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Abstract: Developments in the portability of low-cost hyperspectral imaging instruments translate

to significant benefits to agricultural industries and environmental monitoring applications. These

advances can be further explicated by removing the need for complex post-processing and calibration.

We propose a method for substantially increasing the utility of portable hyperspectral imaging.

Vertical and horizontal spatial distortions introduced into images by ‘operator shake’ are corrected

by an in-scene reference card with two spatial references. In situ light-source-independent spectral

calibration is performed. This is achieved by a comparison of the ground-truth spectral reflectance of

an in-scene red–green–blue target to the uncalibrated output of the hyperspectral data. Finally, bias

introduced into the hyperspectral images due to the non-flat spectral output of the illumination is

removed. This allows for low-skilled operation of a truly handheld, low-cost hyperspectral imager

for agriculture, environmental monitoring, or other visible hyperspectral imaging applications.

Keywords: hyperspectral; smartphone; low cost; environmental monitoring; field deployable;

portable; calibration

1. Introduction

Hyperspectral imaging has risen to prominence in recent years due to its grow-
ing role in sensing applications in agriculture and environmental [1–4] monitoring, civil
engineering [5,6] and medical applications such as cancer and Alzheimer’s detection [7,8].
It is suited to these applications because it comprises additional information that is con-
tained within a hyperspectral image. A specific example used in this work to demonstrate
the advantage of defect detection and quality assurance in fruit afforded by hyperspectral
imaging over conventional monitoring techniques is well documented in the literature. It
is shown not as a novel application but to illustrate the utility of the technique we propose
in this work. In digital photography, the pixel brightness of an image, measured in digi-
tal levels (DL) corresponds to wavelength-integrated radiance, either across the spectral
range of the sensor for monochromatic cameras or within the spectral bands of the Bayer
filter in colour imaging. A hyperspectral image is, in contrast, a multitude of images all
captured contemporaneously. Each image corresponds to a narrow band of wavelengths
(typically 1–10 nm full width half maximum (FWHM) [9,10]) and each pixel value is the
wavelength-integrated radiance across that band. This allows features to be detected in a
reflection spectrum that are otherwise lost in traditional imaging techniques. For instance,
this is applied to aerial monitoring of large ground areas, disease detection in plants and to
aid the segmentation of cells in microscopy [11–13].

Hyperspectral imaging can be prohibitively expensive and so different approaches
have been taken to produce hyperspectral images at reduced cost [14]. Coded aperture snap-
shot spectral imaging (CASSI)-based hyperspectral imaging systems use a coded aperture
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to encode spectral information and produce hyperspectral images. This technique can pro-
duce hyperspectral images at high frame rates but requires intensive post-processing [15].
Scanning systems offer the advantage of producing images that can be easily extracted
from raw data captured where high-speed acquisition is not required, for example, in
agricultural measurements. Rapid data collection is often not necessary because vegeta-
tion changes over time scales of tens of minutes or hours [16]. Such systems are often
attached to drones to produce hyperspectral images of large areas such as fields to assess
characteristics of large numbers of plants simultaneously [17]. Lab-based systems are
also used to assess individual plant properties, such as damage and/or deterioration in
fruits and other fresh produce for non-destructive quality control and assessment [9,16].
Wider availability of low-cost, easy to operate systems that require minimal post-processing
would enable better individual plant monitoring during growth and improved quality
control in food distribution.

The maturity of silicon focal plane array (FPA) camera sensors, coupled with ad-
vances in smartphone technology affords significant developments in handheld scientific
instrumentation [18]. Smartphones can be easily adopted as platforms for prototype and
commercial instruments in a wide variety of scientific fields due to the fast on-board com-
puting power and built-in sensors [9,19–27]. In a previous publication, a smartphone-based
hyperspectral imaging device was reported and demonstrated as a viable, low-cost alterna-
tive to more expensive lab-based systems [9]. This device was very simple in its design but
demonstrated the potential of smartphone technology in a side-by-side comparison with a
non-portable lab setup.

