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Abstract

We study the nonlinear limits to arbitrage in a model. When mispricing is small,

arbitrage activity increases with mispricing because of the higher cost‐adjusted

return. However, at high levels of mispricing, arbitrageurs are deterred by larger

mispricing as funding constraints become more binding. Testing the model pre-

dictions on the index spot‐futures arbitrage with a Markov‐switching model, we

document an inverse U‐shaped relationship between mispricing and arbitrage

activity. The extreme regime is with the largest mispricing but least arbitrage

activity, and coincides with the market turmoil, suggesting that funding con-

straints become the main driver behind the limit to arbitrage.

KEYWORD S
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1 | INTRODUCTION

Arbitrageurs aggressively search for mispricing opportunities, which ensures that mispricing is short lived. However,

arbitrage is far from a free lunch in practise. Extent finance literature has long documented that arbitrage activity is

impeded by the market frictions, leading to mispricing and resource misallocations (Gromb & Vayanos, 2010).

Meanwhile, larger mispricing may affect the perception on arbitrage frictions inversely, and, in turn, trigger arbitrage

trades. The latter idea draws little attention in the literature, but is of great importance in understanding the complex

joint determination between mispricing, arbitrage friction, and arbitrage activity.

There are two distinct and countervailing views of what limits arbitrage: arbitrage costs and funding constraints. On the

one hand, previous studies (e.g., Bai & Collin‐Dufresne, 2019; Gyntelberg et al., 2017; Roll et al., 2007) suggest that

conducting arbitrage trade is costly and risky (e.g., market illiquidity, transaction cost, and compensation for risk). In this

case, arbitrageurs are willing to exploit the mispricing only when it exceeds a certain threshold that reflects the cost of

conducting the arbitrage trade. By allowing for heterogeneous arbitrage costs, a wider mispricing will trigger more ag-

gressive arbitrage activity since it provides a higher cost/risk‐adjusted return. We call it the positive capital allocation effect.

On the other hand, various studies build on the idea that conducting arbitrage trade requires funding, and

document the importance of funding constraints in limiting arbitrage activity. The slow‐moving capital hypothesis
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posits that severe and prolonged mispricing especially during times of market turmoil is mainly due to the tightening of

funding constraints (Acharya et al., 2010; Akbas et al., 2015, 2016; Duffie, 2010; Garleanu & Pedersen, 2011; Gromb &

Vayanos, 2002; Karnaukh et al., 2015; Mitchell et al., 2007; Mitchell & Pulvino, 2012; Shleifer & Vishny, 1997).

Furthermore, Brunnermeier and Pedersen (2009) suggest that larger mispricing can exaggerate expectations on future

volatility, which tightens the funding constraint. In this case arbitrage activity is rather deterred in the presence of

larger mispricing. We call this the negative funding constraint effect.

The two sources of arbitrage frictions drive opposite predictions of how arbitrageurs will respond to mispricing. The

former view has been examined empirically through threshold regression models (Dwyer et al., 1996; Martens et al., 1998;

Tse, 2001), while the effect of funding constraints has been studied mainly through arbitrage activity (Cielinska et al., 2017),

arbitrage capital flow (Akbas et al., 2015, 2016), and violations from no‐arbitrage relations (Fontaine & Garcia, 2011b;

Garleanu & Pedersen, 2011). Up to our knowledge, however, there is no single study in the literature to analyze the

combined impact of these two frictions on how arbitrage activity responds to mispricing, theoretically or empirically. In this

paper, we address this long‐standing but important knowledge deficit in the limits to arbitrage literature.

At its foundation, our empirical setup follows the standard multiperiod model of Shleifer and Vishny (1997,

henceforth SV). To explicitly analyze arbitrage activities in the multiperiod setting, we also follow Cai et al. (2018,

henceforth CFS) and introduce two important arbitrage parameters: the first is the initial mispricing correction

parameter (κ), which measures the proportion of immediate mispricing correction achieved by arbitrageurs, and the

second is the subsequent noise momentum parameter (λ), which captures the persistence of the unarbitraged pricing

errors into the next period.1 Specifically, we investigate the interaction between arbitrage costs and funding constraints

through the interplay between these two parameters κ and λ with respect to the size of mispricing. When the

mispricing error is small and funding is relatively ample, arbitrageurs strategically limit their investment due to

concerns of arbitrage risk. In this case the arbitrage activity will intensify with the size of mispricing such that the

capital allocation effect prevails. On the other hand, extremely large mispricing is likely to make funding constraints

more binding. Beyond some thresholds, arbitrage activity declines with the size of mispricing because of the associated

funding liquidity scarcity, suggesting that the funding constraint effect becomes the dominant driver. Accordingly,

combining the two countervailing effects, the model predicts that the overall arbitrage activity displays an inverse

U‐shape against the size of mispricing error due to the exchange of dominance between arbitrage costs and funding

constraints in limiting arbitrage.

In our empirical analysis, we apply the GECM with the Markov‐switching extension (MS‐GECM) to the S&P 500

index spot and futures markets over the period 1986–2015.2 The construction of GECM, advanced by CFS, captures

how arbitrage activity (both mispricing correction and noise momentum) respond to past observable mispricing, which

provides a great tool to test our model predictions.3 We find strong evidence in favor of regime‐dependent nonlinear

limits to arbitrage. In particular, we can identify three distinct regimes: a normal market state with a small mispricing

error and low mispricing volatility, a transition market state with both medium mispricing error and volatility, and an

extreme market state with a large mispricing error and high mispricing volatility. We observe a relatively low mis-

pricing correction in the normal state, but a dramatic increase during the transition state. This suggests that arbitrage

activity tends to intensify with the size of mispricing error when the mispricing level increases from low to medium. In

contrast, the mispricing correction is the lowest during the extreme state. This suggests that when mispricing increases

from a medium to a high level, arbitrageurs are less capable to raise external funds due to the tightening funding

constraints even when the arbitrage opportunity is at its best. These extreme periods coincide with the market turmoils

in the years 1987, 1998, 2001, and 2008, which provides empirical supports to the existing studies (e.g., Brunnermeier &

Pedersen, 2009) documenting that the amplification effect attributed to funding illiquidity significantly jeopardizes

market resiliency. Overall, arbitrage activity displays an inverse U‐shape against the magnitude of mispricing errors.

To verify whether our estimation results meaningfully capture variations in the tightness of funding constraints, we

examine the potential linkages between the three hidden market states and various observable measures of the funding

1To capture such multiperiod arbitrage activities, CFS develop a generalized error correction model (GECM) and estimate both parameters. Applying

the model to a wide range of international spot–futures market pairs, CFS document pervasive evidence of noise momentum around the world.
2As a robustness check, we provide the estimation results over a shorter sample (1990–2015) and results employing other S&P 500 futures contracts

(e.g., 6 and 9months to maturity), which are elaborated in the appendix.
3In the extent literature with empirical applications using the error correction model (e.g., Balke & Fomby, 1997; Dwyer et al., 1996; Gyntelberg et al.,

2017; Martens et al., 1998; Tao & Green, 2013; Theissen, 2012; Tse, 2001), past mispricing is often treated as an exogenous state variable that

determines the arbitrage activity.
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illiquidity.4 Our analyses show that funding constraints keep tightening monotonically from the normal to the extreme

states. The data also document the flight‐to‐quality/safety phenomenon such that fund flows into passive index funds

decrease from normal to transition states but increase from transition to extreme states. Overall, extreme states capture

a period of considerable market stress. From the arbitrageur perspective, the extreme state presents a “cocktail” of good

and bad phenomena. On the positive side, it entails large mispricing errors and higher valuation uncertainty—thus

presenting arbitrageurs with more profitable opportunities to exploit. On the negative side, arbitrageurs tend to face

more binding funding constraints, which make them unable to capitalize on the opportunities.

Our study differs from other related studies on the limits to arbitrage and contributes to the literature as follows.

First, we show that considering solely the arbitrage costs as the dominated friction is likely to obtain flawed prediction

on arbitrage activity, that is, arbitrage activity is monotonically increasing with the size of mispricing. We enhance the

analysis by integrating both arbitrage costs and funding constraints explanations of the limits to arbitrage in a unified

framework. Our paper is the first attempt to establish that the combination of these two frictions will generate different

predictions of how arbitrageurs respond to the changes in mispricing. Specifically, in the presence of large mispricing,

arbitrage activity is deterred by larger mispricing due to more binding funding constraints. We denote it as the

nonlinear limits to arbitrage.

Second, our empirical approach embeds the GECM advanced by CFS within the Markov‐switching model, and thus

contributes to the empirical literature by developing a matching empirical model that can test the validity of the

nonlinear limits to arbitrage. The traditional threshold ECM (Dwyer et al., 1996; Martens et al., 1998; Tse, 2001) is

insufficient to capture the nonlinear limits to arbitrage, especially in the presence of large mispricing. Our MS‐GECM

offers two merits. First, it embeds the multiperiod arbitrage activities proposed by CFS, which decomposes the overall

speed of price adjustment into two components, that is, initial mispricing correction and subsequent noise momentum,

and allows for more insightful understanding on the impact of mispricing. Second, the Markov‐switching approach

avoids arbitrary estimations of the threshold variable, and endogenously identifies the stress periods under which

funding constraints are binding, without setting the exogenously defined crisis dates. In addition, our approach can be

applied to a broad range of financial data with prices and fundamental measures (e.g., the price–dividend relationship

and cross‐listing and commodity contracts in different markets).

Third, it offers new insight into the relationship between funding constraints and the multiperiod arbitrage ac-

tivities. The effect of funding constraints has been studied in the literature mainly through the proxies of arbitrage

activity (Cielinska et al., 2017), the size of arbitrage violations (Fontaine & Garcia, 2011b; Frazzini & Pedersen, 2014;

Garleanu & Pedersen, 2011) and market liquidity (Nagel, 2012; Schuster & Uhrig‐Homburg, 2015). Our paper attempts

to study the funding constraint effect directly through examining the relationship between arbitrage activity and the

size of mispricing. A similar idea was proposed by Duffie (2010), who suggests that price reversal (measured by the

speed of adjustment) provides insights regarding the arbitrage frictions borne by arbitrageurs.

Last but not least, our analysis enhances the understanding of the joint determination among mispricing, arbitrage

friction, and arbitrage activity. On the one hand, arbitrage frictions, such as hedge fund flows in Akbas et al. (2015,

2016), arbitrage costs in Bai and Collin‐Dufresne (2019), banking regulation in Du et al. (2018), and financial re-

lationship in Kondo and Papanikolaou (2015), tend to limit arbitrage trade and induce wider mispricing, which is

consistent with the theory of limits to arbitrage. Our time‐series analysis along with the MS‐GECM approach, on the

other hand, studies inversely how arbitrage activity is affected by mispricing, which has received less attention in the

literature. We are able to capture the nonlinear nature of limits to arbitrage, such that arbitrage activity can be triggered

or deterred by larger mispricing, depending on the dominance of capital allocation or funding constraint effect. Such

nonlinearity is crucial in understanding the financial market stability. The stress periods we captured in the MS‐GECM

coincide with the market turmoils that have extremely large mispricing but least arbitrage activity, which provides

support to the funding liquidity theory in Brunnermeier and Pedersen (2009).

