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Misfolding Proteins
Theodoros K. Karamanos* , Arnout P. Kalverda and Sheena E. Radford*

Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds,
United Kingdom

The early stages of protein misfolding and aggregation involve disordered and partially
folded protein conformers that contain a high degree of dynamic disorder. These
dynamic species may undergo large-scale intra-molecular motions of intrinsically
disordered protein (IDP) precursors, or flexible, low affinity inter-molecular binding in
oligomeric assemblies. In both cases, generating atomic level visualization of the
interconverting species that captures the conformations explored and their physico-
chemical properties remains hugely challenging. How specific sub-ensembles of
conformers that are on-pathway to aggregation into amyloid can be identified from
their aggregation-resilient counterparts within these large heterogenous pools of rapidly
moving molecules represents an additional level of complexity. Here, we describe current
experimental and computational approaches designed to capture the dynamic nature of
the early stages of protein misfolding and aggregation, and discuss potential challenges
in describing these species because of the ensemble averaging of experimental
restraints that arise from motions on the millisecond timescale. We give a perspective
of how machine learning methods can be used to extract aggregation-relevant
sub-ensembles and provide two examples of such an approach in which specific
interactions of defined species within the dynamic ensembles of α-synuclein (αSyn) and
β2-microgloblulin (β2m) can be captured and investigated.

Keywords: ensemble calculations, protein misfolding, machine learning, intrinsic disorder, oligomerization, NMR
spectroscopy

INTRODUCTION

Although significant recent progress in computational methods has enabled the prediction of the
native structure of a protein and of protein complexes given primary sequence information alone
(Yang et al., 2020; Jumper et al., 2021), understanding how a protein misfolds and defining the
structural properties of misfolded and aberrantly assembled/aggregated species remain largely a
mystery. Protein misfolding represents a critical missing link in our knowledge of protein chemistry
as it is represents a fundamental property of the polypeptide chain and is directly linked with
numerous human disorders including neurodegeneration, cataract formation, type II diabetes
mellitus (Knowles et al., 2014; Chiti and Dobson, 2017; Iadanza et al., 2018; Sawaya et al., 2021).
More than 40 proteins has been identified as the culprits of aggregation in human amyloid diseases
(Benson et al., 2020). Pathological protein self-assembly reactions do not only result in highly
ordered amyloid fibrils but also in the formation of amorphous aggregates that lack long range order
or a common underlying structure, misfolded oligomers, or phase-separated protein condensates
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(Ebo et al., 2020; Mathieu et al., 2020). In this review the term
“aggregation” largely refers to protein polymerization on pathway
to amyloid unless otherwise stated.

Despite this extraordinary progress, and the stunning
advances in structural methods such as cryo-EM, cryo-ET
and solid state NMR over the last few years (Bäuerlein and
Baumeister, 2021; Reif et al., 2021; Saibil, 2022), generating
high resolution structures of aggregation intermediates remains
enormously challenging, and the secrets of protein misfolding
remain unveiled. Understanding the early events in protein
misfolding that result in large-scale self-assembly into the highly
ordered cross-β fibrous assemblies of amyloid is challenging
from the physical chemistry view point (Cawood et al., 2021).
Intrinsic protein dynamics play a crucial role in the early stages
of the misfolding reaction. These can be manifested in the form
of intrinsically disordered proteins (IDPs) (Bondos et al., 2021;
Uversky, 2021) that exchange between an array of different
conformations, but also partially folded amyloid precursors that
retain a dynamic 3D structure, which can loosely self-assemble
to generate a pool of low-order oligomers (Figure 1). Thus, the
first main challenge in understanding the principles of protein
misfolding is the ability to generate ensembles that capture the
dynamics of aggregation precursors that can span the ns to
hour timescale. However, the majority of these states may be
innocuous in terms of amyloid formation, since they will not
possess the physico-chemical properties required to enter the
aggregation landscape and will remain monomeric or, if forming
inter-molecular interactions in oligomers, will disassemble back
to monomers with which they are in dynamic equilibrium (Dear
et al., 2020; Michaels et al., 2020; Cawood et al., 2021). This
represents the second main challenge: how do we identify specific
sub-ensembles within large pools of interconverting species that
show increased propensity to aggregate and/or assemble into
amyloid?

Here, we review current computational and experimental
methods that can be used to describe the solution properties
of highly dynamic proteins, with emphasis on how the kinetics
of their formation can influence the structural interpretation
of experimental observables. We then discuss how clustering
of these ensembles may be performed using machine learning
methods in order to identify aggregation-prone vs. aggregation-
resilient states. Finally, we show how these methods/concepts
can be used to describe the misfolding of two example systems:
a protein that aggregates from an IDP state (αSyn) or from a
dynamic, yet topologically well-defined species (β2m).

MISFOLDING PROTEINS ACROSS THE
FLEXIBILITY SCALE

Proteins with an enhanced propensity to aggregate into amyloid
can be (1) disordered (IDPs) or contain intrinsically disordered
regions (IDRs), (2) structured, but unstable thermodynamically
or kinetically, or (3) combinations of these traits. Examples
include variants of immunoglobulin light chain associated with
light chain amyloidosis (thermodynamically unstable) (Morgan
et al., 2021), β2m (both kinetically and thermodynamically

FIGURE 1 | Protein misfolding and flexibility. Examples of proteins with
different degrees of flexibility (α-synuclein—IDP, prion protein –folded and IDR,
and β2m—folded), each of which aggregate to form amyloid fibrils. For each
class of protein, its structure cannot be represented by a single conformation,
as each interconverts between various conformers on different timescales.
Hence, the conformational properties of these proteins are best described
using an ensemble of protein states guided by different types of experimental
restraints. Oligomers that form from these precursors may retain the structure
of the monomer, convert to a different structure, or form new structures not
accessible to their precursors. All eventually form the cross-β fold of amyloid
which, whilst containing a canonical parallel in-register β-strand structure can
adopt a variety of different structures (127 different amyloid structures have
been collated in the amyloid atlas; Sawaya et al., 2021).

unstable; Eichner and Radford, 2011), amyloid-β (Aβ),
α-synuclein and islet associated polypeptide (IAPP) that
are IDPs (Chiti and Dobson, 2017) and prion protein (Singh and
Udgaonkar, 2015) or poly-glutamine-containing proteins such as
ataxin 3 and huntingtin (contain both structured and disordered
regions) (Lieberman et al., 2019).