Push-broom scanning systems, such as the one described above, are limited in two
ways. Firstly, when operated as a handheld scanner, they suffer serious image distortion due
to ‘operator shake’; the inability of users of hand-held devices to translate the instrument
across a scene with perfectly linear motion and constant velocity [9]. This results in distorted
images with regions of spatial compressions and expansion. This can be avoided using a
motorised translation stage either to translate the imaging system [9] or the target of the
imaging [28,29]. Alternatively, a three-axis gimbal has been shown to reduce the effect of
operator shake [30]. However, these systems require bulky or expensive equipment and
somewhat reduce the utility and cost-effectiveness of a handheld system.

We address the aforementioned deficiencies of push-broom hyperspectral imaging
systems in this work utilising two in-scene spatial refences; one to correct horizontal
distortion and the other for vertical distortion. Both references leave measurable traces in
the hyperspectral images that can be used to correct the images for spatial distortion. This
is an ultra-low-cost solution because the in-scene reference is simply printed on a sheet of
white paper, with the added novel complexity hidden within a software algorithm. Slight
rotation of the system during a scan does produce distortions in the final image but are
negligible compared to the horizontal and vertical distortions.

The second limitation is that of calibration drift. Calibration of such systems is gen-
erally performed using known spectral sources such as a xenon, mercury or sodium
lamp [31,32]. Spectral features can be identified from instrument output, and these are
used to establish the range and resolution of the instrument. For push-broom design
imagers [9,30], where a vertical slice of the scene is captured while the system scans in the
other spatial dimension, any change in alignment between the slit, grating and imaging
optics of the system causes the spectral calibration to drift. This is because the spectrum of
the scene alters and is no longer projected onto the same region of the FPA. The probability
of this is greater for low-cost systems, where mechanical rigidity is traded for ease of
production and reduction in price; especially where the system is being deployed for long
periods of time in a field environment.

In situ calibration is ideal for any instrument because it reduces the probability of
drift in the instrument between the measurement and the calibration. However, it is not
always practical or even possible to perform an in situ calibration due to the need for extra
equipment and the subsequent increase in measurement duration and post-processing.
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Our solution to this problem is a ground-truth in-scene reference target. This is imaged
simultaneously with the object of the imaging providing a known spectral reflection. The
target is three colours, red–green–blue, each of which have had their reflection spectrum
measured beforehand with a spectrometer (Thorlabs CCS200). A comparison of the ground-
truth reflection spectrum to the measured, uncalibrated spectrum from the instrument
allows for the hyperspectral image to be calibrated. Specific features in the measured
spectrum relate to those of the ground-truth spectrum and provide reference points for
spectral calibration.

There are many sources of systematic error in a hyperspectral image. For example,
the spectral response of silicon is temperature dependent [33]. More importantly, the light
source that illuminates the scene is not spectrally flat, which introduces a spectral bias and
can vary significantly with time in the case of natural light [34]. The in-scene reference
determines, and removes, the spectral bias inherent in raw hyperspectral images. The
removal of the spectral biases on the measured reflection spectrum is shown in our results
to be robust to different sources of illumination. This is demonstrated in this work for
natural light, LED illumination and incandescent light.

In this work, we utilised the ultra-low-cost system described by Stuart et al. [9] to
highlight the existing limitations of handheld scanning techniques before presenting an
innovative solution to these problems and demonstrating the potential of the instrument as
a handheld hyperspectral imager in a range of environmental monitoring applications. An
in-scene reference target and an algorithm coded in MATLAB for vertical and horizontal
spatial correction are used alongside an in situ light-source-independent spectral calibra-
tion. The result is a spatially accurate hyperspectral image which is spectrally calibrated,
captured with a low-cost, fully handheld, and portable smartphone hyperspectral imaging
system. This provides a novel, low-cost alternative to existing hyperspectral imaging
techniques and can be applied to a wide range of handheld imaging applications that have
been hitherto limited by spectral and spatial distortions.

Figure 1 shows a brief overview of the stages detailed in this work in the form of a
workflow diagram. This describes the steps sequentially as they were performed during
the work, but not necessarily the order they are covered in the body of the work.

