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Abstract

The accuracy and the limits of validity of the discontinuous pressure model, which describes fluid flow inside a fracture

using a subgrid scale approach, is assessed by comparing simulation results with those from direct simulation using Stokes

flow. While the subgrid scale approach assumes a unidirectional flow, the Stokes model includes both velocity components.

This is at the cost of meshing the interior of the fracture, which is here achieved through a spline-based mesh generation

scheme. This scheme explicitly couples the spline representing the discontinuity to the fracture mesh and thereby alleviates

the (re)meshing requirements for the interior of the fracture. The subgrid model and the direct simulation of Stokes flow

approaches are compared by simulating a typical case containing a pressurised fracture, highlighting the advantages of using

a subgrid model for the range in which its assumptions are valid, and showing its capabilities to accurately include the

influence of the fracture on the porous material even outside this range.

Keywords Poroelasticity · Fracture · Discontinuous pressure model · Direct numerical simulation · Stokes flow

1 Introduction

Fluid flow inside fractures is commonly modelled using the

cubic law, allowing the two- or three-dimensional interior of

the fracture to be reduced to a line or a plane, respectively.

It has been shown experimentally that this cubic law

accurately predicts the total fluid flow within a fracture [42].

Due to its ease of use, providing a direct relation between

the fracture opening and pressure gradient, and the total

fluid transport inside the fracture, it is used in the simulation

of fractures in non-porous media [7, 20] as well as in porous

materials, in the latter case either through including a leak-

off term [6] or by coupling the fluid flux to the flow inside

the porous material [9, 21, 22, 31, 34].

An extension of the cubic law is the continuous pressure

model [32, 41], which directly imposes the fluid flowing

into the porous material based on changes in the velocity

profile instead of modelling the total fluid transport

inside the fracture. This model can be further extended
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by introducing an interface permeability term [14, 24]

governing the pressure drop between the fracture and the

porous material, resulting in a discontinuous pressure model

[30, 37]. Comparisons between these models indicate that

all three model variations provide the same results when

the interface permeability is sufficiently high [29] and their

results are independent of the used discretisation method

[16]. While these extended models allow for more physical

phenomena to be included, and provide more information

about the fluid behaviour inside the fracture, they still

maintain the same assumptions as the cubic law, i.e. the

fluid flow is solely dependent on the tangential pressure

gradient, and a constant pressure for the complete fracture

height. These assumptions are usually justified due to the

small fracture aperture compared to its length, producing a

near-unidirectional flow inside the fracture [12].

An alternative to using a fracture flow model is to directly

simulate the fluid inside the fracture. This has been achieved

using a single porous domain, in which the fractures have

been included by altering the porosity and permeability [23,

26, 38]. Alternatively, the interior of the fracture can be

considered a separate domain, allowing the fluid flow inside

the fracture to be described through the Stokes equations

[1, 2, 5, 8, 27]. However, this requires a separate mesh to

be generated for the interior of the fracture, and this mesh

needs to deform and extend to account for further fracture

opening and propagation, respectively.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10596-022-10138-6&domain=pdf
http://orcid.org/0000-0001-7770-7440
http://orcid.org/0000-0002-3457-3574
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While it is known that the cubic law and derived models

provide accurate results for the overall fluid transport inside

the fracture, no comparison has been made yet between

the discontinuous pressure model and the actual fluid

behaviour inside the fracture. Herein, we briefly summarise

the discontinuous pressure model and describe a method for

simulating Stokes flow within deforming and propagating

fractures with the aim of comparing these two approaches.

Three cases will be assessed, namely a stationary fracture,

a propagating fracture with a realistic opening height, and

a case in which this height has been increased beyond the

assumptions normally valid for the discontinuous pressure

model.

2 Porousmedium

We consider a two-dimensional domain Ωp, which is

composed of a porous material and is intersected by a

fracture, see Fig. 1. The porous sub-domain is described

by the displacements of the solid, u, and by the interstitial

Fig. 1 Schematic overview of the porous domain and of the fracture

domain

fluid pressure pp. The fracture is represented as a one-

dimensional discontinuity Γd , which allows for a jump in

the displacement field and in the fluid pressure across the

fracture.

