
This is a repository copy of Tractability frontiers in probabilistic team semantics and
existential second-order logic over the reals.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/184436/

Version: Published Version

Article:

Hannula, M. and Virtema, J. (2022) Tractability frontiers in probabilistic team semantics
and existential second-order logic over the reals. Annals of Pure and Applied Logic, 173
(10). 103108. ISSN 0168-0072

https://doi.org/10.1016/j.apal.2022.103108

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

JID:APAL AID:103108 /FLA [m3L; v1.314] P.1 (1-30)

Annals of Pure and Applied Logic ••• (••••) ••••••

Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

Tractability frontiers in probabilistic team semantics and

existential second-order logic over the reals

Miika Hannula a,∗,1, Jonni Virtema b,c,2

a Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
b Institut für Theoretische Informatik, Leibniz Universität Hannover, Hannover, Germany
c Department of Computer Science, University of Sheffield, Sheffield, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Available online xxxx

MSC:
03B70
03B60
68Q19
03D15
68Q05
68T27

Keywords:
Dependence logic
Team semantics
Metafinite structures
Blum-Shub-Smale machine

Probabilistic team semantics is a framework for logical analysis of probabilistic
dependencies. Our focus is on the axiomatizability, complexity, and expressivity of
probabilistic inclusion logic and its extensions. We identify a natural fragment of
existential second-order logic with additive real arithmetic that captures exactly the
expressivity of probabilistic inclusion logic. We furthermore relate these formalisms
to linear programming, and doing so obtain PTIME data complexity for the logics.
Moreover, on finite structures, we show that the full existential second-order logic
with additive real arithmetic can only express NP properties. Lastly, we present a
sound and complete axiomatization for probabilistic inclusion logic at the atomic
level.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Metafinite model theory, introduced by Grädel and Gurevich [20], generalizes the approach of finite model

theory by shifting to two-sorted structures that extend finite structures with another (often infinite) domain

with some arithmetic (such as the reals with multiplication and addition), and weight functions bridging the

two sorts. A simple example of a metafinite structure is a graph involving numerical labels; e.g., a railway

network where an edge between two adjacent stations is labeled by the distance between them. Metafinite

structures are, in general, suited for modeling problems that make reference to some numerical domain, be

it reals, rationals, or complex numbers.

* Corresponding author.

E-mail addresses: miika.hannula@helsinki.fi (M. Hannula), j.t.virtema@sheffield.ac.uk (J. Virtema).
1 Supported by the Academy of Finland grant 322795.
2 Supported by the DFG grant VI 1045/1-1.

https://doi.org/10.1016/j.apal.2022.103108
0168-0072/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

JID:APAL AID:103108 /FLA [m3L; v1.314] P.2 (1-30)

2 M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) ••••••

A particularly important subclass of metafinite structures are the R-structures, which extend finite struc-

tures with the real arithmetic on the second sort. The computational properties of R-structures can be

studied with Blum-Shub-Smale machines [6] (BSS machines for short) which are essentially register ma-

chines with registers that can store arbitrary real numbers and which can compute rational functions over

reals in a single time step.

A particularly important related problem is the existential theory of the reals (ETR), which contains

all Boolean combinations of equalities and inequalities of polynomials that have real solutions. Instances of

ETR are closely related to the question whether a given finite structure can be extended to an R-structure

satisfying certain constraints. Moreover, as we will elaborate more shortly, ETR is also closely related to

polynomial time BSS-computations.

Descriptive complexity theory for BSS machines and logics on metafinite structures was initiated by Grädel

and Meer who showed that NPR (i.e., non-deterministic polynomial time on BSS machines) is captured by a

variant of existential second-order logic (ESOR) over R-structures [22]. Since the work by Grädel and Meer,

others (see, e.g., [11,26,28,38]) have shed more light upon the descriptive complexity over the reals mirroring

the development of classical descriptive complexity.

Complexity over the reals can be related to classical complexity by restricting attention to Boolean inputs.

The so-called Boolean part of NPR, written BP(NPR), consists of all those Boolean languages that can be

recognized by a BSS machine in non-deterministic polynomial time. In contrast to NP, which is concerned

with discrete problems that have discrete solutions, this class captures discrete problems with numerical

solutions. A well studied visibility problem in computational geometry related to deciding existence of

numerical solutions is the so-called art gallery problem. Here one is asked can a given polygon be guarded

by a given number of guards whose positions can be determined with arbitrary precision. Another typical

problem is the recognition of unit distance graphs, that is, to determine whether a given graph can be

embedded on the Euclidean plane in such a way that two points are adjacent whenever the distance between

them is one. These problems [1,40], and an increasing number of others, have been recognized as complete

for the complexity class ∃R, defined as the closure of ETR with polynomial-time reductions [39]. The exact

complexity of ∃R is a major open question; currently it is only known ([8]) that

NP ≤ ∃R ≤ PSPACE [8] (1)

Interestingly, ∃R can also be characterized as the Boolean part of NP0
R, written BP(NP0

R), where NP0
R is

non-deterministic polynomial time over BSS machines that allow only machine constants 0 and 1 [7,41].

It follows that ∃R captures exactly those properties of finite structures that are definable in ESOR (with

constants 0 and 1). That ∃R can be formulated in purely descriptive terms has, to the best of our knowledge,

never been made explicit in the literature. Indeed, one of the aims of this paper is to promote a descriptive

approach to ∃R. In particular, our results show that certain additive fragments of ESOR, which correspond

to subclasses of ∃R, collapse to NP and P.

In addition to metafinite structures, the connection between logical definability encompassing numerical

structures and computational complexity has received attention in constraint databases [4,21,37]. A con-

straint database models (e.g., geometric data) by combining a numerical context structure (such as the real

arithmetic) with a finite set of quantifier-free formulae defining infinite database relations [32].

Renewed interest to logics on frameworks analogous to metafinite structures, and related descriptive

complexity theory, is motivated by the need to model inferences utilizing numerical data values in the

fields of machine learning and artificial intelligence. See e.g. [24,44] for declarative frameworks for machine

learning utilizing logic, [10,42] for very recent works on logical query languages with arithmetic, and [31]

for applications of descriptive complexity in machine learning.

In this paper, we focus on the descriptive complexity of logics with so-called probabilistic team semantics

as well as additive ESOR. Team semantics is the semantical framework of modern logics of dependence and

JID:APAL AID:103108 /FLA [m3L; v1.314] P.3 (1-30)

M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) •••••• 3

independence. Introduced by Hodges [29] and adapted to dependence logic by Väänänen [43], team semantics

defines truth in reference to collections of assignments, called teams. Team semantics is particularly suitable

for a formal analysis of properties, such as the functional dependence between variables, which only arise in

the presence of multiple assignments. In the past decade numerous research articles have, via re-adaptations

of team semantics, shed more light into the interplay between logic and dependence. A common feature,

and limitation, in all these endeavors has been their preoccupation with notions of dependence that are

qualitative in nature. That is, notions of dependence and independence that make use of quantities, such as

conditional independence in statistics, have usually fallen outside the scope of these studies.

The shift to quantitative dependencies in team semantics setting is relatively recent. While the ideas of

probabilistic teams trace back to the works of Galliani [16] and Hyttinen et al. [30], a systematic study on

the topic can be traced to [14,15]. In probabilistic team semantics the basic semantic units are probability

distributions (i.e., probabilistic teams). This shift from set based semantics to distribution based semantics

enables probabilistic notions of dependence to be embedded to the framework. In [15] probabilistic team

semantics was studied in relation to the dependence concept that is most central in statistics: conditional in-

dependence. Mirroring [17,22,36] the expressiveness of probabilistic independence logic (FO(⊥⊥c)), obtained

by extending first-order logic with conditional independence, was in [15,26] characterized in terms of arith-

metic variants of existential second-order logic. In [26] the data complexity of FO(⊥⊥c) was also identified

in the context of BSS machines and the existential theory of the reals. In [25] the focus was shifted to the

expressivity hierarchies between probabilistic logics defined in terms of different quantitative dependencies.

Recently, the relationship between the settings of probabilistic and relational team semantics has raised

interest in the context of quantum information theory [2,3].

Another vantage point to quantitative dependence comes from the notion of multiteam semantics, defined

in terms of multisets of variable assignments called multiteams. A multiteam can be viewed as a database

relation that not only allows duplicate rows (cf. SQL data tables), but also keeps track of the number of

times each row is repeated. Multiteam semantics and probabilistic team semantics are close parallels, and

they often exhibit similar behavior with respect to their key logics (cf. [14,23,45]). There are also differences,

namely because the two frameworks are designed to model different situations. For instance, a probability

of a random variable can be halved, but it makes no sense to consider a data row that is repeated two and

half times in a data table. For this reason, the so-called split disjunction is allowed to cut an assignment

weight into two halves in one framework but not (always) in the other.

Of all the dependence concepts thus far investigated in team semantics, that of inclusion has arguably

turned out to be the most intriguing and fruitful. One reason is that inclusion logic, which arises from

this concept, can only define properties of teams that are decidable in polynomial time [18]. In contrast,

other natural team-based logics, such as dependence and independence logic, capture non-deterministic

polynomial time [17,36,43], and many variants, such as team logic, have an even higher complexity [35].

Thus it should come as no surprise if quantitative variants of many team-based logics turn out more complex;

in principle, adding arithmetical operations and/or counting cannot be a mitigating factor when it comes

to complexity.

In this paper, we study probabilistic inclusion logic, which is the extension of first-order logic with so-

called marginal identity atoms x ≈ y which state that x and y are identically distributed. Our particular

focus is on the complexity and expressivity of sentences. It is important, at this point, to note the dis-

tinction between formulae and sentences in team-based logics: Formulae describe properties of teams (i.e.,

relations), while sentences describe properties of structures. This distinction is even more pointed in proba-

bilistic team semantics, where formulae describe properties probabilistic teams (i.e., real-valued probability

distributions). On the other hand, sentences of logics with probabilistic team semantics can express variants

of important problems that are conjectured not to be expressible in the relational analogues of the logics.

Decision problems related to ETR (i.e., the likes of the art gallery problem) are, in particular, these kinds of

problems. Another motivation to focus on sentences is our desire to make comparison between relational and

JID:APAL AID:103108 /FLA [m3L; v1.314] P.4 (1-30)

4 M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) ••••••

quantitative team logics. As discussed above, the move from relational to quantitative dependence should

not in principle make the associated logics weaker. There is, however, no direct mechanism to examine this

hypothesis at the formula level, because the team properties of relational and quantitative team logics are

essentially incommensurable. Fortunately this becomes possible at the sentence level. The reason is that

sentences describe only properties of (finite) structures in both logical approaches.

The main takeaway of this paper is that there is no drastic difference between a relational team logic and

its quantitative variant, as long as the latter makes only reference to additive arithmetic. While inclusion logic

translates to fixed point logic, its quantitative variant, probabilistic inclusion logic, seems to require linear

programming. Yet, the complexity upper bounds (NP/P) of first-order logic extended with dependence

and/or inclusion atoms are preserved upon moving to quantitative variants. In contrast, earlier results

indicate that this is not necessarily the case with respect to dependencies whose quantitative expression

involves multiplication (such as conditional independence [26]).

Our contribution. We use strong results from linear programming to obtain the following complexity re-

sults over finite structures. We identify a natural fragment of additive ESOR (that is, almost conjunctive

(∃̈∗∀∗)R[≤, +, SUM, 0, 1]) which captures P on ordered structures (see page 5 for a definition). The full

additive ESOR is in turn shown to capture NP. Additionally, we establish that the so-called loose fragments,

almost conjunctive L-(∃̈∗∀∗)[0,1][=, SUM, 0, 1] and L-ESO[0,1][=, +, 0, 1], of the aforementioned logics have

the same expressivity as probabilistic inclusion logic and its extension with dependence atoms, respectively.

The characterizations of P and NP hold also for these fragments. Over open formulae, probabilistic inclusion

logic extended with dependence atoms is shown to be strictly weaker than probabilistic independence logic.

Moreover, we expand from a recent analogous result by Grädel and Wilke on multiteam semantics [23] and

show that probabilistic independence cannot be expressed in any logic that has access to only atoms that

are relational or closed under so-called scaled unions. In contrast, independence logic and inclusion logic

with dependence atoms are equally expressive in team semantics [17]. We also show that inclusion logic

can be conservatively embedded into its probabilistic variant, when restricted to probabilistic teams that

are uniformly distributed. From this we obtain an alternative proof through linear systems (that is entirely

different from the original proof of Galliani and Hella [18]) for the fact that inclusion logic can express only

polynomial time properties. Finally, we present a sound and complete axiomatization for marginal identity

atoms. This is achieved by appending the axiom system of inclusion dependencies with a symmetricity rule.

This paper is an extended version of [27]. Here we include all the proofs that were previously omitted.

In addition, the results in Sections 6 and 7 are new.

2. Existential second-order logics on R-structures

In addition to finite relational structures, we consider their numerical extensions by adding real numbers

(R) as a second domain sort and functions that map tuples over the finite domain to R. Throughout the

paper structures are assumed to have at least two elements. In the sequel, τ and σ will always denote a finite

relational and a finite functional vocabulary, respectively. The arities of function variables f and relation

variables R are denoted by ar(f) and ar(R), resp. If f is a function with domain Dom(f) and A a set, we

define f ↾ A to be the function with domain Dom(f) ∩ A that agrees with f for each element in its domain.

Given a finite set S, a function f : S → [0, 1] that maps elements of S to elements of the closed interval

[0, 1] of real numbers such that
∑

s∈S f(s) = 1 is called a (probability) distribution, and the support of f is

defined as Supp(f) := {s ∈ S | f(s) > 0}. Also, f is called uniform if f(s) = f(s′) for all s, s′ ∈ Supp(f).

Definition 1 (R-structures). A tuple A = (A, R, (RA)R∈τ , (gA)g∈σ), where the reduct of A to τ is a finite

relational structure, and each gA is a function from Aar(g) to R, is called an R-structure of vocabulary τ ∪ σ.

Additionally, A is also called (i) an S-structure, for S ⊆ R, if each gA is a function from Aar(g) to S, and

(ii) a d[0, 1]-structure if each gA is a distribution. We call A a finite structure, if σ = ∅.

JID:APAL AID:103108 /FLA [m3L; v1.314] P.5 (1-30)

M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) •••••• 5

Our focus is on a variant of functional existential second-order logic with numerical terms (ESOR) that

is designed to describe properties of R-structures. As first-order terms we have only first-order variables.

