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Abstract

Energy inequality caused by the process of cluster head election has a large influence on
energy efficiency and the network lifetime of wireless sensor networks (WSNs). To this
end, a novel concept of EIec is proposed to evaluate the equality degree of energy con-
sumption. Related theorems for establishing the candidate set of cluster heads are pro-
posed, with the aim of promoting energy equality in each cluster. Subsequently, a novel
energy-efficiency-adaptive cluster formation mechanism based on economic (ECFE) the-
ory is proposed and detailed. Finally, extensive experiments are carried out to assess its
energy efficiency and the network performance by comparisons with the existing classic
and latest intelligent clustering algorithms. The results indicate that ECFE improves not
only the energy efficiency but also the network performance effectively.

1 INTRODUCTION

HOW to extend the network lifetime of the wireless sensor
networks (WSNs) poses a huge challenge for the academic and
industry all over the world [1, 2]. To this end, extensive atten-
tion has been paid to the improvement of the energy efficiency
recently, with the aim of prolonging the network lifetime [3].
Actually, the energy efficiency is positively correlated with the
network lifetime of WSNs [3]. In general, the energy efficiency
is affected by the “Hot Spot Problem” and spatial-temporal
correlation [4]. Specifically, the “Hot Spot Problem” results in
energy inequality for the whole network topology, while spatial-
temporal correlation leads to unnecessary energy overhead
[5, 6].

Consequently, most of the existing energy-efficient tech-
niques focus on two emphases, that is, the reduction and the
equality in energy consumption to alleviate the problems of
energy inequality and unnecessary energy overhead resulted
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from the “Hot Spot Problem” and spatial-temporal correlation
[7, 8]. Generally, they can be classified into energy-efficient
medium access control, energy-efficient mobile node assistance
scheme, clustering mechanism, and energy-efficient routing
scheme respectively [1].

Clustering mechanism is widely utilized in the applications of
WSNs [9]. It aims to improve the energy efficiency by means of
reducing and balancing the energy consumption concurrently.
To be specific, it groups all of the sensor nodes into separated
clusters logically. As a result, the nodes in each cluster are
classified into two categories, that is, cluster member (CM)
and cluster head (CH) respectively. CH is elected according
to some predefined metrics, such as the amount of residual
energy, the distance from the node to the sink, and so on. CM
propagates the original data to its CH, which performs simple
aggregations on the original data to reduce the energy waste
resulted from spatial-temporal correlation subsequently. In
addition, the energy overhead for medium access controlling
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can be also alleviated via TDMA mode in clustering mechanism
[6]. To be specific, all the CMs within the same cluster switch
between working and sleeping modes to reduce the duty-cycle
to cut down energy overhead further.

In clustering mechanism, the process of cluster formation is
of great importance since it affects the energy distribution of
the entire cluster [7]. Consequently, the distribution of CHs has
a large influence on that of energy for the whole network. Since
each CH needs to receive and forward all the data from both
of its own cluster and outer clusters to the sink, it bears a much
heavier energy burden than CMs. Therefore, it is reasonable to
rotate the role of CH round by round [7]. Consequently, both of
the selection and the rotation of CHs are important for the clus-
tering mechanism. Recently extensive focuses have been put on
clustering mechanisms [10]. In some researches, CH is elected
randomly to balance the energy consumption among different
nodes within the same cluster. In LEACH, the cluster head is
selected based on a random number [11]. Similarly, the nodes
take turn to be CH round-by-round for a chain-shaped network
topology in PEGASIS [12]. In some other scenarios, the met-
rics for CH determination are predefined to control the net-
work delay to a certain extent. For example, a double-threshold
mechanism was presented in TEEN to meet the demand of
some hard real-time applications [13]. In addition, some inter-
disciplinary algorithms, such as the game theory [14, 15], the
fuzzy logic theory [16, 17, 18], the simulated annealing algo-
rithm [19], the particle swarm optimisation algorithm [20], or
the multi-objective optimisation algorithm [21] etc., were pro-
posed to improve the energy efficiency in WSNs. In fact, most
of the problems in WSNs can be formulated into the multi-
objective problem, with the aim of taking several factors concur-
rently [22, 23]. Finally, some other clustering mechanisms which
belongs to the cross-layer algorithm, such as those combined
with the transport layer [24–26], the MAC layer [27, 28] etc.,
were also proposed.

The clustering mechanisms listed above are able to improve
the energy efficiency and prolong the network lifetime of WSNs
to some extent. However, none of them takes the relation-
ship between each individual and the network into considera-
tion. In fact, it is a crucial factor for the energy equality during
the process of cluster formation. However, to the best of our
knowledge, all the existing clustering mechanisms ignore it, let
alone the systematical analysis. Different from them, the rela-
tion between each sensor node and the corresponding cluster
is taken into consideration through the systematical methodol-
ogy in this paper, with the aim of alleviating energy inequality
within each cluster. According to Appendix A, the theory of
social welfare is adopted to control the process of CH selection
in this paper, with the aim of promoting energy equilibrium in
the whole network topology.

