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Probabilistic team semantics is a framework for logical analysis of probabilistic 
dependencies. Our focus is on the axiomatizability, complexity, and expressivity of 
probabilistic inclusion logic and its extensions. We identify a natural fragment of 
existential second-order logic with additive real arithmetic that captures exactly the 
expressivity of probabilistic inclusion logic. We furthermore relate these formalisms 
to linear programming, and doing so obtain PTIME data complexity for the logics. 
Moreover, on finite structures, we show that the full existential second-order logic 
with additive real arithmetic can only express NP properties. Lastly, we present a 
sound and complete axiomatization for probabilistic inclusion logic at the atomic 
level.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article 
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1. Introduction

Metafinite model theory, introduced by Grädel and Gurevich [20], generalizes the approach of finite model 

theory by shifting to two-sorted structures that extend finite structures with another (often infinite) domain 

with some arithmetic (such as the reals with multiplication and addition), and weight functions bridging the 

two sorts. A simple example of a metafinite structure is a graph involving numerical labels; e.g., a railway 

network where an edge between two adjacent stations is labeled by the distance between them. Metafinite 

structures are, in general, suited for modeling problems that make reference to some numerical domain, be 

it reals, rationals, or complex numbers.
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A particularly important subclass of metafinite structures are the R-structures, which extend finite struc-

tures with the real arithmetic on the second sort. The computational properties of R-structures can be 

studied with Blum-Shub-Smale machines [6] (BSS machines for short) which are essentially register ma-

chines with registers that can store arbitrary real numbers and which can compute rational functions over 

reals in a single time step.

A particularly important related problem is the existential theory of the reals (ETR), which contains 

all Boolean combinations of equalities and inequalities of polynomials that have real solutions. Instances of 

ETR are closely related to the question whether a given finite structure can be extended to an R-structure 

satisfying certain constraints. Moreover, as we will elaborate more shortly, ETR is also closely related to 

polynomial time BSS-computations.

Descriptive complexity theory for BSS machines and logics on metafinite structures was initiated by Grädel 

and Meer who showed that NPR (i.e., non-deterministic polynomial time on BSS machines) is captured by a 

variant of existential second-order logic (ESOR) over R-structures [22]. Since the work by Grädel and Meer, 

others (see, e.g., [11,26,28,38]) have shed more light upon the descriptive complexity over the reals mirroring 

the development of classical descriptive complexity.

Complexity over the reals can be related to classical complexity by restricting attention to Boolean inputs. 

The so-called Boolean part of NPR, written BP(NPR), consists of all those Boolean languages that can be 

recognized by a BSS machine in non-deterministic polynomial time. In contrast to NP, which is concerned 

with discrete problems that have discrete solutions, this class captures discrete problems with numerical

solutions. A well studied visibility problem in computational geometry related to deciding existence of 

numerical solutions is the so-called art gallery problem. Here one is asked can a given polygon be guarded 

by a given number of guards whose positions can be determined with arbitrary precision. Another typical 

problem is the recognition of unit distance graphs, that is, to determine whether a given graph can be 

embedded on the Euclidean plane in such a way that two points are adjacent whenever the distance between 

them is one. These problems [1,40], and an increasing number of others, have been recognized as complete 

for the complexity class ∃R, defined as the closure of ETR with polynomial-time reductions [39]. The exact 

complexity of ∃R is a major open question; currently it is only known ([8]) that

NP ≤ ∃R ≤ PSPACE [8] (1)

Interestingly, ∃R can also be characterized as the Boolean part of NP0
R, written BP(NP0

R), where NP0
R is 

non-deterministic polynomial time over BSS machines that allow only machine constants 0 and 1 [7,41]. 

It follows that ∃R captures exactly those properties of finite structures that are definable in ESOR (with 

constants 0 and 1). That ∃R can be formulated in purely descriptive terms has, to the best of our knowledge, 

never been made explicit in the literature. Indeed, one of the aims of this paper is to promote a descriptive 

approach to ∃R. In particular, our results show that certain additive fragments of ESOR, which correspond 

to subclasses of ∃R, collapse to NP and P.

In addition to metafinite structures, the connection between logical definability encompassing numerical 

structures and computational complexity has received attention in constraint databases [4,21,37]. A con-

straint database models (e.g., geometric data) by combining a numerical context structure (such as the real 

arithmetic) with a finite set of quantifier-free formulae defining infinite database relations [32].

Renewed interest to logics on frameworks analogous to metafinite structures, and related descriptive 

complexity theory, is motivated by the need to model inferences utilizing numerical data values in the 

fields of machine learning and artificial intelligence. See e.g. [24,44] for declarative frameworks for machine 

learning utilizing logic, [10,42] for very recent works on logical query languages with arithmetic, and [31]

for applications of descriptive complexity in machine learning.