The remainder of our paper is organized as follows. In Section 2 we present a theoretical framework by combining

the models of Shleifer and Vishny (1997) and CFS. In Section 3 we develop the main predictions on the nonlinear

relation between the size of mispricing and arbitrage activities. In Section 4 we develop an MS‐GECM empirical

framework, designed to capture various predictions derived from Section 3. Section 4.3 presents the main empirical

results for the S&P 500 index spot and futures markets. In Section 5 we make concluding remarks.

4For funding conditions and capital structure we use hedge and mutual fund flows, growth rate of total financial assets, financial sector leverage, and

broker–dealer leverage; for illiquidity we use the Amihud (2002) illiquidity measure of the spot index, Treasury security‐based funding illiquidity of

Fontaine and Garcia (2011b) and The Treasury–Eurodollar (TED) spread.
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2 | THEORY AND PREDICTIONS

2.1 | The model

We begin with an introduction to a range of basic concepts in line with the SV setup of limits to arbitrage. There is one

asset with fundamental value V , traded by three types of market participants: noise traders, arbitrageurs, and fund

investors, in three periods, t = 1, 2, 3, at price Pt . Noise traders arrive in period t with the demand of V S P( − )t t∕ , where

St represents the extent to which noise traders in aggregate undervalue the asset price relative to its fundamental value,

V . In particular, S1 is observable to arbitrageurs; S2 is allowed to be stochastic, taking a value of 0 (the “good” state

pertains) with probability q1 − , or S S S= >2 2b 1 (the “bad” state pertains) with probability q; S = 03 , such that price

converges to fundamental value in period 3, P V=3 .

Observing the price discrepancy, rational and risk‐neutral arbitrageurs accumulate funding resources, Ft , to explore

mispricing opportunity with the demand of β F Pt t t∕ , where β0 < 1t ≤ implies the fraction of funding to invest in the

asset and β1 − t will invest in cash at zero interest. Since the asset is assumed to have unit supply, market clearing

implies that the price of the asset is P V S β F= − +t t t t . In period 1, F1 is exogenous given as the initial arbitrage funds.5

We follow the maintained assumption that F S<1 1 , such that arbitrageurs accumulate limited funding in period 1. In

period 2, F2 is determined endogenously by past performance, such that

F F αβ
P

P
F F αβ P

P
= 1 + − 1 and = 1 + − 1 ,2g 1 1

2g

1
2b 1 1

2b

1


  





  


 (1)

where

P V S β F= − + ,1 1 1 1 (2)

P V P V S F= , = − + .2g 2b 2b 2b (3)

F2g and P2g (F2b and P2b ) are the funding resources and the asset price in period 2 under good (bad) state; in the bad

state, β = 12 as price will converge to the fundamental value in period 3. α > 1 captures the sensitivity of fund flows to

past performance. If P P<2 1 , arbitrageurs lose more funds than the negative return, since investors will withdraw funds

based on the poor performance (this is described as the performance‐based arbitrage in SV). To keep the analysis

tractable and reasonable, we make a technical assumption on α to avoid overly extreme sensitivity, and derive the

stability condition as follows:

α α V S F

S S F
< * =

− +

− +
.1 1

2b 1 1
(4)

We elaborate the assumption on α in the appendix.

2.2 | The equilibrium

Under this model setup, arbitrageurs actively choose their optimal investment strategy, denoted β̂1 , subject to funding

constraint, β0 < 11 ≤ , so as to maximize their wealth in period 3,

F q F q
V

P
FE( ) = (1 − ) + .3 2g

2b
2b

5Following Shleifer and Vishny (1997) and Gromb and Vayanos (2002, 2010), we treat the initial mispricing (S1 ) and the initial wealth (F1 ) of

arbitrageurs as exogenous, both of which are observable to arbitrageurs and affect their decision making. These assumptions seem realistic for us to

understand the short‐run arbitrage activity.
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We obtain the following first‐order condition (FOC):

V

P
q

V

P
− 1 − − 1 0.

1 2b

≥    (5)

− 1
V

P1
indicates the return of investing in period 1, while ( )q − 1

V

P2b
is the expected return of waiting in period 1 but

investing in period 2. If the return of investment in periods 1 and 2 is indifferent, the equality holds and the partial

investment equilibrium (β̂ < 11 ) is achieved. On the other hand, if investment in period 1 provides a higher return,

then the inequality holds such that the full investment strategy (β̂ = 11 ) is optimal.

It is easily seen that given the limited funding assumption (F S<1 1 ), we must have P V<1 , such that mispricing in

period 1 is not fully arbitraged away. Hence arbitrageurs enjoy a positive return and fund augmentation if the good

state occurs (P V P< =1 2g ). Given that q0 < < 1, we have P P<2b 1 in the partial investment equilibrium from the

FOC. In the full investment equilibrium, we also have P P<2b 1 given the stability condition in Equation (4). This can be

seen by rewriting F2b as

F F αF S S

V S F αF
= − −

− + −2b 1 1
2b 1

1 1 1

 
with β̂ = 11 . The stability condition ensures that V S F αF− + − > 01 1 1 , which results in F F<2b 1 and P P<2b 1 .

Mispricing deepens if the bad state occurs and arbitrageurs lose funds from the investment and investors' withdrawals.

All in all, for arbitrageurs with limited funding, these mispricing opportunities are not risk‐free.
In the full investment equilibrium (referred to as the extreme circumstance), SV find that arbitrageurs are less

aggressive when mispricing opportunities are the best. More precisely, they are forced to liquidate in the bad state, that

is, holding fewer shares of the asset, that is, F P β F P< ˆ
2b 2b 1 1 1∕ ∕ . It is worth noticing that full investment is a sufficient

but not a necessary condition for forced liquidation, which is formally summarized in Lemma 1.

Lemma 1. Consider the three‐period model setup described in Section 2. Arbitrageurs are forced to liquidate

their holdings in the bad state, that is, F P β F P< ˆ
2b 2b 1 1 1∕ ∕ , when the optimal strategy β̂1 surpasses a threshold

β =
V S

V S α S S1
liq −

− + ( − 1)( − )
1

1 2b 1
.

Lemma 1 suggests that forced liquidation arises as a result of the performance‐based arbitrage setting. For α > 1, we

have β < 11
liq , and forced liquidation appears in the bad state as β βˆ >1 1

liq . The threshold β1
liq , however, is very close to 1,6

which implies that arbitrageurs are forced to liquidate when they adopt or very close to adopt the full investment strategy

in period 1. In contrast, when arbitrageurs adopt the partial investment strategy, forced liquidation is unlikely to take

place. In this regard, arbitrage activity in period 1 also reveals vital information about the market resiliency in the future.

2.3 | Arbitrage activity

As arbitrage activities in periods 1 and 2 are both informative, we now extend the SV analysis by formally defining and

analyzing the arbitrage activities in both periods. CFS introduce the concept of the initial mispricing correction and the

subsequent mispricing persistence (called “noise momentum”) that characterize the arbitrage impact on both immediate

and subsequent price movements as well as the duration of price adjustment. CFS define the initial mispricing correction as

K
D

S

β F
S

= = ,1

1

1 1

1
(6)

6We can illustrate this with the numerical example in SV. Given that V = 1, S = 0.31 , S = 0.42b , α = 1.2, F = 0.21 , we derive the threshold for forced

liquidation: β = 0.9721
liq . If the optimal strategy β̂1 surpasses 0.972, forced liquidation occurs in the bad state.
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which is designed to capture the proportion of mispricing correction achieved by arbitrageurs in period 1. More

importantly, CFS define subsequent noise momentum as

V P

V P

V P

S D
Λ =

−
−

=
−
−

,2

1

2

1 1
(7)

which captures the degree of mispricing error persistence into the next period. In particular,V P− 1 (V P− 2 ) represents

the pricing error, which has not been arbitraged away after period 1 (2) trading. The ratio Λ represents the degree of

unarbitraged error persistence. Λ is one if P P=2 1 , such that all mispricing in period 1 persists to period 2. Λ becomes

zero if P2 recovers to fundamental, V P= 2 , such that none of the unarbitraged mispricings persists. CFS demonstrate

that the inclusion of noise momentum in the GECM provides a useful framework for analyzing the asset pricing

dynamics and overall price adjustment process.7

Next, we derive the period‐1 expectations of these two parameters with respect to q as follows:

κ E K β F

S
λ E q

V P

V P
= ( ) = ˆ , = (Λ) = −

−
,q q1

1

1

2b

1
(8)

where β̂1 is the optimal strategy achieved by the FOC in Equation (5). Notice that κ and λ are closely connected to the

empirical model specification defined in Equation (10) (see CFS for more details). It is clear from Equation (8) that both

κ and λ are below unity,8 when rational arbitrageurs choose the equilibrium investment strategy.

Notice that the initial mispricing correction, κ, is the product of β̂1 and the ratio F S1 1∕ . The equilibrium investment

strategy β̂1 captures the strategic response of arbitrageurs to the risky arbitrage opportunity: whether to invest in period

1 or to wait and invest in period 2. It represents the willingness of arbitrageurs to engage in arbitrage activity. The term

F S1 1∕ is the ratio of available funding over mispricing, which captures the arbitrageurs' funding condition. It reflects

the arbitrageurs' capability of conducting arbitrage activity.

While the mispricing correction parameter, κ measures the immediate arbitrage effect, the noise momentum
parameter, λ captures the subsequent price recovery. We find from Equation (8) that λ is expressed as a product of the

probability, q of the bad state occurring in period 2, and the degree of error persistence ( )V P

V P

−
−

2b

1
in the bad state. λ

becomes higher when P2b is lower than P1 , which renders the arbitrage losses higher under the bad state. Simulta-
neously, subsequent price adjustments become more volatile, which deters arbitrage activity.

It is easily seen that the overall speed of price adjustment is determined by both parameters. In Section 4 we will show

that the speed of adjustment is positively associated with κ, but negatively with λ. This implies that the higher mispricing

correction improves the price adjustment, while the higher noise momentum tends to slow it down.

3 | MISPRICING AND ARBITRAGE ACTIVITY

We now investigate how arbitrage activities respond with respect to changes in mispricing under the partial and

full investment equilibria. Such an interplay between the two key arbitrage parameters, κ and λ, would reveal

insights on the limits of arbitrage and the market resiliency.9 We first derive the theoretical results while holding

7CFS provide a strong empirical support that the traditional ECM is misspecified in the presence of nonzero noise momentum by investigating 26

index futures relationships around the globe.
8Rewriting the FOC in Equation (5) as

V P

P
q
V P

P

− −
,1

1

2b

2b

≥  
it is easily seen that

λ q
V P

V P

P

P
=

−
−

< 1.2b

1

2b

1

≤
9From a long‐run perspective, mispricing and arbitrage activity are determined jointly (Stein, 2009). Our paper, however, focuses on the short‐run arbitrage

activity in response to mispricing. The initial mispricing (S1 ) is treated as exogenous: a variable that is observable to arbitrageurs and affects their decision

making. These decisions, whether full investment is adopted or not, will determine the persistent mispricing and market resiliency in the future.
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the probability q constant, and next we relax this assumption by allowing q to be uniformly distributed over the

unit interval.

3.1 | The main theoretical predictions

We first summarize the impact of S1 , that is, the size of mispricing before arbitrageurs enter the market, on the period‐1

strategy, β̂1 and the pricing efficiency in periods 1 and 2 in Lemma 2.

