://doi.org/10.1017/S0952523813000461

PMID: 24801624

22. Schwartz G, Rieke F. Perspectives on: information and coding in mammalian sensory physiology: non-

linear spatial encoding by retinal ganglion cells: when 1 + 1 6¼ 2. J Gen Physiol. 2011; 138: 283–290.

https://doi.org/10.1085/jgp.201110629 PMID: 21875977

23. Gollisch T. Features and functions of nonlinear spatial integration by retinal ganglion cells. J Physiol

Paris. 2013; 107: 338–348. https://doi.org/10.1016/j.jphysparis.2012.12.001 PMID: 23262113

24. Turner MH, Sanchez Giraldo LG, Schwartz O, Rieke F. Stimulus- and goal-oriented frameworks for

understanding natural vision. Nat Neurosci. 2019; 22: 15–24. https://doi.org/10.1038/s41593-018-

0284-0 PMID: 30531846

25. Cao X, Merwine DK, Grzywacz NM. Dependence of the retinal ganglion cell’s responses on local tex-

tures of natural scenes. J Vis. 2011; 11: 11. https://doi.org/10.1167/11.6.11 PMID: 21602557

26. Karamanlis D, Gollisch T. Nonlinear spatial integration underlies the diversity of retinal ganglion cell

responses to natural images. J Neurosci. 2021; 41: 3479–3498. https://doi.org/10.1523/JNEUROSCI.

3075-20.2021 PMID: 33664129

27. Demb JB, Zaghloul K, Haarsma L, Sterling P. Bipolar cells contribute to nonlinear spatial summation in

the brisk-transient (Y) ganglion cell in mammalian retina. J Neurosci. 2001; 21: 7447–7454. https://doi.

org/10.1523/JNEUROSCI.21-19-07447.2001 PMID: 11567034

28. Schwartz GW, Okawa H, Dunn FA, Morgan JL, Kerschensteiner D, Wong RO, et al. The spatial struc-

ture of a nonlinear receptive field. Nat Neurosci. 2012; 15: 1572–1580. https://doi.org/10.1038/nn.3225

PMID: 23001060

29. Kuo SP, Schwartz GW, Rieke F. Nonlinear spatiotemporal integration by electrical and chemical synap-

ses in the retina. Neuron. 2016; 90: 320–332. https://doi.org/10.1016/j.neuron.2016.03.012 PMID:

27068789

30. Borghuis BG, Marvin JS, Looger LL, Demb JB. Two-photon imaging of nonlinear glutamate release

dynamics at bipolar cell synapses in the mouse retina. J Neurosci. 2013; 33: 10972–10985. https://doi.

org/10.1523/JNEUROSCI.1241-13.2013 PMID: 23825403

31. Singer JH. Multivesicular release and saturation of glutamatergic signalling at retinal ribbon synapses. J

Physiol. 2007; 580: 23–29. https://doi.org/10.1113/jphysiol.2006.125302 PMID: 17218359

32. James B, Darnet L, Moya-Dı́az J, Seibel S-H, Lagnado L. An amplitude code transmits information at a

visual synapse. Nat Neurosci. 2019; 22: 1140–1147. https://doi.org/10.1038/s41593-019-0403-6 PMID:

31110322

33. Victor JD, Shapley RM. The nonlinear pathway of Y ganglion cells in the cat retina. J Gen Physiol. 1979;

74: 671–689. https://doi.org/10.1085/jgp.74.6.671 PMID: 231636

34. Victor JD. The dynamics of the cat retinal Y cell subunit. J Physiol. 1988; 405: 289–320. https://doi.org/

10.1113/jphysiol.1988.sp017334 PMID: 3255794
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