In this paper, we focus on the descriptive complexity of logics with so-called probabilistic team semantics

as well as additive ESOR. Team semantics is the semantical framework of modern logics of dependence and 
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independence. Introduced by Hodges [29] and adapted to dependence logic by Väänänen [43], team semantics 

defines truth in reference to collections of assignments, called teams. Team semantics is particularly suitable 

for a formal analysis of properties, such as the functional dependence between variables, which only arise in 

the presence of multiple assignments. In the past decade numerous research articles have, via re-adaptations 

of team semantics, shed more light into the interplay between logic and dependence. A common feature, 

and limitation, in all these endeavors has been their preoccupation with notions of dependence that are 

qualitative in nature. That is, notions of dependence and independence that make use of quantities, such as 

conditional independence in statistics, have usually fallen outside the scope of these studies.

The shift to quantitative dependencies in team semantics setting is relatively recent. While the ideas of 

probabilistic teams trace back to the works of Galliani [16] and Hyttinen et al. [30], a systematic study on 

the topic can be traced to [14,15]. In probabilistic team semantics the basic semantic units are probability 

distributions (i.e., probabilistic teams). This shift from set based semantics to distribution based semantics 

enables probabilistic notions of dependence to be embedded to the framework. In [15] probabilistic team 

semantics was studied in relation to the dependence concept that is most central in statistics: conditional in-

dependence. Mirroring [17,22,36] the expressiveness of probabilistic independence logic (FO(⊥⊥c)), obtained 

by extending first-order logic with conditional independence, was in [15,26] characterized in terms of arith-

metic variants of existential second-order logic. In [26] the data complexity of FO(⊥⊥c) was also identified 

in the context of BSS machines and the existential theory of the reals. In [25] the focus was shifted to the 

expressivity hierarchies between probabilistic logics defined in terms of different quantitative dependencies. 

Recently, the relationship between the settings of probabilistic and relational team semantics has raised 

interest in the context of quantum information theory [2,3].

Another vantage point to quantitative dependence comes from the notion of multiteam semantics, defined 

in terms of multisets of variable assignments called multiteams. A multiteam can be viewed as a database 

relation that not only allows duplicate rows (cf. SQL data tables), but also keeps track of the number of 

times each row is repeated. Multiteam semantics and probabilistic team semantics are close parallels, and 

they often exhibit similar behavior with respect to their key logics (cf. [14,23,45]). There are also differences, 

namely because the two frameworks are designed to model different situations. For instance, a probability 

of a random variable can be halved, but it makes no sense to consider a data row that is repeated two and 

half times in a data table. For this reason, the so-called split disjunction is allowed to cut an assignment 

weight into two halves in one framework but not (always) in the other.

Of all the dependence concepts thus far investigated in team semantics, that of inclusion has arguably 

turned out to be the most intriguing and fruitful. One reason is that inclusion logic, which arises from 

this concept, can only define properties of teams that are decidable in polynomial time [18]. In contrast, 

other natural team-based logics, such as dependence and independence logic, capture non-deterministic 

polynomial time [17,36,43], and many variants, such as team logic, have an even higher complexity [35]. 

Thus it should come as no surprise if quantitative variants of many team-based logics turn out more complex; 

in principle, adding arithmetical operations and/or counting cannot be a mitigating factor when it comes 

to complexity.

In this paper, we study probabilistic inclusion logic, which is the extension of first-order logic with so-

called marginal identity atoms x ≈ y which state that x and y are identically distributed. Our particular 

focus is on the complexity and expressivity of sentences. It is important, at this point, to note the dis-

tinction between formulae and sentences in team-based logics: Formulae describe properties of teams (i.e., 

relations), while sentences describe properties of structures. This distinction is even more pointed in proba-

bilistic team semantics, where formulae describe properties probabilistic teams (i.e., real-valued probability 

distributions). On the other hand, sentences of logics with probabilistic team semantics can express variants 

of important problems that are conjectured not to be expressible in the relational analogues of the logics. 

Decision problems related to ETR (i.e., the likes of the art gallery problem) are, in particular, these kinds of

problems. Another motivation to focus on sentences is our desire to make comparison between relational and 
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quantitative team logics. As discussed above, the move from relational to quantitative dependence should 

not in principle make the associated logics weaker. There is, however, no direct mechanism to examine this 

hypothesis at the formula level, because the team properties of relational and quantitative team logics are 

essentially incommensurable. Fortunately this becomes possible at the sentence level. The reason is that 

sentences describe only properties of (finite) structures in both logical approaches.

The main takeaway of this paper is that there is no drastic difference between a relational team logic and 

its quantitative variant, as long as the latter makes only reference to additive arithmetic. While inclusion logic 

translates to fixed point logic, its quantitative variant, probabilistic inclusion logic, seems to require linear 

programming. Yet, the complexity upper bounds (NP/P) of first-order logic extended with dependence 

and/or inclusion atoms are preserved upon moving to quantitative variants. In contrast, earlier results 

indicate that this is not necessarily the case with respect to dependencies whose quantitative expression 

involves multiplication (such as conditional independence [26]).