Lemma 2. Consider the three‐period model setup described in Section 2. Under the partial investment

equilibrium, we have > 0
β
S

ˆ
1

1

∂∂ , −1 < < 0
P

S
1

1

∂∂ , and < 0
P

S
2b

1

∂∂ . Under the full investment equilibrium, = −1P

S
1

1

∂∂ and

> 0
P

S
2b

1

∂∂ .

It is clear from Lemma 2 that the positive capital allocation effect appears under the partial investment equilibrium.

As mispricing S1 rises, arbitrageurs are willing to allocate more resources to correct the mispricing (i.e., dβ dSˆ > 01 1∕ ).

At the same time we also observe that the funding liquidity condition becomes worse (i.e., a lower F S1 1∕ ) with S1 ,

which is referred to as the negative funding constraint effect. These two contradicting effects will shape the initial

mispricing correction, κ, in response to mispricing.

Consider the impact of S1 on P2b ,
10 which is missing in the SV analysis but has important implication when

deriving the predictions on λ. Due to the capital allocation effect, arbitrageurs hold less cash in period 1 with larger S1 ,

which reduces their ability to bear against mispricing in the bad state of period 2. So we have < 0
P

S
2b

1

∂∂ under the partial

investment equilibrium. Under the full investment equilibrium, however, the binding funding constraint prevents

further investment in period 1 when S1 increases. It severely distorts the pricing efficiency in period 1 ( )= −1P

S
1

1

∂∂ , but

improves the pricing efficiency in the bad state of period 2 as potential loss is relatively reduced and more funding is

preserved. Namely, we have > 0
P

S
2b

1

∂∂ under the full investment equilibrium.

Next, we provide the first main theoretical results in Proposition 1.

Proposition 1. Consider the three‐period model setup described in Section 2. The impacts of initial mispricing

error (S1 ) on the arbitrage activities (κ and λ) are given by

κ
S

β
β

λ
S

>0 for 0 < ˆ < 1,

<0 for ˆ = 1
, < 0.

1

1

1 1

∂∂ ∂∂


Furthermore, we find that the impact on noise momentum (λ) is stronger in the full investment equilibrium than in

the partial investment equilibrium:

λ
S

λ
S

< .
β β1 0< ˆ <1 1 ˆ =11 1

∂∂ ∂∂
Proposition 1 shows that the positive capital allocation effect dominates the negative funding constraint effect

under the partial investment equilibrium (i.e., κ S > 01∂ ∕∂ ). This is consistent with the earlier studies, documenting that

larger mispricing errors induce a greater mispricing correction and faster speed of adjustment.11 In contrast, when the

funding constraint binds (β̂ = 11 ), the initial mispricing correction is determined mainly by the negative funding

constraint effect, since the change in mispricing does no longer have any effect (i.e., β Sˆ = 01 1∂ ∕∂ ). As S1 grows,

10As discussed in SV, P1 tends to drop with S1 under both equilibria, implying that arbitrageurs ability to bear against mispricing is limited.
11See the threshold ECM (Dwyer et al., 1996; Martens et al., 1998) and the smooth transition model (Gallagher & Taylor, 2001; Tse, 2001) for such

evidence.
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arbitrageurs will suffer from more deteriorating funding conditions, which forces them to disengage in arbitrage

activity (i.e., κ S < 01∂ ∕∂ ).

Furthermore, Proposition 1 has additional implications about the impacts on the noise momentum parameter.

Consider first the partial investment equilibrium, where arbitrageurs are likely to expect the mispricing opportunity in

the bad state (V P− 2b ) being relatively large. This suggests that we observe a relatively high level of λ. As already

described in Lemma 2, the capital allocation effect dominates, which induces , < 0
P

S

P

S
1

1

2b

1

∂∂ ∂∂ . Combined together, we

expect that the negative impact of S1 on λ is rather marginal. Next, turn to the full investment case. We now have

> 0
P

S
2b

1

∂∂ due to the binding funding constraint, which renders λ declining sharply with S1 .

The results in Proposition 1 under the full investment equilibrium provide support to the predictions in Stein

(2009), who suggests that the impact of constraints on arbitrage capital is a double‐edged sword. On the one hand, the

funding constraint reduces the initial arbitrage activity significantly (i.e., lower κ). On the other hand, it improves the

subsequent pricing efficiency and avoids the potential crashes in the future (i.e., lower λ).
From Proposition 1 we can also derive the implications on the overall speed of price adjustment. In the partial investment

equilibrium, κ rises and λ marginally falls with S1 . In this state, the overall speed of adjustment (SOA) improves with S1 . But,

when the funding constraint becomes binding, we find that κ rather drops with S1 . At the same time, λ falls sharply with S1 .

Due to these opposite impacts, the SOA is uncertain with S1 and should be determined empirically.

So far we investigate how arbitrage activities respond to mispricing while holding the probability q constant.

However, q is far from constant over time in reality. Hence we now extend the SV setup by allowing q to be time

varying. Specifically, we assume, for simplicity, that q is uniformly distributed over (0, 1) .12 SV introduce a

threshold probability, q*, for the given model parameters, V , S1 , S2b , F1 , and α. If q q< * (i.e., the probability of the

mispricing deepening in period 2 is relatively low), then arbitrageurs will adopt the full investment strategy in

period 1. Alternatively, if q q> *, arbitrageurs will defer some of their investment. We now provide the formal link

between the size of mispricing and the threshold parameter, q* that crucially determines the arbitrageur's

investment strategy.

Proposition 2. Consider the three‐period model setup described in Section 2. As the mispricing error (S1 ) rises,

the threshold probability, q* also rises (i.e., > 0
q

S

*

1

∂∂ ). In the two extreme cases, we have qlim * = 0S F1 1→ and

qlim * = 1S S1 2b→ .

Proposition 2 is intuitive. qlim * = 0S F1 1→ implies that with small initial mispricing, the full investment strategy

is not optimal for any q, since we always have q q> * = 0. As mispricing grows larger, funding condition

becomes worse. Arbitrageurs are more likely to be fully invested, where the funding constraint binds, since q* is

monotonically rising with S1 . For extremely large mispricing, the full investment equilibrium is inevitable, as

q q< * = 1.

Given that q U~ (0, 1) , we redefine the period‐1 expectation of the arbitrage activities as

κ P q j κ q j λ P q j λ q j= Σ ( = ) ( = ), = Σ ( = ) ( = ),q
j J

q
j J∈ ∈ (9)

where J denotes the set of all real numbers within the unit interval, P q j( = ) is the probability of q j= and κ q j( = )

and λ q j( = ) are the initial mispricing correction and noise momentum for q j= . Now, we provide the second main

theoretical results in Proposition 3.

Proposition 3. Consider the three‐period model setup described in Section 2, and assume that q is uniformly

distributed over the unit interval and is independent of S1 . As mispricing (S1 ) increases from F1 to S2b , κq displays

an inverse U‐shape pattern and λq drops monotonically.

12Probability q is a given variable in the SV setup, which implies that q is independent of S1 . We maintain the assumption that the distribution of q is

independent of S1 .
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Proposition 3 predicts that the inverse U‐shaped relationship between mispricing errors and arbitrage activities still

holds, given that q is uniformly distributed. The inverse U‐shape arises because the likability of a full investment

equilibrium increases with S1 (Proposition 2). The partial investment is more likely to be optimal for small S1 . Thus we

observe the positive capital allocation effect on average. Once most of the possible scenarios are registered as the full

investment equilibrium with higher S1 , the negative funding constraint effect inevitably appears.13

3.2 | Numerical analysis

We now provide a numerical analysis, confirming the nonlinear limits to arbitrage. Figure 1 illustrates how

arbitrageurs' initial mispricing correction (κ) and subsequent noise momentum (λ) interplay with respect to the

mispricing error under the partial and full investment equilibria, following and extending the numerical example

by SV. Let V = 1, S = 0.42b , q = 0.3, α = 1.2, and F = 0.21 . In the left panel, as S1 increases from 0.2 to 0.4, the

initial mispricing correction (solid line) displays an inverse U‐shaped relation with respect to mispricing errors,

depending on whether arbitrageurs adopt the partial or the full investment strategy. In the partial investment

equilibrium where the threshold q* lies below the probability q, the capital allocation dominates the funding

constraint effect so as to improve mispricing corrections. On the other hand, only the funding constraint effect

remains under the full investment equilibrium, which deters mispricing corrections. The right panel displays that

the noise momentum (solid line) decreases with S1 , gradually under the partial investment strategy but rather

sharply under the full investment strategy. We also notice that noise momentum is relatively high and declines

mildly under the partial investment equilibrium.

Next we allow probability q to be uniformly distributed over (0, 1) . Figure 2 shows how arbitrageurs' initial

mispricing correction (κq ) and subsequent noise momentum (λq ) interplay with respect to the mispricing error.

Similarly, we let V = 1, S = 0.42b , α = 1.2, F = 0.21 , and q U~ (0, 1) , and we allow S1 increases from 0.2 to 0.4. The

mispricing correction κq (the solid line) displays an inverse U‐shaped relation with respect to S1 , while the noise

momentum λq (the dashed line) declines.

FIGURE 1 Strategic response effect on mispricing correction and noise momentum, constant q. The nonlinear impact of mispricing

errors on mispricing correction (left) and noise momentum (right). It follows the numerical examples from the SV paper, such that V = 1,

S = 0.42b , q = 0.3, α = 1.2, F = 0.21 , and initial mispricing S1 increases from 0.2 to 0.4. The left graph also plots the optimal investment

strategy β̂1 and the threshold probability q* of deepening mispricing, while the right graph provides an additional plot of the threshold

q*. Both graphs highlight the nonlinearity in the arbitrage parameters with respect to changes in mispricing

13We note that although we extend SV's analysis to make q a distribution but q is still independent of other model parameters. What if q is a regime‐

dependent variable determined by the size of mispricing S1 ? There is a possibility that q increases with S1 and we have q q> * for any S1 . The model

now predicts that κ drops with S1 , such that arbitrage activity becomes less aggressive when the mispricing error is larger, that is, the negative capital

allocation effect. However the result is counterintuitive. Building a new framework to model the relation between q and S1 may provide more

insights into our results. We leave it to future research.
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Overall, our analysis demonstrates that the mispricing correction is not always positively associated with the

magnitude of mispricing error. Also, noise momentum is regime dependent. Nonlinear limits to arbitrage arises due to

the interplay between arbitrage risk and funding constraints. This highlights the importance of taking into account the

combined effects of arbitrage risk and funding constraints in deriving a distinctive association between mispricing and

arbitrage activities under the partial and full investment equilibria.

3.3 | Hypotheses development

From the theoretical results in Proposition 3, we consider three regimes with different magnitudes of mispricing error

(small, medium, and large), and denote κr and λr with r s m l{ , , }∈ . We then summarize three main hypotheses as follows:

Prediction 1 (Inverse U‐shaped initial arbitrage activity). (i) κ κ>m s; the partial investment strategy is more

likely to be optimal when mispricing level is low or medium; the initial mispricing correction rises with the size of

mispricing error. (ii) κ κ<l m; the full investment equilibrium tends to dominate as mispricing becomes extremely

large; a further rise in mispricing error will induce a slower mispricing correction.

Prediction 2 (Regime‐dependent noise momentum). (i) λs is relatively high, suggesting that mispricing tends to

persist in period 2 as the size of initial mispricing error is relatively small. (ii) λ λm s≈ ; the difference between λs and
λm is negligible when the mispricing level increases from low to medium. (iii) λl is significantly smaller than λm as

mispricing increases from medium to large.