For IDPs, disorder serves as a means to explore a vast
conformational landscape in their monomeric form that may,
or may not, be related to their function and/or propensity
to aggregate. Thermodynamically, for disordered proteins to
aggregate into amyloid, the gain in enthalpy from the formation
of the repetitive cross-β interactions (main-chain hydrogen
bonding and interactions between stacked side-chains) of the
ubiquitous amyloid fold compensates for the entropy loss arising
from the ordering of a disordered/unstructured polypeptide
chain. Disorder that leads to misfolding can also be generated
by other mechanisms, including proteolytic cleavage of larger
precursors that may be otherwise folded/aggregation-resilient
(serum amyloid A, antibody light chains, transthyretin, Aβ,
and others) (Adams et al., 2019; Lewkowicz and Gursky, 2022;
Lichtenthaler et al., 2022) or even aggregation of the nascent
polypeptide chain as it exists the ribosome (Willmund et al., 2013;
Deuerling et al., 2019; Cassaignau et al., 2020).
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For protein precursors that are initially folded (e.g., β2m,
light chains, transthyretin; Iadanza et al., 2018), local protein
motions which lead to exposure of hydrophobic/aggregation-
prone regions (APRs) (Beerten et al., 2012; Houben et al.,
2022) that are normally buried in the native structure, have
been suggested as the drivers of self-assembly. For misfolding-
prone proteins that contain long disordered regions (IDRs)
dispersed within, or at the termini, of folded domains (e.g.,
prions and polyQ-containing proteins), the initiating stages of
aggregation may be dominated by the IDR, by interactions
involving the folded domain, or both (Scarff et al., 2013; Singh
and Udgaonkar, 2015; Sicorello et al., 2018, 2021; Lieberman
et al., 2019). And, while it is now straightforward to predict
the presence of APRs in protein sequences (Tsolis et al., 2013),
these regions cannot be solely responsible for driving the initial
stages of aggregation, since it is well-known that regions that
flank these sequences can play a pivotal role in controlling
assembly (Ulamec et al., 2020). The small oligomeric species
that self-assemble from aggregation-prone monomers can have
“memory” of the structural properties of their corresponding
precursors, thus creating pools of native, partially folded or
unfolded oligomers (Cawood et al., 2021). Alternatively, self-
assembly may generate new structures not accessible/populated
in their monomeric precursors (Figure 1). Initially formed
small oligomers can continue to grow in size, without further
conformational change to generate larger amorphous aggregates,
or they can undergo a transition to a cross-β structure which is
followed by elongation processes that result in the formation of
the large fibrillar aggregates classic of amyloid (Xue et al., 2008;
Knowles et al., 2009).

In summary, therefore, even by focusing on the earliest stages
of misfolding and aggregation a complicated picture emerges
that involves numerous, structurally distinct precursors that
lead to aggregate formation via a range of kinetic mechanisms.
Nonetheless, the vast diversity of protein structures of unrelated
sequence and function that can form fibrillar aggregates suggests
the presence of common, fundamental underlying mechanisms
that are yet to be discovered and understood.

EXPERIMENTAL METHODS USED TO
GUIDE THE GENERATION OF PROTEIN
ENSEMBLES

The conformational heterogeneity of IDPs and proteins
that contain a significant portion of IDRs precludes the
conventional investigation of these species using methods able
to determine high resolution structures, such as cryo-EM and
X-ray crystallography (Thomasen and Lindorff-Larsen, 2022).
For amyloid precursors that are initially folded, even though
the native monomeric state may be populated to an extent
that allows its characterization by structural approaches, these
methods cannot capture the rarely populated, partially folded
species that can be crucial for aggregation (Radford et al., 1992;
Dhulesia et al., 2010; Buell et al., 2011; Karamanos et al., 2016), or
the loosely associated oligomeric species that form early during
assembly (Laganowsky et al., 2012; Karamanos et al., 2014, 2019;

Fusco et al., 2017). Methods able to capture both local and
global properties of the polypeptide chain, and to detect rare
and transiently populated species, are needed in order to
describe the conformational properties of these dynamic protein
states. Since the equilibria that lead to the formation of these
lowly populated species are uniquely sensitive to factors such
as pH and salt concentration, and hence the rate of amyloid
aggregation is also highly dependent on the solution conditions
(Buell et al., 2014), experimental restraints should ideally be
collected in solution. Experiments need to be carefully planned
so that these early species are resident for long enough to
enable their detection and characterization, holding off the
inevitable downhill thermodynamic cascade to the amyloid fold
(Karamanos et al., 2015). If such conditions can be found, a range
of powerful solution techniques can be used to yield restraints
used in ensemble calculations (Cawood et al., 2021). These
include small angle X-ray scattering (SAXS)/NMR (Mertens
and Svergun, 2017) (generating Rh), hydrogen exchange (HX)
monitored by NMR or mass spectrometry (MS) (Radou et al.,
2014; Wan et al., 2020) (yielding information on solvent
accessibility of the main-chain/hydrogen bond stability); single
molecule fluorescence energy transfer (smFRET) or fluorescence
correlation spectroscopy (FCS) (Naudi-Fabra et al., 2021)
(interatomic distances and distance distributions), and chemical
cross-linking (Faull et al., 2019) (inter-residue contacts).
Alternatively, in favorable cases, restraints collected in the gas
phase by electrospray ionization mass spectrometry (ESI-MS)
(Politis et al., 2014; Rajabi et al., 2015; Österlund et al., 2019)
(ion mobility, mass distribution) or in the frozen state using
electron paramagnetic resonance (EPR) (Jeschke, 2018; Kapsalis
et al., 2019) (distance distributions) can provide additional
information, as long as the ionization/freezing process can be
ensured not to change the conformational equilibrium.