For a set σ of function symbols, the set of numerical σ-terms i is generated by the following grammar:

i ::= c | f(�x) | i + i | i × i | SUM�y i,

where �y can be any tuple of variables and include variables that do not occur in i. The interpretations

of +, ×, SUM are the standard addition, multiplication, and summation of real numbers, respectively, and

c ∈ R is a real constant denoting itself. In particular, the interpretation [SUM�y i]As of the term SUM�y i is

defined as follows:

[SUM�y i]As :=
∑

�a∈A|�y|

[i]As[�a/�y],

where [i]As[�a/�y] is an interpretation of the term i. We write i(�y) to mean that the free variables of the term i

are exactly the variables in �y. The free variables of a term are defined as usual. In particular, the variables

in �x are not free in SUM�xi(�y).

Definition 2 (Syntax of ESOR). Let O ⊆ {+, ×, SUM}, E ⊆ {=, <, ≤}, and C ⊆ R. The set of τ ∪σ-formulae

of ESOR[O, E, C] is defined via the grammar:

φ ::= x = y | ¬x = y | i e j | ¬i e j | R(�x) | ¬R(�x) | φ ∧ φ | φ ∨ φ | ∃xφ | ∀xφ | ∃fψ,

where i and j are numerical σ-terms constructed using operations from O and constants from C; e ∈ E;

R ∈ τ is a relation symbol; f is a function variable; x, y, and �x are (tuples of) first-order variables; and ψ

is a τ ∪ (σ ∪ {f})-formula of ESOR[O, E, C].

The semantics of ESOR[O, E, C] is defined via R-structures and assignments analogous to first-order

logic, however the interpretations of function variables f range over functions Aar(f) → R. Furthermore,

given S ⊆ R, we define ESOS [O, E, C] as the variant of ESOR[O, E, C] in which quantification of functions

range over h : Aar(f) → S.

Loose fragment. For S ⊆ R, define L-ESOS [O, E, C] as the loose fragment of ESOS [O, E, C] in which

negated numerical atoms ¬i e j are disallowed.

Almost conjunctive. A formula φ ∈ ESOS [O, E, C] is almost conjunctive, if for every subformula (ψ1 ∨ ψ2)

of φ, no numerical term occurs in ψi, for some i ∈ {1, 2}.

Prefix classes. For a regular expression L over the alphabet {∃̈, ∃, ∀}, we denote by LS[O, E, C] the formulae

of ESOS [O, E, C] in prefix form whose quantifier prefix is in the language defined by L, where ∃̈ denotes

existential function quantification, and ∃ and ∀ first-order quantification.

Expressivity comparisons. Let L and L′ be some logics defined above, and let X ⊆ R. For φ ∈ L, define

StrucX(φ) to be the class of pairs (A, s) where A is an X-structure and s an assignment such that A |=s

φ. Define Strucfin(φ) (Strucord(φ), resp.) analogously in terms of finite (finite ordered, resp.) structures.

Additionally, Strucd[0,1](φ) is the class of (A, s) ∈ Struc[0,1](φ) such that each fA is a distribution. If X is

a set of reals or from {“d[0, 1]”,“fin”, “ord”}, we write L ≤X L′ if for all formulae φ ∈ L there is a formula

ψ ∈ L′ such that StrucX(φ) = StrucX(ψ). For formulae without free first-order variables, we omit s from

the pairs (A, s) above. As usual, the shorthand ≡X stands for ≤X in both directions. For X = R, we write

simply ≤ and ≡.

JID:APAL AID:103108 /FLA [m3L; v1.314] P.6 (1-30)

6 M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) ••••••

3. Data complexity of additive ESOR

On finite structures ESOR[≤, +, ×, 0, 1] is known to capture the complexity class ∃R [7,22,41], which lies

somewhere between NP and PSPACE. Here we focus on the additive fragment of the logic. It turns out that

the data complexity of the additive fragment is NP and thus no harder than that of ESO. Furthermore, we

obtain a tractable fragment of the logic, which captures P on finite ordered structures.

3.1. A tractable fragment

Next we show P data complexity for almost conjunctive (∃̈∗∃∗∀∗)R[≤, +, SUM, 0, 1].

Proposition 3. Let φ be an almost conjunctive ESOR[≤, +, SUM, 0, 1]-formula in which no existential first-

order quantifier is in a scope of a universal first-order quantifier. There is a polynomial-time reduction from

R-structures A and assignments s to families of systems of linear inequations S such that A |=s φ if and

only if there is a system S ∈ S that has a solution. If φ has no free function variables, the systems of linear

inequations in S have integer coefficients.

Proof. Fix φ. We assume, w.l.o.g., that variables quantified in φ are quantified exactly once, the sets of free

and bound variables of φ are disjoint, and that the domain of s is the set of free variables of φ. Moreover,

we assume that φ is of the form ∃�y∃�f∀�xθ, where �f is a tuple of function variables and θ is quantifier-free.

We use X and Y to denote the sets of variables in �x and �y, respectively, and �g to denote the free function

variables of φ.

We describe a polynomial-time process of constructing a family of systems of linear inequations SA,s from

a given τ ∪ σ-structure A and an assignment s. We introduce

• a fresh variable z�a,f , for each k-ary function symbol f in �f and k-tuple �a ∈ Ak.

In the sequel, the variables z�a,f will range over real numbers.

Let A be a τ ∪σ-structure and s an assignment for the free variables in φ. In the sequel, each interpretation

for the variables in �y yields a system of linear equations. Given an interpretation v : Y → A, we will denote

by Sv the related system of linear equations to be defined below. We then set SA,s := {Sv | v : Y → A}.

The system of linear equations Sv is defined as Sv :=
⋃

u : X→A Su
v , where Su

v is defined as follows. Let su
v

denote the extension of s that agrees with u and v. We let θu
v denote the formula obtained from θ by the

following simultaneous substitution: If (ψ1 ∨ ψ2) is a subformula of θ such that no function variable occurs

in ψi, then (ψ1 ∨ ψ2) is substituted with ⊤, if

A |=su
v

ψi, (2)

and with ψ3−i otherwise. The set Su
v is now generated from θu

v together with u and v. Note that θu
v is a

conjunction of first-order or numerical atoms θi, i ∈ I, for some index set I. For each conjunct θi in which

some f ∈ �f occurs, add (θi)su
v

to Su
v , where (ψ)su

v
is defined recursively as follows:

(¬ψ)su
v

:= ¬(ψ)su
v
, (iej)su

v
:= (i)su

v
e (j)su

v
, for each e ∈ {=, <, ≤, +},

(f(�z))su
v

:= zsu
v (�z),f , (SUM�zi)su

v
:=

∑

a∈A|�z|

(i)su
v (�a/�z),

(g(�z))su
v

:= gA(su
v (�z)), (x)su

v
:= su

v (x), for every variable x.

JID:APAL AID:103108 /FLA [m3L; v1.314] P.7 (1-30)

M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) •••••• 7

Let θ∗ be the conjunction of those conjuncts of θu
v in which no f ∈ �f occurs. If A �|=su

v
θ∗, remove Sv from

SA,s.

Since φ is fixed, it is clear that SA,s can be constructed in polynomial time with respect to |A|. Moreover,

it is straightforward to show that there exists a solution for some S ∈ SA,s exactly when A |=s φ.

Assume first that there exists an S ∈ SA,s that has a solution. Let w : Z → R, where Z := {z�a,f | f ∈
�f and �a ∈ Aar(f)}, be the function given by a solution for S. By construction, S = Sv, for some v : Y → A.

Let A′ be the expansion of A that interprets each f ∈ �f as the function �a �→ w(z�a,f). By construction,

A′ |=su
v

θu
v for every u : X → A. Now, from (2) and the related substitutions, we obtain that A′ |=su

v
θ for

every u : X → A, and hence A′ |=sv
∀x1 . . . ∀xnθ. From this A |=s φ follows.

For the converse, assume that A |=s φ. Hence there exists an extension sv of s and an expansion A′ of

A such that A′ |=sv
∀x1 . . . ∀xnθ. Now, by construction, it follows that Sv ∈ SA,s and A′ |=su

v
θu

v , for every

u : X → A. Moreover, it follows that the function defined by z�a,f �→ fA
′

(�a), for f ∈ �f and �a ∈ Aar(f), is a

solution for Sv. �

The above proposition could be strengthened by relaxing the almost conjunctive requirement in any

way such that (2) can be still decided (i.e., it suffices that the satisfaction of ψis do not depend on the

interpretations of the functions in �f).

Theorem 4. The data complexity of almost conjunctive ESOR[≤, +, SUM, 0, 1]-formulae without free function

variables and where no existential first-order quantifiers are in a scope of a universal first-order quantifier

is in P.

Proof. Fix an almost conjunctive ESOR[≤, +, SUM, 0, 1]-formula φ of relational vocabulary τ of the required

form. Given a τ ∪∅ structure A and an assignment s for the free variables of φ, let S be the related polynomial

size family of polynomial size systems of linear inequations with integer coefficients given by Proposition 3.

Deciding whether a system of linear inequalities with integer coefficients has solutions can be done in

polynomial time [33]. Thus checking whether there exists a system of linear inequalities S ∈ S that has a

solution can be done in P as well, from which the claim follows. �

We later show that probabilistic inclusion logic captures P on finite ordered structures (Corollary 24)

and can be translated to almost conjunctive L-(∃̈∗∀∗)[0,1][≤, SUM, 0, 1] (Lemma 17). Hence already almost

conjunctive L-(∃̈∗∀∗)R[≤, SUM, 0, 1] captures P.

Corollary 5. Almost conjunctive L-(∃̈∗∀∗)R[≤, SUM, 0, 1] captures P on finite ordered structures.

3.2. Full additive ESOR

The goal of this subsection is to prove the following theorem:

Theorem 6. ESOR[≤, +, SUM, 0, 1] captures NP on finite structures.

First observe that SUM is definable in ESOR[≤, +, 0, 1]: Already ESOR[=] subsumes ESO, and thus we

may assume a built-in successor function S and its associated minimal and maximal elements min and max

on k-tuples over the finite part of the R-structure. Then, for a k-ary tuple of variables �x, SUM�xi agrees

with f(max), for any function variable f satisfying f(min) = i(�x �→ min) and f(S(�x)) = f(�x) + i(S(�x)).

As ESOR[≤, +, 0, 1] subsumes ESO, by Fagin’s theorem, it can express all NP properties. Thus we only

need to prove that any ESOR[≤, +, 0, 1]-definable property of finite structures is recognizable in NP. The

proof relies on (descriptive) complexity theory over the reals. The fundamental result in this area is that

JID:APAL AID:103108 /FLA [m3L; v1.314] P.8 (1-30)

8 M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) ••••••

existential second-order logic over the reals (ESOR[≤, +, ×, (r)r∈R]) corresponds to non-deterministic poly-

nomial time over the reals (NPR) for BSS machines [22, Theorem 4.2]. To continue from this, some additional

terminology is needed. We refer the reader to Appendix A (or to the textbook [5]) for more details about

BSS machines. Let CR be a complexity class over the reals.

• Cadd is CR restricted to additive BSS machines (i.e., without multiplication).

• C0
R

is CR restricted to BSS machines with machine constants 0 and 1 only.

• BP(CR) is CR restricted to languages of strings that contain only 0 and 1.

A straightforward adaptation of [22, Theorem 4.2] yields the following theorem.

Theorem 7 ([22]). ESOR[≤, +, 0, 1] captures NP0
add on R-structures.

If we can establish that BP(NP0
add), the so-called Boolean part of NP0

add, collapses to NP, we

have completed the proof of Theorem 6. Observe that another variant of this theorem readily holds;

ESOR[=, +, (r)r∈R]-definable properties of R-structures are recognizable in NPadd branching on equality,

which in turn, over Boolean inputs, collapses to NP [34, Theorem 3]. Here, restricting branching to equality

is crucial. With no restrictions in place (the BSS machine by default branches on inequality and can use

arbitrary reals as machine constants) NPadd equals NP/poly over Boolean inputs [34, Theorem 11]. Adapting

arguments from [34], we show next that disallowing machine constants other than 0 and 1, but allowing

branching on inequality, is a mixture that leads to a collapse to NP.

Theorem 8. BP(NP0
add) = NP.

Proof. Clearly NP ≤ BP(NP0
add); a Boolean guess for an input �x can be constructed by comparing to

zero each component of a real guess �y, and a polynomial-time Turing computation can be simulated by a

polynomial-time BSS computation.

For the converse, let L ⊆ {0, 1}∗ be a Boolean language that belongs to BP(NP0
add); we need to show that

L belongs also to NP. Let M be a BSS machine such that its running time is bounded by some polynomial

p, and for all Boolean inputs �x ∈ {0, 1}∗, �x ∈ L if and only if there is �y ∈ R
p(|x|) such that M accepts (�x, �y).

We describe a non-deterministic algorithm that decides L and runs in polynomial time. Given a Boolean

input �x of length n, first guess the outcome of each comparison in the BSS computation; this guess is a

Boolean string �z of length p(n). Note that each configuration of a polynomial time BSS computation can

be encoded by a real string of polynomial length. During the BSS computation the value of each coordinate

of its configuration is a linear function on the constants 0 and 1, the input �x, and the real guess �y of length

p(n). Thus it is possible to construct in polynomial time a system S of linear inequations on �y of the form

p(n)
∑

j=1

aijyj ≤ 0 (1 ≤ i ≤ m) and

p(n)
∑

j=1

bijyj < 0 (1 ≤ i ≤ l), (3)

where aij ∈ Z, such that �y is a (real-valued) solution to S if and only if M accepts (�x, �y) with respect to the

outcomes �z. In (3), the variables yj stand for elements of the real guess �y, and m + l is the total number of

comparisons. Each comparison generates either a strict or a non-strict inequality, depending on the outcome

encoded by �z.

Without loss of generality we may assume additional constraints of the form yj ≥ 0 (1 ≤ j ≤ p(n))

(cf. [12, p. 86]). Transform then S to another system of inequalities S ′ obtained from S by replacing strict

inequalities in (3) by

JID:APAL AID:103108 /FLA [m3L; v1.314] P.9 (1-30)

M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) •••••• 9

p(n)
∑

j=1

bijyj + ǫ ≤ 0 (1 ≤ i ≤ l) and ǫ ≤ 1.