Prediction 3 (SOA). SOA tends to be faster with the larger mispricing error when the mispricing level increases

from low to medium; In contrast, the impact of mispricing error on SOA will be uncertain when mispricing increases

from medium to large.

4 | EMPIRICAL APPLICATIONS

In this section we examine the empirical validity of the main hypotheses regarding the limits of arbitrage and its

nonlinear impacts on the asset pricing dynamics developed in Section 3 by analyzing the daily S&P 500 index spot and

futures contracts between June 1986 and December 2015.

4.1 | The state‐dependent MS‐GECM

Consider the two‐period GECM advanced by CFS that captures the multiperiod (complex) arbitrage activities as follows:

FIGURE 2 Strategic response effect on mispricing correction

and noise momentum, uniformly distributed q. The nonlinear

impact of mispricing errors on mispricing correction (κq , the solid

line) and noise momentum (λq , the dashed line), given that q is

uniformly distributed over (0, 1) . It follows the numerical examples

from the SV paper, such that V = 1, S = 0.42b , α = 1.2, F = 0.21 ,

q U~ (0, 1) , and initial mispricing S1 increases from 0.2 to 0.4. The

graph again highlights the nonlinearity in the arbitrage parameters

with respect to changes in mispricing

( )f κz λ κ z δ f γ f u u σΔ = + (1 + ) + Δ * + Δ + , ~ iid 0, ,t t t t t t t μ−1 −2 −1
2

(10)
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where ft is the (observed) spot price, f *t is the fundamental value for the asset, z f f= ( − *)t t t is the pricing error

that is the short‐term deviation of price from its fundamental value, Δ is the first‐difference operator, and ut is the

zero‐mean idiosyncratic error term with zero mean and finite variance σu2 , whilst κ λ δ γ, , , are the parameters of

interest. In particular, κ captures the pricing impact of initial arbitrage activity in correcting the observable

mispricing error zt−1 (treated as the initial mispricing S1 in the theory), which is regarded as the percentage of

mispricing correction. With κ z(1 + ) t−2 representing the unarbitraged mispricing error carried over from the

previous period, λ measures the pricing impact of these unarbitraged errors, that is, the strength of noise mo-

mentum. These two components provide a natural framework for testing the main hypotheses regarding nonlinear

limits to arbitrage. As discussed in Section 3, arbitrageurs ability to correct the initial mispricing is limited due to

arbitrage risk and funding constraints, suggesting that κ  is below unity. The unarbitraged pricing error compo-

nent persists into the next trading period, which leads to a positive λ. The overall speed of convergence to

equilibrium is determined jointly by κ and λ, namely, κ λ κ+ (1 + ) , implying that the standard one‐period ECM is

likely to be biased and misleading in the case where λ 0≠ .

Moreover, δ measures the contemporaneous price reaction to the fundamental changes. Hence the recovered

parameter ω δ= − 1 captures the degree of the over‐ or underreaction with respect to the contemporaneous funda-

mental changes. w tends to be different from zero unless the market is perfectly efficient, such that a one unit change in

fundamentals causes one unit change in the market price instantaneously. A positive w implies that futures price

overreacts to the impact of the fundamental changes irrespective of the signs. Finally γ presents the impact of the short‐

term momentum effect attributed to the previous price changes, the sign of which is generally ambiguous and

empirically determined. The recovered parameter π γ ω= − ∕ captures the possible feedback trading pattern, such that

past market price might induce changes in fundamentals. It can be seen after rewriting Equation (10) as

f κz λ κ z f ωe u

f π f e

Δ = + (1 + ) + Δ * + + ,

Δ * = Δ + .

t t t t t t

t t t

−1 −2

−1

A positive (negative) π indicates positive (negative) feedback trading, such that an increase in past market price

leads to fundamental growth (decline).14

Our key theoretical hypotheses suggest that arbitrage activity is fundamentally nonlinear, crucially depending on

the magnitudes of mispricing error, as described in Section 3. By construction the linear model cannot test our

hypotheses because it imposes (potentially invalid) symmetry restrictions and is thus likely to yield misleading results.

Accordingly, in our empirical application, we choose to embed the GECM within the Markov‐switching model po-

pularized by Hamilton (1989), which enables us to identify the regime of binding constraints through the interplay

between arbitrage parameters κ and λ. In particular, we consider a three‐regime setup, which is compatible with our

theoretical model that has two alternative paths to equilibrium:

f α κ z λ z δ f γ f u uΔ = + ˆ + * ˆ + Δ * + Δ + , ~ iid(0, Σ ),t R R t R t R t R t tR tR R−1 −2 −1j j j j j j j j (11)

where ft ( f *t ) is the natural log of the spot (fundamental) asset price, and {α κ λ δ γ, , * , ,R R R R Rj j j j j
} are regime‐dependent

parameters, with Rj
 being the regime‐dependent covariance of the residuals. The pricing error, ẑt , is estimated from

the following long‐run equation:15

f μ θf z= + * + ˆ .t t t (12)

The regime‐specific noise momentum coefficient, λRj can be obtained from λ λ κ* = (1 + )R R Rj j j
. We estimate the MS‐

GECM with three regimes by maximizing the log‐likelihood function, where Rj is a scalar geometric ergodic Markov

chain with a three‐dimensional‐regime space, having the following transition matrix:

14See CFS for detailed steps in developing the GECM that connects the theoretical model.
15According to the cost‐of‐carry model, the theoretical value of θ is 1, which is strongly supported by our empirical analysis.
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where P Pr R R= ( )ij j i is the transition probability from States i to j. This model is designed to provide further insights

into the asymmetric price discovery process in a flexible manner.

4.2 | Application to index futures

We investigate the no‐arbitrage relationship between index futures contracts and the underlying spot contracts, where

the fundamental value for futures contracts is implied by underlying spot price and the cost‐of‐carry model (Roll et al.,

2007). Assuming that the risk‐free rate and dividend yield are given, the fundamental value of futures contract is

obtained as

f i r q τ* = + ( − ) ,t T t t t t,

where f *t T, is the natural log of the fundamental price of the futures contract with a maturity date T at day t; it is the

natural log of the index spot price at day t; rt and qt are the risk‐free interest rate and dividend yield of the asset, with

τ T t= −t is the time to maturity.
We apply our approach to the daily S&P 500 index spot and futures contracts between June 1986 and December

2015.16 The futures contracts are the most actively traded 3‐month‐to‐maturity contracts that roll over every quarter

(March, June, September, and December) into successive 3‐month‐to‐maturity contracts. All data are sourced

from Datastream (1986–2015). Our proxy for the risk‐free interest rate is the US 3‐month Treasury bill (T‐bill) rate.

Dividend yields on the indices are also collected.17 A continuous series of the nearest‐term futures contracts is

constructed. These series switch to the next nearest contract on the first day of the expiry month for the nearest‐term

contract. We use a full set of daily price information for every contract to ensure correct matching of the date to

maturity with the continued futures price series.18 Table 1 reports the descriptive statistics for all variables (measured

in percentage terms).

As expected, the movements of the spot and futures prices closely mimic each other. The average price changes are

of the same magnitude while the volatilities are higher in the futures contracts. On average, the basis (the log difference

between futures and spot prices) is 24 basis points. After applying the cost‐of‐carry model, the difference between the

futures price and the fair estimate ( f f− *) is 5.5 basis points.

4.3 | Main empirical results

The MS‐GECM estimation results are reported in Table 2 with three (smoothed) regime probabilities plotted in

Figure 3. We first discuss the stylized feature of three distinct regimes from Figure 3, which we call States 1–3,

respectively. State 1 is the dominant market state, with the smallest mispricing error (measured as the absolute value of

16We did not use the early data from the period 1982 to 1986, since the estimated mispricing errors are more than double on average during this

period, compared to the period over 1986–2015. The index futures contracts were first introduced in 1982, where the market had higher transaction

costs and lacked index arbitrageur. Thus larger mispricing errors occurred. Errors became more stable after 1986, and fluctuated with major market

events. See also Appendix B for a plot of the moving‐average mispricing error through time.
17As a robustness check, we have also considered futures contracts with different maturities (6 and 9months to maturity), and consider the LIBOR

rate as an alternative measure for risk‐free rate (van Binsbergen et al., 2019). Overall, the estimation results for the arbitrage activity are qualitatively

similar to what follows, and find an inverse U‐shaped limit‐to‐arbitrage pattern across the three market regimes. These results are available in the

appendix with brief discussion.
18Inevitably, some error might appear when estimating the fundamental value of the futures contract. First, the measurements of risk‐free rate and

dividend yield can be arbitrary. Second the fact that the index spot and futures contracts are open to trade at the same time (9:30 a.m.), but close at

different times (4:00 p.m. for spot and 4:15 for futures), will also introduce some measurement errors. These errors seem to be small and related to

arbitrage costs only.
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TABLE 1 Basic descriptive statistics

Mean Median Minimum Maximum Std Dev

iΔ 0.028 0.058 −22.833 10.957 1.169

fΔ 0.028 0.062 −33.700 17.749 1.262

f i− 0.243 0.196 −11.027 2.958 0.541

f f− * 0.055 0.056 −11.451 2.767 0.294

r 3.380 3.790 0.000 9.100 2.493

q 2.275 2.080 1.070 4.100 0.718

Note: This table reports the descriptive statistics for all variables. The sample covers the daily series of the S&P 500 index and its futures contracts over the period

June 4, 1986–December 3, 2015. There are a total of 7442 observations. iΔ ( fΔ ) is the first difference of log index spot (futures) price. f i r q τ* = + ( − )
t T t t t t, is the

fair price for the future contract, where rt is the annualized risk‐free (3‐month T‐bill) interest rate on investment, and qt is the annualized dividend yield on the

index. All numbers are recorded in percentage.

TABLE 2 Estimation of the Markov‐switching generalized error correction model, 1986–2015

Panel A. Estimation results

State 1 State 2 State 3 States 2–1 States 3–2

Estimate t stat Estimate t stat Estimate t stat Estimate t stat Estimate t stat

α −0.005*** −2.51 0.016*** 3.34 0.058 0.66 0.022*** 4.15 0.042 0.64

δ 0.991*** 332.0 1.024*** 259.0 1.142*** 48.3 0.031*** 6.36 0.118*** 4.93

γ −0.004 −1.38 0.015*** 4.18 0.092*** 3.58 0.018*** 4.11 0.078*** 2.98

κ −0.699*** −36.7 −0.819*** −41.5 −0.596*** −6.56 −0.120*** −4.38 0.224** 2.41

λ* 0.113*** 12.8 0.167*** 9.24 0.113 1.29 −0.079*** −3.00 −0.053 −0.59

Σ 0.113*** 59.1 0.239*** 43.2 1.077*** 13.2 0.126*** 21.4 0.838*** 10.2

SOA 0.453*** 19.1 0.652*** 27.6 0.482*** 8.73 −0.199*** −5.98 0.171*** 2.84

zt−1  0.103 0.207 0.774

Log‐likelihood 2360.95

Panel B. Recovered coefficients

State 1 State 2 State 3 States 2–1 States 3–2

Estimate t stat Estimate t stat Estimate t stat Estimate t stat Estimate t stat

ω −0.008** −2.67 0.024*** 5.94 0.142*** 5.99 0.032*** 6.35 0.118*** 4.93

π −0.474 −1.24 −0.630*** −3.42 −0.652*** −3.22 −0.156 −0.36 −0.022 −0.09

λ 0.817*** 8.96 0.922*** 5.86 0.279 1.03 0.107 0.58 −0.647*** −4.92

Panel C. Matrix of Markovian transition probabilities

State 1t−1 State 2t−1 State 3t−1

State 1t 0.980 0.024 0.000

State 2t 0.019 0.968 0.143

State 3t 0.000 0.008 0.857

Ergodic 0.531 0.443 0.024

Note: This table reports the estimation of the Markov‐switching GECM. The sample covers the daily series of the S&P 500 index and its futures contracts over

the period June 4, 1986–December 3, 2015. There are a total of 7442 observations, of which 4070, 3222, and 148 fall into States 1, 2, and 3, respectively.