While each of these methods alone cannot deal with the
vast heterogeneity of protein ensembles in terms of the array of
different protein conformations and oligomeric states present,
when applied together the properties of these complex systems
can begin to be revealed (Gomes et al., 2020; Naudi-Fabra et al.,
2021). A prerequisite for an experimental restraint to be used in
the generation of a conformational ensemble is that its value must
be able to be directly back-calculated from the atomic coordinates
of the species present. This is not always a simple task, as it
generally requires a robust theoretical model that can take into
account the extreme averaging that takes place in highly dynamic
proteins. In the next paragraphs we give a brief overview of
some of the techniques that have been used to generate ensemble
representations of misfolding proteins. For a more technical
description of how these methods work we refer the reader to a
number of excellent reviews (Roy et al., 2008; Clore and Iwahara,
2009; Jeschke, 2012; Politis et al., 2014; Chiliveri et al., 2021).

A technique that naturally ticks all the boxes for analysis of
dynamic protein ensembles in solution is NMR spectroscopy.
NMR is the go-to method when disordered proteins or proteins
with IDRs are involved (Meier et al., 2008; Jensen et al.,
2013; Arai et al., 2015; Salvi et al., 2016; Dyson and Wright,
2021). Its unique ability to provide residue-specific information
in solution (using 1H, 13C, and/or 15N labeled proteins)
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is one of the main advantages that make NMR stand out
from other biophysical techniques (Alderson and Kay, 2021).
Solution NMR can be used to provide numerous experimental
observables that report on local (chemical shifts, short range
nuclear Overhauser effects (NOEs), 3-bond J couplings) or global
[residual dipolar couplings (RDCs), paramagnetic relaxation
enhancements (PREs)] properties of a proteins’ structure.
Importantly, NMR spins are sensitive to the overall tumbling of
the molecule and also to local motions, and thus sophisticated
NMR relaxation methods can be used in order to study
protein motion directly (Lipari and Szabo, 1982a,b). Of the
many NMR methods available, the ones that report on global,
slower timescale motions (such as RDCs and PREs) are perhaps
more useful in order to capture the large-scale dynamics of
misfolding proteins and thus we will focus our discussion
on those (see Table 1 for a more comprehensive list). The
well-known molecular weight limitation of NMR which make
the study proteins > 30 kDa in size difficult, unless specific
labeling (e.g., 13C methyl) is used (Tugarinov and Kay, 2004),
is not prohibitive for IDPs (even if these consist of more than
300 residues; Mamigonian et al., 2022), since local disorder
causes long transverse relaxation (T2) times and therefore NMR
signals do not decay rapidly. For natively folded proteins that
interconvert with misfolded monomeric or oligomeric states,
the properties of the misfolded/aggregated state can also be
investigated by adjusting the solution conditions such that
misfolded states represent a small fraction of the molecules
in solution, allowing powerful NMR methods to characterize
excited, rarely populated (<5%) protein states (Anthis and
Clore, 2015). When these experiments are performed and
data successfully obtained, calculating NMR observables from
structure can be straightforward. This is certainly the case for
distance-based measurements (NOEs) which are often calculated
as an r−6 weighted average of the interatomic distances r.
However, other NMR observables, such as chemical shifts, do
not have analytical expressions to describe their relationship with
atomic coordinates, and empirical models are often used (Shen
et al., 2008; Robustelli et al., 2010, 2012). It is important to keep
in mind that the timescales of exchange between the various
protein states, which could represent transiently folded regions
of IDPs or IDRs, or monomer-oligomer equilibria, also affect
the NMR observables, and how the kinetics of exchange affect
a particular NMR parameter has to be taken into account for
a quantitative interpretation of the data (Salvi et al., 2016) (see
following section).

The atom-specific information obtained from NMR studies is
even more powerful if it can be combined with other techniques
that provide complementary information such as smFRET or
SAXS (Krzeminski et al., 2013; Lincoff et al., 2020; Naudi-Fabra
et al., 2021). smFRET measures the proximity of individual pairs
of fluorescence dyes over time (in TIRF mode) or population
(in confocal mode) and thus can inform on conformations of
individual molecules and the kinetics of their interconversion
in a quantitative manner (Roy et al., 2008; Schuler and Eaton,
2008). In smFRET studies, care must be taken to ensure that the
fluorescent dyes do not alter the proteins’ properties which is of
key concern for IDPs/IDRs (Borgia et al., 2016). Small angle X-ray

scattering (SAXS), on the other hand, is a dye-free ensemble
technique that reports on the overall shape of the protein under
investigation and can be used to derive the overall compactness
of the ensemble by weighting various conformations present
in solution (Różycki et al., 2011; Ahmed et al., 2021). Both
techniques have been used extensively to generate ensemble
representations of IDPs or multidomain proteins which contain a
significant portion of IDRs (Bernadó et al., 2005b; Merchant et al.,
2007; Holmstrom et al., 2018). In terms of aggregating proteins,
integrative studies have been performed in order to describe
ensembles of ataxin (Sicorello et al., 2021), α-syn (Schwalbe
et al., 2014; Chen et al., 2021), amyloid β (Sgourakis et al., 2007)
and tau (Chen et al., 2019; Stelzl et al., 2022) among others
(Strodel, 2021).