2.1 Governing equations

The deformations of the porous material are assumed to

occur fast compared to the changes in interstitial fluid

pressure. This allows to neglect inertia terms, resulting in

the quasi-static balance of momentum for the solid-fluid

mixture:

∇ ·
(

σ s − αppI
)

= 0 (1)

with I the identity matrix and σ s the Cauchy stress tensor

inside the solid material. Linear elasticity and plane-strain

conditions are assumed.

The fluid flow inside the porous material is governed by

Darcy’s law. Together with the mass balance this gives the

following expression for changes in the pressure due to the

solid deformations and a slowly moving fluid:

1

M
ṗp + α∇ · u̇ −

k

μ
∇pp = 0 (2)

with α the Biot coefficient, M the Biot modulus modulus,

μ the fluid viscosity and k the intrinsic permeability. The

standard boundary conditions apply:

σ s · n = τ on Γτ or u = u on Γu (3)

q · n = q on Γq or pp = p on Γp (4)

with τ the prescribed traction, q the prescribed fluid flux,

and u and p the constrained displacements and interstitial

fluid pressure.

2.2 Discretisation

The porous domain is discretised using T-splines [3, 36],

cast into a traditional finite element format using Bézier

extraction [25, 35]. The discontinuity is represented using

interface elements [39, 40] and is propagated along a C0

continuity line through mesh-line insertion [10, 11]. The

interstitial pressure is discretised using the cubic T-splines

Npp and the solid displacements is discretised using the

quartic T-splines N s :

u =
∑

el

N su
el (5)

pp =
∑

el

Npppel
p (6)

The temporal discretisation of the mass balance has been

carried out using an implicit backward Euler scheme,

evaluating all variables of the current time step at time
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t +�t and discretising the velocity terms as �̇ = (�t+�t −

�
t )/�t .

These discretisations allow the momentum balance from

Eq. 1 to be cast into its weak form and discretised as:

∫

Ωp

BT
s DelBsu

t+�t dΩp −

∫

Ωp

αBT
s mNpppt+�t

p dΩp

+ f d =

∫

Γt

NT
s τ dΓt (7)

while the mass balance from Eq. 2 becomes:

∫

Ωp

αNT
ppmT Bs

(

ut+�t − ut
)

dΩp

+

∫

Ωp

�t
k

μ

(

∇Npp

)T
∇Npppt+�t

p dΩp

+

∫

Ωp

1

M
NT

ppNpp

(

pt+�t − pt
)

dΩp + �tqd

= −�t

∫

Γq

NT
ppq dΓq (8)

with mT = [1 1 0] and Bs = LN s , where L is the

displacement to strain mapping matrix. The arrays f d and

qd represent the forces and the fluxes which stem from the

discontinuity, and will be detailed in the next section.

3 Fractures

The interior of a fracture is represented by a two-

dimensional domain Ωf , shown in Fig. 1b. This domain

uses the local coordinate system (xd , yd), has a total length

based on the current fracture length Lt+�t , and has a

height corresponding to the fracture opening height at

the end of the time step h = nT
Γd

N s�u�t+�t , using the

displacement jump �u�t+�t and normal to the discontinuity

nΓd
. The interior of the fracture is described through the

fluid pressure pd , and the fluid velocity components v, w.

3.1 Governing equations

The fracture is assumed to not contain any solid material

and to have smooth, but porous walls. It is assumed that

the fluid flow inside the fracture adapts fast to changes

compared to the fluid pressure inside the porous material,

allowing inertial terms to be neglected. This has previously

been shown to be a valid assumption through simulations

in which the inertial terms were included [18]. These

assumptions allow the fluid behaviour to be described

through the Stokes equations:

−
∂pd

∂xd

+ μ

(

∂2v

∂x2
d

+
∂2v

∂y2
d

)

= 0 (9)

−
∂pd

∂yd

+ μ

(

∂2w

∂x2
d

+
∂2w

∂y2
d

)

= 0 (10)

∂v

∂xd

+
∂w

∂yd

= 0 (11)

At the boundaries on the top and bottom walls of the fracture

we have a no-slip condition:

td ·

(

v

w

)

= 0 on Γ ±
d (12)

and, using the tangential vector td , the normal vector nd

and the interface permeability of the walls ki , the mass

conservation condition across the fracture walls reads:

nd ·

(

v

w

)

+ ḣ + ki

(

pd − pp

)

= 0 on Γ ±
d (13)

which enforces the velocity at the fracture walls to match

the changes in fracture height and fluid leak-off. This fluid

leak-off is also imposed on the porous material by imposing

the fracture outflow through the top wall:

w+ = ki

(

pd − p+
p

)

(14)

and similar for the bottom wall. By altering this interface

permeability, cases ranging from fluid-blocking fractures to

fractures containing a near to continuous pressure between

them and the surrounding porous material can be simulated.