 

Figure 1. Workflow diagram for each stage of the image acquisition, pre-processing, vertical and

horizontal correction and spectral correction and calibration.
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2. Materials and Methods

2.1. Image Acquisition

A smartphone-based hyperspectral imaging system was used throughout this work.
The system has a 14 nm full width half maximum spectral resolution and a spectral range of
400–700 nm. The field of view of this instrument is determined by the slit height and scan
duration. The system was the same system characterised and presented by Stuart et al. [9]
and a more detailed breakdown of this instrument and its components is available in that
work. The hyperspectral imaging system used in our developments was a push-broom style
scanning system, utilising the two spatial dimensions within the FPA of the smartphone
camera to capture a vertical ‘slice’ of a scene in the spectral plane. A series of such slices
are acquired at 30 frames per second by the FPA and combined to produce a hyperspectral
image by way of a translational scan of the full scene. Each frame captured by the camera
corresponds to the visible spectrum of one of these vertical slices of the image, as shown
in Figure 2. A typical scan duration was between 6 and 12 s for an object at a working
distance of 40 cm.

 

Figure 2. (A) A 3D render of the operating principle of the push-broom scanning smartphone

hyperspectral imager. The red arrow shows the scan direction. (B) The spectrum of a vertical slice of

a scene captured during a scan. (C) A colour image constructed of the colours captured during the

scan. The red highlighted column of pixels corresponds to the spectrum in (B).

Once the full scene had been scanned, each column of pixels in the captured spectrum
was assembled into a series of images. Each of these corresponded to a different band
of the visible spectrum. This formed a data cube; a stack of images where the x–y axes
relate to spatial dimensions and the third axis relates to the spectral plane. This idea is
illustrated in Figure 3. A colour image could be created as a convenient reference by
selecting three images from the red, green, and blue parts of the spectrum and using these
as colour channels.

To obtain a hyperspectral dataset using our handheld setup, the target object was
placed within the “target object location” section of a calibration card, as shown in Figure 4.
The vertical correction reference line, located at the bottom of the calibration card is a
straight line that runs parallel to the scan direction. This was used to determine the amount
of vertical distortion within a captured scene. The line will deviate in the output images
proportionally to the amount that the scanner deviates from the ideal path. A correction
algorithm written in MATLAB was then used to carry out a correction. The calibration card
was printed on a sheet of A4 paper for this work.

The bottom section of the image was thresholded according to the minimum brightness
value of the column in question. This allowed the distance in pixels that the line had
deviated from straight (the y-deviation value) to be measured for each x-value of the
line-mask. Each column of pixels was then shifted down by the corresponding y-deviation
value. Figure 5 show this process visually in stages.



Remote Sens. 2022, 14, 1152 5 of 14

λ
Figure 3. A visualisation of our hyperspectral data cube. The x and y axes correspond to pixel

positions in the image with the λ axis corresponding to the hyperspectral plane.

λ

 

Figure 4. The calibration card. The subject of the imaging (the measurand) was placed in the target ob-

ject location. The horizontal correct scale bar, spectral calibration refence target and vertical correction

refence line were then used as in-scene references for spectral calibration and spatial correction.

The horizontal correction scale bar was used to determine the compression or ex-
pansion of the image due to the varying velocity of the scan along the scan direction. It
was comprised of alternating black and white squares and the widths of these squares
varied with scan speed. The top region of the images was thresholded to produce a mask
which allowed the widths of the squares to be measured for each square. A line profile in
MATLAB allowed the widths of the black and white thresholded regions to be quantified in
pixels. The threshold value was half the height of the top hat function produced by taking
a line profile of the horizontal correction scale bar and is expressed in Equation (1):

Threshold = maskmin +
maskmax − maskmin

2
(1)

where maskmin and maskmax were the minimum and maximum values of the selected
region, respectively. The image was then sliced into vertical segments of widths corre-
sponding to the widths of the squares of the horizontal correction scale bar. Each of these
slices was then automatically resized using the imresize function in MATLAB to have width
equal to that of the height of the horizontal correction squares. The resized image slices
were then recombined to produce the corrected images. This corrected for the horizontal
distortion induced by non-constant scanning speed. The steps of this process are shown
visually in Figure 6.
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Threshold = mask + mask −mask2mask mask

Figure 5. The stages of the vertical spatial correction. (A) is the raw output from the data cube.