Then determine the solution of the linear program: maximize (�0, 1)(�y, ǫ)T subject to S ′ and (�y, ǫ) ≥ 0. If

there is no solution or the solution is zero, then reject; otherwise accept. Since S ′ is of polynomial size and

linear programming is in polynomial time [33], the algorithm runs in polynomial time. Clearly, the algorithm

accepts �x for some guess �z if and only if �x ∈ L. �

4. Probabilistic team semantics and additive ESOR

4.1. Probabilistic team semantics

Let D be a finite set of first-order variables and A a finite set. A team X is a set of assignments from D

to A. A probabilistic team is a distribution X : X → [0, 1], where X is a finite team. Also the empty function

is considered a probabilistic team. We call D the variable domain of both X and X, written Dom(X) and

Dom(X). A is called the value domain of X and X.

Let X : X → [0, 1] be a probabilistic team, x a variable, V ⊆ Dom(X) a set of variables, and A a

set. The projection of X on V is defined as PrV (X) : X ↾ V → [0, 1] such that s �→ ∑

t↾V =s X(t), where

X ↾ V := {t ↾ V | t ∈ X}. Define Sx,A(X) as the set of all probabilistic teams Y with variable domain

Dom(X) ∪ {x} such that PrDom(X)\{x}(Y) = PrDom(X)\{x}(X) and A is a value domain of Y ↾ {x}. We

denote by X[A/x] the unique Y ∈ Sx,A(X) such that

Y (s) =
PrDom(X)\{x}(X)(s ↾ Dom(X) \ {x})

|A| .

If x is a fresh variable, then this equation becomes Y (s(a/x)) = X(s)
|A| . We also define X[A/x] := {s(a/x) |

s ∈ X, a ∈ A}, and write X[a/x] and X[a/x] instead of X[{a}/x] and X[{a}/x], for singletons {a}.

Let us also define some function arithmetic. Let α be a real number, and f and g be functions from a

shared domain into real numbers. The scalar multiplication αf is a function defined by (αf)(x) := αf(x).

The addition f + g is defined as (f + g)(x) = f(x) + g(x), and the multiplication fg is defined as (fg)(x) :=

f(x)g(x). In particular, if f and g are probabilistic teams and α + β = 1, then αf + βg is a probabilistic

team.

We define first probabilistic team semantics for first-order formulae. As is customary in the team semantics

context, we restrict attention to formulae in negation normal form. If φ is a first-order formula, we write

φ⊥ for the equivalent formula obtained from ¬φ by pushing the negation in front of atomic formulae. If

furthermore ψ is some (not necessarily first-order) formula, we then use a shorthand φ → ψ for the formula

φ⊥ ∨ (φ ∧ ψ).

Definition 9 (Probabilistic team semantics). Let A be a τ -structure over a finite domain A, and X : X → [0, 1]

a probabilistic team. The satisfaction relation |=X for first-order logic is defined as follows:

A |=X l ⇔ ∀s ∈ Supp(X) : A |=s l, where l is a literal

A |=X (ψ ∧ θ) ⇔ A |=X ψ and A |=X θ

A |=X (ψ ∨ θ) ⇔ A |=Y ψ and A |=Z θ, for some probabilistic teams Y and Z, and

α ∈ [0, 1] such that αY + (1 − α)Z = X

A |=X ∀xψ ⇔ A |=X[A/x] ψ

A |=X ∃xψ ⇔ A |=Y ψ for some Y ∈ Sx,A(X)

JID:APAL AID:103108 /FLA [m3L; v1.314] P.10 (1-30)

10 M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) ••••••

The satisfaction relation |=s denotes the Tarski semantics of first-order logic. If φ is a sentence (i.e.,

without free variables), then A satisfies φ, written A |= φ, if A |=X∅
φ, where X∅ is the distribution that

maps the empty assignment to 1.

We make use of a generalization of probabilistic team semantics where the requirement of being a distri-

bution is dropped. A weighted team is any non-negative weight function X : X → R≥0. Given a first-order

formula α, we write Xα for the restriction of the weighted team X to the assignments of X satisfying α (with

respect to the underlying structure). Moreover, the total weight of a weighted team X is |X| := ∑

s∈X X(s).

Definition 10 (Weighted semantics). Let A be a τ -structure over a finite domain A, and X : X → R≥0 a

weighted team. The satisfaction relation |=w
X

for first-order logic is defined exactly as in Definition 9, except

that for ∨ we define instead:

A |=w
X

(ψ ∨ θ) ⇔ A |=Y ψ and A |=Z θ for some Y , Z s.t. Y + Z = X.

We consider logics with the following atomic dependencies:

Definition 11 (Dependencies). Let A be a finite structure with universe A, X a weighted team, and X a

team.

• Marginal identity and inclusion atoms. If �x, �y are variable sequences of length k, then �x ≈ �y is a marginal

identity atom and �x ⊆ �y is an inclusion atom with satisfactions defined as:

A |=w
X

�x ≈ �y ⇔ |X�x=�a| = |X�y=�a| for each �a ∈ Ak,

A |=X �x ⊆ �y ⇔ for all s ∈ X there is s′ ∈ X such that s(�x) = s′(�y).

• Probabilistic independence atom. If �x, �y, �z are variable sequences, then �y ⊥⊥�x �z is a probabilistic (con-

ditional) independence atom with satisfaction defined as:

A |=X �y ⊥⊥�x �z

if for all s : Var(�x�y�z) → A it holds that

|X�x�y=s(�x�y)| · |X�x�z=s(�x�z)| = |X�x�y�z=s(�x�y�z)| · |X�x=s(�x)|.

We also write �x ⊥⊥ �y for the probabilistic marginal independence atom, defined as �x ⊥⊥∅ �y.

• Dependence atom. For a sequence of variables �x and a variable y, =(�x, y) is a dependence atom with

satisfaction defined as:

A |=X=(�x, y) ⇔ for all s, s′ ∈ X : if s(�x) = s′(�x), then s(y) = s′(y).

For probabilistic teams X, the satisfaction relation is written without the superscript w.

Observe that any dependency α over team semantics can also be interpreted in probabilistic team seman-

tics: A |=X α iff A |=Supp(X) α. For a list C of dependencies, we write FO(C) for the extension of first-order

logic with the dependencies in C. The logics FO(≈) and FO(⊆), in particular, are called probabilistic in-

clusion logic and inclusion logic, respectively. Furthermore, probabilistic independence logic is denoted by

FO(⊥⊥c), and its restriction to probabilistic marginal independence atoms by FO(⊥⊥). We write Fr(φ) for the

set free variables of φ ∈ FO(C), defined as usual. We conclude this section with a list of useful equivalences.

We omit the proofs, which are straightforward structural inductions ((ii) was also proven in [25] and (v)

follows from (i) and the flatness property of team semantics).

JID:APAL AID:103108 /FLA [m3L; v1.314] P.11 (1-30)

M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) •••••• 11

Proposition 12. Let φ ∈ FO(C), ψ ∈ FO(≈, C), and θ ∈ FO, where C is a list of dependencies over team

semantics. Let A be a structure, X a weighted team, and r any positive real. The following equivalences hold:

(i) A |=w
X

φ ⇔ A |=Supp(X) φ.

(ii) A |=w
X

ψ ⇔ A |= 1
|X| X ψ.

(iii) A |=w
X

ψ ⇔ A |=w
rX

ψ.

(iv) A |=w
X

ψ ⇔ A |=w
X↾V ψ, where Fr(ψ) ⊆ V .

(v) A |=w
X

θ ⇔ A |=s θ, for all s ∈ Supp(X).

4.2. Expressivity of probabilistic inclusion logic

We turn to the expressivity of probabilistic inclusion logic and its extension with dependence atoms. In

particular, we relate these logics to existential second-order logic over the reals. We show that probabilistic

inclusion logic extended with dependence atoms captures a fragment in which arithmetic is restricted to

summing. Furthermore, we show that leaving out dependence atoms is tantamount to restricting to sentences

in almost conjunctive form with ∃̈∗∀∗ quantifier prefix.

Expressivity comparisons. Fix a list of atoms C over probabilistic team semantics. For a probabilistic team

X with variable domain {x1, . . . , xn} and value domain A, the function fX : An → [0, 1] is defined as the

probability distribution such that fX(s(�x)) = X(s) for all s ∈ X. For a formula φ ∈ FO(C) of vocabulary

τ and with free variables {x1, . . . , xn}, the class Strucd[0,1](φ) is defined as the class of d[0, 1]-structures A

over τ ∪ {f} such that (A ↾ τ) |=X φ, where fX = fA and A ↾ τ is the finite τ -structure underlying A. Let

L and L′ be two logics of which one is defined over (probabilistic) team semantics. We write L ≤ L′ if for

every formula φ ∈ L there is φ′ ∈ L′ such that Strucd[0,1](φ) = Strucd[0,1](φ
′); again, ≡ is a shorthand for ≤

both ways.

Theorem 13. The following equivalences hold:

(i) FO(≈, =(· · ·)) ≡ L-ESO[0,1][=, +, 0, 1].

(ii) FO(≈) ≡ almost conjunctive L-(∃̈∗∀∗)[0,1][=, SUM, 0, 1].

We divide the proof of Theorem 13 into two parts. In Section 4.3 we consider the direction from proba-

bilistic team semantics to existential second-order logic over the reals, and in Section 4.4 we shift attention

to the converse direction. In order to simplify the presentation in the forthcoming subsections, we start

by showing how to replace existential function quantification by distribution quantification. The following

lemma in its original form includes multiplication (see [26, Lemma 6.4]) but works also without it.

Lemma 14 ([26]). L-ESO[0,1][=, +, 0, 1] ≡d[0,1] L-ESOd[0,1][=, SUM].

The proof, however, does not preserve the almost conjunctive form. That case is dealt with separately

in Proposition 16. As shown next, we can utilize in this proposition the fact that the real constants 0 and

1 are definable in almost conjunctive L-(∃̈∗∀∗)d[0,1][=, SUM].

Lemma 15. L-ESOd[0,1][=, SUM] ≡R L-ESOd[0,1][=, SUM, 0, 1]. The same holds when both logics are re-

stricted to almost conjunctive formulae of the prefix class ∃̈∗∀∗.

Proof. Any formula θ involving 0 or 1 can be equivalently expressed as follows:

∃n∃f∃h∀x∀y∀z
(

f(x) = h(x, x) ∧
(

y = z ∨ θ(h(y, z)/0, n/1)
)

)

,

JID:APAL AID:103108 /FLA [m3L; v1.314] P.12 (1-30)

12 M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) ••••••

where n is nullary. �

Proposition 16. L-ESO[0,1][=, SUM, 0, 1] ≡[0,1] L-ESOd[0,1][=, SUM]. The same holds when both logics are

restricted to almost conjunctive formulae of the prefix class ∃̈∗∀∗.

Proof. The ≥-direction is trivial. We show the ≤-direction, which is similar to the proof of [26,

Lemma 6.4]. By Lemma 15 we may assume that almost conjunctive L-(∃̈∗∀∗)d[0,1][=, SUM] (as well as

L-ESOd[0,1][=, SUM]) contains real constants 0 and 1. Suppose φ is some formula in L-ESO[0,1][=, SUM, 0, 1].

Let k be the maximal arity of any function variable/symbol appearing in φ. The total sum of the weights

of any interpretation of a function occurring in φ on a given structure, whose finite domain is of size n,

is at most nk. We now show how to obtain from φ an equivalent formula in L-ESOd[0,1][SUM, =, 0, 1]; the

idea is to scale all function weights by 1/nk. Note first that the value 1/nk can be expressed via a k-ary

distribution variable g as follows:

∃g∀�x�y g(�x) = g(�y)

Below, we write 1
nk instead of g(�x).

Suppose φ is of the form ∃f1 . . . fm∀�xθ, where θ is quantifier free, and let g1, . . . , gt be the list of (non-

quantified) function symbols of φ. Define

φ′ := ∃f ′
1 . . . f ′

mg′
1 . . . g′

t∀�x�x′ (ψ ∧ θ′),

where each f ′
j (g′(j), resp.) is an ar(fj) + 1-ary (ar(gj) + k + 1-ary, resp.) distribution variable and ψ and

θ′ are as defined below. The universally quantified variables �x′ list all of the newly introduced variables of

the construction below. The formula ψ is used to express that each f ′
j (g′(j), resp.) is an 1/nk-scaled copy

of fj (g(j), resp.). That is, ψ is defined as the formula

∧

i≤m

f ′
j(�y, yl) ≤ 1

nk
∧

∧

i≤t

(

g′
j(�y, �z, zl) = g′

j(�y, �z′, z′
l) ∧ SUM�zg′

j(�y, �z, zl) = gj(�y)
)

,

where yl and zl (here and below) denote the last elements of the tuples �y and �z, respectively.3 Finally θ′ is

obtained from θ by replacing expressions of the form fj(�y) and gj(�y) by f ′
j(�y, yl) and gj(�y, �z, zl), resp., and

the real constant 1 by 1
nk . A straightforward inductive argument on the structure of formulae yields that,

over [0, 1]-structures, φ and φ′ are equivalent. Note that φ′ is an almost conjunctive formula of the prefix

class ∃̈∗∀∗, if φ is. �

4.3. From probabilistic team semantics to existential second-order logic

Let c and d be two distinct constants. Let φ(�x) ∈ FO(≈, =(· · ·)) be a formula whose free variables are

from the sequence �x = (x1, . . . , xn). We now construct recursively an L-ESO[0,1][=, SUM, 0, 1]-formula φ∗(f)

that contains one free n-ary function variable f . In this formula, a probabilistic team X is represented as a

function fX such that X(s) = fX(s(x1), . . . , s(xn)).

(1) If φ(�x) is a first-order literal, then

φ∗(f) := ∀�x
(

f(�x) = 0 ∨ φ(�x)
)

.

3 For a 0-ary function f , a construction f ′(�z, zl) = f ′(�z′, z′
l) can be used instead.

JID:APAL AID:103108 /FLA [m3L; v1.314] P.13 (1-30)

M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) •••••• 13

(2) If φ(�x) is a dependence atom of the form =(�x0, x1), then

φ∗(f) := ∀�x �x′(f(�x) = 0 ∨ f(�x′) = 0 ∨ �x0 �= �x′
0 ∨ x1 = x′

1

)

.

(3) If φ(�x) �x0 ≈ �x1, where �x = �x0�x1�x2, then

φ∗(f) := ∀�y SUM�x1,�x2
f(�y, �x1, �x2) = SUM�x0,�x2

f(�x0, �y, �x2).

(4) If φ(�x) is of the form ψ0(�x) ∧ ψ1(�x), then

φ∗(f) := ψ∗
0(f) ∧ ψ∗

1(f).