Our contribution. We use strong results from linear programming to obtain the following complexity re-

sults over finite structures. We identify a natural fragment of additive ESOR (that is, almost conjunctive 

(∃̈∗∀∗)R[≤, +, SUM, 0, 1]) which captures P on ordered structures (see page 5 for a definition). The full 

additive ESOR is in turn shown to capture NP. Additionally, we establish that the so-called loose fragments, 

almost conjunctive L-(∃̈∗∀∗)[0,1][=, SUM, 0, 1] and L-ESO[0,1][=, +, 0, 1], of the aforementioned logics have 

the same expressivity as probabilistic inclusion logic and its extension with dependence atoms, respectively. 

The characterizations of P and NP hold also for these fragments. Over open formulae, probabilistic inclusion 

logic extended with dependence atoms is shown to be strictly weaker than probabilistic independence logic. 

Moreover, we expand from a recent analogous result by Grädel and Wilke on multiteam semantics [23] and 

show that probabilistic independence cannot be expressed in any logic that has access to only atoms that 

are relational or closed under so-called scaled unions. In contrast, independence logic and inclusion logic 

with dependence atoms are equally expressive in team semantics [17]. We also show that inclusion logic 

can be conservatively embedded into its probabilistic variant, when restricted to probabilistic teams that 

are uniformly distributed. From this we obtain an alternative proof through linear systems (that is entirely 

different from the original proof of Galliani and Hella [18]) for the fact that inclusion logic can express only 

polynomial time properties. Finally, we present a sound and complete axiomatization for marginal identity 

atoms. This is achieved by appending the axiom system of inclusion dependencies with a symmetricity rule.

This paper is an extended version of [27]. Here we include all the proofs that were previously omitted. 

In addition, the results in Sections 6 and 7 are new.

2. Existential second-order logics on R-structures

In addition to finite relational structures, we consider their numerical extensions by adding real numbers 

(R) as a second domain sort and functions that map tuples over the finite domain to R. Throughout the 

paper structures are assumed to have at least two elements. In the sequel, τ and σ will always denote a finite 

relational and a finite functional vocabulary, respectively. The arities of function variables f and relation 

variables R are denoted by ar(f) and ar(R), resp. If f is a function with domain Dom(f) and A a set, we 

define f ↾ A to be the function with domain Dom(f) ∩ A that agrees with f for each element in its domain. 

Given a finite set S, a function f : S → [0, 1] that maps elements of S to elements of the closed interval 

[0, 1] of real numbers such that 
∑

s∈S f(s) = 1 is called a (probability) distribution, and the support of f is 

defined as Supp(f) := {s ∈ S | f(s) > 0}. Also, f is called uniform if f(s) = f(s′) for all s, s′ ∈ Supp(f).

Definition 1 (R-structures). A tuple A = (A, R, (RA)R∈τ , (gA)g∈σ), where the reduct of A to τ is a finite 

relational structure, and each gA is a function from Aar(g) to R, is called an R-structure of vocabulary τ ∪ σ. 

Additionally, A is also called (i) an S-structure, for S ⊆ R, if each gA is a function from Aar(g) to S, and 

(ii) a d[0, 1]-structure if each gA is a distribution. We call A a finite structure, if σ = ∅.
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Our focus is on a variant of functional existential second-order logic with numerical terms (ESOR) that 

is designed to describe properties of R-structures. As first-order terms we have only first-order variables. 

For a set σ of function symbols, the set of numerical σ-terms i is generated by the following grammar:

i ::= c | f(�x) | i + i | i × i | SUM�y i,

where �y can be any tuple of variables and include variables that do not occur in i. The interpretations 

of +, ×, SUM are the standard addition, multiplication, and summation of real numbers, respectively, and 

c ∈ R is a real constant denoting itself. In particular, the interpretation [SUM�y i]As of the term SUM�y i is 

defined as follows:

[SUM�y i]As :=
∑

�a∈A|�y|

[i]As[�a/�y],

where [i]As[�a/�y] is an interpretation of the term i. We write i(�y) to mean that the free variables of the term i

are exactly the variables in �y. The free variables of a term are defined as usual. In particular, the variables 

in �x are not free in SUM�xi(�y).

Definition 2 (Syntax of ESOR). Let O ⊆ {+, ×, SUM}, E ⊆ {=, <, ≤}, and C ⊆ R. The set of τ ∪σ-formulae 

of ESOR[O, E, C] is defined via the grammar:

φ ::= x = y | ¬x = y | i e j | ¬i e j | R(�x) | ¬R(�x) | φ ∧ φ | φ ∨ φ | ∃xφ | ∀xφ | ∃fψ,

where i and j are numerical σ-terms constructed using operations from O and constants from C; e ∈ E; 

R ∈ τ is a relation symbol; f is a function variable; x, y, and �x are (tuples of) first-order variables; and ψ

is a τ ∪ (σ ∪ {f})-formula of ESOR[O, E, C].