Specifically, Panel A reports the estimation results for f α κ z λ z δ f γ f μΔ = + ˆ + * ˆ + Δ * + Δ + ,t R R t R t R t R t tR−1 −2 −1j j j j j j
where ẑt is estimated from Equation (11),

α δ γ κ λ{ , , , , * }R R R R Rj j j j j
are regime‐dependent coefficients with the covariance of the residuals (ΣRj ), taking different values across the three states. Panel B reports

the recovered coefficients. Specifically, ω δ= − 1R Rj j , π γ ω= −R R Rj j j∕ , and λ λ κ= * (1 + )R R Rj j j∕ . The final two columns in Panels A and B report the difference

in estimated coefficients and associated t statistics between states. For nonlinear combinations of the coefficients, a delta method is applied to obtain the

variance of the recovered coefficients and their differences. Panel C reports the transition and ergodic probabilities. All t statistics are computed based on a

numerical Hessian matrix, and ***, **, and * indicate significance at 1%, 5%, and 10% levels, respectively.

Abbreviations: GECM, generalized error correction model; SOA, overall speed of adjustment.
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the deviations: z = 0.103t−1  ) and mispricing volatility (Σ = 0.113) in Panel A and the highest ergodic probability (53%)

in Panel C. It mainly covers three major bull markets during 1992–1995, 2003–2007, and 2012–2015, and we call it the

normal market state. State 2 covers 44% of the sample, with mispricing error (0.207) and volatility (0.239) at twice

the levels seen in State 1. This state corresponds to the periods 1986–1991, 1996–2002, 2009, and 2011, which are mostly

the transition periods before and after the major crises. We refer to this period as the transition market state. Finally,

State 3 is characterized by extremely large mispricing error (0.774) and volatility (1.077).19 It covers only 2.4% of the

sample, and coincides mostly with the stressed episodes that are captured in our sample period including the stock

market crash in 1987, the Russian financial crisis in 1998, the market meltdown in 2001, and the global financial crisis

in 2008. We call this the extreme market state.

Moreover, State 1 is most persistent with 98% transition probability, followed by State 2 with 97% and State 3 with

86% (see Panel C in Table 2), which suggests that State 1 (3) is the most (least) “sticky.” The transition probabilities

between States 1 and 3 in either direction are nil, confirming that State 2 is indeed the transition market state. The

three distinct market states identified by the MS‐GECM are mostly consistent with the different historic episodes we

have observed during the whole sample period.

Linking the findings in Table 2 to our key hypotheses, we find that the estimated mispricing correction parameters,

κRj , are all negative and significantly less than unity in the absolute sense, in all three regimes. State 2 displays the

fastest initial correction (82%), followed by State 1 (70%) and State 3 (60%). Comparing the difference between κ
coefficients across the three different market conditions, it appears that arbitrageurs play a bigger role in bringing the

price back to its fundamental value when switching from States 1 to 2, with the difference (–12%) being statistically

significant. In contrast, the coefficient differential between States 2 and 3 becomes significantly positive (22.4%),

suggesting that arbitrage activity is rather limited even though the mispricing error in State 3 is 3.7 times higher than

in State 2. These findings provide strong support for Prediction 1 that initial arbitrage activity follows the inverse

U‐shaped pattern with respect to the size of mispricing errors.

Next, we turn to the noise momentum coefficients, λRj , reported in Panel B. Notably, we find that the strength of

noise momentum is significant and relatively high during normal and transition market states, implying that the

unarbitraged error coming from the previous period is highly persistent, respectively at 82% and 92%. In contrast, noise

momentum is negligible (28%) during the extreme market state, given that the coefficient is not statistically significant.

The difference in λ coefficients between States 2 and 1 is insignificant and negligible, while the difference between

States 3 and 2 is significant and negative (–65%). The significant drop in λ in State 3 is consistent with the impact of a

binding funding constraint that improves futures pricing efficiency at the cost of distorting the current one. Overall,

this finding provides support for Prediction 2, on the regime‐dependent differences in noise momentum. Especially, it

highlights that λ is another important parameter in characterizing the SOA process.

Combining both mispricing correction and noise momentum coefficients, we find that overall speeds of adjustment

(given by κ λ κ+ (1 + ) ) are 45%, 65%, and 60%, respectively, for the normal, transition, and extreme regimes. The SOA

becomes significantly faster when the market switches from States 1 to 2 attributed to the increment of mispricing

correction. The combination of initial correction and size of mispricing suggests that the capital allocation effect is the

main driver behind the different adjustment speeds between these two states. In contrast, when we move from States 2

to 3, we observe that κ plays an important role in slowing down the SOA. This evidence prompts new insights into the

cause(s) of a prolonged error correction process, which in previous literature is often explained by the presence of

larger transaction costs (Bai & Collin‐Dufresne, 2019; Gyntelberg et al., 2017; Roll et al., 2007). Consistent with the

perception of binding funding constraints, we find initial correction and noise momentum are significantly lower in

extreme market conditions. In other words, arbitrageurs expect initial mispricing correction to be limited but future

mispricing to be relatively improved. The interplay between κ and λ against the extremely large mispricing suggests

that the funding constraint effect is the main driver behind the outcome that overall arbitrage activity is significantly

deterred in State 3. As such, our empirical findings provide extra empirical support for the slow‐moving capital

hypothesis in the literature (Brunnermeier & Pedersen, 2009; Duffie, 2010; Mitchell et al., 2007; Mitchell & Pulvino,

2012).

We also observe a range of notable findings for the other parameters in our model. First, the intercepts, αRj , in
States 1 and 2 are statistically significant. A large positive intercept is found in State 2, while a negligible intercept is

found in State 1—the positive sign indicating a regime in which the futures price is more bullish than the spot

19Notice that the average mispricing error over the whole sample period is 0.161.
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price, other things equal. As such, this suggests that the transition state coincides with periods in which the futures

market is more bullish than the spot market. On average, during this regime, there is a 1.6 basis‐point daily return

in the futures market, regardless of the spot market movement. However, such returns are accompanied by larger

risks, as reflected by the variance of the futures return. The pricing difference between the index and futures

markets under different market conditions is not directly considered in previous studies, and thus adds a new result

to the literature. Second, Table 2 shows that the contemporaneous market reaction coefficient, w δ= − 1R Rj j
, is

statistically different from zero. It is small and negative in the normal state, while it is highly significant and

positive in the transition and extreme states. In the case of the latter, it suggests that for a 1 percentage‐point

change (up or down) in the fundamental value there will be a 0.024 or 0.142 percentage‐point price overreaction,

respectively, in the futures market in the same direction (i.e., a 2.4 or 14 basis‐point overreaction, respectively).

Third, Table 2 also shows that while in the normal market state there is no feedback trading (i.e., we cannot reject

π = 0), there is large, negative, and significant feedback trading in transition and extreme market conditions. Such

negative feedback trading leads to more intense price reversal, which is consistent with the high volatility observed

in these market conditions.

4.4 | Linking hidden states to observables

The advantage of using a Markov‐switching model is the capacity to estimate the likelihood of the market being in a

given latent state, which can then be examined for potential linkages to various observable economic factors. It offers

an opportunity to better understand and characterize what the regimes are really capturing. In particular, we are

interested in how well the model classifies the market states according to funding conditions.

Table 3 reports the mean and median statistics of monthly funding and liquidity measures in each of the three

states. Months are allocated to states according to the dominant state for that month (i.e., the state with the largest

number of days, or highest probability). We have 189, 160, and 6months of observations for States 1, 2, and 3,

respectively. Variable definitions are given in Appendix C. We include the Chicago Board Options Exchange (CBOE)

Volatility Index (VIX) and variables of aggregated hedge and mutual fund flows, capital structure and stock, market

liquidity.

FIGURE 3 The smoothed regime probability, 1986–2015. The smoothed regime probability of being in State 1, 2, or 3. It is resulted from

the estimation of MS‐GECM with 3‐month‐to‐maturity futures contracts over 1986–2015. State 1 consists of the years 1992–1995, 2003–2007,

and 2012–2015, State 2 consists of the years 1986–1991, 1996–2002, 2009, and 2011, while State 3 is found in the years of 1987, 1998, 2001,

and 2008. MS‐GECM, Markov‐switching generalized error correction model
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The VIX values confirm that volatility increases from States 1 to 3, with State 3 having a value of more than double

that of State 2. Fund‐flow statistics suggest that funds available for arbitrageurs (hedge and active mutual funds)

decrease as volatility increases from States 1 to 3. The decreasing funding flow confirms that funding constraints are

more likely to be binding in the extreme state when inflows to hedge fund and active funds are at their lowest. In

contrast, passive index funds received large inflows during this same extreme period, which suggests that funding

constraints arise partly due to the relocation of investment to equity‐focused funds, which confirms the flight‐to‐

quality/safety phenomenon. The results for the growth rate of total financial assets and leverage factors point to a

similar story, that funding constraints are most binding in State 3. Financial asset growth is at its lowest (in fact

negative) while financial sector leverage and broker–dealer leverage are highest. The differences between States 1 and 2

are small relative to their differences from State 3, which confirms State 3 as the most extreme of the three regimes.

With regard to market liquidity, the Amihud illiquidity measure suggests that it plays little role in affecting

arbitrageur decisions in between different market states. In general, we expect that spot market illiquidity would deter

arbitrage, but we observe the contrary when considering States 2 and 3: although the spot market is more illiquid in

State 2, we observe larger error correction. Bond illiquidity and TED spread as a measure of funding liquidity risk

(Fontaine & Garcia, 2011b) confirm that funding liquidity risk is at its highest in State 3. The difference between States

2 and 3 is much higher than that between States 1 and 3.

Overall, our findings confirm that our regime estimations capture the variations in funding constraints and

therefore support our hypothesis that funding constraints are an important driver of variation in arbitrage activity,

especially during the extreme market state.

5 | CONCLUSIONS

We develop a unified approach to generate key predictions regarding the effects of capital allocation and funding

constraints on the limits to arbitrage. Building on the seminal work by Shleifer and Vishny (1997) where arbitrageurs

attempt to exploit mispricing while simultaneously facing arbitrage risk and funding constraints, we analyze the

nonlinear impacts of mispricing on arbitrage activity. To capture the multiperiod arbitrage activity, we follow Cai et al.