A novel energy-efficiency-adaptive cluster formation mecha-
nism based on Economic (ECFE) theory to improve the energy
efficiency within each cluster in this paper. In ECFE, the clus-
ter head is elected according to both of the residual energy of
sensor nodes and the equality degree of energy consumption
simultaneously.

Specifically, the contributions of this paper are listed as
follows.

1. A novel concept of EIec is proposed to realize energy equi-
librium within each cluster. To be specific, it presents a novel
concept of arithmetical means of squared Euclidean distance
(SED) to assess energy equilibrium within each cluster.

2. Theorems for determining the optimal CH and the value
of SED are proposed and proven in detail. As a result, the
selection zone for the candidate can be established precisely.
Meanwhile, the value of SED is determined to select the
optimal CH subsequently.

3. Extensive simulations are conducted to evaluate ECFE’s per-
formance with regard to the energy efficiency and other net-
work performance. Comparisons with the classic and latest
intelligent clustering techniques under the equivalent evalua-
tion metrics have verified its effectiveness.

The rest of this paper is organized as follows. Section 2
presents the preliminaries in details. Section 3 proposes the
relevant concepts and theorems. Subsequently the novel mech-
anism of ECFE is proposed in detail in Section 4, and it is
evaluated through extensive simulations in Section 5. Finally
we draw the conclusions and point out some potential research
directions in the future.

2 PRELIMINARIES

In this section, the first-order radio model and the network
topology are presented firstly. Subsequently, the related assump-
tions and notations utilized in this paper are described.

2.1 First-order radio model and network
topology

2.1.1 First-order radio model

In this paper, we adopt the first-order radio model to quantify
the energy expenditure for data communication [9]. To be spe-
cific, the energy consumption for data transmission and recep-
tion are listed respectively as expressions (1), (2).

etx = k(Eelec + 𝜀amp ⋅ d𝛼 ) (1)

erx = kEelec (2)

where d denotes the transmission range, k the size of the packet,
Eelec the energy consumption in the transmitter or receiver cir-
cuit, 𝜀amp the transmitter amplifier respectively. Finally, 𝛼 is the
propagation loss exponent. Its value depends on the transmis-
sion model. To be specific, there are two kinds of transmission
model, namely the free space model and the multipath fading
model. 𝛼 is 2 for the free space model, and increases to be 4 for
the latter [7].
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FIGURE 1 Network topology utilized in this paper

2.1.2 Network topology

Assume a network topology with an arbitrary shape, which is
divided into m2 grids. The Sink locates at the centre of the net-
work topology. The length of side for each gird is required to
meet the following condition so as to control the transmission
overhead [7] √

5a ≤ dthre&& dthre = 87.7 (3)

where dthre denotes the threshold of transmission range for the
free space model. As a result, the parameter of 𝛼 is made to
equal 2 with the establishment of condition (3).

Each grid is regarded as a single cluster, which contains CMs
and CH as shown in Figure 1. Besides, the grid containing the
sink does not select out any CHs to alleviate the “Hot Spot
Problem.”

2.2 Related assumptions and notations

In this section, we present some related assumptions and nota-
tions for convenience. All of the notations are listed in Table 1
for the sake of brevity.

Each node is powered by the battery with the same amount
of initial energy. On the contrary, the sink is supposed to be
unlimited in energy supply and processing capacity.

Each sensor node keeps static and is aware of the location of
both itself and its neighbours [29, 30]. The position information
can be adopted to elect the optimal CH. Besides, the distribution
of nodes follows the uniform distribution [25, 31]. Besides, the
processes of inter-cluster routing construction and data acqui-
sition are beyond the scope of this paper. Actually, they follow
the same way of our previous work [13].

TABLE 1 Summary of related symbols and corresponding meanings

Symbols Meanings

S State of the sensor node

gc Position of the central grid

T The cycle of rotation

𝜀 Energy inequality aversion parameter

M Length of the side of the network topology

𝜇 Data generation rate of sensor node

a The length of each grid

Each node can control the communication range adap-
tively to cut down the energy overhead as much as possible.
In fact, it can obtain the distance from itself to its neigh-
bours according to the received signal strength indicator (RSSI)
concisely [32].

3 CONCEPT AND THEOREMS
CONCERNING THE PROCESS OF
CLUSTER HEAD SELECTION

In this section, a novel concept of EIec is presented to evaluate
the influence of the potential CH on energy efficiency firstly.
Subsequently, the related theorems for the candidate establish-
ment are proposed and proven at length. Finally, the details
about the process of CH determination are illustrated.