(5) If φ(�x) is of the form ψ0(�x) ∨ ψ1(�x), then

φ∗(f) := ∃g∀�x (SUMyg(�x, y) = f(�x) ∧ ∀y(y = c ∨ y = d ∨ g(�x, y) = 0) ∧ ψ∗
0(gc) ∧ ψ∗

1(gd)),

where gi is of the same arity as f and defined as gi(�x) := g(�x, i).

(6) If φ(�x) is ∃yψ(�x, y), then

φ∗(f) := ∃g
(

(∀�x SUMyg(�x, y) = f(�x)) ∧ ψ∗(g)
)

.

(7) If φ(�x) is of the form ∀yψ(�x, y), then

φ∗(f) := ∃g
(

∀�x(∀y∀zg(�x, y) = g(�x, z) ∧ SUMyg(�x, y) = f(�x)) ∧ ψ∗(g)
)

.

This translation leads to the following lemma,

Lemma 17. The following hold:

(i) FO(≈, =(· · ·)) ≤ L-(∃̈∗∀∗)[0,1][=, SUM, 0, 1].

(ii) FO(≈, =(· · ·)) ≤ almost conjunctive L-(∃̈∗∀∗∃∗)[0,1][=, SUM, 0, 1].

(iii) FO(≈) ≤ almost conjunctive L-(∃̈∗∀∗)[0,1][=, SUM, 0, 1].

Proof. By item (ii) of Proposition 12, we may use weighted semantics (Definition 10). Then, a straightfor-

ward induction shows that for all structures A and non-empty weighted teams X : X → [0, 1], with variable

domain �x, such that |X| ≤ 1,

A |=w
X

φ(�x) ⇐⇒ (A, fX) |= φ∗(f). (4)

Furthermore, the extra constants c and d can be discarded. Define ψ(f) as

∃f ′∀cd∀�x
(

f ′(�x, c, d) = f(�x) ∧
(

c �= d → φ∗∗(f ′))
)

, (5)

where φ∗∗(f ′) is obtained from φ∗(f) by replacing function terms f(t1, . . . , tn) with f ′(t1, . . . , tn, c, d). There

are only existential function and universal first-order quantifiers in (5). By pushing these quantifiers in front,

and by swapping the ordering of existential and universal quantifiers (by increasing the arity of function

variables and associated function terms), we obtain a sentence ψ∗(f) ∈ L-(∃̈∗∀∗)d[0,1][=, SUM, 0, 1] which,

if substituted for φ∗(f), satisfies (4).

Let us then turn to the items of the lemma.

JID:APAL AID:103108 /FLA [m3L; v1.314] P.14 (1-30)

14 M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) ••••••

(i) The claim readily holds.

(ii) The claim follows if the translation for dependence atoms =(�x0, x1) and �x = �x0x1�x2 is replaced by

φ∗(f) := ∀�x0∃x1SUM�x2
f(�x) = SUMx1�x2

f(�x).

We conclude that φ∗(f) interprets the dependence atom in the correct way and it preserves the almost

conjunctive form and the required prefix form.

(iii) For the claim, it suffices to drop the translation of the dependence atom. �

This completes the “≤” direction of Theorem 13. For (i), this follows from (i) of Lemma 17, Proposition 16,

and Lemma 14. For (ii), only (iii) of Lemma 17 is needed.

Recall from Proposition 3 that almost conjunctive (∃̈∗∃∗∀∗)R[≤, +, SUM, 0, 1] is in PTIME in terms of

data complexity. Since dependence logic captures NP [43], the previous lemma indicates that we have found,

in some regard, a maximal tractable fragment of additive existential second-order logic. That is, dropping

either the requirement of being almost conjunctive, or that of having the prefix form ∃̈∗∃∗∀∗, leads to a

fragment that captures NP; that NP is also an upper bound for these fragments follows by Theorem 6.

Corollary 18. FO(≈, =(· · ·)) captures NP on finite structures.

4.4. From existential second-order logic to probabilistic team semantics

Due to Lemma 14 and Proposition 16, our aim is to translate L-ESOd[0,1][=, SUM] and almost conjunctive

L-ESOd[0,1][=, SUM] to FO(≈, =(· · ·)) and FO(≈), respectively. The following lemmas imply that we may

restrict attention to formulae in Skolem normal form.4

We first need to get rid of all numerical terms whose interpretation does not belong to the unit interval.

The only source of such terms are summation terms of the form SUM�xi(�y), where �x is a sequence of variables

that contain a variable z not belonging to �y; we call such instances of z dummy-sum instances. For example,

the summation term SUMxn, where n is the nullary distribution and x a dummy-sum instance, is always

interpreted as the cardinality of the model’s domain.

Lemma 19. For every L-ESOd[0,1][=, SUM]-formula φ there exists an equivalent formula without dummy-sum

instances.

Proof. Let k be the number of dummy sum-instances in φ. Without loss of generality, we may assume that

each dummy sum-instance is manifested using a distinct variable in �v = (v1, . . . , vk), whose only instance in

φ is the related dummy sum-instance. It is straightforward to check that for any structure A with cardinality

n, the interpretation tA of any term t appearing in φ is at most nk.

We start the translation ψ �→ ψ∗ by scaling each function f occurring in φ by 1
nk as follows. Define f(�x) �→

f∗(�x, �v). For Boolean connectives, =, SUM, and first-order quantification the translation is homomorphic.

In the case for existential function quantification, the functions are scaled by increasing their arity by k and

stipulating that their weights are distributed evenly over the arity extension:

∃fψ �→ ∃f∗(

∀�x�v �w f∗(�x,�v) = f∗(�x, �w) ∧ φ∗)

.

Let f1, . . . , ft be the list of free function variables of φ with arities |�x1|, . . . , |�xt|, respectively. Now, define

4 Lemma 20 was first presented in [15, Lemma 3] in a form that included multiplication. We would like to thank Richard Wilke
for noting that the construction used in [15] to prove this lemma had an element that yields circularity. Furthermore, we would
like to than Joni Puljujärvi for noting another issue which is circumvented by Lemma 19.

JID:APAL AID:103108 /FLA [m3L; v1.314] P.15 (1-30)

M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) •••••• 15

φ+ := ∃f∗
1 . . . f∗

t

(

∧

l≤t

(

∀�xl SUM�vf∗
l (�xl, �v) = fl(�xl) ∧ ∀�xl �v �w f∗

l (�xl, �v) = f∗
l (�xl, �w)

)

∧ ∃�v φ∗
)

.

It is now straightforward to check that φ+ and φ are equivalent, and that there are no dummy-sum instances

in φ+. �

Lemma 20. For every formula φ ∈ L-ESOd[0,1][=, SUM] there is a formula φ∗ ∈ L-(∃̈∗∀∗)d[0,1][=, SUM]

such that Strucd[0,1](φ) = Strucd[0,1](φ
∗), and any second sort identity atom in φ∗ is of the form fi(�w) =

SUM�vfj(�u, �v) for distinct fi and fj of which at least one is quantified. Furthermore, φ∗ is almost conjunctive

if φ is almost conjunctive and in L-(∃̈∗∀∗)d[0,1][=, SUM].

Proof. By the previous lemma, we may assume without loss of generality that φ does not contain any

dummy-sum instances. That is, any summation term occurring in φ is of the form SUM�vi(�u�v), where it is

to be noted that the variables of �v occur free in the term i. This, in particular, implies that the terms of φ

can be captured by using distributions.

First we define for each second sort term i(�x) a special formula θi defined recursively using fresh function

symbols fi as follows:

• If i(�u) is g(�u) where g is a function symbol, then θi is defined as fi(�u) = g(�u). (We may interpret g(�u)

as SUM∅g(�u).)

• If i(�u) is SUM�vj(�u�v), then θi is defined as θj ∧ fi(�u) = SUM�vfj(�u�v).

The translation φ �→ φ∗ then proceeds recursively on the structure of φ. By Lemma 15 we may use the real

constant 0 in the translation.

(i) If φ is i(�u) = j(�v), then φ∗ is defined as ∃�f(fi(�u) = fj(�v) ∧ θi ∧ θj) where �f lists the function symbols

fk for each subterm k of i or j.

(ii) If φ is an atom or negated atom of the first sort, then φ∗ := φ.

(iii) If φ is ψ0◦ψ1 where ◦ ∈ {∨, ∧}, ψ∗
0 is ∃�f0∀�x0θ0, and ψ∗

1 is ∃�f1∀�x1θ1, then φ∗ is defined as ∃�f0
�f1∀�x0�x1(θ0◦

θ1).

(iv) If φ is ∃yψ where ψ∗ is ∃�f∀�xθ, then φ∗ is defined as ∃g∃�f∀�x∀y(g(y) = 0 ∨ θ).

(v) Suppose φ is ∀yψ where ψ∗ is ∃�f∀�xθ. Let �g list the free distribution variables in φ. Then φ∗ is defined

as

∃�f∗∃�g∗∀yy′∀�x
(

∧

g∗∈�g∗

(

g∗(y, �x) = g∗(y′, �x) ∧ SUMyg∗(y, �x) = g(�x)
)

∧

∧

f∗∈ �f∗

(

f∗(y, �x) = f∗(y′, �x)
)

∧ θ∗
)

,

where �f∗ (�g∗, resp.) is obtained from �f (�g, resp.) by replacing each f (g, resp.) from �f (�g, resp.) with

f∗ (g∗, resp.) such that ar(f∗) = ar(f) + 1 (ar(g∗) = ar(g) + 1, resp.), and θ∗ is obtained from θ by

replacing all function terms f(�z) (g(�z), resp.) with f∗(y, �z) (g∗(y, �z), resp.).

(vi) If φ is ∃fψ where ψ∗ is ∃�f∀�xθ, then φ∗ is defined as ∃fψ∗.

It is straightforward to check that φ∗ is of the correct form and equivalent to φ. What happens in (v) is

that instead of guessing for all y some distribution fy with arity ar(f), we guess a single distribution f∗

with arity ar(f) + 1 such that f∗(y, �u) = 1
|A| · fy(�u), where A is the underlying domain of the structure.

Similarly, we guess a distribution g∗ for each free distribution variable g such that g∗(y, �u) = 1
|A| · g(�u).

JID:APAL AID:103108 /FLA [m3L; v1.314] P.16 (1-30)

16 M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) ••••••

Observe that case (iv) does not occur if φ is in L-(∃̈∗∀∗)d[0,1][SUM, =]; in such a case, a straightforward

structural induction shows that φ∗ is almost conjunctive if φ is. �

Using the obtained normal form for existential second-order logic over the reals we now proceed to the

translation. This translation is similar to one found in [15], with the exception that probabilistic indepen-

dence atoms cannot be used here.

Lemma 21. Let φ(f) ∈ L-(∃̈∗∀∗)d[0,1][=, SUM] be of the form described in Lemma 20, with one free variable

f . Then there is a formula Φ(�x) ∈ FO(≈, =(· · ·)) such that for all structures A and probabilistic teams

X := fA, A |=X Φ ⇐⇒ (A, f) |= φ. Furthermore, if φ(f) is almost conjunctive, then Φ(�x) ∈ FO(≈).

Proof. By item (ii) of Proposition 12, we can use weighted semantics in this proof. Without loss of generality

each structure is enriched with two distinct constants c and d; such constants are definable in FO(≈, =(· · ·))

by ∃cd(=(c)∧ =(d) ∧ c �= d), and for almost conjunctive formulae they are not needed.

Let φ(f) = ∃�f∀�x θ(f, �x) ∈ L-(∃̈∗∀∗)d[0,1][=, SUM] be of the form described in the previous lemma, with

one free variable f . In what follows, we build Θ inductively from θ, and then let

Φ := ∃�y1 . . . ∃�yn∀�x Θ(�x, �y1, . . . , �yn),

where �yi are sequences of variables of length ar(fi). Let m := |�x|. We show the following claim: For M ⊆ Am

and weighted teams Y = X
′[M/�x], where the domain of X′ extends that of X by �y1, . . . , �yn,

A |=w
Y

Θ iff (A, f, f1, . . . , fn) |= θ(�a) for all �a ∈ M, (6)

where fi := X
′ ↾ �yi. Observe that the claim implies that A |=w

X
Φ iff A |= φ(f).

Next, we show the claim by structural induction on the construction of Θ:

(1) If θ is a literal of the first sort, we let Θ := θ, and the claim readily holds.

(2) If θ is of the form fi(�xi) = SUM�xj0
fj(�xj0�xj1), let Θ := ∃αβψ for ψ given as

(α = x ↔ �xi = �yi) ∧ (β = x ↔ �xj1 = �yj1) ∧ �xα ≈ �xβ, (7)

where x is any variable from �x, and the first-order variable sequence �yj that corresponds to function

variable fj is thought of as a concatenation of two sequences �yj0 and �yj1 whose respective lengths are

|�xj0| and |�xj1|.
Assume first that for all �a ∈ M , we have (A, f, f1, . . . , fn) |= θ(�a), that is, fi(�ai) = SUM�xj0

fj(�xj0�aj1).

To show that Y satisfies Θ, let Z be an extension of Y to variables α and β such that it satisfies the

first two conjuncts of (7). Observe that Z satisfies �xα ≈ �xβ if for all �a ∈ M , Z�x=�a satisfies α ≈ β. For

a probabilistic team X and a first-order formula α, we write |Xα|rel for the relative weight |Xα|/|X|.
Now, the following chain of equalities hold:

|Z�xα=�ax|rel = |Y�x�xi=�a�yi
|rel = |Y�x�yi=�a�ai

|rel = |Y�x=�a|rel · |Y�yi=�ai
|rel =

|Y�x=�a|rel · fi(�ai) = |Y�x=�a|rel · SUM�xj0
fj(�xj0�aj1) = |Y�x=�a|rel · |Y�yj1=�aj1

|rel

|Y�x�yj1=�a�aj1
|rel = |Y�x�xj1=�a�yj1

|rel = |Z�xβ=�ax|rel.

Note that the absolute weights |Y | and |Z| are equal. The third equality then follows since �x and �yi are

independent by the construction of Y . It is also here that we need relative instead of absolute weights.

Thus α and β agree with x in Z�x=�a for the same weight. Moreover, x is some constant a in Z�x=�a, and

JID:APAL AID:103108 /FLA [m3L; v1.314] P.17 (1-30)

M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) •••••• 17

whenever α or β disagrees with x, it can be mapped to another constant b that is distinct from a. It

follows that Z�x=�a satisfies α ≈ β, and thus we conclude that Y satisfies Θ.

