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Abstract

Introduction: The goal of the 2021 PhysioNet/CinC

challenge is to classify cardiac abnormalities from ECGs

and evaluate the diagnostic potential of reduced-lead

ECGs. Here, we describe the classification model created

by the team “AI Healthcare”.

Methods: ECGs were downsampled to 300 Hz and fil-

tered by wavelet. ECGs were randomly clipped or zero-

padded to 4,096 samples. We trained as SE-ResNet as

a baseline classifier. We then modified it to classify both

dataset and disease. We used a gradient reversal layer

as part of an adversarial feature learning scheme to learn

domain-invariant and discriminative representations. Per-

formance with and without the domain generation methods

was compared.

Results: In local validation on a held-out data set, our

domain-invariant model achieved better challenge evalua-

tion metric scores than the baseline SE-ResNet (12 lead:

0.43 vs 0.44, 2 lead: 0.45 vs 0.49). Only the baseline was

tested on the hidden test set, achieving scores of 0.42, 0.42,

0.42, 0.44, and 0.38 on 12-leads, 6-leads, 4-leads, 3-leads,

and 2-leads, respectively.

Conclusion: The domain generation method performed

well on ”unseen” data in local testing, suggesting that this

method may help improve generalisation performance.

1. Introduction

In this paper we describe a deep learning model devel-

oped to classify cardiac abnormality from 12-lead, 6-lead,

4-lead, 3-lead and 2-lead electrocardiogram (ECG) signals

with varying sample lengths and frequencies.

12-lead ECGs are used clinically to diagnose cardiac

abnormalities by measuring the electrical activity of the

heart. Reduced-lead ECGs are also being explored for their

diagnostic potential to reduce recording time and expense,

and improve ease of use in clinical settings [1].

ECG classification using deep learning models, such

as the one described in this paper, may have the ability

to automatically diagnose a range of cardiac abnormali-

ties without requiring all 12-leads, which could reduce re-

source demand. However, in the Physionet 2020 challenge

[2], all models suffered from poorer performance on a hid-

den dataset from an undisclosed location.

We aim to address this issue by building on the work of

the previous deep neural network architecture [3], incor-

porating domain generalisation through adversarial feature

learning.

2. Methods

Our goal was to create a ECG classification model that

learned domain-agnostic features, and that could also be

applied to reduced-lead ECGs. We used a modified ResNet

with a Squeeze-and-Excitation (SE) attention block to ex-

tract deep features. Combined with hand-crafted features,

a multi-source adversarial network was trained to learn

useful domain-invariant features for the main task of di-

agnosing cardiac abnormalities. We expected that the

domain-invariant representation would perform worse on

the test data from the seen datasets. As the seen datasets

have a frequency of 500Hz and the majority of the unseen

test data is of a different frequency, we used a model with-

out domain generalisation (baseline model) for test exam-

ples with a frequency of 500Hz.

2.1. Data Pre-processing

More datasets were available for training and kept for

testing than in last year’s challenge [1, 2]. 88,253 record-

ings were provided for the 2021 PhysioNet/CinC chal-

lenge. The datasets were CPSC [4], INCART [5], PTB [6],

PTB-XL [7], G12EC, Chapman-Shaoxing [8], and Ningbo



[9].

30 cardiac condition classes were considered for scoring

in the challenge. Four pairs of classes were considered

equivalent, making this effectively a 26-class problem.

ECGs were resampled to 300 Hz for input to the deep

model. During the training phase, we chose a signal length

of 4096 samples. Shorter signals were randomly zero-

padded and longer signals were randomly clipped.

To reduce unwanted noise, we employed wavelet de-

noising [10]. As the frequency was 300 Hz, ECGs were

decomposed into 9 levels with Daubechies D6 (’db6’)

wavelet. We replaced the first approximation sub-band

(baseline wander) and the first detail sub-band (little rel-

evant information) with zeros. The other detail sub-bands

were used to reconstruct the signal.

Age, gender, and Heart Rate Variability (HRV) features

were concatenated with deep features. Unknown values of

age and gender were masked and set to 0.

HRV features were extracted from lead I and II. First, R

peak locations were extracted using the EngZee QRS de-

tector [11]. These peaks were used to derive: the standard

deviation of R-peak, or normal-to-normal, (SDNN) inter-

vals, root mean square of successive R-peak differences

(RMSSD), the standard deviation of the successive differ-

ences (SDSD) between adjacent R peak (NN) intervals, the

proportion of NNs that are greater than 20 ms (NN20) di-

vided by total number of R-peak intervals (PNN20), and

heart-rate (HR). For normalization, SDSD was divided by

1000 and HR was divided by 100. All HRV features were

set to zero if fewer than 5 R peaks were detected in an ex-

ample. Age, gender, and HRV features were encoded to a

total of 17 feature values.

2.2. Model Description

Our model was designed to extract discriminative

domain-invariant features from the input signals and ex-

tra features. It then uses the features to classify the ECG

recordings into 26 classes. It achieves this by multi-task

learning of ECG abnormalities and domain, with a loss

function that seeks to maximise domain loss, and minimise

ECG abnormality loss. The model structure is illustrated

in Fig 1.