At the inlet of the fracture, a fully developed parabolic

velocity profile is imposed:

v = Qin

(

3

2h
−

6y2
d

h3

)

on Γin (15)

with Qin the total fracture inflow. Finally, the traction used

to couple the fluid pressure inside the fracture to the stresses

inside the porous material is given by:

τd = τs(�u�) − pdnd (16)

with the solid part, τs , of the traction assumed to follow

an exponential traction-separation law for the normal

component of these tractions, and being zero for the

tangential component.

It is noted that these boundary conditions are commonly

used in fracture flow models. These boundary conditions

were used both for the discontinuous pressure model and for

the direct simulation of the flow inside the fracture to enable

a direct comparison of the results. However, the formulation

for the direct simulation of the fracture is such that other

boundary conditions can easily be substituted, for instance

the Beavers-Joseph-Saffman condition [4, 33], which is

commonly used for Stokes flow over porous objects.
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3.2 Discontinuous pressuremodel

The discontinuous pressure model [12, 13, 30] assumes

the pressure gradient inside the fracture to only depend on

xd , while the pressure variations in yd are negligible. It is

furthermore assumed that the tangential velocity v is much

larger than the normal velocity w, and that changes in v

are dominated by yd , such that ∂v/∂yd >> ∂v/∂xd . These

assumption originates from the large difference between the

fracture length and opening height, and reduce Eq. 9 to:

−
∂pd

∂xd

+ μ
∂2v

∂y2
d

= 0 (17)

from which the velocity profile inside the fracture is

obtained as:

v =
1

2μ

∂pd

∂xd

(

|yd |2 −

(

h

2

)2
)

(18)

Combining this velocity profile with the mass conservation

inside the fracture, Eq. 11, integrating over the fracture

height, and substituting the normal velocity at the walls with

the boundary condition from Eq. 13 results in:

ht+�t − ht

�t
+ki

(

2pd − p+
p − p−

p

)

−
∂

∂x

(

h3

12μ

∂pd

∂xd

)

= 0

(19)

which is discretised using Eqs. 5, 6, and pd =
∑

Ndpd as:

∫

Γd

NT
d nT

d N s�u�t+�t − NT
d nT

d N s�u�t dΓd

+ki�t

∫

Γd

2�tNT
d Ndpt+�t

d − �tNT
d Nppp+

p
t+�t

−�tNT
d Nppp−

p
t+�t

dΓd

+
�t

12μ

∫

Γd

∂NT
d

∂xd

(

nT
d N s�u�t+�t

)3 ∂NT
d

∂xd

pt+�t
d dΓd = 0

(20)

with the interface permeability term using a lumped

integration scheme to prevent non-physical oscillations

in the fracture outflow velocity [19, 40] and the other

terms using a standard Gauss integration scheme. If this

lumped integration scheme was not employed, these spatial

oscillations would dominate the solution near the fracture

tips for courser meshes [19]. Equations 7, 8, and 20 fully

describe the behaviour of the fractured porous material, with

the coupling terms between the fracture and porous material

given by:

f d =

∫

Γ ±
d

NT
s R

(

τ t+�t
s − ndNdpt+�t

d

)

dΓ ±
d (21)

qd = ki

∫

Γ ±
d

NT
ppNdpt+�t

d − NT
ppNpppt+�t

p dΓ ±
d (22)

using the rotation matrix R to convert between the fracture-

local and global coordinate systems [15], and the integral

over Γ ±
d indicates that the integration is carried out for

the top as well as the bottom walls of the fracture.

These equations are combined in a single monolithic

scheme, solving simultaneously for the displacements

ut+�t , interstitial fluid pressure pt+�t
p , and discontinuity

pressure pt+�t
d .