3.1 Energy equality index for data
transmission

Definition 4.1. Equality Index for energy consumption (EIec )
is defined here to assess the degree of energy equality for the
whole network topology. To effectively reflect the balance con-
dition, it follows the same form of Atkinson’s inequality mea-
sure [37].

According to our previous work [33], Atkinson’s inequality
measure is adopted to penalize inequality. As a result, the con-
cept of EIec can be mathematically expressed by the following
equation

EIec =
⎡⎢⎢⎣1

n

n∑
i=1

(
d 2

i−CH

d 2

)1−𝜀⎤⎥⎥⎦
1

1−𝜀

(4)

where d 2 denotes the arithmetical means of squared Euclidean
distance (SED) from all the sensor nodes to the CH within
the same cluster, and 𝜀 the inequality aversion parameter [37]
which is adopted to penalize the energy inequality resulted from
data transmission. As for the process of CH election, the node
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FIGURE 2 Illustration of electing the optimal candidate for CH in the
next round

is more likely to be penalized with the degradation of energy
equality. Since most of the energy is depleted for data transmis-
sion, it can be easily concluded that EIec is beneficial to bringing
in energy equilibrium if it is close to 1.

3.2 Theorems for candidate set construction

In this section, the theorem for candidate set construction CHs
in the next round is presented in detail. The residual energy and
the distance from the candidate to the sink are taken into con-
sideration with the aim of controlling the energy overhead and
energy equality simultaneously.

Theorem 4.1. The optimal candidate for the CH in the next round

needs to meet the following conditions,

⎧⎪⎪⎨⎪⎪⎩

Max. Ei
re
⃖⃗OS ⋅ ⃖⃖⃖⃗OHi , i f ⃖⃗OS ⋅ ⃖⃖⃖⃗OHi > 0

Max. Ei
re

/|⃖⃖⃖⃗OHi | , i f ⃖⃗OS ⋅ ⃖⃖⃖⃗OHi = 0

Max. ⃖⃗OS ⋅ ⃖⃖⃖⃗OHi

/
Ei

re
, i f ⃖⃗OS ⋅ ⃖⃖⃖⃗OHi < 0

(5)

where ⃖⃗OS, ⃖⃖⃖⃗OHi denote the vector from the central point O to the Sink, and

that from O to the position of the possible CH respectively. Ei
re denotes the

residual energy of node sni .

Proof: As shown in Figure 2, suppose an arbitrary grid gi lies
in the network topology. Establish a coordinate system with the
position O as the origin. Grid gi is divided into three different
parts by a green dash line, up-area, bottom-area, and boundary

respectively. The green dash line, which is perpendicular to the
line from O to the sink, is regarded as the boundary. According
to the definition of energy efficiency [1], it is necessary to
take the residual energy and the communication overhead into
consideration concurrently when electing CH [7]. The inner
product of vectors ⃖⃗OS and ⃖⃖⃖⃗OHi can reflect the communication
range clearly. In fact, the smaller the inner product, the closer
the distance from the candidate to the sink. Therefore, the
inner product is utilized to control the energy expenditure for
the candidate because the communication overhead depends
on the transmission range. For the node in the up-area, the
following condition is met,

⃖⃗OS ⋅ ⃖⃖⃖⃗OHi > 0 (6)

To effectively control the residual energy and the commu-
nication consumption simultaneously, the following expression
needs to be established,

Max. Ei
re
⃖⃗OS ⋅ ⃖⃖⃖⃗OHi , i f ⃖⃗OS ⋅ ⃖⃖⃖⃗OHi > 0 (7)

For the node on the boundary, it is easily obtained that the
inner product of vectors ⃖⃗OS and ⃖⃖⃖⃗OHi is zero

⃖⃗OS ⋅ ⃖⃖⃖⃗OHi = 0 (8)

Therefore, the following expression is presented here to elect
the candidate,

Max. Ei
re

/|⃖⃖⃖⃗OHi |, i f ⃖⃗OS ⋅ ⃖⃖⃖⃗OHi = 0 (9)

where |⃖⃖⃖⃗OHi | denotes the magnitude of vector ⃖⃖⃖⃗OHi . Obvi-
ously, the node with maximum value of Ei

re
∕|⃖⃖⃖⃗OHi | possesses

the largest value of residual energy and locates closest to the
possible CH concurrently.