For the converse direction, assume that Y satisfies Θ, and let Z be an extension of Y to α and β

satisfying (7). Then for all �a ∈ M , Z�x=�a satisfies α ≈ β and thereby for all �a ∈ M ,

|Y�x=�a|rel · fi(�ai) = |Z�xα=�ax|rel = |Z�xβ=�ax|rel = |Y�x=�a|rel · SUM�xk
fj(�xk,�al).

For the second equality, recall that x is a constant in Z�x=�a. Thus (A, f, f1, . . . , fn) |= θ(�a) for all �a ∈ M ,

which concludes the induction step.

(3) If θ is θ0 ∧ θ1, let Θ := Θ0 ∧ Θ1. The claim follows by the induction hypothesis.

(4) If θ is θ0 ∨ θ1, let Θ := ∃z
(

=(�x, z) ∧
(

(Θ0 ∧ z = c) ∨ (Θ1 ∧ z = d)
)

)

.

Alternatively, if θ0 contains no numerical terms, let Θ := θ0 ∨ (θ¬
0 ∧ Θ1), where θ¬

0 is obtained from ¬θ0

by pushing ¬ in front of atomic formulae.

Assume first that (A, f, f1, . . . , fn) |= θ0 ∨ θ1 for all �a ∈ M . Then M can be partitioned to disjoint M0

and M1 such that

(A, f, f1, . . . , fn) |= θi for all �a ∈ Mi. (8)

We have two cases:

• Suppose φ(f) is not almost conjunctive. Let Z be the extension of Y to z such that s(z) = c if s(�x)

is in M0, and otherwise s(z) = d, where s is any assignment in the support of Z. Consequently, Z

satisfies =(�x, z). Further, the induction hypothesis implies that A |=w
Yi

Θi, where Yi := X ′[Mi/�x].

Since |M0|
|M | Y0 = Z�z=c and |M1|

|M | Y1 = Z�z=d, we obtain A |=w
Z�z=c

θ0 and A |=w
Z�z=d

Θ1 by item (iii) of

Proposition 12. We conclude that Z satisfies (Θ0 ∧ z = 0) ∨ (Θ1 ∧ z = 1), and thus Y satisfies Θ.

• Suppose φ(f) is almost conjunctive. Without loss of generality θ0 contains no numerical terms. Then

A |=X′[M0/�x] θ0 by flatness (i.e., (v) of Proposition 12). We may assume that M0 is the maximal

subset of M satisfying (8), in which case we also obtain A |=X′[M1/�x] θ¬
0 by flatness. Furthermore,

A |=X′[M1/�x] Θ1 by induction hypothesis.

The converse direction is shown analogously in both cases. This concludes the proof. �

The “≥” direction of item (i) in Theorem 13 follows by Lemmata 14, 20, and 21; that of item (ii) follows

similarly, except that Proposition 16 is used instead of Lemma 14. This concludes the proof of Theorem 13.

5. Interpreting inclusion logic in probabilistic team semantics

Next we turn to the relationship between inclusion and probabilistic inclusion logics. The logics are

comparable for, as shown in Proposition 12, team semantics embeds into probabilistic team semantics con-

servatively. The seminal result by Galliani and Hella shows that inclusion logic captures PTIME over ordered

structures [18]. We show that restricting to finite structures, or uniformly distributed probabilistic teams,

inclusion logic is in turn subsumed by probabilistic inclusion logic. There are two immediate consequences

for this. First, the result by Galliani and Hella readily extends to probabilistic inclusion logic. Second, their

result obtains an alternative, entirely different proof through linear systems.

We utilize another result of Galliani stating that inclusion logic is equiexpressive with equiextension logic

[17], defined as the extension of first-order logic with equiextension atoms �x1 ⊲⊳ �x2 := �x1 ⊆ �x2 ∧ �x2 ⊆ �x1. In

the sequel, we relate equiextension atoms to probabilistic inclusion atoms.

For a natural number k ∈ N and an equiextension atom �x1 ⊲⊳ �x2, where �x1 and �x2 are variable tuples of

length m, define ψk(�x1, �x2) as

JID:APAL AID:103108 /FLA [m3L; v1.314] P.18 (1-30)

18 M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) ••••••

∀�u∃v1v2∀�z0∃�z((�x1 = �u ↔ v1 = y) ∧ (�x2 = �u ↔ v2 = y) ∧ (9)

(�z0 = �y → �z = �y) ∧ (¬�z = �y ∨ �uv1 ≈ �uv2)),

where �z and �z0 are variable tuples of length k, and �y is obtained by concatenating k times some variable y in

�u. Intuitively (9) expresses that a probabilistic team X, extended with universally quantified �u, decomposes

to Y + Z, where Y (s) = fsX(s) for some variable coefficient fs ∈ [1
nk , 1], and |Y�x1=�u| = |Y�x2=�u|, for any

�u. Thus (9) implies that �x1 ⊲⊳ �x2. On the other hand, �x1 ⊲⊳ �x2 implies (9) if each assignment weight X(s)

equals gs|X| for some gs ∈ [1
nk , 1]. In this case, one finds the decomposition Y + Z by balancing the weight

differences between values of �x1 and �x2. More details are provided in the proof of the next lemma.

Lemma 22. Let k be a positive integer, A a finite structure with universe A of size n, and X : X → R≥0 a

weighted team.

(i) Suppose A |=w
X

�x1 ⊲⊳ �x2, |X�x1=�x2
| = 0, and X(s) ≥ |X|

nk for all s ∈ Supp(X). Then A |=w
X

φk(�x, �y).

(ii) If A |=w
X

φk(�x, �y), then A |=w
X

�x1 ⊲⊳ �x2.

Proof. (i) Observe that X[A/�u] = 1
nm X

∗, where X
∗ is defined as the sum X[�a1/�u] + . . . + X[�al/�u], and

�a1, . . . , �al lists all elements in Am. By Proposition 12(iii) it suffices to show that X∗ satisfies the formula

obtained by removing the outermost universal quantification of ψk. By Proposition 29 it suffices to show

that each X[�ai/�u] individually satisfies the same formula. Hence fix a tuple of values �b ∈ Am and define

Y := X[�b/�u]. We show that Y satisfies

∃v1v2∀�z0∃�z1((�x1 = �b ↔ v1 = c) ∧ (�x2 = �b ↔ v2 = c) ∧ (10)

(�z0 = �c → �z1 = �c) ∧ (�z1 = �c → v1 ≈ v2)).

Observe that we have here fixed �u �→ �b and y �→ c, where c is some value in �b. We have also removed �u from

the marginal identity atom in (9), for it has a fixed value in Y .

Fix some d ∈ A that is distinct from c, and denote by Y be the support of Y . For existential quantification

over vi, extend s ∈ Y by vi �→ c if s(�xi) = �b, and otherwise by vi �→ d, so as to satisfy the first two conjuncts.

Denote by Y ′ : Y ′ → R≥0 the weighted team, where Y ′ consists of these extensions, and the weights are

inherited from Y .

Observe that Y
′(s) ≥ |X|

nk for all s ∈ Supp(Y ′). Fix i ∈ {1, 2}, and assume that |X�xi=�b| > 0. Then

|X�xi=�b| ≥ |X|
nk , and thus using |X�x1=�x2

| = 0 and |X| = |Y ′| we obtain

wi := |Y ′
vi=c∧v3−i=d| = |X�xi=�b∧�x3−i �=�b| = |X�xi=�b| ≥ |Y ′|

nk
.

Since X |= �x1 ⊲⊳ �x2, we obtain that w1 and w2 are either both zero or both at least |Y ′|
nk .

Next, let us describe the existential quantification of �z1 (later we show how the universal quantification

of �z0 can be fitted in). The purpose of this step is to balance the possible weight difference between |Y ′
�x1=�b

|
and |Y ′

�x2=�b
|, which in turn is tantamount to balancing |Y ′

�v1=c∧v2=d| and |Y ′
v1=d∧v2=c|. For s′ ∈ Y ′,

(i) if s′(v1) = c and s′(v2) = d, allocate respectively w2

|Y ′| and 1 − w2

|Y ′| of the weight of s′ to s′(�c/�z1) and

s′(�d/�z1);

(ii) if s′(v1) = d and s′(v2) = c, allocate respectively w1

|Y ′| and 1 − w1

|Y ′| of the weight of s′ to s′(�c/�z1) and

s′(�d/�z1); or

(iii) otherwise, allocate the full weight of s′ to s′(�c/�z1).

JID:APAL AID:103108 /FLA [m3L; v1.314] P.19 (1-30)

M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) •••••• 19

Denote by Z the probabilistic team obtained this way, and define Z′ := Z�z1=�c. We observe that

|Z′
v1=c∧v2=d| = |Z′

v1=d∧v2=c| =
w1w2

|Y ′| .

Furthermore, |Z′
v1=c∧v2=c| = 0 and hence |Z′

v1=d∧v2=d| = |Z′| − 2w1w2

|Y ′| . We conclude that Z′ satisfies v1 ≈ v2,

whence Z satisfies �z1 = �c → v1 ≈ v2.

Finally, let us return to the universal quantification of �z0, which precedes the existential quantification

of �z in (10). The purpose of this step is to enforce that for each s ∈ Supp(Y ′), the extension s(�c/�z1)

takes a positive weight. Observe that wi

|Y ′| is either zero or at least 1
nk , for wi is either zero or at least |Y ′|

nk .

Furthermore, note that universal quantification distributes 1
nk of the weight of s′ to s′(�c/�z0). Thus the weight

of s′ can be distributed in such a way that both the conditions (i)-(iii) and the formula �z0 = �c → �z1 = �c

simultaneously hold. This concludes the proof of case (i).

(ii) Suppose that the assignments in X mapping �x1 to �b have a positive total weight in X. By symmetry,

it suffices to show that the assignments in X mapping �x2 to �b also have a positive total weight in X. By

assumption there is an extension Z of X[�b/�u] satisfying the quantifier-free part of (10). It follows that the

total weight of assignments in Z that map v1 to c is positive. Consequently, by �z0 = �c → �z1 = �c where �z0 is

universally quantified, a positive fraction of these assignments maps also �z1 to �c. This part of Z is allocated

to v1 ≈ v2, and thus the weights of assignments mapping v2 to c are positive as well. But then, going

backwards, we conclude that the total weight of assignments mapping �x2 to �b is positive, which concludes

the proof. �

We next establish that inclusion logic is subsumed by probabilistic inclusion logic at the level of sentences.

Theorem 23. FO(⊆) ≤ FO(≈) with respect to sentences.

Proof. As FO(⊆) ≡ FO(⊲⊳) ([17]), it suffices to show FO(⊲⊳) ≤ FO(≈) over sentences. Let φ ∈ FO(⊲⊳)

be a sentence, and let k be the number of disjunctions and quantifiers in φ. Let φ∗ be obtained from φ

by replacing all equiextension atoms of the form �x1 ⊲⊳ �x2 with ψk(�x1, �x2). We can make four simplifying

assumptions without loss of generality. First, we may restrict attention to weighted semantics by item (ii)

of Proposition 12. Thus, we assume that A |=w
X

φ for some weighted team X and a finite structure A with

universe of size n. Second, we may assume that the support of X consists of the empty assignment by

item (iv) of Proposition 12. Third, since FO(⊲⊳) is insensitive to assignment weights, we may assume that

the satisfaction of φ by X is witnessed by uniform semantic operations. That is, existential and universal

quantification split an assignment to at most n equally weighted extensions, and disjunction can only split

an assignment to two equally weighted parts. Fourth, we may assume that any equiextension atom �x1 ⊲⊳ �x2

appears in φ in an equivalent form ∃uv(u �= v ∧ �x1u ⊲⊳ �x2v), to guarantee that the condition |X�x1=�x2
| = 0

holds for all appropriate subteams X. We then obtain by the previous lemma and a simple inductive

argument that A |=w
X

φ∗. The converse direction follows similarly by the previous lemma. �

Consequently, probabilistic inclusion logic captures P, for this holds already for inclusion logic [18].

Another consequence is an alternative proof, through probabilistic inclusion logic (Theorem 23) and linear

programs (Theorems 13 and 4), for the PTIME upper bound of the data complexity of inclusion logic. For

this, note also that quantification of functions, whose range is the unit interval, is clearly expressible in

ESOR[≤, SUM, 0, 1].

Corollary 24. Sentences of FO(≈) capture P on finite ordered structures.

Theorem 23 also extends to formulae over uniform teams. Recall that a function f is uniform if f(s) =

f(s′) for all s, s′ ∈ Supp(f).

JID:APAL AID:103108 /FLA [m3L; v1.314] P.20 (1-30)

20 M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) ••••••

Theorem 25. FO(⊆) ≤ FO(≈) over uniform probabilistic teams.

Proof. Recall that FO(⊆) ≡ FO(⊲⊳). Let φ be an FO(⊲⊳) formula, A a finite structure, and X a uniform

probabilistic team. Let ∗ denote the translation of Theorem 23. Now

A |=X φ ⇔ (A, R := X) |= ∀x1 . . . xn

(

¬R(x1 . . . xn) ∨
(

R(x1 . . . xn) ∧ φ
))

⇔ (A, R := X) |= ∀x1 . . . xn

(

¬R(x1 . . . xn) ∨
(

R(x1 . . . xn) ∧ φ
))∗

⇔ (A, R := X) |= ∀x1 . . . xn

(

¬R(x1 . . . xn) ∨
(

R(x1 . . . xn) ∧ φ∗))

⇔ A |=X φ∗,

where X is the support of X and Dom(X) = {x1, . . . , xn}. �

6. Definability over open formulae

We now turn to definability over open formulae. In team semantics, inclusion logic extended with de-

pendence atoms is expressively equivalent to independence logic at the level of formulae. This relationship

however does not extend to probabilistic team semantics. As we will prove next, probabilistic inclusion

logic extended with dependence atoms is strictly less expressive than probabilistic independence logic. The

reason, in short, is that logics with marginal identity and dependence can only describe additive distribution

properties, whereas the concept of independence involves multiplication.

We begin with a proposition illustrating that probabilistic independence logic has access to irrational

weights.5

Proposition 26. Define φ(x) = ∃c∃y∀zθ, where θ is defined as

=(c) ∧ x ⊥⊥ y ∧ x ≈ y ∧ ((x = c ∧ y = c) ↔ z = c). (11)

Let A be a finite structure with domain A of size n, and let X be a probabilistic team. Then

A |=X φ(x) =⇒ |Xx=a| =
1√
n

for some a ∈ A. (12)

Proof. Suppose A |=X φ(x), and let Y be an extension of X, in accord with the quantifier prefix of φ, that

satisfies (11). Then in Y c is constant and z uniformly distributed over all domain values. Hence z equals

c for weight 1
n , and consequently x and y simultaneously equal c for the same weight. Since x and y are

independent and identically distributed, in isolation they equal c for weight 1√
n

. Since X and Y agree on

the weights of x, the claim follows. �

It follows, then, that independence atoms are not definable in additive existential second-order logic.