3.3 Direct simulation

For the direct simulation of the fluid flow inside the fracture

the interior of the fracture needs to be discretised, and this

discretisation needs to be adapted to changes in opening

height and fracture length. To achieve this we start of with

one-dimensional NURBS which define the discontinuity

in the porous domain, and create an additional set of

one-dimensional NURBS to represent the fracture height,

as shown in Fig. 2a. These two NURBS are then used

to create a rectangular mesh in the parametric domain

(Fig. 2b), which in turn is mapped onto the physical

domain through xd = ξ and yd = η · h/2 for the

horizontal fractures considered in this paper (Fig. 2c). Since

this discretisation explicitly uses the NURBS defining the

discontinuity, the fracture mesh is easily updated once the

fracture propagates. Furthermore, the use of a parametric

domain as in-between allows the integration to be done over

η, thereby incorporating changes in the fracture opening

height without the need to regenerate the mesh.

To aid the implementation of the boundary conditions

between the porous and fracture domains, the velocity

components are split in an interior and boundary part. This,

combined with the mesh generation from two separate one-

dimensional NURBS, discretises the interior of the fracture

as:

pd =
∑

(

Npp ⊗ N3

)

pd =
∑

Npdpd (23)

v =
∑

(N s ⊗ N4b) vb +
∑

(

N2+
s ⊗ N4i

)

vi

+
∑

(

N1
s ⊗ N4i

)

vin

=
∑

Nvbvb +
∑

Nvivi +
∑

N invin (24)

w =
∑

(N s ⊗ N4b) wb +
∑

(N s ⊗ N4i) wi

=
∑

Nwbwb +
∑

Nwiwi (25)



Computational Geosciences

Fig. 2 Overview of the steps

performed for the discretisation

of the fracture

with N3 and N4i the sets of cubic and quartic splines

used for the height discretisation of the fracture, and N4b

the splines used for the height discretisation that are non-

zero at the top and bottom of the fracture. N1
s indicates

that only the first spline is used for the inlet velocity

discretisation, and the other splines N2+
s for the interior

discretisation. The set of splines N2+
s directly implements

the no flow boundary condition at the fracture tip by using

only the discontinuous splines, whereas Npp and N s use

all splines along the discontinuity, thereby allowing for

non-zero vertical velocities and pressures at the fracture tip.

Using the discretisations from Eqs. 23–25 the momentum

balances (9 and 10) and mass balance (11) are cast into a

weak form and discretised as:
∫

Ωf

μ

(

∂Nwi

∂xd

)T (

∂Nwi

∂xd

wi +
∂Nwb

∂xd

wb

)

+μ

(

∂Nwi

∂yd

)T (

∂Nwi

∂yd

wi +
∂Nwb

∂yd

wb

)

+NT
wi

∂Npd

∂yd

pd dΩf = 0 (26)

∫

Ωf

μ

(

∂Nvi

∂xd

)T (

∂Nvi

∂xd

vi +
∂Nvb

∂xd

vb

)

+μ

(

∂Nvi

∂yd

)T (

∂Nvi

∂yd

vi +
∂Nvb

∂yd

vb

)

+NT
vi

∂Npd

∂yd

pd dΩf

= −

∫

Ωf

μ

(

∂Nvi

∂xd

)T
∂N in

∂xd

vin +

(

∂Nvi

∂yd

)T
∂N in

∂yd

vin dΩf

(27)

∫

Ωf

NT
pd

(

∂Nvi

∂xd

vi +
∂Nvb

∂xd

vb

)

+NT
pd

(

∂Nwi

∂yd

wi +
∂Nwb

∂yd

wb

)

dΩf

= −

∫

Ωf

NT
pd

∂N in

∂xd

vin dΩf (28)
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with the fracture height h = nT
d N s�u�t+�t , and the spatial

derivatives in the physical space, required for the mapping

xd = ξ , yd = ηh/2, given as:

∂Npd

∂xd

=
∂Npp

∂ξ
⊗ N3

−
η

nT N s�u�t+�t
nT ∂N s

∂ξ
�u�t+�tNpp ⊗

∂N3

∂η

(29)

∂Npd

∂yd

=
2

nT N s�u�t+�t
Npp ⊗

∂N3

∂η
(30)

The boundary conditions from Eqs. 12–13 are enforced

through their weak forms, and are discretised as:

∫

Γ ±
d

n1N
T
wbNvbvb + n2N

T
wbNwbwb

+kiN
T
wbNpdpd − kiN

T
wbNpppp

+
1

2�t
NT

wbn
T N s

(

�u�t+�t − �u�t
)

dΓ ± = 0 (31)

∫

Γ ±
d

t1N
T
vbNvbvb + t2N

T
vbNwbwb dΓ ± = 0 (32)

using the normal vector n = [n1 n2] and the tangential

vector t = [t1 t2], both taking into account large

deformations. Unlike the discontinuous model, using a

lumped integration scheme for the interface permeability

terms is no longer possible due to the non-square matrices.