Finally, as for the node lying in bottom-area, the inner prod-
uct of vectors ⃖⃗OS and ⃖⃖⃖⃗OHi is negative. The larger the inner
product, the lower energy the candidate needs for communi-
cation. Besides, with the rise of its residual energy, the value of
⃖⃗OS ⋅ ⃖⃖⃖⃗OHi∕E

i
re increases. Therefore the following condition can

be obtained to elect a proper CH,

Max. ⃖⃗OS ⋅ ⃖⃖⃖⃗OHi

/
Ei

re
, i f ⃖⃗OS ⋅ ⃖⃖⃖⃗OHi < 0 (10)

On the basis of Theorem 4.1, the candidate for the optimal
CH in the next round can be determined. As a result, the candi-
date set C is established as follows

C = {cup, cby, cbm} (11)

where cup, cby, and cbm denote the candidates chosen from up-
area, boundary, and bottom-area respectively.
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3.3 CH determination based on expected
energy efficiency welfare

In this section, the concept of Energy Efficiency Welfare, which
is as shown in Appendix B, is adopted to determine the opti-
mal CH. Besides, the theorem for determining the arithmetical
means of SED, namely the value of d 2, is proposed and proven
at length. Finally, the process of expected energy efficiency wel-
fare determination is detailed based on the value of the arith-
metical means of SED.

Theorem 4.2. For an arbitrary grid g in which the distribution density

of sensor nodes is 𝜆, the distance from the CH candidate to the central point

of this grid is dCH−O, then the arithmetical means of SED can be obtained

as follows

d 2 =

1

6
a2 + d 2

CH−O

𝜆
(12)

Proof: As shown in Figure 3, assume the location of the pos-
sible CH is denoted as (Lch

x , Lch
y ). Establish a coordinate system

with the central point as the origin, then SED from other nodes
to the CH candidate is obtained as follows,

∑
di

2 = 𝜆 ∫
a

2

−
a

2
∫

a

2

−
a

2

[(
x − Lch

x

)2
+
(
y − Lch

y

)2]
dxdy (13)

According to the assumption in Section 3, the total number
of sensor nodes in grid g can be obtained as below,

Ng = 𝜆a2 (14)

where Ng is the number of sensor nodes in grid g.

FIGURE 3 Determination of the arithmetical means of SED

Based on expressions (13), (14), the arithmetical means of
SED is obtained as follows,

d 2 =

1

6
a2 + (Lch

x )
2
+ (Lch

y )
2

𝜆
(15)

Obviously, we can get the arithmetical means of SED as
below finally,

d 2 =

1

6
a2 + d 2

CH−O

𝜆

With the arithmetical means of SED, the expected energy
efficiency welfare can be established. In a summary, the node
in set C calculates its expected residual energy firstly. Subse-
quently, it starts to compute the expected energy efficiency wel-
fare according to Definition 4.2 (as shown in Appendix B).

Suppose an arbitrary node c j in set C, it estimates the
expected residual energy of all the other nodes within gird g

according to the following expression,

∧

Ek
re = Ek

re − 𝜇T 𝜀ampdk−c j

2, k ∈ SN − {c j }. (16)

where
∧

Ek
re denotes the expected residual energy of sensor node

snk and dk−c j
is the distance from snk to candidate c j .

Subsequently, c j estimates the expected energy efficiency wel-

fare
∧

E2W (c j ) from its own perspective based on the following
expression,

∧

E2W (c j ) = Ek
re ⋅

⎡⎢⎢⎢⎣
1
n

n∑
k=1

⎛⎜⎜⎝
d 2

k−c j

d 2

⎞⎟⎟⎠
1−𝜀⎤⎥⎥⎥⎦

1

1−𝜀

(17)

where n denotes the number of the possible CMs of candidate
c j . Likewise, all the other candidates in set C obtain the expected

energy efficiency welfare
∧

E2W (cl ), cl ∈ C − {c j } from their
own standpoint.

Once all the candidates in set C obtain the expected energy
efficiency welfare, they begin to compete for the role of CH
in the next round. Finally, the node with the highest expected
energy efficiency welfare is elected as CH.

4 ENERGY-EFFICIENCY-AWARE
CLUSTER FORMATION MECHANISM

In this section, the novel cluster formation mechanism of ECFE
is proposed. After a brief introduction, the details of ECFE are
presented [34].

4.1 Introduction of ECFE

On the whole, ECFE consists of three main phases, namely,
candidate set construction phase, expected energy efficiency
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welfare determination phase, and optimal CH election phase
respectively. In ECFE, both of the residual energy and the
equality degree of energy consumption are taken into consid-
eration concurrently. Once the cluster is formed, the processes
of routing determining and data acquisition start. According to
the assumptions expounded in Section III, these processes are
beyond the scope of this paper. Therefore, the emphasis is put
on the process of cluster formation in the following paragraphs.

4.2 Details of ECFE

In this section, the three phases of ECFE are illustrated in a
detailed way. In fact, we will focus on the process of candidate
set construction and the optimal CH determination.