A technique that is powerful, but perhaps under-utilized,
when it comes to dynamic proteins is ESI-MS. Bottom up ESI-
MS experiments can provide restraints captured in solution
and analyzed subsequently using liquid chromatography MS
(LC-MS) (such as cross-linking or HX studies) (Belsom and
Rappsilber, 2021) or native ESI-MS that is performed on intact
molecules in the gas phase (Beveridge and Calabrese, 2021). Ion
mobility MS that reports on the collision cross section (CCS)
of a protein can separate species based on mass (monomer,
dimer etc.), but can also resolve species of the same mass, but
different CCS (e.g., compact vs. expanded versions of isobaric
species) (Beveridge et al., 2019; Moons et al., 2020). The ability of
native ESI-MS to detect small populations of protein conformers
and separate them based on size (resolution of a few Da)
and shape (CCS) has been powerful in the investigation of
folding/misfolding and aggregation pathways (Benesch et al.,
2006; Smith et al., 2006, 2007; Woods et al., 2013; Young et al.,
2014; Britt et al., 2021) and in the assembly of dynamic chaperone
assemblies (Young et al., 2018). Theoretical models that allow
the calculation of MS-derived restraints such as CCS are perhaps
lacking, although significant progress in this area has been made
recently (Kulesza et al., 2018). Concerning IDPs or IDRs, it is
important to ensure that the compaction or extension of the
polypeptide chain observed is not the result of the electrospray
ionization/desolvation process itself (Vahidi et al., 2013; Borysik
et al., 2015; Devine et al., 2017).

To avoid ionization issues, experiments that capture protein
motions can be performed in solution and subsequently
analyzed by MS methods. Zero-length cross-linkers (such
as EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
hydrochloride) and DMTMM (4-(4,6-dimethoxy-1,3,5-triazin-
2-yl)-4-methylmorpholinium chloride)) allow adjacent carboxyl
and amine-carboxyl sidechain to be covalently linked and
identified using proteolysis and tandem MS (LC-MSMS). An
array of cross-linkers with different chemistry (free-radical,
maleimide, NHS ester, and others) and cross-linker length,
can provide additional information on sidechain-sidechain
distance, albeit averaged over the timescale of the cross-linking
experiment (Sinz, 2018). Using lasers or LEDs the timescale
needed for photo-crosslinking can be reduced from tens of
minutes to less than seconds (Russmann et al., 1998), providing
a clearer snap-shot of the interactions by reducing averaging
(Horne et al., 2018). These experiments capture the dynamic
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TABLE 1 | NMR methods and their usage in ensemble calculations.

NMR method Advantages/Disadvantages in
ensemble calculations

Usage

RDCs Long range reporters of structure and (in
some cases) dynamics

Frequent

PREs Long range distance restraints Frequent

Chemical shifts Easy to obtain, can be related to local
protein structure using empirical
relationships

Frequent

Order parameters/spectral densities Local, ps—ns motions Frequent

Chemical exchange methods Probes of ms or slower motions, require
extensive sampling

Indirect as chemical
shift restraints

Hydrogen exchange Good models to predict hydrogen
exchange rates still lacking

Rare

Diffusion NMR Difficult to extract hydrodynamic
parameters of individual species without
prior knowledge of species populations

Rare

nature of intra/inter-molecular contacts and combined with
computational analysis can visualize these species (O’Reilly and
Rappsilber, 2018; Zamel et al., 2021). Even though in some
cases crosslinking restraints have been treated as NMR-derived
distances, care has to be taken when dealing with ensembles of
structures, since the nature of the two distances is fundamentally
different. Once an irreversible crosslink has formed, the two
atoms are not available for any further additional reactions,
whereas in an NOE experiment one atom may give rise to
multiple distance restraints.

Differential hydrogen—deuterium exchange that measures the
solvent accessibility/hydrogen bond stability of the protein under
investigation is another technique that combined with ESI-MS
analysis can be used to investigate large/dynamic states at the
peptide/single residue level (by rapid quenching, proteolysis and
LC-MSMS analysis) (Faull et al., 2019; Calabrese et al., 2020;
Wang et al., 2022). Recent innovations have also increased the
time resolution of HX-MS to ms (Hu et al., 2013; Seetaloo
et al., 2022). These data can be converted to protection factors
and can be used for ensemble generation (Wan et al., 2020).
Using sophisticated pulse schemes, hydrogen exchange with
solvent can be followed by NMR that allows ultra-fast, sub-
ms rates to be measured without the need of dedicated HDX
hardware (Skrynnikov and Ernst, 1999; Kateb et al., 2007;
Segawa et al., 2008; Dass et al., 2021). One drawback of
hydrogen exchange methods that limits their application toward
ensemble generation is that accurate models that describe the
crucial role of electrostatics to the measured exchange rates are
lacking (Table 1).