As a result, possible oscillations in the fracture outflow can

occur. Finally, the coupling terms used in Eqs. 7 and 8 are

given by:

f d =

∫

Γ ±
d

NT
s R

(

τ t+�t
s − ndNpdpt+�t

d

)

dΓ ±
d (33)

qd = ki

∫

Γ ±
d

NT
ppNpdpt+�t

d − NT
ppNpppt+�t

p dΓ ±
d (34)

The porous domain—Eqs. 7 and 8—and the fracture

domain—Eqs. 26–28 and Eqs. 31–32—are solved in an

iterative manner until both have achieved a converged

solution at t + �t , thereby using a fully implicit time

discretisation scheme. First, an iteration of the porous

domain with a Newton-Raphson scheme is carried out. To

approximate the influence of the fracture flow, an undrained

assumption is used in which the pressure inside the fracture

is altered due to changes in the fracture height [17, 28].

Using Eq. 19 the pressure changes inside the fracture can be

approximated as:

∂pt+�t
d = −

1

2ki�t
∂ht+�t +

1

2
∂p+

p +
1

2
∂p−

p (35)

This allows to approximate the derivatives of the coupling

terms in Eqs. 33–34 with regard to the interstitial fluid

pressure and displacements as:

∂f d

∂pp

= −
γ

2

∫

Γ ±
d

NT
s ndN±

pp dΓ ±
d (36)

∂f d

∂u
=

∫

Γ ±
d

NT
s R

∂τ s

∂u
Nds dΓ ±

d

+
γ

2ki�t

∫

Γ ±
d

NT
s RnT

d ndNds dΓ ±
d (37)

∂qd

∂pp

=

∫

Γ ±
d

−kiN
T
ppNpp dΓ ±

d −
kiγ

2

∫

Γ ±
d

NT
ppN±

pp dΓ ±
d

(38)

∂qd

∂u
= −

γ

2�t

∫

Γ ±
d

NT
ppndNds dΓ ±

d (39)

using the matrix Nds defined as �u� = Ndsu, and a

stabilising factor 0 < γ < 1. This factor is applied

to alter the tangential terms related to the fracture, and

prevent oscillations from the iterative scheme. A factor

γ = 0.5 worked well for all cases described in this paper,

and prevented unstable oscillations that occurred for higher

values of γ .

After a Newton-Raphson iteration has been carried out

using the above tangential matrices, the fluid velocity and

pressure inside the fracture are resolved using the newly

obtain interstitial pressure pt+�t
p and the displacements

ut+�t from the most recent Newton-Raphson iteration.

Once these velocities and pressure have been determined,

the error of the porous domain is checked based on the

newly obtained fracture pressure (since the fluid flow within

the fracture is linear and the opening height has not changed,

the fracture domain is exactly resolved at this point). This

error is first used in a linear line-search scheme to improve

the convergence. If the error exceeds the convergence

criterion afterwards, another iteration of the porous domain

is carried out, followed by again resolving the fracture flow.

This scheme is summarised through Algorithm 1.

Once convergence has been reached in the porous

domain, the stresses ahead of the discontinuity are checked,

and if they exceed the fracture criterion σyy > ft the

discontinuity is propagated for a single element. Due to the

dependence of the fracture mesh on this discontinuity, this

automatically extends the fracture mesh to include the new

discontinuity length. The fracture propagation is assumed to

occur during the time step, and therefore more iterations are

performed to obtain a converged solution at t +�t using the

new discontinuity length. Finally, once a converged solution

is achieved and no fracture propagation occurs, the complete

system is considered to have achieved a correct solution and

the next time step is initiated.
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4 Results

To compare the discontinuous pressure model with the

Stokes flow model, a typical case is simulated, shown in

Fig. 3. The domain is 4 × 10 m, with a horizontal fracture

originating at the left boundary. In Sections 4.1 and 4.3

the fracture has a length Lf rac = 2 m and is not allowed

to propagate. In Section 4.2 the fracture has an initial

length Lf rac = 0.5 m and is allowed to propagate. A

fluid inflow Qin = 10−6 m2/s is imposed at the fracture

inlet. The porous material is characterised by a Young’s

modulus E = 20 GPa, a Poisson’s ratio ν = 0.2, porosity

nf = 0.2, intrinsic permeability k = 10−16 m2, Biot

coefficient α = 1.0, and a bulk modulus Ks = 10 GPa.