The semantics of ESOR[O, E, C] is defined via R-structures and assignments analogous to first-order 

logic, however the interpretations of function variables f range over functions Aar(f) → R. Furthermore, 

given S ⊆ R, we define ESOS [O, E, C] as the variant of ESOR[O, E, C] in which quantification of functions 

range over h : Aar(f) → S.

Loose fragment. For S ⊆ R, define L-ESOS [O, E, C] as the loose fragment of ESOS [O, E, C] in which 

negated numerical atoms ¬i e j are disallowed.

Almost conjunctive. A formula φ ∈ ESOS [O, E, C] is almost conjunctive, if for every subformula (ψ1 ∨ ψ2)

of φ, no numerical term occurs in ψi, for some i ∈ {1, 2}.

Prefix classes. For a regular expression L over the alphabet {∃̈, ∃, ∀}, we denote by LS[O, E, C] the formulae 

of ESOS [O, E, C] in prefix form whose quantifier prefix is in the language defined by L, where ∃̈ denotes 

existential function quantification, and ∃ and ∀ first-order quantification.

Expressivity comparisons. Let L and L′ be some logics defined above, and let X ⊆ R. For φ ∈ L, define 

StrucX(φ) to be the class of pairs (A, s) where A is an X-structure and s an assignment such that A |=s

φ. Define Strucfin(φ) (Strucord(φ), resp.) analogously in terms of finite (finite ordered, resp.) structures. 

Additionally, Strucd[0,1](φ) is the class of (A, s) ∈ Struc[0,1](φ) such that each fA is a distribution. If X is 

a set of reals or from {“d[0, 1]”,“fin”, “ord”}, we write L ≤X L′ if for all formulae φ ∈ L there is a formula 

ψ ∈ L′ such that StrucX(φ) = StrucX(ψ). For formulae without free first-order variables, we omit s from 

the pairs (A, s) above. As usual, the shorthand ≡X stands for ≤X in both directions. For X = R, we write 

simply ≤ and ≡.
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3. Data complexity of additive ESOR

On finite structures ESOR[≤, +, ×, 0, 1] is known to capture the complexity class ∃R [7,22,41], which lies 

somewhere between NP and PSPACE. Here we focus on the additive fragment of the logic. It turns out that 

the data complexity of the additive fragment is NP and thus no harder than that of ESO. Furthermore, we 

obtain a tractable fragment of the logic, which captures P on finite ordered structures.

3.1. A tractable fragment

Next we show P data complexity for almost conjunctive (∃̈∗∃∗∀∗)R[≤, +, SUM, 0, 1].

Proposition 3. Let φ be an almost conjunctive ESOR[≤, +, SUM, 0, 1]-formula in which no existential first-

order quantifier is in a scope of a universal first-order quantifier. There is a polynomial-time reduction from 

R-structures A and assignments s to families of systems of linear inequations S such that A |=s φ if and 

only if there is a system S ∈ S that has a solution. If φ has no free function variables, the systems of linear 

inequations in S have integer coefficients.

Proof. Fix φ. We assume, w.l.o.g., that variables quantified in φ are quantified exactly once, the sets of free 

and bound variables of φ are disjoint, and that the domain of s is the set of free variables of φ. Moreover, 

we assume that φ is of the form ∃�y∃�f∀�xθ, where �f is a tuple of function variables and θ is quantifier-free. 

We use X and Y to denote the sets of variables in �x and �y, respectively, and �g to denote the free function 

variables of φ.

We describe a polynomial-time process of constructing a family of systems of linear inequations SA,s from 

a given τ ∪ σ-structure A and an assignment s. We introduce

• a fresh variable z�a,f , for each k-ary function symbol f in �f and k-tuple �a ∈ Ak.

In the sequel, the variables z�a,f will range over real numbers.

Let A be a τ ∪σ-structure and s an assignment for the free variables in φ. In the sequel, each interpretation 

for the variables in �y yields a system of linear equations. Given an interpretation v : Y → A, we will denote 

by Sv the related system of linear equations to be defined below. We then set SA,s := {Sv | v : Y → A}. 