(B) shows the masked area of the vertical correction reference line overlayed onto the original image.

The area highlighted in blue is shown, enlarged, in (C). The red arrows show the motion of the

columns of pixels. (D) shows the corrected image. The top of the image has been left uncropped to

make the effect of the column shifts clearer.

 

S λ, x, y = QE λ T λ T λ Q λ R λ, x, y G λS QET TQR G

Figure 6. (A) shows the output from the column correction shown in Figure 5D. (B) shows the

masked area of the horizontal correction scale bar overlayer onto the image. A line profile of the

masked area is shown at the bottom of the image to emphasise the non-uniformity of the image.

The area highlighted in blue is shown, enlarged in (C). The red arrows represent the scaling of each

vertical slice of the image that correspond to the squares or gaps in the horizontal correction scale

bar. (D) shows the horizontally corrected output. The bottom of the image has a line profile like in B,

which shows the greater uniformity of the corrected image.
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2.2. Bias Correction

The images of the data cube needed to be sensor-bias corrected before they could be
spectrally calibrated. The dark signal (signal present due to the offset voltage of the sensor,
thermal noise, etc.) was subtracted RGB channel-wise to dark correct the images.

The resulting measured signal in each image was dependent on many influences as
shown below in Equation (2) below:

Simage(λ, x, y) = QE(λ)× TOptics(λ)× TBayer(λ)× Qe(λ)× Robject(λ, x, y)× Geff(λ) (2)

where Simage is the measured signal in an image, QE is the quantum efficiency of the
silicon sensor, TOptics is the spectral transmission of the optical system, TBayer is the spectral
transmission of the Bayer filter on the sensor, Qe is the spectral radiant energy from the
light source, Robject is the spectral reflectivity of each point in the scene and Geff is the
grating efficiency. Ideally, hyperspectral images are a measure of the spectral reflectivity
only. A ratio of the measured signal at each point in the image to the signal at a point in
the scene, specifically a white point on the paper test card, was taken to achieve this. This
result is expressed in Equation (3) below:

Scalibrated(λ, x, y) =
Simage(λ, x, y)

Spaper(λ, x, y)
× Rpaper(λ) (3)

where the ratio must be multiplied by the reflection spectrum of the paper, Rpaper, because
its inverse was introduced when the ratio was taken. This was achieved after the spectral
calibration (Section 2.3) had been performed but is shown here because it was the last stage
of the bias correction. All the other terms cancelled because they were present and equal
in both signals and only the reflection spectrum of the object at a point (x, y) in the image
remained. This is illustrated in Figure 7.

S λ, x, y = S λ, x, yS λ, x, y R λ  R ,
x, y

R = SSRS SR

S S

Figure 7. A graphical representation of Equation (3). The calibrated wavelength has been added

retroactively for reference.

2.3. Spectral Calibration

The methodology described above produced an uncalibrated hyperspectral image, cor-
rected for light-source bias and sensor bias. The images were then calibrated for wavelength,
which was achieved through the use of an in-scene reference.

The spectral calibration reference target shown in Figure 4 was used to calibrate the
images after spatial correction and bias correction with the reflection spectrum measured
using a spectrometer (Thorlabs CCS200). The target was illuminated with a broad-spectrum
white LED and the reflection spectrum of the red, green, and blue sections of the target were
measured. The LED light source emission spectrum was then measured and the reflection
spectra were corrected as per Equation (4).

Rcorr =
SRGB

SLED
(4)
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where Rcorr is the true reflection spectrum of the spectral calibration reference target section,
SRGB is the measured reflection spectrum of the test card section and SLED is the measured
signal of the emission spectrum of the light source. Rcorr was then normalised to unity for
each colour section of the spectral calibration reference target. After the data cube was
assembled, the normalised, ground-truth intensity for the spectral calibration reference
target could be compared with the calibrated spectra of the spectral calibration reference
target. The crossover points between blue and green and green and red were recorded
from the calibrated spectra as 495 nm and 596 nm, respectively. These features could be
identified in the uncalibrated spectra and gave known points to interpolate between, and
extrapolate from, to provide quantitative wavelength values for each image.