We note that although the techniques mentioned in the
previous paragraphs are excellent in capturing the soluble species
formed in the early stages of protein aggregation, the reduced
solubility of aggregates formed later in assembly may limit
the repertoire of solution techniques available to characterize
them. Such states are perhaps best captured by techniques
such as cryo-EM (Bäuerlein and Baumeister, 2021; Saibil,
2022), solid-state NMR (Reif et al., 2021) and/or atomic force
microscopy (AFM) (Aubrey et al., 2020). Despite recent advances,
sample heterogeneity still poses significant challenges in the

characterization of partially soluble states (Cawood et al., 2021).
Overall, it is clear that many experimental techniques must be
used to generate complementary restraints that together have the
potential to visualize the dynamics that are in play.

ENSEMBLE AVERAGING OF
EXPERIMENTAL RESTRAINTS

For most of the experimental techniques mentioned above,
theoretical frameworks that allow the back-calculation of the
experimental restraints from the molecular structure exist.
However, when dealing with highly dynamic proteins such as
those involved in protein misfolding and aggregation, these
restraints need to be averaged appropriately in order to generate
an accurate representation of the solution properties of the entire
ensemble. It is often the case that the different protein states
within the ensemble are assumed to be in fast exchange between
each other. This essentially means that the exchange between
these species is faster than observation of the experimental
variable, and thus the experimental restraints correspond to the
population-weighted average between all the conformers. Fast
exchange is supported by the poor chemical shift dispersion of
IDPs (IDRs) in NMR studies, and is usually a safe approximation
for these types of proteins, but it may not always be the case.
Protein self-oligomerization that occurs in the early stages of
aggregation, or even the formation of local secondary structural
elements in IDPs, can occur on slower timescales. In the case
of NMR observables, the kinetics of the conformation exchange
can significantly affect the measured values (Iwahara and Clore,
2006; Cavalli et al., 2013; Janowska and Baum, 2016). Figure 2A
shows how PREs are affected by the kinetics of exchange between
an extended (state A) (95% populated) and a rarely populated
(5%) compact state B in which a hypothetical C-terminal helix
is interacting with the N-terminal segment of a protein. In the
compact state (state B) the distance (r) between the spin label
[usually S-(1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-
yl) methyl methanesulfonothioate (MTSL)] and the helix is 7 Å,
giving rise to a high PRE value (or 02,B) rate (6,750 s−1), while
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the PRE rate for state A, in which the spin label and N-terminus
is > 15 Å away, is low (02,A = 5 s−1). In the fast exchange
limit, wherein the rate of exchange kex � 02,B the observed
PRE rate approximates the population weighted average of 02,A
and 02,B (Clore and Iwahara, 2009; dashed line in Figure 2A).
However, if kex∼02,B or kex < 02,B the observed PRE rate is
much smaller than the population weighted average (Figure 2A).
In this hypothetical case the rate of N-C association could
be determined, in principle, from the rate of helix formation
(assuming that helix formation can only occur when the termini
come into close contact), but of course, in reality helix formation
could be slower than the rate of binding. Clearly, for four out of
the five curves in Figure 2A the fast exchange assumption would
lead to overestimation of r and the generation of a more expanded
ensemble that could fit the experimental data equally well.

RDCs can also provide useful information about protein
structure and are powerful when using NMR to calculate
structures and dynamics of proteins (Chiliveri et al., 2021). For
dynamic systems, RDCs are normally averaged following two
assumptions: (1) That all possible conformations can be sampled
during the measurement time and (2) that interconversion
between states is slower than the event that leads to re-
orientation of the molecule in the alignment medium [related
to the correlation time (τ c) of the molecule] (Meier et al.,
2008). If both assumptions are satisfied, transformation from
the time average to the ensemble average is straightforward,
and the observed RDC will be equal to the average over all
molecular conformations. In general, assumption 2 is normally
a safe assumption, as molecular reorientation should be very
fast and comparable to the molecular tumbling time (on the ns
timescale), unless association of the protein with the alignment
medium takes place. For highly dynamic IDPs, assumption 1
should also be satisfied, but this might not be the case if transient
interactions are formed that result in conformational exchange
on a slower timescale (Figures 2B,C). Imagine a scenario in
which an IDP (state A) exchanges with a transiently folded state
(state B) that may be related to misfolding. Alignment of state
A may be weak (as it is normally the case for IDPs), giving
rise to an RDC for that state, DA = 11.2 Hz, while the folded
state B gives rise to DB = 67 Hz. As observed in Figure 2A
for PREs, the measured RDC for both states depends on the
exchange rate between them. For simplicity we will discuss only
state A, as state B is populated only to 20% in this example,
and may not be directly observable (Figure 2B). In the slow
exchange limit on the chemical shift timescale (kex < 100
s−1) the observed RDC for state A equals DA, while when
exchange approaches the fast exchange regime (kex > 8,000
s−1) the observed RDC approximates the population-weighted
average of the two states, as expected (Lorieau et al., 2012;
Figure 2C). However, it is evident from Figure 2C that in the
intermediate exchange regime (100 < kex < 8,000 s−1) the
observed RDC shows a complex behavior that, if not correctly
taken into account, may lead to erroneous conclusions about
presence/absence of local secondary structure, for instance, in a
dynamically interconverting ensemble of states.