2.2.1. ResNet Feature Extraction

The initial branch of the model is a modified ResNet

model with an adaptive input channel. The modified

ResNet model from [3] consists of one convolution layer

with a wide kernel and 8 residual blocks (RBs).

A wide kernel in the first layer has been shown to per-

form better in time sequence classification tasks [12]. We

employ a convolution kernel size of 15 in the first layer

followed by batch normalisation (BN) and a rectified lin-

ear unit (ReLU). 64 kernels are used in the first convolution

layer.

The RB consists of two convolution layers. Between the

2 layers, BN and ReLU are used. A dropout layer with

dropout rate of 0.2 is also inserted to alleviate overfitting.

After the second convolution, a BN layer and a SE block

[13] are used, followed by a residual connection from RB

input and a ReLU layer. A convolution kernel with size

of 7 is employed in the RB. The number of kernels for the

RB are 64, 64, 128, 128, 256, 256, 512, and 512. The fea-

ture dimension is halved after the third, fifth, and seventh

RB. The SE block acts to adaptively recalibrate channel-

wise feature response and calculates channel importance

by explicitly modelling the dependencies between chan-

nels. The SE block contains a global average pooling layer,

a bottleneck with two fully connected (FC) layers around

a ReLU layer, and a sigmoid layer. The reduction between

the two FC layers is 16. 8 RBs are used to enlarge model

receptive field and improve feature extraction ability. The

residual connection confirms the training process stability

[14].

After deep feature extraction, we concatenate the deep

feature set with the encoded HRV, age, and gender features

to a total dimension of 546.

The features are used for two tasks, domain classifica-

tion and ECG abnormality classification.

2.2.2. Domain Classifier

Data from different domains (datasets) may have a shift

in distributions and representations [15]. We envisage that

the final classification decisions should be based on rep-

resentations that are both discriminative for the main task

(ECG abnormality classifcation) and invariant to the do-

main changes.

A discriminative domain-invariant representation re-

quires mapping a domain-variant representation into a sim-

ilar representation in different domains. We divided our

training datasets into seven domains by their recording file

name and gave each ECG recording a domain label. The

domain classifier consists of a simple three-layer bottle-

neck FC classifier and a Gradient Reversal Layer (GRL).

We label the loss for this branch as L2.

By minimizing the domain label prediction loss L2, the

domain classifier is optimized to learn domain features

from input features. The GRL means that the gradient for

L2 is reversed for the feature extraction part of the net-

work, meaning that the feature extractor tries to maximise

L2. This leads to the feature extractor learning features

which give the least domain information.



Figure 1. Architecture of the proposed model.

2.2.3. Discriminative Classifier

Multi-label ECG abnormality classifications are created

from the 546-dimension features by using two FC layers

with a middle dimension of 256. The loss for the discrim-

inative classifier is L1.

2.2.4. Training Setup

The training error for multi-label classification was av-

erage binary cross entropy (BCE) loss L1. For the adver-

sarial domain classification task, the loss was cross entropy

L2. The final loss L is:

L = L1 + λL2. (1)

The weight parameter, λ, was set empirically at 0.05.

For training, we chose 0.0003 as the initial learning rate

with the Adam optimiser. It was reduced tenfold in the

20th epoch. The model was trained for a total of 30 epochs

with batch size of 64.

The baseline model was trained on CPSC and G12EC

with the same parameters, using the L1 loss only.

2.3. Model Evaluation

Thresholds for different classes should be different be-

cause of class imbalance. After training, we used the vali-

dation signals to search for the best thresholds for the mod-

els: (1) Thresholds were initialised to be the same for all

classes and then searched in the range [0,1] with a step 0.1

to get an approximate threshold; (2) Adjust approximate

Lead 12 6 4 3 2

B (seen domain) 0.75 0.71 0.73 0.73 0.71

D (seen domain) 0.72 0.68 0.69 0.69 0.68

B (unseen domain) 0.43 0.46 0.46 0.44 0.45

D (unseen domain) 0.44 0.49 0.48 0.48 0.49

Table 1. Challenge metric scores for the baseline and do-

main invariant models for data in the seen and unseen do-

mains. B: baseline model. D: domain invariant model.

threshold for each class by searching with in steps of 0.01

when all other thresholds are fixed.

Validation signals shorter than 4,096 were zero-padded.

Longer signals were segmented into multiple patches. The

overlap is O = 256 with a adaptive overlap for the last

patch.

We expected that in testing most examples with a fre-

quency of 500Hz would be from the same domain as

the training data (CPSC and G12EC). We planned to use

the baseline model for 500Hz examples and the domain-

invariant model for other examples.

3. Results

For local validation, we trained the model on N-1 of the

N training data sets, reserving the Ningbo dataset as a lo-

cal test. 5-fold cross-validation results are shown in Table

1. The domain generation model obtained a better per-

formance in the unseen Ningbo dataset compared to the

baseline model.