TABLE 3 Linking hidden states to observables

State 1 State 2 State 3

Variables Mean Median Mean Median Mean Median

VIX 15.95 15.22 24.24 23.30 52.35 55.31

Fund flows

Hedge fund flows 10.22 7.92 5.43 4.99 1.83 0.14

Active fund flows 130.72 135.69 74.04 78.42 40.40 51.07

Index fund flows 9.49 8.66 6.81 6.29 9.13 9.10

Capital structure

Growth rate of total financial assets 0.02 0.03 0.05 0.04 −0.01 −0.03

Financial sector leverage 7.89 3.60 12.09 5.21 30.94 38.87

Broker–dealer leverage factor 43.59 42.21 39.54 39.68 61.81 59.38

Liquidity

Amihud illiquidity of SPX 500 28.29 2.76 85.59 14.55 71.26 3.78

Treasury security‐based funding illiquidity −0.21 −0.23 0.16 0.25 1.81 1.96

TED spread 0.00 0.00 0.01 0.01 0.03 0.03

Note: This table reports the mean and median statistics of monthly funding and liquidity measures in the three regimes. Variable definitions are given in

Appendix C. Months are allocated to states according to the dominant state for that month (i.e., the state with the largest number of days, or highest

probability). We have 189, 160, and 6months of observations for States 1, 2, and 3, respectively.

Abbreviations: TED, The Treasury–Eurodollar; VIX, Volatility Index.
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(2018) and investigate both the initial mispricing correction and the subsequent noise momentum parameters, where

the latter is designed to measure the persistence of uncorrected pricing errors.

In the normal state, where mispricing opportunity is small and arbitrage funds are ample, arbitrageurs are cautious

due to the costs and risk of conducting the arbitrage trade. The capital allocation effect dominates, and larger mis-

pricing induce more aggressive arbitrage activity because of the higher cost‐adjusted returns. But, under the extreme

state characterized by extremely large mispricing and high volatility, funding constraint is more likely to be binding.

The negative funding constraint effect becomes the dominant driver in limiting arbitrage, and larger mispricing rather

impeded arbitrage activity due to intensified funding scarcity. Our theory predicts that overall arbitrage activity does

not rise linearly with mispricing error. Rather, the relationship tends to be regime dependent such that overall arbitrage

activity displays an inverse U‐shape against the size of mispricing error.

To test the validity of our theoretical predictions, we extend the multiperiod error correction model by CFS to the

state‐dependent Markov‐switching model. Applying this model with three regimes to the S&P 500 index spot and

futures markets over the period 1986–2015, we find strong evidence in favor of regime‐dependent nonlinear limits to

arbitrage. Furthermore, we can endogenously identify the stress periods of binding funding constraints as the years

1987, 1998, 2001, and 2008. In this regard, our study can provide both theoretical and empirical evidence that is

consistent with the slow‐moving capital hypothesis documented in the literature (Brunnermeier & Pedersen, 2009;

Mitchell et al., 2007).

Finally, we note that our framework could easily be extended to address a range of further issues. First, our

approach could be applied to explore the short‐term dynamics associated with fundamental long‐run co‐integrating

relationships (e.g., the price–dividend relationship) and the pricing dynamics between segmented markets for single

assets (e.g., cross‐listing and commodity contracts in different markets). Second, as our paper highlights the fruitful

results of studying the limits to arbitrage via arbitrage activities, another important extension would be to analyze the

cross‐sectional effects of specific arbitrage impediments to arbitrage activity. Third, our paper aims to analyze arbitrage

activities in response to mispricing observed exogenously. It would be interesting to see how arbitrage activities and

mispricing will interact and amplify.
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APPENDIX A: PROOFS

In this appendix we provide the parametric assumption on the sensitivity parameter α to analyze the model in Section 2

and the proofs to Propositions 1–3 derived in Section 3.

Assumption A.1. The sensitivity parameter α is moderate, such that

α min α α< { , *},+

where

α V q S F

q F

α V S F

S S F

=
− (1 − )( − )

2(1 − )
,

* =
− +

− +
.

+ 2b 1

1

1 1

2b 1 1

We impose two restrictions on α. First we note that the assumption of α α< + guarantees that α is

not too extreme that arbitrageurs will lose their ability to bear against mispricing even under partial

investment strategy, such that < 0
κ
S1

∂∂ . We will derive this parametric assumption under the proof of

Proposition 1.
Second the assumption of α α< * is referred to as the stability condition, such that arbitrageurs cannot default in

the bad state even when the full investment strategy is adopted. Recall F2b from Equation (1) as

F F α P

P
= 1 + − 1 .2b 1

2b

1


  




By substituting P2b and P1 in Equations (2) and (3), we have

F F αF S S

V S α F
= − −

− − ( − 1)
.2b 1 1

2b 1

1 1





 (A1)

There are two paths to derive the condition for F > 02b . First, one can start by lettingV S α F− − ( − 1) < 01 1 , which

can be simplified as

α V S F

F
>

− +
.1 1

1

This condition implies that F F> > 02b 1 and P P>2b 1 . Note that in this scenario, the sensitivity α must be extremely

large. Consider the numerical example from SV. Given that V = 1, S = 0.31 , S = 0.42b , F = 0.21 , then α > 4.5. It implies

that fund investors will more than quadruple the profits or losses that arbitrageurs achieved in the last period, which is

rare in the real‐world hedge fund industries.

Second, we allow V S α F− − ( − 1) > 01 1 and F > 02b , and derive the following condition as

α α V S F

S S F
< * =

− +

− +
.1 1

2b 1 1
(A2)

It suggests that F F0 < <2b 1 and P P<2b 1 . Given that V = 1, S = 0.31 , S = 0.42b , F = 0.21 , then the

condition becomes α < 3, which is easily satisfied. Hence to keep the analysis tractable and reasonable, we

impose Equation (A2) as the stability condition. We note that this stability condition is more general than the

condition, α < V S F

F

− +1 1

1
imposed in SV.
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Consider a relatively large q
V S F

V S F

− +

2 − +
2b 1

2b 1
≥ .20 Then, we have α α*+ ≥ , and Assumption 1 can be simplified as α α< *.

Otherwise, we have α α< *+ , and Assumption 1 becomes α α< +. Therefore to keep the analysis reasonable, we avoid

extremely large α for any q:

α min α α< { , *}.+

Proof of Lemma 1. Forced liquidation implies that arbitrageurs hold fewer shares of the asset in period 2, that

is, F P β F P< ˆ
2b 2b 1 1 1∕ ∕ . A strategy β1

liq that ensures the equality holds, that is, F P β F P=2b 2b 1
liq

1 1∕ ∕ , is the threshold

point where arbitrageurs hold the same number of shares in both periods 1 and 2. For any optimal strategy,

β βˆ >1 1
liq , we must have forced liquidation in period 2, such that F P β F P< ˆ

2b 2b 1 1 1∕ ∕ .

Recall F2b from Equation (A1), P1 and P2 from Equations (2) and (3), the equality F P β F P=2b 2b 1
liq

1 1∕ ∕ implies

that β =
V S

V S α S S1
liq −

− + ( − 1)( − )
1

1 2b 1
. □

Proof of Lemma 2. We first show the impact of S1 on β̂1 and P1 . Consider the partial investment equilibrium in

Equation (5):

q
V

P
q

P

P

V

P
(1 − ) − 1 + − 1 = 0.

1

2b

1 2b

   
The optimal β0 < ˆ < 11 can be derived as

β n n

a q F
ˆ =

−
2 (1 − )

,1
1 3

1
(A3)

where

n V q F αS S

n V q F αS S

n n αVq q S F

= + (1 − )( + − ),

= + (1 − )( − − ),

= ( ) + 4 (1 − )( − ) .

1 1 1 2b

2 1 1 2b

3 2
2

2b 1

As β̂1 has a complex expression, we simplify it with n1 , n2 , and n3 as functions of model parameters. Then, the

partial derivative of β̂1 with respect to S1 is derived as

β
S F

n

n

ˆ
=

1

2
1 − > 0.1

1 1

2

3

∂∂   (A4)

> 0
β
S

ˆ
1

1

∂∂ since n n>3 2 , which can be easily seen because of F S S< <1 1 2b . This implies the positive capital

allocation effect.

The partial derivative of P1 with respect to S1 is derived as

P

S

β
S
F

n

n
=

ˆ
− 1 =

1

2
1 − − 1 < 0,1

1

1

1
1

2

3

∂∂ ∂∂   (A5)

which holds since n n>3 2 .

20The threshold, V S F

V S F

− +

2 − +
2b 1

2b 1
, is derived under α α* = +.
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Next, we show how S1 will affect the period‐2 price in the bad state, P2b . Consider the partial investment

equilibrium. We rewrite Equation (5) as

P
qVP

V q P
=

− (1 − )
.2b

1

1

Taking the first differentiation with respect to S1 , then

P

S
qV

V q P q P

V q P

qV

V q P
=

( − (1 − ) ) + (1 − )

( − (1 − ) )
=
( − (1 − ) )

.

P

S

P

S

P

S2b

1

1 1

1
2

2

1
2

1

1

1

1

1

1∂∂
∂∂ ∂∂ ∂∂








Clearly, the sign of P

S
2b

1

∂∂ is the same as that of P

S
1

1

∂∂ , which means that < 0
P

S
2b

1

∂∂ under the partial investment strategy.

Next, consider the full investment equilibrium. We obtain the partial derivative of F2b with respect to S1 as

F

S
aF

V S α F

V S α F
=

− + (1 − )

( − − ( − 1) )
> 0.2b

1
1

2b 1

1 1
2

∂∂
The inequality holds under the stability condition such that

V S α F α S S− + (1 − ) > ( − 1)( − ) > 0.2b 1 2b 1

Therefore, it is easily seen that > 0
P

S
b2

1

∂∂ for β̂ = 11 . □
Proof of Proposition 1. Proof of Proposition 1 is straightforward but rather tedious.21

Consider the partial investment equilibrium. It is straightforward to derive the partial differentiation of

κ = β F
S

ˆ
1 1

1
with respect to S1 by

κ
S

F
S β

S
=

− ˆ

.

β
S

1
1

ˆ

1 1

1
2

1

1∂∂
∂∂








where β̂1 and
β
S

ˆ
1

1

∂∂ are defined in Equations (A3) and (A4), respectively. The numerator reaches its minimum at

the corner solution, when β̂ = 11 and the equality in FOC holds. We next solve S1 at the corner solution:

S F
Vq S F

V q S F αF
ˆ = +

( − )

− (1 − )( − + )
.1 1

2b 1

2b 1 1

The condition for the numerator being positive is now derived as

β
S
S

ˆ
ˆ > 1,1

1
1

∂∂
which can be simplified as

21The main analytic results have been derived using MATLAB12. Upon request the codes will be available.
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α α V q S F

q F
< =

− (1 − )( − )

2(1 − )
.+ 2b 1

1

It implies that for any α α< +, the partial derivative κ
S1

∂∂ is positive even when partially invested arbitrageurs

reaches the corner solution at β̂ = 11 and S S= ˆ
1 1 . Hence we have > 0

κ
S1

∂∂ under partial investment strategy.

Furthermore, under the partial investment equilibrium, we rearrange the FOC in Equation (5), and express λ as

λ q
V P

V P
q P

q

V
=

−
−

= +
1 −

.2b

1
2b (A6)

According to Lemma 2, we have < 0
P

S
2b

1

∂∂ . Therefore, it is easily seen from Equation (A6) that as S1 rises, λ

falls. This proves that > 0
κ
S1

∂∂ and < 0
λ
S1

∂∂ under partial investment equilibrium.