The fluid has a viscosity μ = 10−3 Pa s and a bulk

modulus Kf = 1 GPa. The discontinuity is characterised

by the interface permeability ki = 10−10 m/Pa s and an

exponential traction-separation relation with tensile strength

ft = 1 MPa and a fracture energy Gc = 1 kN/m.

The temporal discretisation has been carried out using

an implicit Euler scheme, using timestep size �t = 1 s.

The spatial discretisation has 10 × 5 elements away from

the discontinuity, with additional refinement layers inserted

near the centre. Each of these refinement layers uses half

the element length of the previous layer and consists of 4

vertical elements, as shown in Fig. 4. The fracture mesh for

the Stokes flow used 10 elements to discretise the fracture

height.

4.1 Non-propagating fracture

The simulations using the discontinuous pressure model

exhibit a quadratic convergence rate, as shown in Fig. 5b.

Due to the approximations made for the tangential matrix,

and the iterative scheme alternating between the porous

and fracture domains, only a linear convergence rate was

attained for the simulations for Stokes flow. This difference

in convergence rate, combined with the subgrid model only

requiring a single domain to be resolved, resulted in much

faster simulations using the discontinuous pressure model.

The pressure inside the porous material and the

discontinuity are shown in Fig. 4. The results from the

Stokes flow simulations show a near to constant pressure

over the fracture height, and this pressure corresponds well

to the value computed in the discontinuous pressure model.

Hence, the model with the Stokes flow and discontinuous

pressure model obtain the same interstitial fluid pressure

surrounding the fracture, and the displacements of the

porous material result in a similar fracture opening height of

approximately h = 0.1 mm at t = 200 s.

Fig. 3 Simulation domain
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Fig. 4 Fluid pressure after

t = 200 s for the

non-propagating fracture case.

Vertical displacements

magnified by a factor 104

Fig. 5 Energy based residual

during the Newton-Raphson

iterations for the

non-propagating fracture case at

selected time steps
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Fig. 6 Fluid pressure inside the

discontinuity at t = 200 s
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Fig. 7 Fluid transport inside the

discontinuity at t = 200 s
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This pressure in the discontinuity is shown in Fig. 6

for simulations using additional mesh refinement layers.

While both simulations attain the same pressure for finer

meshes, the discontinuous pressure model yields slightly

more accurate results for coarser meshes. This is also seen

for the total fluid transport inside the fracture, Fig. 7, where

the Stokes flow model shows larger oscillations compared

to the discontinuous pressure model for coarser meshes near

the fracture tip.

The outflow from the fracture is shown in Fig. 8. No

oscillations are observed in Fig. 8b due to the lumped

integration scheme applied to the interface permeability

terms in the discontinuous pressure model. Since the

lumped integration scheme could not be applied to the

Stokes flow model, strong oscillations in the fracture

outflow can be observed for this model except for

higher levels of refinement. However, these oscillations

average out and do not influence the pressure inside the

discontinuity or the total fluid flux inside the fracture.

Finally, the horizontal velocity inside the fracture

obtained through the Stokes flow simulations and the

velocity obtained by post-processing the discontinuous

pressure model results given in Fig. 9 show no differences

between the two models. It can therefore be concluded that

the Stokes flow and discontinuous pressure model yield

the same results, while the Stokes flow model is slower to

converge and requires a finer mesh.

4.2 Propagating fracture

Fracture propagation is shown in Fig. 10. Similar to the

non-propagating fracture, the discontinuous pressure model

yields slightly more accurate results for coarser meshes,

but both models converge towards the same result upon

mesh refinement. However, for both models the accuracy

is not governed by the fracture flow model, but by the

element-wise fracture propagation associated with the use

of interface elements.