In conclusion, treating NMR-derived restraints as populated-
weighted averages over all ensemble members is able to capture

FIGURE 2 | Dependence of NMR observables often used to drive ensemble
generation on the kinetics of chemical exchange. (A) A spin-labeled IDP
undergoes intramolecular exchange between an expanded state A
(pA = 95%) and a more compact state B (pB = 5%) that involves transient helix
formation (red box). The 7Å distance between the spin label (placed on
residue 20 of this hypothetical 200 residue protein) and the helix in residues
157–163 in state B gives rise to a PRE rate for that state, 02,B = 6,750
s−1, while the PRE rate for state A where these residues are> 15 Å apart is low

(Continued)
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FIGURE 2 | (02,A = 5 s−1). Only when exchange is fast on the PRE timescale
(kex � 02,B) does the observed PRE rate approximate the
population-weighted average (dashed line). (B) Simulated 1D NMR spectra of
a 2-spin coupled (coupling constant J = 90 Hz) system that undergoes 2-site
exchange. State A is highly populated pA = 80% and gives rise to an RDC
DA = 11.2 Hz, while the RDC of state B, DB is 67 Hz. The chemical shift of
state A was set to ωA = 200 Hz, giving rise to a doublet, separated by J+DA.
For state B, ωB = 600 Hz. Simulated spectra at different exchange rates (kex,
colored bar) were generated using 5,000 points, apodised and Fourier
transformed. Owing to the small value of pB = 20%, the doublet
corresponding to state B (separated by J+DB) is only visible in the first
spectrum. The state A doublet moves toward the average chemical shift
position with increasing kex. Peak positions and linewidths were extracted
using a Gaussian fitting procedure. The RDC of state A was measured as the
difference in frequency of the state A doublet after J was subtracted, and is
plotted as a function of kex in (C) (red dots). Under slow exchange the
observed RDC equals DA (gray dashed line) while under fast exchange it
approximates the population weighted average (black dashed line). The
reduction in the observed RDC values observed in the intermediate exchange
regime arises due to artifacts in determining peak positions when linewidths
are larger than J+D.

the time averaging that happens in solution when exchange
between the various states is fast. This has led to some elegant
examples including the generation of ensembles of misfolding
IDPs able to quantitatively describe the experimental restraints
(Iwahara et al., 2004; Bernadó et al., 2005a; Dedmon et al., 2005;
Huang and Grzesiek, 2010; Salmon et al., 2012; Janowska et al.,
2015; Salvi et al., 2016; Karamanos et al., 2019; Naudi-Fabra et al.,
2021; Sicorello et al., 2021; Mamigonian et al., 2022). However,
when/if motions on slower timescales occur, these have to be
taken into account in order to avoid data misinterpretation.

CONVERTING EXPERIMENTAL
RESTRAINTS INTO ENSEMBLES OF
STRUCTURES

Different computational approaches have been developed that
enable measured experimental restraints to be converted into
structural ensembles. The two main approaches involve (1)
biasing molecular dynamics (MD) simulations by the addition
of energy terms that minimize the difference between the
observed and calculated restraints (Jaynes, 1957; Roux and
Weare, 2013), or (2) reweighting ensembles that have been
initially generated with no experimental information (Różycki
et al., 2011; Cavalli et al., 2013). In both cases overfitting
is avoided using maximum entropy or Bayesian techniques.
Approach 1 requires that the theoretical models used to calculate
the experimental observables from structural models are also
differentiable, which sometimes is not straightforward, especially
for some of the MS-derived restraints (such as CCS). Approach
2, on the other hand, assumes that all relevant protein states
are already present in the initial ensemble and may not be
appropriate in cases where conformational sampling is not
efficient. A detailed description of these computational protocols
is beyond the scope of this review and we refer the reader to some
excellent recent reviews on the topic (Hummer and Köfinger,
2015; Bonomi et al., 2017; Bottaro and Lindorff-Larsen, 2018;

Pietrek et al., 2020; Thomasen and Lindorff-Larsen, 2022). We
note that the computer-generated ensembles are only a true
reflection of the experimental data that were used for their
generation. Parameters such as the number of ensemble members
or even their weights can vary depending on the nature
and quantity of the experimental input. Hence, the more
complex and broad the number of conformers, the greater
the number of experimental data of different type is needed
to best define the ensemble. Thus, a plethora of different,
unrelated experimental methods are needed in order to obtain
an unbiased representation of the dynamics that take place in
solution. We note that the recent developments in deep learning
algorithms able to accurately predict the structure of folded
proteins from their amino-acid sequence opens the window for
a future extension of these methods to capture hidden structural
motifs/propensities in IDPs. In order for this to happen, a large,
high quality dataset of experimentally determined ensembles
(using the methods described here) is necessary in order to
train accurate deep learning networks. Although this is not
available at the moment, the fast progress in the field of protein
chemistry holds for an exciting future in this research area
(Serpell et al., 2021).

EXTRACTING INFORMATION ABOUT
MISFOLDING/AGGREGATION
SUB-ENSEMBLES USING MACHINE
LEARNING. AN EXAMPLE FROM
α-SYNUCLEIN

Of the vast number of species contained in an ensemble of
monomeric aggregation-prone IDPs, and oligomeric ensembles
of folded/unfolded precursors, only a tiny minority of conformers
may possess the properties required for further aggregation. Of all
possible conformers, only specific sub-ensembles will be able to
transition into the aggregation landscape and eventually push the
equilibrium toward fibrillar species that lie at a thermodynamic
energy sink (Figure 1). How can one then search for, or tease-
out, aggregation-relevant members of the ensemble from their
aggregation-resilient counterparts? The answer to this question
is not obvious currently, but its solution would represent a key
step forward in understanding how, and why, proteins aggregate.
Building on recent advances in the field of machine learning,
we discuss below how such techniques can be used to generate
new insights into aggregation-relevant conformers buried within
a myriad of alternative species unrelated to an aggregation
pathway into amyloid.