4.2.1 Candidate set construction

In the initial phase of ECFE, all of the sensor nodes need to
determine which candidate zones they belong to according to
their location based on Theorem 4.1. Each sensor node calcu-
lates the inner product of vectors ⃖⃗OS and ⃖⃖⃖⃗OHi according to
Theorem 4.1. On the basis of the value of the inner product,
each sensor node is able to identify its belonging candidate zone.

Subsequently, the node in each zone select out its own candi-
date according to Theorem 4.1 independently. Take the nodes in
up-area for example, the sensor which brings in maximum value
of Ei

re
⃖⃗OS ⋅ ⃖⃖⃖⃗OHi is elected as the CH candidate in the next round.

Likewise, the candidates in the other zones can be determined
simultaneously.

Finally, the selected nodes from all the zones constitute the
candidate set C. In addition to the residual energy, the energy
consumption of candidates for transmission has also been con-
sidered during the process of candidate selection according to
Theorem 4.1. Consequently, the candidate is more beneficial to
the improvement of energy efficiency than others in the same
zone.

4.2.2 Expected energy efficiency welfare
determination

In this phase, the node in candidate set C obtains the arith-
metical means of SED firstly, which is utilized to determine the
value of EIec . To this end, each node in candidate set C cal-
culates the value of d 2 on the basis of expression (12). Subse-
quently, it is able to estimate the expected residual energy of
other nodes within the same cluster except itself. At the same
time, it estimates the expected energy efficiency welfare accord-
ing to expression (17) with the results of the expected residual
energy and the arithmetical means of SED. Likewise, the other
candidates calculate the expected energy efficiency welfare in
the similar way independently. Once all the candidates in set C

obtain the value of
∧

E2W (c j ), they are able to select out the opti-
mal CH in the next round.

4.2.3 Optimal cluster head election

In this phase, all the candidates in set C compete with each
other to campaign for the role of CH in the next round. Assume
the current candidate is c j . Once candidate c j obtains the value
of the expected energy efficiency welfare, it modifies its own
state S to be 1 immediately. Subsequently it broadcasts a mes-
sage including the basic information, such as ID, S, etc., and the
expected energy efficiency welfare to all the other candidates.

On receiving the broadcasts from other candidates, candi-
date c j compares its own expected energy efficiency welfare with
what is included in the broadcasts to determine who is the opti-

mal CH. To be specific, if its own
∧

E2W (c j ) is smaller, it accepts
the transmitter as the optimal CH, then withdraws from election
by means of setting the value of S to be 0. In addition, it needs to
modify its record concerning the CH in its memory. Otherwise,
it only discards the broadcast and keeps its state S to be 1.

When there are not any broadcasts flooding in the grid, the
optimal CH is selected out successfully. All the other nodes fail-
ing to CH election need to join the cluster head. Subsequently,
the cluster head informs CMs of its role and waits for their
JOIN message. As for the cluster member, it simply sends out
the JOIN message to the CH to form a cluster in the end [13].

Once all the relevant CHs are elected, the process of inter-
cluster routing decision-making starts. Subsequently CMs begin
to acquire data and all the data collected in each cluster are trans-
mitted to the sink via a multi-hop transmission pattern finally.

5 EXPERIMENTS AND RESULTS
ANALYSIS

In this section, the experiment settings are described firstly. Sub-
sequently, the relevant metrics utilized in this paper are defined.
Finally, the results and analysis are detailed.

5.1 Experiment settings

ECFE belongs to a kind of Clustering mechanisms which aim
to promote energy equilibrium during the process of cluster
formation. Different from the existing clustering mechanisms,
the relation between each sensor node and the whole network
is taken into account based on the energy efficiency welfare.
Besides, it is for the first time that CH selection is controlled by
the systematical social theory. To verify its superiority over tra-
ditional clustering mechanisms, the classic clustering algorithms,
such as TEEN, and PEGASIS, are adopted as the baseline for
evaluation. Besides, to verify its merit over interdisciplinary clus-
tering mechanisms, two intelligent clustering algorithms, that
is, LEACH-ERE [17] and EIRNG which aims to improve the
energy efficiency in inter-cluster routing determination based
on the game theory [35], are adopted for comparisons in this
paper.

In this section, the performance of ECFE is evaluated
through simulations. In the experiment, all the sensor nodes are
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TABLE 2 Some important parameters and their values in simulation

Parameters Values

a 30 m

m {3, 5, 7, 9, 11}

gc {(2,2), (3,3), (4,4), (5,5), (6,6)}

𝜀 2

Eelec 50 nJ/bit

𝜀amp 13 pJ/bit/m2

T 50 s

scattered in an ma × ma square area. The distribution of sensor
nodes follows the uniform distribution. The parameters of m

and a are described in section 3. Let a equal 30, and m vary from
3 to 11 with the step of 2. The experiments are grouped into
five sets and extensive simulations are conducted on each set to
assess the energy efficiency comprehensively. In addition, The
initial energy of each sensor node is fixed to be 2 J. For the sake
of brevity, the values of some important parameters utilized in
the simulation are listed in Table 2. In addition, the total number
of rounds in the simulation is set to be 80.