The system of linear equations Sv is defined as Sv :=
⋃

u : X→A Su
v , where Su

v is defined as follows. Let su
v

denote the extension of s that agrees with u and v. We let θu
v denote the formula obtained from θ by the 

following simultaneous substitution: If (ψ1 ∨ ψ2) is a subformula of θ such that no function variable occurs 

in ψi, then (ψ1 ∨ ψ2) is substituted with ⊤, if

A |=su
v

ψi, (2)

and with ψ3−i otherwise. The set Su
v is now generated from θu

v together with u and v. Note that θu
v is a 

conjunction of first-order or numerical atoms θi, i ∈ I, for some index set I. For each conjunct θi in which 

some f ∈ �f occurs, add (θi)su
v

to Su
v , where (ψ)su

v
is defined recursively as follows:

(¬ψ)su
v

:= ¬(ψ)su
v
, (iej)su

v
:= (i)su

v
e (j)su

v
, for each e ∈ {=, <, ≤, +},

(f(�z))su
v

:= zsu
v (�z),f , (SUM�zi)su

v
:=

∑

a∈A|�z|

(i)su
v (�a/�z),

(g(�z))su
v

:= gA(su
v (�z)), (x)su

v
:= su

v (x), for every variable x.



JID:APAL AID:103108 /FLA [m3L; v1.314] P.7 (1-30)

M. Hannula, J. Virtema / Annals of Pure and Applied Logic ••• (••••) •••••• 7

Let θ∗ be the conjunction of those conjuncts of θu
v in which no f ∈ �f occurs. If A �|=su

v
θ∗, remove Sv from 

SA,s.

Since φ is fixed, it is clear that SA,s can be constructed in polynomial time with respect to |A|. Moreover, 

it is straightforward to show that there exists a solution for some S ∈ SA,s exactly when A |=s φ.

Assume first that there exists an S ∈ SA,s that has a solution. Let w : Z → R, where Z := {z�a,f | f ∈
�f and �a ∈ Aar(f)}, be the function given by a solution for S. By construction, S = Sv, for some v : Y → A. 

Let A′ be the expansion of A that interprets each f ∈ �f as the function �a �→ w(z�a,f ). By construction, 

A′ |=su
v

θu
v for every u : X → A. Now, from (2) and the related substitutions, we obtain that A′ |=su

v
θ for 

every u : X → A, and hence A′ |=sv
∀x1 . . . ∀xnθ. From this A |=s φ follows.

For the converse, assume that A |=s φ. Hence there exists an extension sv of s and an expansion A′ of 

A such that A′ |=sv
∀x1 . . . ∀xnθ. Now, by construction, it follows that Sv ∈ SA,s and A′ |=su

v
θu

v , for every 

u : X → A. Moreover, it follows that the function defined by z�a,f �→ fA
′

(�a), for f ∈ �f and �a ∈ Aar(f), is a 

solution for Sv. �

The above proposition could be strengthened by relaxing the almost conjunctive requirement in any 

way such that (2) can be still decided (i.e., it suffices that the satisfaction of ψis do not depend on the 

interpretations of the functions in �f).

Theorem 4. The data complexity of almost conjunctive ESOR[≤, +, SUM, 0, 1]-formulae without free function 

variables and where no existential first-order quantifiers are in a scope of a universal first-order quantifier 

is in P.

Proof. Fix an almost conjunctive ESOR[≤, +, SUM, 0, 1]-formula φ of relational vocabulary τ of the required 

form. Given a τ ∪∅ structure A and an assignment s for the free variables of φ, let S be the related polynomial 

size family of polynomial size systems of linear inequations with integer coefficients given by Proposition 3. 

Deciding whether a system of linear inequalities with integer coefficients has solutions can be done in 

polynomial time [33]. Thus checking whether there exists a system of linear inequalities S ∈ S that has a 

solution can be done in P as well, from which the claim follows. �

We later show that probabilistic inclusion logic captures P on finite ordered structures (Corollary 24) 

and can be translated to almost conjunctive L-(∃̈∗∀∗)[0,1][≤, SUM, 0, 1] (Lemma 17). Hence already almost 

conjunctive L-(∃̈∗∀∗)R[≤, SUM, 0, 1] captures P.

Corollary 5. Almost conjunctive L-(∃̈∗∀∗)R[≤, SUM, 0, 1] captures P on finite ordered structures.

3.2. Full additive ESOR

The goal of this subsection is to prove the following theorem:

Theorem 6. ESOR[≤, +, SUM, 0, 1] captures NP on finite structures.

First observe that SUM is definable in ESOR[≤, +, 0, 1]: Already ESOR[=] subsumes ESO, and thus we 

may assume a built-in successor function S and its associated minimal and maximal elements min and max

on k-tuples over the finite part of the R-structure. Then, for a k-ary tuple of variables �x, SUM�xi agrees 

with f(max), for any function variable f satisfying f(min) = i(�x �→ min) and f(S(�x)) = f(�x) + i(S(�x)).

As ESOR[≤, +, 0, 1] subsumes ESO, by Fagin’s theorem, it can express all NP properties. Thus we only 

need to prove that any ESOR[≤, +, 0, 1]-definable property of finite structures is recognizable in NP. The 

proof relies on (descriptive) complexity theory over the reals. The fundamental result in this area is that 
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existential second-order logic over the reals (ESOR[≤, +, ×, (r)r∈R]) corresponds to non-deterministic poly-

nomial time over the reals (NPR) for BSS machines [22, Theorem 4.2]. To continue from this, some additional 

terminology is needed. We refer the reader to Appendix A (or to the textbook [5]) for more details about 

BSS machines. Let CR be a complexity class over the reals.