The problem of sub-clustering of structures based on common
properties is not a new one, and techniques such as principal
component analysis (PCA) are elegant ways to generate sub-
clusters based on overall similarities in one or more structural
properties (Papaleo et al., 2009). In many ways, ensemble sub-
clustering resembles problems that are ideal for unsupervised
machine learning methods, that are typically described as
an unbiased method to identify patterns in “unlabeled” data
(unlabeled here refers to the fact that each structure is not
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tagged a priori with a label that includes it to cluster X). In
its simplest form unsupervised clustering can be performed by
Gaussian mixture models (GMM) that, given a number of normal
distributions, will try and determine to which distribution each
point belongs. The number of normal distributions the model
has access to is usually not known and may affect the clustering
results. Thus, these models are often combined with Bayesian
approaches to keep the number of distributions to a minimum
(Roberts et al., 1998).

To illustrate the power of clustering methods based on
machine learning we use here an ensemble of αSyn structures that
was generated using molecular dynamics simulations guided by
595 NMR PRE-derived intramolecular distances (Allison et al.,
2009). Figure 3 shows the performance of a simple GMM in
clustering of αSyn structures based on their end-to-end distance
and surface accessible surface area (SASA). Four partially
overlapping clusters are evident, although there is definitely room
for improvement. Instead of performing clustering analysis using
global features as shown in Figure 3, we can extend these ideas to
include local features. Due to the complex nature of the problem,
in many cases information about which residues/regions of the
protein are important/irrelevant for misfolding/aggregation is
sparse (Aguirre et al., 2022; Seetaloo et al., 2022). Perhaps the
most informative results come from mutational studies that
assess the effect of mutations on misfolding/aggregation rate in
a rigorous way. For instance, we have recently shown that a 7-
residue segment (residues 36–42), termed P1, in the N-terminal
region of αSyn acts as a “master regulator” of aggregation
(Doherty et al., 2020). Deletion or substation of the seven residues
in P1 prevents aggregation of αSyn at neutral pH in vitro (up
to the experimental time of 100 h) and also prevents amyloid
formation and proteotoxicity in C. elegans (Doherty et al.,
2020). NMR PRE experiments showed that residues in P1 make
extensive intramolecular contact with the NAC region that this
region flanks, as well as the acidic C-terminal region of the
protein (Doherty et al., 2020). Yet, how these contacts alter or
refine the structural ensemble, and how these changes “turn
on” aggregation of the protein remains obscure at a molecular
level. Do residues in P1 show specific intra-molecular interaction
hidden within the broad ensemble of conformers shown in
Figure 3, and do these interactions result in compaction/other
alterations of the chain? To answer these questions, we trained
another simple Bayesian GMM to cluster the αSyn ensemble
based on the number of contacts made by residues in P1 and
the SASA. The four clusters shown in Figure 4 range between
expanded conformations with very few P1 contacts (cluster A)
to more compact states with more contacts made by residues in
P1. All four clusters show differences in their contact maps, with
clusters A and D being most different. Even though this analysis
is used here only for illustration purposes, it highlights the type
of information that can be gained. For instance, interactions
between residues in the important NAC region (residues 61–
95) are only present in cluster D when P1 is also involved
in numerous contacts with the NAC and C-terminal regions,
while in cluster A NAC seems to be shielded by the C-terminus
(Figure 4). Although the use of machine learning described here
is solely to unpick already available dynamic ensemble, other uses

FIGURE 3 | Clustering IDP ensembles using machine learning. A Bayesian
Gaussian mixture model to classify an αSyn ensemble that consists of 400
structures based on their end-to-end distance and solvent accessible surface
area (SASA). The four ellipses correspond to the four clusters identified with
four structures shown as examples above. The ensemble used for this
analysis (PED00024) was generated by Allison et al. (2009), using MD
simulations driven by PRE restraints collected in 10 mM sodium phosphate
pH 7.4, 100 mM NaCl, 10◦C.

of these powerful methods can be envisaged, such as in molecular
dynamics simulations used to generate the initial ensemble (Noé
et al., 2020). In general, we expect that these types of analyses,
extended to deep convolutional neural networks, will reveal
hidden patterns and propensities for IDPs, much like they were
able to revolutionize structure prediction for folded proteins.

ENSEMBLES OF TRANSIENT
OLIGOMERIC SPECIES FORMED BY
FOLDED PRECURSORS. AN EXAMPLE
FROM β2M

Many of the ideas described above for defining and sub-
classifying the monomeric ensembles of IDPs, are equally well
applicable to address the challenges with understanding early
oligomeric species formed by specific assembly of partially
folded protein conformers, as such species are also often highly
heterogeneous, dynamically interconverting and short-lived.
Structural information for several of oligomeric intermediates of
amyloid assembly is available, in cases where these species have
been trapped/enriched by specifically designed chemical tools or
caught by NMR, MS or single molecule methods (Cawood et al.,
2021). However, these examples are far less numerous than those
of IDPs. This reflects the difficulty in finding conditions wherein
stable populations of oligomeric species are present, without
further polymerization into amyloid fibrils. One such system with
favorable properties for biophysical analysis is wild-type human
β2m (hβ2m), the culprit protein of dialysis related amyloidosis
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FIGURE 4 | Clustering of αSyn conformers based on aggregation-prone
regions. (A) Bayesian Gaussian mixture model to classify an αSyn ensemble
(Allison et al., 2009) that consists of 400 structures shown in Figure 3, based
on the number of Cα contacts made by residues in P1 and the solvent
accessible surface area. For clustering a contact is defined if two Cα atoms
are within 8 Å. The four ellipses correspond to the four clusters identified and
are labeled (A–D). The corresponding contact maps are shown below. For the
contact maps the definition of contacts is more generous and includes all
atoms of two given residues. The P1 region is highlighted in a green box and n
denotes the number of structures in each cluster.