5.2 Metrics utilized in the experiments

In order to evaluate the energy efficiency of ECFE objectively,
we firstly define some related metrics in the following.

The network lifetime is one of the main metrics for ECFE’s
effectiveness evaluation. In general, the definition of network
lifetime depends on the related applications. In this paper, the
following three indicators are adopted to evaluate the network
lifetime.

Time until the first node dies (FND): It denotes the time
quantum until the first node has exhausted its energy. For the
application with a high demand on the reliability, such as endan-
gered species tracking, military monitoring etc. Consequently, it
is crucial to evaluate the metric of FND.

Time until half of the nodes die (HND): It denotes the time
period until half of the nodes have used up their energy. Actu-
ally, it reflects the coverage rate of the network to some extent.

Time until the last node dies (LND): It represents the dura-
tion until all the sensor nodes have exhausted their energy.

The indicators of Network Lifetime above can be adopted to
measure the energy efficiency indirectly. In addition, some met-
rics are defined to assess the energy efficiency of WSNs intu-
itively.

Throughput against energy consumed: It denotes the
throughput of the sink when a certain amount of the total
energy has been used up. It takes both the amount of data and
the energy expenditure into consideration simultaneously, there-
fore it reflects the energy efficiency intuitively.

Average of residual energy: It reflects the average residual
energy for all the nodes in the process of simulation. Since
the energy overhead for transmission is taken into account in
ECFE, it is adopted to evaluate the energy depletion rate.

FIGURE 4 The ratios of our proposal to other algorithms in terms of
FND

Approximate value of energy efficiency welfare: It reflects the
approximate value of energy efficiency welfare through the con-
siderations of both average residual energy and the variance of
residual energy for all the nodes during the process of experi-
ment. To be specific, it is defined mathematically as follows,

AV eew = Ere ⋅ (1 − Eva
re ) (18)

where AVeew , Ere, and Eva
re

denote the approximate value of
energy efficiency welfare, the average of residual energy, and the
variance of residual energy respectively. According to the defini-
tion, the energy efficiency of ECFE can be assessed objectively.

5.3 Results analysis

In this section, the ratios of ECFE to other algorithms in terms
of the Network Lifetime and the throughput are analysed with
different values of parameter m. While the results analysis on
other metrics, such as the throughput against the energy con-
sumed, average residual energy, etc., is conducted with parame-
ter m set to be 3.

The comparisons on the ratio of our proposal to other algo-
rithms in terms of FND are presented in Figure 4. As shown
in Figure 4, the ratios vary with the change of parameter m. All
the ratios are larger than 1, which means ECFE can bring in a
longer network lifetime of WSNs compared with other cluster-
ing algorithms with respect to FND. In addition, it can be also
easily obtained from Figure 4 that the ratios kept steady in spite
of the growth of parameter m. Consequently, the conclusion that
ECFE has a good scalability in energy efficiency can be drawn.

Figures 5 and 6 show the comparisons on the ratios of ECFE
to others in terms of HND and LND respectively. As shown in
Figures 5 and 6, it is clear that the ratios are much larger than
1, which means the network lifetime is the largest for ECFE.
Take the comparisons on HND as an example, the ratios of
ECFE/LEACH-ERE, ECFE/EIRNG, ECFE/PEGASIS, and
ECFE/TEEN are 2.43, 1.22, 1.42, and 1.55 when parameter m

is set to be 3 respectively. Since the energy inequality resulted
from the process of CH election is alleviated through the con-
cept of EIec , the energy efficiency can be improved effectively.
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FIGURE 5 The ratios of our proposal to other algorithms in terms of
HND

FIGURE 6 The ratios of our proposal to other algorithms in terms of
LND

FIGURE 7 The ratio of our proposal to other algorithms in terms of the
throughput

According to the relation between energy efficiency and net-
work lifetime, the former is extended with the improvement of
the latter accordingly.