• Cadd is CR restricted to additive BSS machines (i.e., without multiplication).

• C0
R

is CR restricted to BSS machines with machine constants 0 and 1 only.

• BP(CR) is CR restricted to languages of strings that contain only 0 and 1.

A straightforward adaptation of [22, Theorem 4.2] yields the following theorem.

Theorem 7 ([22]). ESOR[≤, +, 0, 1] captures NP0
add on R-structures.

If we can establish that BP(NP0
add), the so-called Boolean part of NP0

add, collapses to NP, we 

have completed the proof of Theorem 6. Observe that another variant of this theorem readily holds; 

ESOR[=, +, (r)r∈R]-definable properties of R-structures are recognizable in NPadd branching on equality, 

which in turn, over Boolean inputs, collapses to NP [34, Theorem 3]. Here, restricting branching to equality 

is crucial. With no restrictions in place (the BSS machine by default branches on inequality and can use 

arbitrary reals as machine constants) NPadd equals NP/poly over Boolean inputs [34, Theorem 11]. Adapting 

arguments from [34], we show next that disallowing machine constants other than 0 and 1, but allowing 

branching on inequality, is a mixture that leads to a collapse to NP.

Theorem 8. BP(NP0
add) = NP.

Proof. Clearly NP ≤ BP(NP0
add); a Boolean guess for an input �x can be constructed by comparing to 

zero each component of a real guess �y, and a polynomial-time Turing computation can be simulated by a 

polynomial-time BSS computation.

For the converse, let L ⊆ {0, 1}∗ be a Boolean language that belongs to BP(NP0
add); we need to show that 

L belongs also to NP. Let M be a BSS machine such that its running time is bounded by some polynomial 

p, and for all Boolean inputs �x ∈ {0, 1}∗, �x ∈ L if and only if there is �y ∈ R
p(|x|) such that M accepts (�x, �y).

We describe a non-deterministic algorithm that decides L and runs in polynomial time. Given a Boolean 

input �x of length n, first guess the outcome of each comparison in the BSS computation; this guess is a 

Boolean string �z of length p(n). Note that each configuration of a polynomial time BSS computation can 

be encoded by a real string of polynomial length. During the BSS computation the value of each coordinate 

of its configuration is a linear function on the constants 0 and 1, the input �x, and the real guess �y of length 

p(n). Thus it is possible to construct in polynomial time a system S of linear inequations on �y of the form

p(n)
∑

j=1

aijyj ≤ 0 (1 ≤ i ≤ m) and

p(n)
∑

j=1

bijyj < 0 (1 ≤ i ≤ l), (3)

where aij ∈ Z, such that �y is a (real-valued) solution to S if and only if M accepts (�x, �y) with respect to the 

outcomes �z. In (3), the variables yj stand for elements of the real guess �y, and m + l is the total number of 

comparisons. Each comparison generates either a strict or a non-strict inequality, depending on the outcome 

encoded by �z.

Without loss of generality we may assume additional constraints of the form yj ≥ 0 (1 ≤ j ≤ p(n))

(cf. [12, p. 86]). Transform then S to another system of inequalities S ′ obtained from S by replacing strict 

inequalities in (3) by
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p(n)
∑

j=1

bijyj + ǫ ≤ 0 (1 ≤ i ≤ l) and ǫ ≤ 1.

Then determine the solution of the linear program: maximize (�0, 1)(�y, ǫ)T subject to S ′ and (�y, ǫ) ≥ 0. If 

there is no solution or the solution is zero, then reject; otherwise accept. Since S ′ is of polynomial size and 

linear programming is in polynomial time [33], the algorithm runs in polynomial time. Clearly, the algorithm 

accepts �x for some guess �z if and only if �x ∈ L. �

4. Probabilistic team semantics and additive ESOR

4.1. Probabilistic team semantics

Let D be a finite set of first-order variables and A a finite set. A team X is a set of assignments from D

to A. A probabilistic team is a distribution X : X → [0, 1], where X is a finite team. Also the empty function 

is considered a probabilistic team. We call D the variable domain of both X and X, written Dom(X) and 

Dom(X). A is called the value domain of X and X.

Let X : X → [0, 1] be a probabilistic team, x a variable, V ⊆ Dom(X) a set of variables, and A a 

set. The projection of X on V is defined as PrV (X) : X ↾ V → [0, 1] such that s �→ ∑

t↾V =s X(t), where 

X ↾ V := {t ↾ V | t ∈ X}. Define Sx,A(X) as the set of all probabilistic teams Y with variable domain 

Dom(X) ∪ {x} such that PrDom(X)\{x}(Y ) = PrDom(X)\{x}(X) and A is a value domain of Y ↾ {x}. We 

denote by X[A/x] the unique Y ∈ Sx,A(X) such that

Y (s) =
PrDom(X)\{x}(X)(s ↾ Dom(X) \ {x})

|A| .