Due to a technical error, the domain-invariant model was



Leads Training Validation Test Ranking

12 0.721± 0.001 0.64 N/A none

6 0.690± 0.002 0.63 N/A none

4 0.708± 0.002 0.63 N/A none

3 0.690± 0.001 0.64 N/A none

2 0.685± 0.001 0.61 N/A none

Table 2. Challenge scores for our domain-invariant model

(team AI Healthcare) using 5-fold cross validation on the

public training set and repeated scoring on the hidden vali-

dation set. We did not receive a score or rank for this model

on the hidden test set.

not tested on the hidden test set1. Detailed scores for local

5-fold cross validation and scores on hidden validation set

are shown in Table 2.

4. Discussion and Conclusions

In the prior PhysioNet competition we attained a 5-fold

cross-validation metric score of 0.684 on 12-lead ECG

data alone [3]. However, the current model has greater

potential for application and generalisability thanks to its

ability to extract domain-invariant features from 12-lead or

reduced-lead ECGs.

Although the domain-invariant model showed improve-

ment on the unseen domain when compared to the baseline

model, both models had a noticeable drop in performance

for the unseen domain. This may indicate that domain-

invariant features are only part of the solution for making

a more general model, as there may be genuine differences

such as different diagnostic criteria which cannot be ac-

counted for with domain-invariant features alone. In future

work, we will apply this model to the test set, and system-

atically optimise hyperparameters.

References

[1] Reyna MA, Sadr N, Perez Alday EA, Gu A, Shah A, Ro-

bichaux C, et al. Will Two Do? Varying Dimensions in

Electrocardiography: the PhysioNet/Computing in Cardiol-

ogy Challenge 2021. Computing in Cardiology 2021;48:1–

4.

[2] Alday EAP, Gu A, Shah AJ, Robichaux C, Wong AKI,

Liu C, et al. Classification of 12-lead ECGs: the Phys-

ioNet/computing in cardiology challenge 2020. Physiolog-

ical Measurement jan 2021;41(12):124003.

[3] Zhao Z, Fang H, Relton SD, Yan R, Liu Y, Li Z, et al. Adap-

tive Lead Weighted ResNet Trained with Different Duration

Signals for Classifying 12-lead ECGs. In 2020 Computing

in Cardiology. IEEE, 2020; 1–4.

1the baseline model was tested, and received scores of 0.42 (12 lead),
0.42 (6 lead), 0.42 (4 lead), 0.44 (3 lead) and 0.38 (2 lead) the average
over all leads was 0.41

[4] Liu F, Liu C, Zhao L, Zhang X, Wu X, Xu X, et al. An Open

Access Database for Evaluating the Algorithms of Electro-

cardiogram Rhythm and Morphology Abnormality Detec-

tion. Journal of Medical Imaging and Health Informatics

2018;8(7):1368––1373.

[5] Tihonenko V, Khaustov A, Ivanov S, Rivin A, Yakushenko

E. St Petersburg INCART 12-lead Arrhythmia Database.

PhysioBank PhysioToolkit and PhysioNet 2008;Doi: 10.1

3026/C2V88N.

[6] Bousseljot R, Kreiseler D, Schnabel A. Nutzung der EKG-

Signaldatenbank CARDIODAT der PTB über das Internet.

Biomedizinische Technik 1995;40(S1):317–318.

[7] Wagner P, Strodthoff N, Bousseljot RD, Kreiseler D, Lunze

FI, Samek W, et al. PTB-XL, a Large Publicly Available

Electrocardiography Dataset. Scientific Data 2020;7(1):1–

15.

[8] Zheng J, Zhang J, Danioko S, Yao H, Guo H, Rakovski C.

A 12-lead Electrocardiogram Database for Arrhythmia Re-

search Covering More Than 10,000 Patients. Scientific Data

2020;7(48):1–8.

[9] Zheng J, Cui H, Struppa D, Zhang J, Yacoub SM, El-Askary

H, et al. Optimal Multi-Stage Arrhythmia Classification

Approach. Scientific Data 2020;10(2898):1–17.

[10] Martis RJ, Acharya UR, Min LC. ECG beat classification

using PCA, LDA, ICA and Discrete Wavelet Transform.

Biomedical Signal Processing and Control 2013;8(5):437–

448.

[11] Engelse WA, Zeelenberg C. A Single Scan Algorithm for

QRS-detection and Feature Extraction. Computers in Car-

diology 1979;6(1979):37–42.

[12] Zhang W, Peng G, Li C, Chen Y, Zhang Z. A New Deep

Learning Model for Fault Diagnosis with Good Anti-Noise

and Domain Adaptation Ability on Raw Vibration Signals.

Sensors 2017;17(2):425.

[13] Hu J, Shen L, Sun G. Squeeze-and-Excitation Networks. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2018; 7132–7141.

[14] He K, Zhang X, Ren S, Sun J. Deep Residual Learning for

Image Recognition. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition. 2016; 770–

778.

[15] Ganin Y, Lempitsky V. Unsupervised Domain Adaptation

by Backpropagation. In International Conference on Ma-

chine Learning. PMLR, 2015; 1180–1189.

Address for correspondence:

Zuogang Shang

International center of Machinery, School of Mechanical Engi-

neering, Xi’an Jiaotong University, Xi’an, China.

administrator@stu.xjtu.edu.cn