The light source correction could not be fully applied until the spectral calibration
was complete; the paper’s reflection spectrum could not be multiplied by the data until
there was a 1:1 wavelength correspondence. However, the ratio of Simage and Spaper was
still taken, and the reflection spectrum of the paper was introduced to the ground-truth
reflectance spectrum of the spectral calibration reference target. Both the ground-truth and
smartphone-measured reflectance spectra of the spectral calibration reference target had
the influence of the inverse reflection spectrum of the paper. Figure 8 shows a comparison
of the Simage/Spaper ratio signal and the lab-measured spectral reflection of the spectral
calibration reference target with the ©nverse of the paper’s reflection spectrum introduced.

S S

Δλ Δλ
Δλ Δλ

Figure 8. (A) An uncalibrated spectral reflectance plot of from the uncalibrated data cube for three

x–y points corresponding to the red, green, and blue parts of the spectral calibration reference target.

(B) The ground-truth reflection spectrum for each colour of the spectral calibration reference target

measured using a Thorlabs CCD spectrometer. The similarity between the two enabled points to be

selected as known wavelength calibration points (highlighted with vertical dotted lines). (C) shows

the spectral calibration reference target.
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The widths of ∆λ’ and ∆λ were used to calculate the wavelength increment between
images in nanometres by taking the ratio of ∆λ to ∆λ’. This increment was then applied to
each image from the starting point of the known point at 495 nm and allowed a wavelength
value to be assigned to each image in the data cube, thus spectrally calibrating the data.

3. Results

The robustness of the spatial correction to operator shake is shown in Figure 9. The
image from the data cube is significantly less recognisable before the spatial correction was
applied. The corrected image shows how effective the spatial correction algorithm can be,
even when supplied with images heavily affected by operator shake. The improvement
is sufficient as to provide context to the spectral data. This is critical for field use where
capturing images by hand in potentially inhospitable environments means operator shake
is a serious problem. The spectral data is not affected by the spatial correction, being able
to relate spectral information to a spatial reference within the image is key to extracting the
relevant information from the hyperspectral image.

 

Figure 9. (A) An RGB reconstruction from the non-spatially corrected data cube. (B) The same image

from (A) but spatially corrected.

Although additional optics in the imaging system could produce better spectral and
spatial resolution, they significantly increase the cost of the system, therefore reducing the
low-cost accessibility of the instrument. Figure 9 presents the utility of the spatial correction.
The scan time is short and so the horizontal resolution is limited. This demonstrates that
spatial correction significantly improves the utility of the handheld system by providing
better context for the spectral information allowing for more convenient retrieval of spectral
artifacts of interest within the scene.

The instrument’s light-source-independent spectral calibration is demonstrated in
Figure 10. The reflection spectra of a sample of lapis lazuli are shown, measured with
illumination from three different light sources. ©e reflection spectrum as measured with the
Thorlabs CCD spectrometer as a reference as the blue dotted line. All three of the measured
spectra from the smartphone show agreement on the trend of a peak in the blue at 485 nm
with a tail off towards the red before showing the indication of an increase towards the
near infrared.

The data shown in Figure 10 were captured with a single scan for each light source.
The natural sunlight plot shows the closest resemblance to the lab-measured spectrum
with a root mean squared error (RMSE) of 0.014 and this is to be expected because it
was a more intense light source and provided strong illumination at all wavelengths.
The spectrum measured under incandescent illumination shows a closer resemblance to
the lab-measured spectrum than does the LED illuminated measurement below 525 nm.
However, the LED data have a marginally lower RMSE compared to the incandescent data
with a RMSE of 0.0030 and 0.0033, respectively. There is more noise present in the LED
measurement indicative of low signal. However, the LED spectrum in Figure 10 shows
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there are lower levels of illumination across the spectrum when compared to the natural
and incandescent illumination spectra. The LED spectrum also contains a strong localised
peak at 450 nm; however, this presents in the measured spectrum of the sample only as a
slight increase which is within the variation due to noise. All of this indicates a resilience
to uneven spectral illumination in our approach to in situ calibration. This demonstrates
the instrument’s ability to work effectively in a range of illumination conditions, allowing
for accurate spectral calibrations to be achieved in both outdoor and indoor settings. This
further demonstrates the utility of this instrument as a whole, as a fully portable handheld
hyperspectral imaging device, capable of accurate and robust hyperspectral analysis.