Lemma 27. FO(⊥⊥) � ESOR[≤, +, 0, 1].

Proof. Let φ(x) be as in the previous proposition. Assume towards contradiction that it has a translation

Ψ(f) in ESOR[≤, +, 0, 1]. Then Ψ contains one free unary function variable f to encode the probabilistic

team over {x}. Let A be a structure with universe {0, 1} and empty vocabulary. By the previous proposition

A satisfies Ψ(f) if and only if {f(0), f(1)} = {1/
√

2, 1 − 1/
√

2}.

5 We thank Vadim Weinstein for the idea behind this proposition.

JID:APAL AID:103108 /FLA [m3L; v1.314] P.21 (1-30)

M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) •••••• 21

We define a translation Φ �→ Φ∗ from ESOR[≤, +, 0, 1] over A to the additive existential (first-order)

theory over the reals. Without loss of generality Φ has no nested function terms. In the translation, we

interpret function terms of the form g(a1, . . . , aar(g)), for a1, . . . , aar(g) ∈ {0, 1}, as first-order variables. The

translation, defined recursively, is identity for numerical inequality atoms, homomorphic for disjunction and

conjunction, and otherwise defined as:

• (∀yΦ)∗ := Φ∗(0/y) ∧ Φ∗(1/y),

• (∃yΦ)∗ := Ψ∗(0/y) ∨ Φ∗(1/y),

• (∃gΦ)∗ := (∃g(a1, . . . , aar(g))a1,...,aar(g)∈{0,1}Φ∗,

where Φ∗(a/y) is obtained from Φ∗ by substituting h(x1, . . . , xi−1, a, xi+1, . . . xn) for any variable of the

form h(x1, . . . , xi−1, y, xi+1, . . . xn). Applying the translation to Ψ(f) we obtain a formula Ψ∗(f(0), f(1))

that contains two free first-order variables f(0) and f(1).

It is easy to see that A |= Ψ(f) if and only if Ψ∗(f(0), f(1)) holds in the real arithmetic. Consequently, Ψ∗

has only irrational solutions. On the other hand, Ψ∗ can be transformed to the form ∃x1 . . . ∃xn

∨

i

∧

j Cij ,

where each Cij is a (strict or non-strict) linear inequation with integer coefficients and constants. Since Ψ∗

is satisfiable, some system of linear inequations
∧

j Cij has solutions, and thus also rational solutions.6 Thus

Ψ∗ has rational solutions, which leads to a contradiction. We conclude that φ(x) does not translate into

ESOR[≤, +, 0, 1]. �

The following result is now immediate.

Theorem 28. FO(=(· · ·), ≈) < FO(⊥⊥).

Proof. Dependence and marginal identity atoms are definable in FO(⊥⊥) (i.e., in first-order logic extended

with marginal probabilistic independence atoms) [25, Proposition 3, Theorem 10, and Theorem 11]. Fur-

thermore, φ(x) in Proposition 26 is not definable in FO(=(· · ·), ≈). For this, recall that by Theorem 13,

FO(= (· · ·), ≈) corresponds to L-ESO[0,1][≤, +, 0, 1]. This logic is clearly subsumed by ESOR[≤, +, 0, 1],

which in turn cannot translate φ(x) by the previous lemma. �

There are, in fact, more than one way to prove that FO(⊥⊥) � FO(=(· · ·), ≈). Above, we use the fact

that probabilistic independence cannot be defined in terms of additive existential second-order logic, which

in turn encompasses both dependence and marginal independence atoms. Another strategy is to apply the

closure properties of these atoms.

Let φ be a formula over probabilistic team semantics. We say that φ is closed under scaled unions if for

all parameters α ∈ [0, 1], finite structures A, and probabilistic teams X and Y : A |=X φ and A |=Y φ imply

A |=Z φ, where Z := αX + (1 − α)Y . In the weighted semantics, we say that φ is closed under unions if for

all finite structures A and weighted teams X and Y : A |=w
X

φ and A |=w
Y

φ imply A |=w
X+Y

φ. We say that φ

is relational if for all finite structures A, and probabilistic teams X and Y such that Supp(Y) = Supp(X):

A |=X φ if and only if A |=Y φ. We say that φ is downwards closed if for all finite structures A, and

probabilistic teams X and Y such that Supp(Y) ⊆ Supp(X): A |=X φ implies A |=Y φ. Furthermore, a logic

L is called relational (downward closed, closed under scaled union, resp.) if each formula φ in L is relational

(downward closed, closed under scaled unions, resp.).

Proposition 29. The following properties hold:

6 To see why, observe that such a system can be expressed as a linear program in the canonical form (e.g., as in the proof of
Theorem 8). Since the optimal solution of a linear program is always attained at a vertex of the feasible region, a linear program
with rational coefficients and constants has at least one rational optimal solution if it has optimal solutions at all (see, e.g., [13]).

JID:APAL AID:103108 /FLA [m3L; v1.314] P.22 (1-30)

22 M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) ••••••

• FO(=(· · ·)) is relational. [Self-evident]

• FO(≈) is closed under scaled unions. [25]

In the context of multiteam semantics, Grädel and Wilke have shown that probabilistic independence

is not definable by any logic that extends first-order logic with a collection of atoms that are downwards

closed or union closed [23, Theorem 17]. In fact, their proof works also when downwards closed atoms are

replaced with relational atoms (which, in their framework as well as in the probabilistic framework, is a

strictly more general notion). While their proof technique does not directly generalize to probabilistic team

semantics, it can readily be adapted to weighted semantics (Definition 10).

Theorem 30 (cf. [23]). Let C be a collection of relational atoms, and let D be a collection of atoms that are

closed under unions. Then under weighted semantics FO(⊥⊥) � FO(C, D).

This theorem can be then transferred to probabilistic semantics by using the following observations: For

any probabilistic n-ary atom D, we can define an n-ary atom D∗ in the weighted semantics as follows:

A |=w
X

D∗(x1, . . . , xn) if and only if A |= 1
|X| ·X D(x1, . . . , xn)

It follows via a straightforward calculation that D∗ is union closed, whenever D is closed under scaled

unions: Assume that A |=w
X

D∗(x1, . . . , xn) and A |=w
Y

D∗(x1, . . . , xn). Fix k = |X|
|X|+|Y | and note that then

1 − k = |Y |
|X|+|Y | . By definition, we get A |= 1

|X| ·X D(x1, . . . , xn) and A |= 1
|Y| ·Y D(x1, . . . , xn), from which

A |= k
|X| ·X+ 1−k

|Y| ·Y D(x1, . . . , xn) follows via closure under scaled unions. Finally, since k
|X| · X + 1−k

|Y | · Y =
1

|X|+|Y | · X + 1
|X|+|Y | · Y = 1

|X|+|Y | · (X + Y), we obtain that A |=w
X+Y

D∗(x1, . . . , xn).

The final piece of the puzzle is the following generalization of [25, Proposition 8]. The original proposition

was formulated for concrete atomic dependency statements satisfying the proposition as an atomic case for

induction. The inductive argument of the original proof works with any collection of atoms that satisfy the

proposition as an atomic case.

Proposition 31. Let D be a collection of atoms. If A |=w
X

D(�x) ⇔ A |= 1
|X| ·X D(�x), for every structure A,

weighted team X : X → R≥0 of A, and D ∈ D, then A |=w
X

φ ⇔ A |= 1
|X| ·X φ, for every A, X, and φ ∈ FO(D)

as well.

By combining Theorem 30 and Proposition 31 with the two observation made above, we obtain the

probabilistic analogue of Theorem 30.

Theorem 32. Let C be a collection of relational atoms, and let D be a collection of atoms that are closed

under scaled unions. Then FO(⊥⊥) � FO(C, D).

From this, FO(⊥⊥) � FO(=(· · ·), ≈) follows as a special case by Proposition 29.

7. Axiomatization of marginal identity atoms

Next we turn to axioms of the marginal identity atom, restricting attention to atoms of the form

x1 . . . xn ≈ y1 . . . yn, where both x1 . . . xn and y1 . . . yn are sequences of distinct variables. It turns out

that the axioms of inclusion dependencies over relational databases [9] are sound and almost complete for

marginal identity; we only need one additional rule for symmetricity. Consider the following axiomatiza-

tion:

JID:APAL AID:103108 /FLA [m3L; v1.314] P.23 (1-30)

M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) •••••• 23

1. reflexivity: x1 . . . xn ≈ x1 . . . xn;

2. symmetry: if x1 . . . xn ≈ y1 . . . yn, then y1 . . . yn ≈ x1 . . . xn;

3. projection and permutation: if x1 . . . xn ≈ y1 . . . yn, then xi1
. . . xik

≈ yi1
. . . yik

, where i1, . . . , ik is a

sequence of distinct integers from {1, . . . , n}.

4. transitivity: if x1 . . . xn ≈ y1 . . . yn and y1 . . . yn ≈ z1 . . . zn, then x1 . . . xn ≈ z1 . . . zn.

For a set of marginal identity atoms Σ ∪ {σ}, a proof of σ from Σ is a finite sequence of marginal identity

atoms such that (i) each element of the sequence is either from Σ, or follows from previous atoms in the

sequence by an application of a rule, and (ii) the last element in the sequence is σ. We write Σ ⊢ σ if there

is a proof of σ from Σ. For a probabilistic team X and a formula φ over the empty vocabulary τ∅, we write

X |= φ as a shorthand for A |=X φ, where A is the structure over τ∅ whose domain consists of the values

in the support of X. We use a shorthand X |= φ, for a team X, analogously. We write Σ |= σ if every

probabilistic team Y that satisfies Σ satisfies also σ. The proof of the following theorem is an adaptation of

a similar result for inclusion dependencies [9].

Theorem 33. Let Σ ∪ {σ} be a finite set of marginal identity atoms. Then Σ |= σ if and only if Σ ⊢ σ.

Proof. It is clear that the axiomatization is sound; we show that it is also complete.

Assume that Σ |= σ, where σ is of the form x1 . . . xn ≈ y1 . . . yn. Let V consist of the variables appearing

in Σ ∪ {σ}. For each subset V ⊆ V, let iV be an auxiliary variable, called an index. Denote the set of all

indices over subsets of V by I. Define Σ∗ as the set of all inclusion atoms u1 . . . uliU ⊆ v1 . . . vliV , where

U = {u1, . . . , ul}, V = {v1, . . . , vl}, and u1 . . . vl ≈ v1 . . . vl or its inverse v1 . . . vl ≈ u1 . . . vl is in Σ.

To show that Σ ⊢ x1 . . . xn ≈ y1 . . . yn, we will first apply the chase algorithm of database theory to

obtain a finite team Y that satisfies Σ∗, where the codomain of Y consists of natural numbers. The indices

iV in Y , in particular, act as multiplicity measures for values of V , making sure that both sides of any

marginal identity atom in Σ appear in Y with equal frequency. This way, the probabilistic team Y , defined

as the uniform distribution over Y , will in turn satisfy Σ. Finally, we show that the chase algorithm yields

a proof of σ, utilizing the fact that Y satisfies σ by assumption.

Next, we define a team X0 that serves as the starting point of the chase algorithm. We also describe how

assignments over V that are introduced during the chase are extended to V ∪ I.

Let X0 = {s∗}, where s∗ is an assignment defined as follows. Let s∗(xi) = i, for 1 ≤ i ≤ n, and s∗(x) = 0,

for x ∈ (V ∪ I) \ {x1, . . . , xn}. For a team Y with variable domain V ∪ I and an assignment s with variable

domain V, define sY : V ∪ I → N as the extension of s such that

sY (iV) = |{t ∈ Y | t ↾ V = s ↾ V }|, (13)

for iV ∈ I. That is, the value sY (iV) is the number of repetitions of s ↾ V in Y .

In what follows, we describe a chase rule to expand a team X. We say that an assignment s′ witnesses

an inclusion atom �x ⊆ �y for another assignment s, if s(�x) = s′(�y). Consider the following chase rule:

Chase rule. Let X be a team with variable domain V ∪ I, s ∈ X, and σ := u1 . . . uliU ⊆ v1 . . . vliV ∈ Σ∗.

Suppose no assignment in X witnesses σ for s. Now let s′ be the assignment with variable domain V that

is defined as

s′(x) :=

{

s(uj) if x is vj , and

0 otherwise.

Then we say that s and σ generate the assignment s′
X .

JID:APAL AID:103108 /FLA [m3L; v1.314] P.24 (1-30)

24 M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) ••••••

Next, let S = (X0, X1, X2, . . .) be a maximal sequence, where Xi+1 = Xi ∪ {s′
Xi

} for an assignment s′
Xi

generated non-deterministically by some s ∈ Xj and τ ∈ Σ∗ according to the chase rule, where j ≤ i is

minimal. Define Y as the union of all elements in S. Note that Y is finite if S is. In particular, if Y is finite,

then it equals Xi, where i is the least integer such that the chase rule is not anymore applicable to Xi.

Below, we will show that Y is finite, which follows if the chase algorithm terminates.

It is easy the verify that the following holds, for each i ∈ N: For any U = {u1, . . . , un} and s ∈ Xi, if

the team Xs := {t ∈ Xi | t ↾ U = s ↾ U} is of size m, then {t(iU) | t ∈ Xs} = {0, . . . , m − 1}. That is,

the values of iU in Xs form an initial segment of N of size |Xs|. Therefore, if s ∈ Xi has no witness for

u1 . . . uliU ⊆ v1 . . . vliV in Xi, then for any t ∈ Xi such that s(u1 . . . ul) = t(v1 . . . vl), we have s(iU) > t(iV).

It follows that

s(iU) ≥ s′
Xi

(iV) if s′
Xi

is generated by s ∈ Xi and u1 . . . uliU ⊆ v1 . . . vliV . (14)

We will next show how Σ ⊢ x1 . . . xn ≈ y1 . . . yn follows from the following two claims. We will then prove

the claims, which concludes the proof of the theorem.

Claim 1. Y is finite.

Claim 2. If Y contains an assignment s that maps some sequence of variables zj, for 1 ≤ j ≤ k, to distinct

1 ≤ ij ≤ n, then Σ ⊢ xi1
. . . xik

≈ z1 . . . zk.