If x is a fresh variable, then this equation becomes Y (s(a/x)) = X(s)
|A| . We also define X[A/x] := {s(a/x) |

s ∈ X, a ∈ A}, and write X[a/x] and X[a/x] instead of X[{a}/x] and X[{a}/x], for singletons {a}.

Let us also define some function arithmetic. Let α be a real number, and f and g be functions from a 

shared domain into real numbers. The scalar multiplication αf is a function defined by (αf)(x) := αf(x). 

The addition f + g is defined as (f + g)(x) = f(x) + g(x), and the multiplication fg is defined as (fg)(x) :=

f(x)g(x). In particular, if f and g are probabilistic teams and α + β = 1, then αf + βg is a probabilistic 

team.

We define first probabilistic team semantics for first-order formulae. As is customary in the team semantics 

context, we restrict attention to formulae in negation normal form. If φ is a first-order formula, we write 

φ⊥ for the equivalent formula obtained from ¬φ by pushing the negation in front of atomic formulae. If 

furthermore ψ is some (not necessarily first-order) formula, we then use a shorthand φ → ψ for the formula 

φ⊥ ∨ (φ ∧ ψ).

Definition 9 (Probabilistic team semantics). Let A be a τ -structure over a finite domain A, and X : X → [0, 1]

a probabilistic team. The satisfaction relation |=X for first-order logic is defined as follows:

A |=X l ⇔ ∀s ∈ Supp(X) : A |=s l, where l is a literal

A |=X (ψ ∧ θ) ⇔ A |=X ψ and A |=X θ

A |=X (ψ ∨ θ) ⇔ A |=Y ψ and A |=Z θ, for some probabilistic teams Y and Z, and

α ∈ [0, 1] such that αY + (1 − α)Z = X

A |=X ∀xψ ⇔ A |=X[A/x] ψ

A |=X ∃xψ ⇔ A |=Y ψ for some Y ∈ Sx,A(X)
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The satisfaction relation |=s denotes the Tarski semantics of first-order logic. If φ is a sentence (i.e., 

without free variables), then A satisfies φ, written A |= φ, if A |=X∅
φ, where X∅ is the distribution that 

maps the empty assignment to 1.

We make use of a generalization of probabilistic team semantics where the requirement of being a distri-

bution is dropped. A weighted team is any non-negative weight function X : X → R≥0. Given a first-order 

formula α, we write Xα for the restriction of the weighted team X to the assignments of X satisfying α (with 

respect to the underlying structure). Moreover, the total weight of a weighted team X is |X| := ∑

s∈X X(s).

Definition 10 (Weighted semantics). Let A be a τ -structure over a finite domain A, and X : X → R≥0 a 

weighted team. The satisfaction relation |=w
X

for first-order logic is defined exactly as in Definition 9, except 

that for ∨ we define instead:

A |=w
X

(ψ ∨ θ) ⇔ A |=Y ψ and A |=Z θ for some Y , Z s.t. Y + Z = X.

We consider logics with the following atomic dependencies:

Definition 11 (Dependencies). Let A be a finite structure with universe A, X a weighted team, and X a 

team.

• Marginal identity and inclusion atoms. If �x, �y are variable sequences of length k, then �x ≈ �y is a marginal 

identity atom and �x ⊆ �y is an inclusion atom with satisfactions defined as:

A |=w
X

�x ≈ �y ⇔ |X�x=�a| = |X�y=�a| for each �a ∈ Ak,

A |=X �x ⊆ �y ⇔ for all s ∈ X there is s′ ∈ X such that s(�x) = s′(�y).

• Probabilistic independence atom. If �x, �y, �z are variable sequences, then �y ⊥⊥�x �z is a probabilistic (con-

ditional) independence atom with satisfaction defined as:

A |=X �y ⊥⊥�x �z

if for all s : Var(�x�y�z) → A it holds that

|X�x�y=s(�x�y)| · |X�x�z=s(�x�z)| = |X�x�y�z=s(�x�y�z)| · |X�x=s(�x)|.

We also write �x ⊥⊥ �y for the probabilistic marginal independence atom, defined as �x ⊥⊥∅ �y.

• Dependence atom. For a sequence of variables �x and a variable y, =(�x, y) is a dependence atom with 

satisfaction defined as:

A |=X=(�x, y) ⇔ for all s, s′ ∈ X : if s(�x) = s′(�x), then s(y) = s′(y).

For probabilistic teams X, the satisfaction relation is written without the superscript w.