Figure 10. The spectra of the light sources (left) used during the acquisition of the reflection spectra of

a sample of lapis lazuli and the measured reflection spectrum (right) with the lab-measured reflection

spectrum overlayed in blue where the light sources were (A) natural sun light, (B) incandescent light

and (C) LED light. (D) shows the sample of the lapis lazuli that was measured.

4. Discussion

Example Applications

Hyperspectral imaging is an invaluable tool, benefitting a wide range of environ-
mental monitoring applications [18]. In vegetation monitoring and precision agriculture
applications in particular, the need for early and accurate diagnosis of plant stress is critical
to the mitigation of crop losses [35–38]. Furthermore, the accurate and early detection of
poor-quality produce can significantly reduce losses due to spoiling products destined for
customers and further food production [14,39]. To date, a range of hyperspectral imag-
ing systems have been utilised as effective, non-destructive means of vegetation health
monitoring and quality assessment in food products [1,40–42].
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Hyperspectral imaging provides a non-invasive, rapid means of determining plant
quality and health, delivering significant benefits over traditional monitoring methods. The
handheld hyperspectral smartphone system further benefits these applications by the user-
friendly nature of the instrument and combined with the benefits of the spectral and spatial
calibration techniques discussed within this article, this makes it a highly effective accessible
hyperspectral imaging system and a powerful tool for accurate quality assessment.

The instrument’s utility as a hyperspectral imaging system in quality assessment
applications is shown in Figure 11, where a red Gala apple with bruising damage is
used as the target object. The apple has a bruise in its centre which is more apparent
at certain wavelengths than others, e.g., 670 nm. This demonstrates the ability of this
instrument because it is capable of detecting damage and defects before they become
apparent to the naked eye, providing valuable time to prevent the loss of further products
within a large batch [43,44]. Figure 11 shows bruising is much more apparent withing the
red portion of the spectrum due to the increased reflectivity of healthy tissues at these
wavelengths. This can be compared to the reduced visibility, particularly within the blue
portion of the spectrum due to the lower reflectance of fruit tissue at these wavelengths [14].
This demonstrates the utility of hyperspectral imaging for the purpose of quality control
because the imaging allows for enhanced contrast of certain features that present at specific
wavelengths that are lost when imaged using Bayer-filter photography that integrates
over wider bands of wavelengths. This is particularly pertinent in fruits with darker
pigmentation because the damage can remain undetectable by traditional methods for
extended periods, increasing the potential of further losses [45,46].

 

Figure 11. (A) A photograph of the measurand apple. (B) A raw frame from the data cube. (C) Six

spectral bands of a hyperspectral image of a red Gala apple demonstrating the varying levels of

detection across the wavelength range of the instrument.
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5. Conclusions

A method for spatially correcting for operator shake and performing in situ spectral
calibration in handheld hyperspectral imaging has been reported alongside a demon-
stration of its application withing the field of fruit quality assessment. This technique
dramatically improves the utility of a low-cost, smartphone-based hyperspectral imaging
system using a printed in-scene reference card enabling accurate measurements to be taken
in the field without need for translation stages. This work broadens the application of low-
cost hyperspectral imaging to industries and scientific investigations for which it would
otherwise be insufficiently robust to long measurement sessions in the field. The in situ
light-source-independent calibration allows for extended field operation while minimising
the influence of calibration drift and removing the need for calibration after the imaging
has been completed. The foundations have been laid for agricultural and environmen-
tal monitoring studies that require non-destructive testing where the availably of data is
afforded by the low cost of the systems.
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