Figure 7 shows the ratios of ECFE to others in terms of the
throughput. Specifically, the throughput of ECFE increases by
63.12%, 14.20%, 24.32%, and 29.46% compared with LEACH-
ERE, EIRNG, PEGASIS, and TEEN respectively when param-
eter m is set to be 7. In addition, it can also be obtained that
ECFE has a largest effect on the throughput compared with
LEACH-ERE with the ratio of 1.65. The energy inequality

FIGURE 8 The comparisons on the throughput when a certain amount
of energy has been exhausted and parameter m is set to be 3

FIGURE 9 The approximate value of energy efficiency welfare of all the
algorithms when parameter m is set to be 3

resulted from the process of CH election is effectively alleviated
through the concept of EIec , the energy efficiency can be largely
improved accordingly. The network lifetime can be extended
effectively for ECFE, as a result, the throughput is relatively
larger than that of others by the end of the simulation. As a
summary, with the extension of network lifetime in ECFE, the
total throughput of the sink rises up accordingly.

Figure 8 shows the comparisons on the throughput when a
certain amount of energy has been exhausted and the parameter
m is set to be 3. As shown in Figure 8, the throughput of ECFE
under a specific energy consumption is much larger than those
of others, which means more data can be collected by the sink
when ECFE is applied under a fixed energy budget. In addition,
note that when more than half of the total energy has been used
up, the throughput of ECFE increases more markedly com-
pared with others. Specifically, when 140 J of the total energy
is used up, the throughput of the sink is 31.07%, 3.86%, 8.53%,
and 23.23% larger than that of LEACH-ERE, EIRNG, PEGA-
SIS, and TEEN respectively. Therefore the conclusion that the
energy efficiency of ECFE is the highest compared with others
can be drawn.

Figure 9 shows the approximate value of energy efficiency
welfare of all the algorithms. As shown in Figure 9, the aver-
age residual energy of ECFE is 135.97%, 2.81%, 100.69%, and
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FIGURE 10 The average of residual energy of sensor nodes for all of the
algorithms when parameter m is set to be 3

91.92% larger than that of PEGASIS, EIRNG, LEACH-ERE,
and TEEN when the simulation time is 800 respectively. In
addition, the curve of ECFE last for longest by comparisons
with others, which also means it promotes a longer network
lifetime. As an important component for ECFE, the concept
of EIec is helpful to the improvement of energy equality among
different nodes within each cluster.

Figure 10 shows the average residual energy of sensor nodes
for all the algorithms when parameter m is set to be 3. As shown
in Figure 10, the average of residual energy is the largest com-
pared with others. At the time of 800, the ratios of ECFE to
PEGASIS, EIRNG, LEACH-ERE, and TEEN are 134.17%,
2.73%, 99.70%, and 120.18% respectively. Besides, it keeps
steady with the increase of the simulation time. The conclusion
that ECFE can achieve a slower energy depletion rate can be
drawn. Obviously it is beneficial to the improvement of energy
efficiency and the extension of network lifetime for WSNs.

6 CONCLUSIONS AND FUTURE
RESEARCH DIRECTIONS

The energy inequality resulted from cluster formation is anal-
ysed and solved in this paper. A novel concept of EIec is
proposed to evaluate the equality degree of energy consump-
tion. Besides, theorems for establishing the candidate set of CHs
is proposed, with the aim of promoting energy equality within
each cluster. Subsequently, a novel energy-efficiency-aware clus-
ter formation mechanism of ECFE is proposed and detailed.
Finally, extensive simulations are carried out to evaluate its per-
formance. The results analysis indicates that ECFE can improve
the energy efficiency and extend the network lifespan of WSNs
effectively.

The energy efficiency of WSNs can be improved by means
of controlling the process of cluster formation to some extent.
However, most of the existing clustering mechanisms are based
on the premise that the sensor node cannot be replenished once
deployed. Recently, the emergence of the simultaneous wireless
information and power transfer (SWIPT) technology makes it

possible to recharge the sensor node with the ambient RF sig-
nals [36]. To be specific, the receiver can achieve information
decoding and energy harvesting concurrently through SWIPT.
However, combination with SWIPT technology also induces
some new challenges for the traditional clustering mechanisms.
For example, the allocation of transmission power and the value
of power splitting ratio play a large influence on the process of
CH election [37]. Therefore, our attention will be paid to the
clustering mechanism for the WSNs combined with SWIPT in
the future.
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25. Abasikeleş-Turgut, İ.: DiCDU: Distributed clustering with decreased
uncovered nodes for WSNs. IET Commun. 14(6), 974–981 (2020)

26. Singh, B., Lobiyal, D.K.: An energy-efficient adaptive clustering algorithm
with load balancing for wireless sensor network. Int. J. Sens. Networks
12(1), 37–52 (2012)

27. Murata, T., Ishibuchi, H.: Performance evaluation of genetic algo-
rithms for flowshop scheduling problems. In: Proceedings of 1st IEEE

Conference on Evolutionary Computation. Orlando, FL, pp. 812–817
(1994)