The fluid velocity inside the fracture after 20 min is

shown in Fig. 11. For the initial 0.5 m of the fracture no

cohesive zone model was used, whereas after this initial

length the traction-separation law is present, since this

Fig. 8 Fluid outflow at

t = 200 s
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Fig. 9 Velocity profiles inside

the fracture at t = 200 s for the

discontinuous pressure model

(red dashed line, obtained

through post-processing) and

Stokes flow (blue solid line)

Fig. 10 Fracture propagation

Fig. 11 Horizontal and vertical

velocities inside the fracture at

t = 20 min
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Fig. 12 Fluid velocity inside the

fracture using h0 = 2 m at

t = 10 s

corresponds to the newly fractured part of the discontinuity.

This causes a sudden change in the fracture opening height,

resulting in two peaks in the vertical velocity of the fluid to

adapt to the new opening height. Comparing the magnitude

of the vertical velocity to that of the horizontal velocity

shows the vertical velocity is almost negligible, justifying

the assumptions made for the discontinuous pressure model.

4.3 Opening height

Finally we consider a case in which the fracture opening

height is artificially increased by imposing an additional

offset [18], so that the opening height h = h0(2 − xd)

+nT
d N s�u�. By using this initial opening height fractures

which are outside of the usual height range can be

simulated, and the limits in which the discontinuous

pressure model becomes invalid can be investigated. It is

noted, however, that the cases presented in this section are

not realistic and merely serve to illustrate the limits of the

discontinuous pressure model.

The velocity inside the fracture is shown in Fig. 12 using

h0 = 2 m. While the vertical velocity component is clearly

present in the Stokes flow simulation, this component is not

included in the discontinuous pressure model as it assumes

a unidirectional flow in the interior of the fracture. This is

also seen in the horizontal velocity profiles in Fig. 13. While

the results for h0 = 2 cm and h0 = 20 cm match, the

combination of no-slip and interface permeability boundary

conditions allows for a horizontal flow component due to

the steep fracture walls. However, even though the velocity

profile and flow direction inside the fracture is different, the

total fluid transport inside the fracture still agrees between

both models.

Another effect of the increased fracture opening is the

fluid flowing much easier inside the fracture compared to

the porous material. The pressure drops shown in Fig. 6

Fig. 13 Velocity profiles inside

the fracture at t = 10 s for the

discontinuous pressure model

(red dashed line, obtained

through post-processing) and

Stokes flow (blue solid line) at

x = 0.5 m
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are the result of fracture with a 0.1 mm opening. The

increased opening heights provided in this section allow for

a lower pressure gradient inside the fracture, resulting in an

almost constant pressure throughout the complete fracture.

As a result, the fluid flow towards the porous material

is no longer limited by the transport within the fracture,

but solely governedby the interface permeability and the

transport inside the porous material. Therefore, even though

the fluid velocity looks significantly different between the

two models, the effect of the fracture on the surrounding

porous material is the same.

5 Conclusions

Two models have been discussed for the simulation of

fluid flow inside pressurised and propagating fractures.

The discontinuous pressure model assumes a negligible

influence of the fluid velocity normal to the fracture

walls, allowing the interior of a two-dimensional fracture

to be described as a one-dimensional line. In contrast,

the described Stokes flow model simulates both velocity

components inside the fracture, but requires the interior of

the fracture to be discretised.

A comparison between the two models shows that for

a typical fracture case the same results are obtained. Due

to the low fracture opening height relative to its length the

tangential fluid velocity is much higher compared to the

velocity normal to the fracture, justifying the assumptions

made for the discontinuous pressure model. Furthermore,

a comparison between the convergence rate using the

discontinuous pressure model with the Stokes flow model

shows the markedly better convergence of the discontinuous

pressure model. Finally, the discontinuous pressure model

allows for a lumped integration scheme, suppressing

fracture outflow oscillations. This is not possible for the

Stokes flow model.

Finally, simulations have been shown using an artificially

large opening height, i.e. outside of the range in which

cubic-law based model is justified. The velocity inside

the fracture now clearly differs between both models,

with the Stokes flow showing a two-dimensional flow

pattern, whereas the discontinuous pressure model only

exhibiting fluid flow in the tangential direction. However,

due to the high opening height both models result in

a near-constant pressure within the fracture, yielding the

same fracture outflow. Therefore it can be concluded that

even though the discontinuous pressure model provides

incorrect results for the interior of the fracture, it is able

to accurately describe the overall influence of the fracture

on the surrounding porous material even for fractures

which are such that the underlying assumptions have been

violated.
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