It follows by construction that Y |= Σ∗. Since Y is finite by Claim 1, we may define a probabilistic team

Y as the uniform distribution over Y . By the construction of Y and Σ∗, it follows that Y |= Σ, and hence

Y |= x1 . . . xn ≈ y1 . . . yn follows from the assumption that Σ |= σ. Consequently, Y contains an assignment

s which maps yi to i, for 1 ≤ i ≤ n. We conclude that by Claim 2 there is a proof of x1 . . . xn ≈ y1 . . . yn

from Σ.7

To complete the proof, we prove Claims 1 and 2.

Proof of Claim 1. Assume towards contradiction that Y is infinite, which entails that the sequence S =

(X0, X1, X2, . . .) is infinite. W.l.o.g. the chase rule is always applied to s that belongs to the intersection

Xi ∩ Xj , for minimal j ≤ i. Define S ′ = (X ′
0, X ′

1, X ′
2, . . .) as the sequence, where X ′

0 = X0, and X ′
i+1 is

defined as Xj where j is the least integer such that all s ∈ X ′
i and σ ∈ Σ∗ have a witness in Xj . Due to the

application order of the chase rule, it follows that

any assignment in X ′
i+1 \ X ′

i is generated by some assignment in X ′
i \ X ′

i−1, (15)

assuming X ′
−1 = ∅. Moreover, S ′ is a subsequence of S which is finite iff S is.

We first define some auxiliary concepts. For an assignment s in X, we use a shorthand Base(s) for s ↾ V,

called the base of s. We also define Base(X) := {Base(s) | s ∈ X}. The multiplicity in X of an assignment

s is defined as |{s′ ∈ X | Base(s) = Base(s′)}|. Note that Base(Y) is finite, for Base(s) is a mapping from V
into {0, . . . , n} for all s ∈ Y . Thus, since Y is infinite, it contains assignments with infinite multiplicity in

Y . Next, we associate each assignment s with the set of its positive variables Pos(s) := {x ∈ V | s(x) > 0},

the size of which is called the degree of s.

Let k be some integer such that X ′
k contains every assignment in Y that has finite multiplicity in Y , and

denote X ′
k by Z. Let M ∈ {1, . . . , n} be the maximal degree of any assignment in Y with infinite multiplicity

in Y , that is, the maximal degree of any assignment in Y \ Z. Then, take any sL ∈ X ′
L \ X ′

L−1 of degree M ,

7 Claim 2 is essentially from [9], with the exception that here we also need to consider symmetricity. This claim intuitively states
that the chase procedure produces only assignments whose corresponding marginal identity atoms are provable from Σ.

JID:APAL AID:103108 /FLA [m3L; v1.314] P.25 (1-30)

M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) •••••• 25

where L > k +S for S := |Base(Y)|. By property (15), we find a sequence of assignments (s0, . . . , sL), where

si+1 ∈ X ′
i+1 \ X ′

i, for i < L, was generated by si ∈ X ′
i \ X ′

i−1 with the chase rule. Since S is sufficiently

large, this sequence has a suffix (sl, . . . , sm, . . . , sL) in which each assignment belongs to Y \ Z, has degree

M , and where l < m and Base(sl) = Base(sm).

It now suffices to show the following subclaim:

Subclaim. If t, t′ ∈ Y \ Z are two assignments with degree M such that t′ was generated by t by the chase

rule, then t(iPos(t)) ≥ t′(iPos(t′)).

The subclaim implies that sl(iPos(sl)) ≥ sm(iPos(sm)), which leads to a contradiction. For this, observe

that the assignment construction in (13), together with Base(sl) = Base(sm), implies that sl(i) < sm(i)

for all indices i. In particular, we have sl(iPos(sl)) < sm(iPos(sm)) since Pos(sl) = Pos(sm). Hence, the

assumption that Y is infinite must be false. �

Proof of the subclaim. Suppose t′ is generated by t and u1 . . . uliU ⊆ v1 . . . vliV ∈ Σ∗. Without loss of

generality Pos(t) = {u1, . . . , uM }, in which case Pos(t′) = {v1, . . . , vM }. We need to show that t(iPos(t)) ≥
t′(iPos(t′)). Now, (t(u1), . . . , t(ul)) is a sequence of the form (i1, . . . , iM , 0 . . . , 0), where ij are positive integers.

By the assumption that t ∈ Y \ Z, there is an integer m such that t ∈ Xm+1 \ Xm and Z ⊆ Xm. We obtain

that

t(iPos(t)) = |{s ∈ Xm | (s(u1), . . . , s(uM)) = (i1, . . . , iM)}| (16)

=
∑

jM+1,...,jl∈{0,...,n}
|{s ∈ Xm | (s(u1), . . . , s(ul)) = (i1, . . . , iM , jM+1, . . . , jl)}|

= |{s ∈ Xm | (s(u1), . . . , s(ul)) = (i1, . . . , iM , 0 . . . , 0)}|+
∑

jM+1,...,jl∈{0,...,n}
(jM+1,...,jl) �=(0,...,0)

|{s ∈ Xm | (s(u1), . . . , s(ul)) = (i1, . . . , iM , jM+1 . . . , jl)}|

= t(iU) +
∑

jM+1,...,jl∈{0,...,n}
(jM+1,...,jl) �=(0,...,0)

|{s ∈ Z | (s(u1), . . . , s(ul)) = (i1, . . . , iM , jM+1, . . . , jl)}| (17)

≥ t′(iV) +
∑

jM+1,...,jl∈{0,...,n}
(jM+1,...,jl) �=(0,...,0)

|{s ∈ Z | (s(v1), . . . , s(vl)) = (i1, . . . , iM , jM+1, . . . , jl)}| (18)

= t′(iPos(t′))

Here, the assignment construction in (13) entails (16), and it is also used in (17). For the summation term

appearing in (17), we note that each assignment whose degree is strictly greater than M must belong

to Z. It remains to consider (18); the last equality is symmetrical to the composition of the first four

equalities.

To show that (18) holds, observe first that t(iU) ≥ t′(iV) by property (14). For the summation term

appearing in (18), suppose α = |{s ∈ Z | (s(v1), . . . , s(vl)) = (i1, . . . , iM , jM+1, . . . , jl)}|, for some se-

quence jM+1, . . . , jl ∈ {0, . . . , n} containing a positive integer. By the assignment construction in (13),

we find an assignment s0 ∈ Z such that (s0(v1), . . . , s0(vl), s0(iV)) = (i1, . . . , iM , jM+1, . . . , jl, α − 1).

Observe that v1 . . . vliV ⊆ u1 . . . uliU ∈ Σ∗, because Σ∗ is symmetrical. Now, since Z is subsumed

by Y , which in turn satisfies v1 . . . vliV ⊆ u1 . . . uliU , we find an assignment s1 ∈ Y such that

(s1(u1), . . . , s1(ul), s1(iU)) = (i1, . . . , iM , jM+1, . . . , jl, α − 1). Since the degree of s1 is greater than M ,

we observe that s1 ∈ Z. This entails that α ≤ |{s ∈ Z | (s(u1), . . . , s(ul)) = (i1, . . . , iM , jM+1, . . . , jl)}|

JID:APAL AID:103108 /FLA [m3L; v1.314] P.26 (1-30)

26 M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) ••••••

Table 1

The known expressivity hierarchy of logics with probabilistic team semantics and corresponding ESO variants on
metafinite structures. The results of this paper are marked with an asterisk (*).

almost conjunctive L-(∃̈∗∀∗)[0,1][=, SUM, 0, 1] L-ESO[0,1][=, +, 0, 1] L-ESO[0,1][=, ×, +, 0, 1]

≡ ∗ ≡ ∗ ≡ [26]

FO(≈) <[25] FO(≈, =(· · ·)) <∗ FO(⊥⊥)

≡ [25]

FO(⊥⊥c)

by the assignment construction in (13). From this, we obtain that (18) holds. This shows the sub-

claim. �

Proof of Claim 2. Note that, if s ∈ Y , then there exists a minimal i such that s ∈ Xi \ Xi−1. We prove the

claim by induction on i. For the initial team X0 = {s∗}, we have s∗(xi) = i, for 1 ≤ i ≤ n. By reflexivity

we obtain xi1
. . . xik

≈ xi1
. . . xik

, and thus the claim holds for the base step.

For the inductive step, suppose s ∈ Xi+1 \ Xi is generated by some s′ ∈ Xj \ Xj−1, j ≤ i, and some

u1 . . . uliU ⊆ v1 . . . vliV in Σ∗. For a variable vi from v1, . . . , vl we say the variable ui from u1, . . . , ul is

its corresponding variable. Let z1, . . . , zk be variables as in the claim, i.e., s(zj) = ij ≥ 1, for 1 ≤ j ≤
k. Now from the construction of s (i.e., (13)) it follows that z1, . . . , zk are variables from v1, . . . , vl. Let

z′
1, . . . , z′

k from u1, . . . , ul denote the corresponding variables of z1, . . . , zk. Since s was constructed by s′ and

u1 . . . uliU ⊆ v1 . . . vliV , it follows that s(z1, . . . , zk) = s′(z′
1, . . . , z′

k). By applying the induction hypothesis

to s′, we obtain that Σ yields a proof of xi1
. . . xik

≈ z′
1 . . . z′

k. Since u1 . . . ul ≈ v1 . . . vl or its inverse is in

Σ, using projection and permutation (and possibly symmetricity) we can deduce z′
1 . . . z′

k ≈ z1 . . . zk. Thus

by transitivity we obtain a proof of xi1
. . . xik

≈ z1 . . . zk. This concludes the proof of the claim. � �

8. Conclusion

Our investigations gave rise to the expressiveness hierarchy in Table 1. Furthermore, we established that

FO(≈) captures P on finite ordered structures, and that FO(≈, =(· · ·)) captures NP on finite structures.

It’s worth to note that almost conjunctive (∃̈∗∃∗∀∗)R[≤, +, SUM, 0, 1] is in some regard a maximal tractable

fragment of additive existential second-order logic, as dropping either the requirement of being almost

conjunctive, or that of having the prefix form ∃̈∗∃∗∀∗, leads to a fragment that captures NP. We also

showed that the full additive existential second-order logic (with inequality and constants 0 and 1) collapses

to NP, a result which as far as we know has not been stated previously.

Lastly, extending the axiom system of inclusion dependencies with a symmetry rule, we presented a

sound and complete axiomatization for marginal identity atoms. Beside this result, it is well known that

also marginal independence has a sound and complete axiomatization [19]. These two notions play a central

role in statistics, as it is a common assumption in hypothesis testing that samples drawn from a population

are independent and identically distributed (i.i.d.). It is an interesting open question whether marginal

independence and marginal identity, now known to be axiomatizable in isolation, can also be axiomatized

together.

Acknowledgements

We would like to thank the anonymous referee for a number of useful suggestions. We also thank Joni

Puljujärvi, Vadim Weinstein, and Richard Wilke for helpful ideas and for pointing out errors in the previous

manuscripts.

JID:APAL AID:103108 /FLA [m3L; v1.314] P.27 (1-30)

M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) •••••• 27

Appendix A. BSS-toolbox

In this section we give a short introduction to BSS machines (see e.g. [5]). The inputs for BSS machines

come from R∗ :=
⋃{R

n | n ∈ N}, which can be viewed as the real analogue of Σ∗ for a finite set Σ. The

size |x| of x ∈ R
n is defined as n. We also define R∗ as the set of all sequences x = (xi)i∈Z where xi ∈ R.

The members of R∗ are thus bi-infinite sequence of the form (. . . , x−2, x−1, x0, x1, x2, . . .). Given an element

x ∈ R
∗ ∪ R∗ we write xi for the ith coordinate of x. The space R∗ has natural shift operations. We define

shift left σl : R∗ → R∗ and shift right σr : R∗ → R∗ as σl(x)i := xi+1 and σr(x)i := xi−1.

Definition 34 (BSS machines). A BSS machine consists of an input space I = R
∗, a state space S = R∗, and

an output space O = R
∗, together with a connected directed graph whose nodes are labeled by 1, . . . , N .

The nodes are of five different types.

1. Input node. The node labeled by 1 is the only input node. The node is associated with a next node β(1)

and the input mapping gI : I → S.

2. Output node. The node labeled by N is the only output node. This node is not associated with any next

node. Once this node is reached, the computation halts, and the result of the computation is placed on

the output space by the output mapping gO : S → O.

3. Computation nodes. A computation node m is associated with a next node β(m) and a mapping gm :

S → S such that for some c ∈ R and i, j, k ∈ Z the mapping gm is identity on coordinates l �= i and on

coordinate i one of the following holds:

• gm(x)i = xj + xk (addition),

• gm(x)i = xj − xk (subtraction),

• gm(x)i = xj × xk (multiplication),

• gm(x)i = c (constant assignment).

4. Branch nodes. A branch node m is associated with nodes β−(m) and β+(m). Given x ∈ S the next

node is β−(m) if x0 ≤ 0, and β+(m) otherwise.

5. Shift nodes. A shift node m is associated either with shift left σl or shift right σr, and a next node β(m).

The input mapping gI : I → S places an input (x1, . . . , xn) in the state

(. . . , 0, n, x1, . . . , xn, 0, . . .) ∈ S,

where the size of the input n is located at the zeroth coordinate. The output mapping gO : S → O maps

a state to the string consisting of its first l positive coordinates, where l is the number of consecutive ones

stored in the negative coordinates starting from the first negative coordinate. For instance, gO maps

(. . . , 2, 1, 1, 1, n, x1, x2, x3, x4, . . .) ∈ S,

to (x1, x2, x3) ∈ O. A configuration at any moment of computation consists of a node m ∈ {1, . . . , N} and

a current state x ∈ S. The (sometimes partial) input-output function fM : R
∗ → R

∗ of a machine M is now

defined in the obvious manner. A function f : R
∗ → R

∗ is computable if f = fM for some machine M . A

language L ⊆ R
∗ is decided by a BSS machine M if its characteristic function χL : R

∗ → R
∗ is fM .

Deterministic complexity classes. A machine M runs in (deterministic) time t : N → N, if M reaches the

output in t(|x|) steps for each input x ∈ I. The machine M runs in polynomial time if t is a polynomial

function. The complexity class PR is defined as the set of all subsets of R∗ that are decided by some machine

M running in polynomial time.