Consider the full investment equilibrium, β̂ = 11 . In this case, we can express κ as

κ
β F
S

F

S
=

ˆ
= .1 1

1

1

1

Then, it is easily seen that < 0
κ
S1

∂∂ , given F1 . Furthermore, we rewrite λ as

λ q
V P

V P
q
V P

S F
=

−
−

=
−
−

.2b

1

2b

1 1

From Lemma 2, we have > 0
P

S
2b

1

∂∂ . Hence, < 0
λ
S1

∂∂ . □
Proof of Proposition 2. q* is derived at the point where arbitrageurs are indifferent to strategies (i.e., D F=1 1

under the partial investment strategy), and is determined as a complex function of the parameter set,

V S S F α{ , , , , }1 2b 1 :

q
S F V F S αF

V S S S F V F S αF m
* =

( − )( + − − )

( − ) + ( − )( + − − )
=

1

+ 1
,1 1 1 2b 1

2b 1 1 1 1 2b 1
(A7)

where m V S S S F V F S αF= ( − ) ( − )( + − − )2b 1 1 1 1 2b 1∕ .

First, it is easily seen that

S F S S V S α F− > 0, − > 0, − + (1 − ) > 0,1 1 2b 1 2b 1 (A8)

where we use the maintained assumption that F S S< <1 1 2b , and the stability condition, α α*≤ . It is then trivial

to show thatm > 0 and q0 < * < 1. As S1 approaches to F1 , the numerator in q* becomes zero and q* 0≈ . As S1
approaches to S2b , m becomes zero, and q* 1≈ .

Next, taking the partial derivation of m with respect to S1 , we have

m

S

V F S

S F V F S αF
=

( − )

( − ) ( + − − )
< 0.

1

1 2b

1 1
2

1 2b 1

∂∂
Using the inequality in Equation (A8), it is easily seen that > 0

q

S

*

1

∂∂ and < 0
q

F

*

1

∂∂ . □
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Proof of Proposition 3. We start with κq , such that

κ P q j κ q j= Σ ( = ) ( = ),q
j J∈

where J denotes the set of all real number within the unit interval and P q j( = ) is the probability of q j= . It is

straightforward to derive the partial differentiation of κq with respect to S1 by

κ
S

P q j
κ q j

S
= ( = )

( = )
.

q

1 1

∂∂ ∂ ∂
In one extreme where S F=1 1 , we note that q* = 0 from Proposition 2 and the partial investment strategy is

optimal for any q. Hence we must have > 0
κ q j

S

( = )

1

∂ ∂ for any q j= from Proposition 1, and > 0
κ
S

q

1

∂∂ . In another

extreme where S S=1 2b , we note that q* = 1 from Proposition 2 and the full investment strategy is optimal.

Hence we have < 0
κ q j

S

( = )

1

∂ ∂ for any q j= from Proposition 1, and < 0
κ
S

q

1

∂∂ .

For F S S< <1 1 2b , we can derive the threshold probability q*, and rewrite the partial differentiation as

κ
S

P q j
κ q j j q

S

κ q j j q

S
= Σ ( = )

( = *)
+

( = < *)
.

q

j J1 1 1

∂∂ ∂ ≥∂ ∂ ∂∈
   

It is easily seen that the first term in the bracket > 0
κ q j j q

S

( = *)

1

∂ ≥∂ 
since the partial investment strategy is optimal,

and the second term in the bracket < 0
κ q j j q

S

( = < *)

1

∂ ∂ 
since the full investment strategy is optimal. Recall that

Proposition 2 states that q* increases with S1 . For S1 increases from F1 to S2b ,
κ
S

q

1

∂∂ is positive at first since q* is

small and the positive κ q j j q

S

( = *)

1

∂ ≥∂  is dominating. But it turns to negative as S1 grows higher since q* is large and

the negative κ q j j q

S

( = < *)

1

∂ ∂  is dominating.

Next we turn to λq , such that

λ P q j λ q j= Σ ( = ) ( = ),q
j J∈

and the partial differentiation of λq with respect to S1 , such that

λ
S

P q j
λ q j

S
= Σ ( = )

( = )
.

q

j J1 1

∂∂ ∂ ∂∈
Since Proposition 1 states that < 0

λ q j

S

( = )

1

∂ ∂ , then we must have < 0
λ
S

q

1

∂∂ .

It is worth noticing that in the above proof of Proposition 3, it does not require the actual distribution of q. It

implies that results in Proposition 3 hold for any distribution of q. □
APPENDIX B: SIZE OF MISPRICING ERROR OVER TIME

Figure B1 plots the moving average of mispricing error in absolute value over the whole sample period 1982–2015. It is

easily seen that mispricing error is large and volatile in the early period before 1986: it fluctuates above 0.25, and can

reach as high as 2.25 at extreme. At the time when index futures contracts were first introduced in 1982, the market

was characterized by high transaction costs, a low number of participating arbitrageurs and low levels of available

arbitrage capital. Therefore larger mispricing errors tended to occur during the early periods. Over time, as knowledge

diffused and entry barriers and implementation costs dropped, mispricing became more stable after 1986 and comoved

with major market events. It stayed below 0.25 for most of the sample period, only exceeding this level at the time of a

few extreme market events, such as the 1987 market crash and the 2007–2009 global financial crisis.
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APPENDIX C: OBSERVABLE VARIABLE DEFINITIONS

In this appendix, we introduce a number of variables as measures of funding and market liquidity.

1. The VIX index

We collect the daily VIX data from the website of the CBOE.

2. Aggregate hedge fund flows, aggregate index fund flows, and aggregate mutual fund flows

Ang et al. (2011) find that hedge fund leverage decreases more than the leverage of financial intermediaries. They

also find that funding cost and fund return volatility can negatively predict fund leverage, while the market value

(MV) of hedge funds positively predicts fund leverage. Empirically, the aggregate hedge fund flow (past 3‐month

flow) positively predicts the gross leverage and long‐only leverage. We follow Ang et al. and construct the aggregate

actively managed US mutual fund flows, aggregate passively managed US index fund flows, and aggregate US hedge

fund flows. From the Morningstar Direct‐defined universe of US Mutual Funds, we select the mutual funds with

“Index funds” indicator “No” and “Oldest share class” indicator “Yes” (to remove identical funds with a different

share class), and Global Category group “Equity” or “Allocation”; this yields 5152 funds as our mutual fund sample.

Similarly, we select the index funds with “Index funds” indicator “No” and “Oldest share class” indicator “Yes” (a

gain to remove identical funds), and Global Category group “Equity” or “Allocation”; this yields 291 funds as our

index fund sample. From the Morningstar Global Hedge Fund universe, we select the funds with “Domicile”

indicator “United States”; this yields 1451 funds as our hedge fund sample. All the return and total net asset data are

downloaded on a monthly basis from January 1976 to December 2015. The monthly mutual fund/index fund/hedge

fund flows are constructed as follows:

Flow
TNA

TNA
r r r= − (1 + )(1 + )(1 + ),i t

i t

i t
i t i t i t,

,

, −3
, −2 , −1 ,

AggreFlow Flow= ,t

i

k

i t

=1

,
where TNAi t, is the total net assets of fund i in quarter t and ri t, is the total return of fund i in quarter t , obtained

from the Morningstar Direct database.

3. Financial sector leverage We again follow Ang et al. (2011) to construct the financial sector leverage. The financial

sector is defined to capture all US‐based companies with Standard Industrial Classification codes between 6000 and

6299. Leverage for company i at quarter t is defined as

Leverage
Asset

MV
= ,i t

i sector i t

i sector i t
,

,

,

∈
∈


where Asseti t, is the total assets of the company obtained from COMPUSTAT and MVi t, is the market value of the

company obtained from CRSP.

FIGURE B1 Plot of moving average of mispricing error,

1982–2015. The moving average of the absolute value of the

mispricing error, ẑt , estimated from the long‐run equation

f μ θf z= + * + ,t t t where ft and f *
t are the spot and fundamental

prices, respectively. The dotted line plots the 1‐month moving‐

average mispricing error, while the solid line plots the 6‐month

moving‐average mispricing error. MV, market value
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4. Financial asset growth Adrian and Shin (2010) find that the growth in financial assets measures the increase of

aggregate liquidity. Fast asset growth increases surplus capital as intermediaries seek to expand this capital and

search for borrowers. Aggregate liquidity then rises as people are urged to borrow the money, though they may lack

the capacity to repay it. Financial asset growth is constructed as follows:

AssetGrowth
Asset

Asset
= − 1,i t

i t

i t
,

,

, −1

where Asseti t, is the total financial assets of company i in quarter t obtained from COMPUSTAT.

5. Amihud (2002) illiquidity measure

We construct the Amihud (2002) illiquidity factor of stocks as follows:

Illiq
D

R

VOLD
=

1
,i m

i m d

D
i m d

i m d
,

, =1

, ,

, ,

i m,   
where Di m, is the number of days of stock i available in month m, Ri m d, , is the daily return of stock i on day d in

monthm, and VOLDi m d, , is the trading volume in dollars of stock i on day d in monthm. We use securities that are

traded on the New York Stock Exchange in the period from June 1986 and December 2015. Data is collected from

the CRSP database.

6. Broker–dealer leverage Adrian et al. (2014) apply the broker–dealer leverage to measure the stochastic discount

factor (SDF) when funding constraints are high. They find that worse funding conditions are related to deleveraging

and high marginal value of wealth. The quarterly broker–dealer leverage factor of Adrian et al. (2014) is collected

from Muir's webpage. This Broker–dealer leverage is constructed as follows:

Leverage
Total Financial Assets

Total Financial Assets Total Liabilities
=

−
,t

t

t t

BD
BD

BD BD

where Total Financial Assetst
BD is the aggregate quarterly total financial assets of security broker–dealers, and

Total Liabilitiest
BD is the aggregate quarterly total financial liabilities of security broker–dealers reported.

7. Treasury security‐based funding liquidity

The treasury security‐based funding liquidity (Fontaine & Garcia, 2011a) data are directly obtained from the website

of Jean‐Sebastien Fontaine.

8. TED spread

TED spread is constructed as follows:

TED Yield Yield= − ,t t tEU, US,

where Yield tEU, is the yield of 3‐month Eurodollar deposits (LIBOR), and Yield tUS, is the yield of 3‐month US T‐bills.

The TED spread is the 3‐month US T‐bill deposit yield subtracted from the 3‐month Eurodollar deposit yield

(LIBOR). Both LIBOR and T‐bill yields are monthly data downloaded from the Federal Reserve Economic Data

(FRED) library.