28. Muruganathan, S., Ma, D., Bhasin, R., et al.: A centralized energy-efficient
routing protocol for wireless sensor networks. IEEE Commun. Mag. 43(3),
S8–13 (2005)

29. Behera, T.M., Mohapatra, S.K., Samal, U.C., Khan, M.S., Daneshmand, M.,
Gandomi, A.H.: Residual energy-based cluster-head selection in WSNs for
IoT application. IEEE Internet Thing 6(3), 5132–5139 (2019)

30. Hu, Y., Niu, Y., Lam, J., Shu, Z.: An energy-efficient adaptive overlapping
clustering method for dynamic continuous monitoring in WSNs. IEEE
Sens. J. 17(3), 834–847 (2017)

31. Hoang, D.C., Yadav, P., Kumar, R., Panda, S.K.: Real-time implementa-
tion of a harmony search algorithm-based clustering protocol for energy-
efficient wireless sensor networks. IEEE Trans. Ind. Inf. 10(1), 774–783
(2014)

32. Zhang, Y., Xing, S., Zhu, Y., Yan, F., Shen, L.: RSS-based localization in
WSNs using gaussian mixture model via semidefinite relaxation. IEEE
Commun. Lett. 21(6), 1329–1332 (2017)

33. Lin, D., Gao, L., Min, W.: A social welfare theory-based energy-efficient
cluster head election scheme for WSNs. IEEE Syst. J. 15(3), 4492–4502
(2021)

34. Nabeel, M., Dressler, F.: Experimental evaluation of receive diversity tech-
niques in distributed sensor networks. Ad Hoc Networks 99(15), 1–10
(2020)

35. Lin, D., Wang, Q., Liu, J.: Research on energy-efficient inter-cluster routing
algorithm based on non-cooperative game. J. Harbin Inst. Technol. 49(11),
95–100 (2017)

36. Perera, T.D.P., Jayakody, D.N.K., Sharma, S.K., Chatzinotas, S., Li, J.:
Simultaneous wireless information and power transfer (SWIPT): Recent
advances and future challenges. IEEE Commun. Surv. Tutorials 20(1),
264–302 (2018)

37. Lu, Y., Xiong, K., Fan, P., Ding, Z., Zhong, Z., Letaief, K.B.: Secrecy energy
efficiency in multi-antenna SWIPT networks with dual-layer PS receivers.
IEEE Trans. Wireless Commun. 19(6), 4290–4306 (2020)

38. Stirling, W.C., Frost, R.L.: Social utility functions-part II: Applications.
IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 35(4), 533–543
(2005)

39. Atkinson, A.B.: On the measurement of inequality. J. Econ. Theory 2(3),
244–263 (1970)

How to cite this article: Lin, D., Kong, L., Zhao, C.,
Gao, J., Ouyang, H., Yang, Z., Zhang, Z.: An
energy-efficiency-adaptive clustering formation
mechanism for the wireless sensor networks. IET
Commun. 16, 255–265 (2022).
https://doi.org/10.1049/cmu2.12343

APPENDIX A

Concept of social welfare

The concept of social welfare was proposed to evaluate the
equality degree of human society quantitatively [38]. Conse-
quently, the Akinson’s Social Welfare Function was presented to
evaluate the human quality quantitatively [24, 39]. Similar to the
human society, all the sensor nodes cooperate with each other
to perform a complicated task. Therefore the concept of social
welfare is also suitable to deal with the relationship between
each sensor node and the whole network. Obviously, it complies
with the principle of WSNs that a more balanced energy distri-
bution contributes to a longer network lifetime. Therefore, we
adopt the Atkinson’s social welfare function to promote energy
equilibrium within each cluster.

APPENDIX B

Definition of energy efficiency welfare

Definition 4.2. Energy efficiency welfare (E2W ) is a concept
which reflects the condition of both residual energy and energy
equality concurrently. To be specific, it is defined as the product
of EIec and the residual energy in this paper.

Based on the concept of EIec proposed in Section 3, the con-
cept of E2W can be mathematically defined as follows

E2W (i ) = Ei
re ⋅EIec = Ei

re ⋅
⎡⎢⎢⎣1

n

n∑
i=1

(
d 2

i−CH

d 2

)1−𝜀⎤⎥⎥⎦
1

1−𝜀

(19)
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where E2W (i ) denotes the energy efficiency welfare and Ei
re

the expected residual energy of sni when it is considered as the
CH in the next round.

Definitions 4.1 and 4.2 provide an effective evaluation crite-
rion for the process of CH election actually. In fact, both of the

residual energy and the energy equality are taken into consid-
eration concurrently. As a result, the node generating a higher
energy efficiency welfare contributes to a higher energy effi-
ciency. Therefore, the node can be elected as the optimal CH
if it produces the largest value of E2W .
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