JID:APAL AID:103108 /FLA [m3L; v1.314] P.28 (1-30)

28 M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) ••••••

Nondeterministic complexity classes. A language L ⊆ R
∗ is decided nondeterministically by a BSS machine

M , if

x ∈ L if and only if fM ((x, x′)) = 1, for some x′ ∈ R
∗.

Here we assume a slightly different input mapping gI : I → S, which places an input (x1, . . . , xn, x′
1, . . . , x′

m)

in the state

(. . . , 0, n, m, x1, . . . , xn, x′
1, . . . , x′

m, . . .) ∈ S,

where the sizes of x and x′ are respectively placed on the first two coordinates. When we consider lan-

guages that a machine M decides nondeterministically, we call M nondeterministic. Sometimes when we

wish to emphasize that this is not the case, we call M deterministic. Moreover, we say that M is [0,1]-

nondeterministic, if the guessed strings x′ are required to be from [0, 1]∗. L is decided in time t : N → N, if,

for every x ∈ L, M reaches the output 1 in t(|x|) steps for some x′ ∈ R
∗. The machine runs in polynomial

time if t is a polynomial function. The class NPR consists of those languages L ⊆ R
∗ for which there exists

a machine M that nondeterministically decides L in polynomial time. Note that, in this case, the size of x′

above can be bounded by a polynomial (e.g., the running time of M) without altering the definition. The

complexity class NPR has many natural complete problems such as 4-FEAS, i.e., the problem of determining

whether a polynomial of degree four has a real root [6].

Complexity classes with Boolean restrictions. If we restrict attention to machines M that may use only

c ∈ {0, 1} in constant assignment nodes, then the corresponding complexity classes are denoted using an

additional superscript 0 (e.g., as in NP0
R). Complexity classes over real computation can also be related to

standard complexity classes. For a complexity class C over the reals, the Boolean part of C, written BP(C),

is defined as {L ∩ {0, 1}∗ | L ∈ C}.

Descriptive complexity. Similar to Turing machines, also BSS machines can be studied from the van-

tage point of descriptive complexity. To this end, finite R-structures are encoded as finite strings of reals

using so-called rankings that stipulate an ordering on the finite domain. Let A be an R-structure over

τ ∪ σ where τ and σ are relational and functional vocabularies, respectively. A ranking of A is any bijec-

tion π : Dom(A) → {1, . . . , |A|}. A ranking π and the lexicographic ordering on N
k induce a k-ranking

πk : Dom(A)k → {1, . . . , |A|k} for k ∈ N. Furthermore, π induces the following encoding encπ(A). First we

define encπ(RA) and encπ(fA) for R ∈ τ and f ∈ σ:

• Let R ∈ τ be a k-ary relation symbol. The encoding encπ(RA) is a binary string of length |A|k such

that the jth symbol in encπ(RA) is 1 if and only if (a1, . . . , ak) ∈ RA, where πk(a1, . . . , ak) = j.

• Let f ∈ σ be a k-ary function symbol. The encoding encπ(fA) is string of real numbers of length |A|k
such that the jth symbol in encπ(fA) is fA(�a), where πk(�a) = j.

The encoding encπ(A) is then the concatenation of the string (1, . . . , 1) of length |A| and the encodings of

the interpretations of the relation and function symbols in τ ∪σ. We denote by enc(A) any encoding encπ(A)

of A.

Let C be a complexity class and ESOS [O, E, C] a logic, where O ⊆ {+, ×, SUM}, E ⊆ {=, <, ≤}, C ⊆ R,

and S ⊆ R or S = d[0, 1]. Let X ⊆ R or X = d[0, 1], and let S be an arbitrary class of X-structures

over τ ∪ σ that is closed under isomorphisms. We write enc(S) for the set of encodings of structures in S.

Consider the following two conditions:

(i) enc(S) = {enc(A) | A ∈ StrucX(φ)} for some φ ∈ ESOS [O, E, C][τ ∪ σ]},

JID:APAL AID:103108 /FLA [m3L; v1.314] P.29 (1-30)

M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) •••••• 29

(ii) enc(S) ∈ C.

If (i) implies (ii), we write ESOS [O, E, C] ≤X C, and if the vice versa holds, we write C ≤X ESOS [O, E, C].

If both directions hold, then we write ESOS [O, E, C] ≡X C. We omit the subscript X in the notation if

X = R.

The following results due to Grädel and Meer extend Fagin’s theorem to the context of real computation.

Theorem 35 ([22]). ESOR[+, ×, ≤, (r)r∈R] ≡ NPR.

References

[1] Mikkel Abrahamsen, Anna Adamaszek, Tillmann Miltzow, The art gallery problem is ∃R-complete, in: Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25–29, 2018,
2018, pp. 65–73.

[2] Samson Abramsky, Joni Puljujärvi, Jouko Väänänen, Team semantics and independence notions in quantum physics,
arXiv :2107 .10817, 2021.

[3] Rafael Albert, Erich Grädel, Unifying hidden-variable problems from quantum mechanics by logics of dependence and
independence, Ann. Pure Appl. Log. (2022) 103088, https://doi .org /10 .1016 /j .apal .2022 .103088, in press.

[4] Michael Benedikt, Martin Grohe, Leonid Libkin, Luc Segoufin, Reachability and connectivity queries in constraint
databases, J. Comput. Syst. Sci. 66 (1) (2003) 169–206, Special Issue on PODS 2000.

[5] Lenore Blum, Felipe Cucker, Michael Shub, Steve Smale, Complexity and Real Computation, Springer-Verlag, Berlin,
Heidelberg, 1997.

[6] Lenore Blum, Mike Shub, Steve Smale, On a theory of computation and complexity over the real numbers: np-completeness,
recursive functions and universal machines, Bull. Am. Math. Soc. (N.S.) 21 (1) (07 1989) 1–46.

[7] Peter Bürgisser, Felipe Cucker, Counting complexity classes for numeric computations II: algebraic and semialgebraic sets,
J. Complex. 22 (2) (2006) 147–191.

[8] John F. Canny, Some algebraic and geometric computations in PSPACE, in: Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, Chicago, Illinois, USA, May 2–4, 1988, 1988, pp. 460–467.

[9] Marco A. Casanova, Ronald Fagin, Christos H. Papadimitriou, Inclusion dependencies and their interaction with functional
dependencies, J. Comput. Syst. Sci. 28 (1) (1984) 29–59.

[10] Marco Console, Matthias F.J. Hofer, Leonid Libkin, Queries with arithmetic on incomplete databases, in: Dan Suciu, Yufei
Tao, Zhewei Wei (Eds.), Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2020, Portland, OR, USA, June 14–19, 2020, 2020, pp. 179–189.

[11] Felipe Cucker, Klaus Meer, Logics which capture complexity classes over the reals, J. Symb. Log. 64 (1) (1999) 363–390.
[12] George B. Dantzig, Linear Programming and Extensions, Princeton University Press, 1963.
[13] George B. Dantzig, Mukund N. Thapa, Linear Programming 1: Introduction, Springer-Verlag, Berlin, Heidelberg, 1997.
[14] Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier, Jonni Virtema, Approximation and dependence via multi-

team semantics, Ann. Math. Artif. Intell. 83 (3–4) (2018) 297–320.
[15] Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier, Jonni Virtema, Probabilistic team semantics, in: Foundations

of Information and Knowledge Systems - 10th International Symposium, FoIKS 2018, Proceedings, Budapest, Hungary,
May 14–18, 2018, 2018, pp. 186–206.

[16] Pietro Galliani, Game Values and Equilibria for Undetermined Sentences of Dependence Logic, MSc Thesis, ILLC Publi-
cations, MoL–2008–08, 2008.

[17] Pietro Galliani, Inclusion and exclusion dependencies in team semantics: on some logics of imperfect information, Ann.
Pure Appl. Log. 163 (1) (2012) 68–84.

[18] Pietro Galliani, Lauri Hella, Inclusion logic and fixed point logic, in: Simona Ronchi Della Rocca (Ed.), Computer Science
Logic 2013 (CSL 2013), Dagstuhl, Germany, in: Leibniz International Proceedings in Informatics (LIPIcs), vol. 23, Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2013, pp. 281–295.

[19] Dan Geiger, Azaria Paz, Judea Pearl, Axioms and algorithms for inferences involving probabilistic independence, Inf.
Comput. 91 (1) (1991) 128–141.

[20] Erich Grädel, Yuri Gurevich, Metafinite model theory, Inf. Comput. 140 (1) (1998) 26–81.
[21] Erich Grädel, Stephan Kreutzer, Descriptive complexity theory for constraint databases, in: Computer Science Logic, 13th

International Workshop, CSL’99, 8th Annual Conference of the EACSL, Proceedings, Madrid, Spain, September 20–25,
1999, 1999, pp. 67–81.

[22] Erich Grädel, Klaus Meer, Descriptive complexity theory over the real numbers, in: Proceedings of the Twenty-Seventh
Annual ACM Symposium on Theory of Computing, 29 May–1 June 1995, Las Vegas, Nevada, USA, 1995, pp. 315–324.

[23] Erich Grädel, Richard Wilke, Logics with multiteam semantics, ACM Trans. Comput. Log. 23 (2) (2022) 13, 30 pages.
[24] Martin Grohe, Martin Ritzert, Learning first-order definable concepts over structures of small degree, in: 32nd Annual

ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20–23, 2017, IEEE Computer
Society, 2017, pp. 1–12.

[25] Miika Hannula, Åsa Hirvonen, Juha Kontinen, Vadim Kulikov, Jonni Virtema, Facets of distribution identities in proba-
bilistic team semantics, in: Logics in Artificial Intelligence - 16th European Conference, JELIA 2019, Proceedings, Rende,
Italy, May 7–11, 2019, 2019, pp. 304–320.

JID:APAL AID:103108 /FLA [m3L; v1.314] P.30 (1-30)

30 M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) ••••••

[26] Miika Hannula, Juha Kontinen, Jan Van den Bussche, Jonni Virtema, Descriptive complexity of real computation and
probabilistic independence logic, in: Holger Hermanns, Lijun Zhang, Naoki Kobayashi, Dale Miller (Eds.), LICS’20: 35th
Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8–11, 2020, ACM, 2020,
pp. 550–563.

[27] Miika Hannula, Jonni Virtema, Tractability frontiers in probabilistic team semantics and existential second-order logic over
the reals, in: Wolfgang Faber, Gerhard Friedrich, Martin Gebser, Michael Morak (Eds.), Logics in Artificial Intelligence
- 17th European Conference, JELIA 2021, Virtual Event, Proceedings, May 17–20, 2021, in: Lecture Notes in Computer
Science, vol. 12678, Springer, 2021, pp. 262–278.

[28] Uffe Flarup Hansen, Klaus Meer, Two logical hierarchies of optimization problems over the real numbers, Math. Log. Q.
52 (1) (2006) 37–50.

[29] Wilfrid Hodges, Compositional semantics for a language of imperfect information, Log. J. IGPL 5 (4) (1997) 539–563.
[30] Tapani Hyttinen, Gianluca Paolini, Jouko Väänänen, A logic for arguing about probabilities in measure teams, Arch.

Math. Log. 56 (5–6) (2017) 475–489.
[31] Charles Jordan, Lukasz Kaiser, Machine learning with guarantees using descriptive complexity and SMT solvers, CoRR,

arXiv :1609 .02664 [abs], 2016.
[32] Paris C. Kanellakis, Gabriel M. Kuper, Peter Z. Revesz, Constraint query languages, J. Comput. Syst. Sci. 51 (1) (1995)

26–52.
[33] L.G. Khachiyan, A polynomial algorithm in linear programming, Dokl. Akad. Nauk SSSR 244 (1979) 1093–1096.
[34] Pascal Koiran, Computing over the reals with addition and order, Theor. Comput. Sci. 133 (1) (1994) 35–47.
[35] Juha Kontinen, Ville Nurmi, Team logic and second-order logic, in: Hiroakira Ono, Makoto Kanazawa, Ruy de Queiroz

(Eds.), Logic, Language, Information and Computation, in: Lecture Notes in Computer Science, vol. 5514, Springer Berlin /
Heidelberg, 2009, pp. 230–241.

[36] Juha Kontinen, Jouko Väänänen, On definability in dependence logic, J. Log. Lang. Inf. 3 (18) (2009) 317–332.
[37] Stephan Kreutzer, Fixed-point query languages for linear constraint databases, in: Proceedings of the Nineteenth ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, May 15–17, 2000, Dallas, Texas, USA, 2000,
pp. 116–125.

[38] Klaus Meer, Counting problems over the reals, Theor. Comput. Sci. 242 (1–2) (2000) 41–58.
[39] Marcus Schaefer, Complexity of some geometric and topological problems, in: Graph Drawing, 17th International Sympo-

sium, GD 2009, Revised Papers, Chicago, IL, USA, September 22–25, 2009, 2009, pp. 334–344.
[40] Marcus Schaefer, Realizability of graphs and linkages, in: J. Pach (Ed.), Thirty Essays on Geometric Graph Theory,

Springer, 2013.
[41] Marcus Schaefer, Daniel Stefankovic, Fixed points, Nash equilibria, and the existential theory of the reals, Theory Comput.

Syst. 60 (2) (2017) 172–193.
[42] Szymon Torunczyk, Aggregate queries on sparse databases, in: Dan Suciu, Yufei Tao, Zhewei Wei (Eds.), Proceedings

of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2020, Portland, OR,
USA, June 14–19, 2020, 2020, pp. 427–443.

[43] Jouko Väänänen, Dependence Logic, Cambridge University Press, 2007.
[44] Steffen van Bergerem, Nicole Schweikardt, Learning concepts described by weight aggregation logic, in: CSL, in: LIPIcs,

vol. 183, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 10.
[45] Richard Wilke, On the presburger fragment of logics with multiteam semantics, in: Workshop on Logics of Dependence

and Independence (LoDE 2020V), 2020.

	Tractability frontiers in probabilistic team semantics and existential second-order logic over the reals
	1 Introduction
	2 Existential second-order logics on R-structures
	3 Data complexity of additive ESOR
	3.1 A tractable fragment
	3.2 Full additive ESOR

	4 Probabilistic team semantics and additive ESOR
	4.1 Probabilistic team semantics
	4.2 Expressivity of probabilistic inclusion logic
	4.3 From probabilistic team semantics to existential second-order logic
	4.4 From existential second-order logic to probabilistic team semantics

	5 Interpreting inclusion logic in probabilistic team semantics
	6 Definability over open formulae
	7 Axiomatization of marginal identity atoms
	8 Conclusion
	Acknowledgements
	Appendix A BSS-toolbox
	References