APPENDIX D: TESTS OF ROBUSTNESS

D.1 | Evidence with alternative measure of risk‐free rate

We provide tests of robustness with an alternative measure of risk‐free rate. Table D1 and Figure D1 duplicate our

estimation of MS‐GECM on the S&P 500 index spot‐futures relation with the 3‐month LIBOR rate as the risk‐free

interest rate. Similarly, the initial mispricing correction displays the inverse U‐shape as mispricing widens, while noise

momentum sharply declines in the extreme regime.
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TABLE D1 Estimation of the Markov‐switching generalized error correction model, 3‐month LIBOR rate

State 1 State 2 State 3

Estimate t stat Estimate t stat Estimate t stat

Panel A. Estimation results

α 0.009*** 4.80 0.003 0.57 −0.109** 2.30

δ 0.991*** 319.0 1.016*** 254.0 1.156*** 50.6

γ −0.003 −1.28 0.013*** 4.06 0.098*** 4.14

κ −0.699*** −38.0 −0.883*** −43.8 −0.631*** −7.66

λ* 0.262*** 14.9 0.109*** 5.90 0.123 1.56

Σ 0.112*** 49.9 0.224*** 34.9 0.953*** 15.0

SOA 0.436*** 19.9 0.773*** 31.8 0.507*** 4.68

zt−1  0.101 0.187 0.685

Log‐likelihood 2504.23

Panel B. Recovered coefficients

λ 0.871*** 9.77 0.935*** 3.75 0.333 1.42

Note: This table reports the estimation of the Markov‐switching GECM. The sample covers the daily series of the S&P 500 index and its 3‐month‐to‐maturity

futures contracts over the period June 4, 1986–December 3, 2015. There are a total of 7442 observations, of which 3973, 3279, and 190 fall into States 1, 2, and 3,

respectively. Specifically, Panel A reports the estimation results for f α κ z λ z δ f γ f μΔ = + ˆ + * ˆ + Δ * + Δ + ,t R R t R t R t R t tR−1 −2 −1j j j j j j
where ẑt is estimated from

Equation (11), the risk‐free rate is proxied as the 3‐month LIBOR rate, {α δ γ κ λ, , , , *R R R R Rj j j j j
} are regime‐dependent coefficients with the covariance of the

residuals (ΣRj ), taking different values across the three states. Panel B reports the recovered coefficients. Specifically, λ λ κ= * (1 + )R R Rj j j∕ . For nonlinear

combinations of the coefficients, a delta method is applied to obtain the variance of the recovered coefficients and their differences. All t statistics are computed

based on a numerical Hessian matrix, and ***, **, and * indicate significance at 1%, 5%, and 10% levels, respectively.

Abbreviations: GECM, generalized error correction model; SOA, overall speed of adjustment.

FIGURE D1 The smoothed regime probability, 3‐month LIBOR rate. The smoothed regime probability of being in State 1, 2, or 3. It is

resulted from the estimation of MS‐GECM with 3‐month‐to‐maturity futures contracts over 1986–2015, while using the 3‐month LIBOR rate

as the risk‐free interest rate. State 1 consists of the years 1992–1995, 2003–2007, and 2012–2015, State 2 consists of the years 1986–1991,

1996–2002, 2009, and 2011, while State 3 is found in the years of 1987, 1998, 2001, and 2008. MS‐GECM, Markov‐switching generalized error

correction model
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D.2 | Evidence with alternative sample periods

We provide tests of robustness with alternative sample periods and S&P 500 futures contracts. Table D2 duplicates our

estimation of MS‐GECM on the S&P 500 index spot‐futures relation with a shorter sample period. We drop the periods

with the stock market crash in 1987, and start from June 1990. Results in States 1 and 2 are similar to those in Table 2,

with κ increasing by 10% while λ remaining stable as mispricing increases from States 1 to 2. It implies that the positive

capital allocation effect dominates the negative funding constraint effect from States 1 to 2. Arbitrage activity becomes

more aggressive against larger mispricing from States 1 to 2. κ in State 3 (80%) is rather similar to that in State 2 despite

the significant growth in mispricing error (from 0.188 in State 2 to 0.498 in State 3). It is hard to tell whether the

binding funding constraints deter the initial mispricing correction or the marginal impact of mispricing is compressed

in the presence of high correction and large mispricing. The subsequent noise momentum reveals vital information. λ
witnesses a sharp decline from 80% to 50%, which confirms the dominance of the negative funding constraint effect in

the extreme regime (e.g., State 3 in Table 2). The interplay between κ and λ against mispricing is consistent with the

nonlinear limits to arbitrage.

D.3 | Evidence with alternative futures contracts

We also provide evidence with the S&P 500 futures contracts that have 6 and 9months to maturity, which are also

traded actively. Comparing to the 3‐month‐to‐maturity contracts, the 6‐ and the 9‐month‐to‐maturity contracts will roll

over on the third Friday of every quarter (March, June, September, and December) into the successive contracts.

Tables D3 and D4, and Figure D2 duplicate the estimation of MS‐GECM using contracts that have 6 and 9months to

maturity over 1990–2015. For both 6‐ and 9‐month contracts, the interplay between κ and λ against mispricing is

similar to the results with the 3‐month contracts. κ increases significantly and λ declines slightly from States 1 to 2 with

larger mispricing, resulting in a faster speed of adjustment. From States 2 to 3 where mispricing grows to an extreme

level, arbitrage activities are rather deterred, as κ stops climbing and λ sharply drops. These results again highlight the

dominance of the funding constraint effect in limiting arbitrage activity during the extreme State 3.

TABLE D2 Estimation of the Markov‐switching generalized error correction model, 3‐month‐to‐maturity futures contracts, 1990–2015

State 1 State 2 State 3

Estimate t stat Estimate t stat Estimate t stat

Panel A. Estimation results

α −0.010*** −3.95 0.021*** 4.39 0.109** 2.30

δ 0.992*** 301.0 1.012*** 241.0 1.006*** 73.0

γ −0.005* −1.74 0.017*** 4.76 0.009 0.71

κ −0.709*** −35.8 −0.802*** −37.6 −0.806*** −10.8

λ* 0.230*** 11.8 0.164*** 7.87 0.098 1.25

Σ 0.109*** 49.9 0.218*** 34.9 0.567*** 15.0

SOA 0.479*** 18.5 0.637*** 22.4 0.707*** 6.56

zt−1  0.099 0.188 0.498

Log‐likelihood 2582.75

Panel B. Recovered coefficients

λ 0.793*** 13.1 0.827*** 9.09 0.510*** 5.75

Note: This table reports the estimation of the Markov‐switching GECM. The sample covers the daily series of the S&P 500 index and its 3‐month‐to‐maturity

futures contracts over the period June 1, 1990–December 3, 2015. There are a total of 6430 observations, of which 3629, 2630, and 171 fall into States 1, 2, and 3,

respectively. Specifically, Panel A reports the estimation results for f α κ z λ z δ f γ f μΔ = + ˆ + * ˆ + Δ * + Δ + ,t R R t R t R t R t tR−1 −2 −1j j j j j j
where ẑt is estimated from

Equation (11), {α δ γ κ λ, , , , *R R R R Rj j j j j
} are regime‐dependent coefficients with the covariance of the residuals (ΣRj ), taking different values across the three states.

Panel B reports the recovered coefficients. Specifically, λ λ κ= * (1 + )R R Rj j j∕ . For nonlinear combinations of the coefficients, a delta method is applied to obtain

the variance of the recovered coefficients and their differences. All t statistics are computed based on a numerical Hessian matrix, and ***, **, and * indicate

significance at 1%, 5%, and 10% levels, respectively.

Abbreviations: GECM, generalized error correction model; SOA, overall speed of adjustment.
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TABLE D3 Estimation of the Markov‐switching generalized error correction model, 6‐month‐to‐maturity futures contracts, 1990–2015

State 1 State 2 State 3

Estimate t stat Estimate t stat Estimate t stat

Panel A. Estimation results

α −0.014*** −4.82 0.021*** 3.98 0.153*** 3.22

δ 0.988*** 261.0 1.013*** 231.0 1.003*** 75.0

γ −0.005 −1.64 0.013*** 3.49 0.010 0.79

κ −0.671*** −32.2 −0.739*** −34.2 −0.738*** −11.4

λ* 0.288*** 14.0 0.214*** 10.0 0.184*** 2.70

Σ 0.108*** 46.8 0.227*** 32.1 0.561*** 8.22

SOA 0.383*** 14.2 0.525*** 18.4 0.554*** 5.95

zt−1  0.109 0.206 0.527

Log‐likelihood 2157.24

Panel B. Recovered coefficients

λ 0.875*** 15.7 0.820*** 11.6 0.705*** 9.28

Note: This table reports the estimation of the Markov‐switching GECM. The sample covers the daily series of the S&P 500 index and its 6‐month‐to‐maturity

futures contracts over the period June 1, 1990–December 3, 2015. There are a total of 6430 observations, of which 3500, 2698, and 232 fall into States 1, 2, and 3,

respectively. Specifically, Panel A reports the estimation results for f α κ z λ z δ f γ f μΔ = + ˆ + * ˆ + Δ * + Δ + ,t R R t R t R t R t tR−1 −2 −1j j j j j j
where ẑt is estimated from

Equation (11), {α δ γ κ λ, , , , *R R R R Rj j j j j
} are regime‐dependent coefficients with the covariance of the residuals (ΣRj ), taking different values across the three states.

Panel B reports the recovered coefficients. Specifically, λ λ κ= * (1 + )R R Rj j j∕ . For nonlinear combinations of the coefficients, a delta method is applied to obtain

the variance of the recovered coefficients and their differences. All t statistics are computed based on a numerical Hessian matrix, and ***, **, and * indicate

significance at 1%, 5%, and 10% levels, respectively.

Abbreviations: GECM, generalized error correction model; SOA, overall speed of adjustment.

TABLE D4 Estimation of the Markov‐switching generalized error correction model, 9‐month‐to‐maturity futures contracts, 1990–2015

State 1 State 2 State 3

Estimate t stat Estimate t stat Estimate t stat

Panel A. Estimation results

α −0.007*** −3.32 0.016*** 3.06 0.278*** 3.88

δ 0.984*** 262.0 1.015*** 232.0 1.006*** 65.0

γ −0.006** −2.03 0.012*** 3.18 0.009 0.65

κ −0.552*** −30.4 −0.639*** −29.6 −0.642*** −9.67

λ* 0.395*** 22.0 0.285*** 13.8 0.242*** 3.52

Σ 0.112*** 45.0 0.245*** 39.9 0.652*** 17.9

SOA 0.157*** 7.17 0.353*** 13.0 0.399*** 4.23

zt−1  0.157 0.248 0.839

Log‐likelihood 1805.78

Panel B. Recovered coefficients

λ 0.883*** 20.9 0.792*** 15.0 0.677*** 11.9

Note: This table reports the estimation of the Markov‐switching GECM. The sample covers the daily series of the S&P 500 index and its 9‐month‐to‐maturity

futures contracts over the period June 1, 1990–December 3, 2015. There are a total of 6430 observations, of which 3541, 2662, and 227 fall into States 1, 2, and 3,

respectively. Specifically, Panel A reports the estimation results for f α κ z λ z δ f γ f μΔ = + ˆ + * ˆ + Δ * + Δ + ,t R R t R t R t R t tR−1 −2 −1j j j j j j
where ẑt is estimated from

Equation (11), {α δ γ κ λ, , , , *R R R R Rj j j j j
} are regime‐dependent coefficients with the covariance of the residuals (ΣRj ), taking different values across the three states.

Panel B reports the recovered coefficients. Specifically, λ λ κ= * (1 + )R R Rj j j∕ . For nonlinear combinations of the coefficients, a delta method is applied to obtain

the variance of the recovered coefficients and their differences. All t statistics are computed based on a numerical Hessian matrix, and ***, **, and * indicate

significance at 1%, 5%, and 10% levels, respectively.

Abbreviations: GECM, generalized error correction model; SOA, overall speed of adjustment.
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FIGURE D2 The smoothed regime probability, 1990–2015. All three graphs in the figure plot the smoothed regime probability of being

in State 1, 2, or 3, estimated with futures contracts of different times to maturity. They are resulted from the estimation of MS‐GECM over

1990–2015, with the 3‐month‐to‐maturity futures contracts (top panel), the 6‐month‐to‐maturity futures contracts (middle panel), and the 9‐

month‐to‐maturity futures contracts (bottom panel). MS‐GECM, Markov‐switching generalized error correction model
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FIGURE D2 (Continued)
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