(Gejyo et al., 1985). hβ2m is highly resistant to aggregation
in vitro, and its polymerization in vivo is thought to be initiated by
partial unfolding on the surface of collagen filaments (Relini et al.,
2006; Hoop et al., 2020). The propensity of hβ2m to aggregate into
amyloid is also enhanced dramatically by proteolytic cleavage
of six amino acids from its N-terminus, which generates a

FIGURE 5 | Transient and stable forms of β2m oligomers. (A) Ensembles
showing the dynamic nature of the 1N6-mβ2m (left) and 1N6-hβ2m (right)
interactions (Karamanos et al., 2014). 1N6 is shown as a Cα trace with the
BC (green), DE (yellow) and FG (blue) loops highlighted (space fill). Note that
the BC loop contains the trans Pro32. Hβ2m and mβ2m are shown in a
surface representation (gray) bound to 1N6. Ensembles of 100 complexes
(aligned on 1N6) are shown. (B) A small molecule stabilized tetramer of 1N6
(7AFV) (Cawood et al., 2020). 1N6 subunits are shown as cartoons and the
four copies of the covalent small molecule (S54; Cawood et al., 2020) are
highlighted as spheres. The DE loop that is involved in one of the tetramer
interfaces is shown in yellow and a schematic of the subunit arrangement in
the tetramer is shown on the right.

highly aggregation-prone and partially folded variant, 1N6
(Esposito et al., 2000; Eichner et al., 2011; Karamanos et al.,
2014). While1N6 retains a native-like immunoglobulin fold, the
protein is far from native; it is dynamic and weakly protected
from hydrogen exchange, contains a non-native trans Pro32
essential for aggregation into amyloid (Jahn et al., 2006), and
possess a re-packed hydrophobic core as a consequence of the loss
of the N-terminal six amino acids (Figure 1; Eichner et al., 2011).
These unique features of the 1N6 amyloid precursor imply
specificity in the early stages of assembly, in that this species, and
no other, more highly unfolded states is the most amyloidogenic
species in the folding energy landscape (Karamanos et al., 2016).
For β2m, there is no simple relationship between thermodynamic
stability and amyloid aggregation, as exemplified by the murine
protein, mβ2m, which is less stable than1N6, yet does not readily
aggregate into amyloid, at least under most conditions in vitro
(Karamanos et al., 2016). An interesting property of this system
is that the interaction of the 1N6, hβ2m and mβ2m variants in
different combinations has different effects on the timecourse
of aggregation, with the 1N6-mβ2m interaction inhibiting the
aggregation of 1N6, while the 1N6-hβ2m interaction promotes
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the self-assembly of hβ2m (Karamanos et al., 2014). The affinities
of both complexes are low (Kd ∼50 and 500 µM, respectively),
yet clear evidence for a 1:1 interaction between the proteins can
be detected by NMR chemical shift perturbation and by NMR
PRE studies (Karamanos et al., 2014). Using this information,
ensembles were generated using intermolecular PRE values that
describe the association of these protein pairs in a quantitative
manner using simulated annealing docking calculations as shown
in Figure 5A (Karamanos et al., 2014). The resulting ensembles
showed that although similar parts of the proteins involving the
loops surrounding the important trans Pro32, are involved in
both interfaces, the structural ensembles are distinct: the interface
for the inhibitory 1N6-mβ2m interaction is less diffuse than
that of the 1N6-hβ2m complex and involves more hydrophobic
interactions than its amyloid-competent counterpart.

The visualization of these transient interactions is not only
a neat biophysical experiment that demonstrated a surprising
specificity to the transient ensembles that drive or inhibit
amyloid assembly, but it also led to the development of
new strategies to inhibit assembly of 1N6, by targeting the
early protein-protein interactions that drive assembly (Cawood
et al., 2020). Specifically, by taking advantage of the interfaces
identified, screening for a small molecule inhibitor of assembly
was performed using disulfide tethering, in which a unique
Cys was placed in the interface of interest and a library
of small molecules (each as a symmetrical disulfide) was
screened using ESI-MS (Cawood et al., 2020). The result was
a fragment that covalently binds to the interface region and
inhibits assembly by stabilizing an off-pathway tetramer (Cawood
et al., 2020; Figure 5B). Remarkably, the ligand-bound tetramer
was crystallized, providing an atomic-level view of a trapped
oligomer and a complete understanding of why this structure is
incompatible with the on-pathway dimer fold (Figure 5B). This
finding opens up opportunities to target heterogenous/transient
interactions that are normally considered undruggable in these
dynamic proteins, since the covalent tethering approach is
generic, does not require prior structural information and the
proteins involved lack a well-defined pocket. This contrasts with
the design principles of tafamidis that inhibits the aggregation of
transthyretin and is now in clinical use (Ruberg et al., 2019).

CONCLUSION

Dynamic protein states such as those involved in protein
misfolding and aggregation represent a challenge to structurally

characterize using X-ray crystallography and cryo-EM.
Generating realistic representations of these dynamic protein
systems requires measurement of a plethora of restraints using
an array of experimental methods that report on long- and short-
range interactions. Detailed understanding and appreciation of
how the timescale of protein conformational exchange affects
the interpretation of the experimental data is needed to generate
restraints that realistically describe the experimental parameters.
However, when these restraints are properly averaged to reflect
the time averaging of events occurring in solution, detailed
structural ensembles can be generated. Clustering of these
ensembles using powerful machine learning techniques holds
promise in understanding the structural propensities that cause
only a few of these molecules to self-assemble to pathological
aggregates and why other disordered species are aggregation-
resilient. With the progress in machine learning, combined with
proper treatment of experimental restraints, we may soon be able
to visualize dynamic protein ensembles in intricate detail and
pick out individual conformers able to drive or arrest protein
aggregation, including the downhill cascade into amyloid fibrils.
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