Observe that any dependency α over team semantics can also be interpreted in probabilistic team seman-

tics: A |=X α iff A |=Supp(X) α. For a list C of dependencies, we write FO(C) for the extension of first-order 

logic with the dependencies in C. The logics FO(≈) and FO(⊆), in particular, are called probabilistic in-

clusion logic and inclusion logic, respectively. Furthermore, probabilistic independence logic is denoted by 

FO(⊥⊥c), and its restriction to probabilistic marginal independence atoms by FO(⊥⊥). We write Fr(φ) for the 

set free variables of φ ∈ FO(C), defined as usual. We conclude this section with a list of useful equivalences. 

We omit the proofs, which are straightforward structural inductions ((ii) was also proven in [25] and (v) 

follows from (i) and the flatness property of team semantics).
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Proposition 12. Let φ ∈ FO(C), ψ ∈ FO(≈, C), and θ ∈ FO, where C is a list of dependencies over team 

semantics. Let A be a structure, X a weighted team, and r any positive real. The following equivalences hold:

(i) A |=w
X

φ ⇔ A |=Supp(X) φ.

(ii) A |=w
X

ψ ⇔ A |= 1
|X| X ψ.

(iii) A |=w
X

ψ ⇔ A |=w
rX

ψ.

(iv) A |=w
X

ψ ⇔ A |=w
X↾V ψ, where Fr(ψ) ⊆ V .

(v) A |=w
X

θ ⇔ A |=s θ, for all s ∈ Supp(X).

4.2. Expressivity of probabilistic inclusion logic

We turn to the expressivity of probabilistic inclusion logic and its extension with dependence atoms. In 

particular, we relate these logics to existential second-order logic over the reals. We show that probabilistic 

inclusion logic extended with dependence atoms captures a fragment in which arithmetic is restricted to 

summing. Furthermore, we show that leaving out dependence atoms is tantamount to restricting to sentences 

in almost conjunctive form with ∃̈∗∀∗ quantifier prefix.

Expressivity comparisons. Fix a list of atoms C over probabilistic team semantics. For a probabilistic team 

X with variable domain {x1, . . . , xn} and value domain A, the function fX : An → [0, 1] is defined as the 

probability distribution such that fX(s(�x)) = X(s) for all s ∈ X. For a formula φ ∈ FO(C) of vocabulary 

τ and with free variables {x1, . . . , xn}, the class Strucd[0,1](φ) is defined as the class of d[0, 1]-structures A

over τ ∪ {f} such that (A ↾ τ) |=X φ, where fX = fA and A ↾ τ is the finite τ -structure underlying A. Let 

L and L′ be two logics of which one is defined over (probabilistic) team semantics. We write L ≤ L′ if for 

every formula φ ∈ L there is φ′ ∈ L′ such that Strucd[0,1](φ) = Strucd[0,1](φ
′); again, ≡ is a shorthand for ≤

both ways.

Theorem 13. The following equivalences hold:

(i) FO(≈, =(· · · )) ≡ L-ESO[0,1][=, +, 0, 1].

(ii) FO(≈) ≡ almost conjunctive L-(∃̈∗∀∗)[0,1][=, SUM, 0, 1].

We divide the proof of Theorem 13 into two parts. In Section 4.3 we consider the direction from proba-

bilistic team semantics to existential second-order logic over the reals, and in Section 4.4 we shift attention 

to the converse direction. In order to simplify the presentation in the forthcoming subsections, we start 

by showing how to replace existential function quantification by distribution quantification. The following 

lemma in its original form includes multiplication (see [26, Lemma 6.4]) but works also without it.

Lemma 14 ([26]). L-ESO[0,1][=, +, 0, 1] ≡d[0,1] L-ESOd[0,1][=, SUM].

The proof, however, does not preserve the almost conjunctive form. That case is dealt with separately 

in Proposition 16. As shown next, we can utilize in this proposition the fact that the real constants 0 and 

1 are definable in almost conjunctive L-(∃̈∗∀∗)d[0,1][=, SUM].

Lemma 15. L-ESOd[0,1][=, SUM] ≡R L-ESOd[0,1][=, SUM, 0, 1]. The same holds when both logics are re-

stricted to almost conjunctive formulae of the prefix class ∃̈∗∀∗.

Proof. Any formula θ involving 0 or 1 can be equivalently expressed as follows:

∃n∃f∃h∀x∀y∀z
(

f(x) = h(x, x) ∧
(

y = z ∨ θ(h(y, z)/0, n/1)
)

)

,
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where n is nullary. �

Proposition 16. L-ESO[0,1][=, SUM, 0, 1] ≡[0,1] L-ESOd[0,1][=, SUM]. The same holds when both logics are 

restricted to almost conjunctive formulae of the prefix class ∃̈∗∀∗.

Proof. The ≥-direction is trivial. We show the ≤-direction, which is similar to the proof of [26, 

Lemma 6.4]. By Lemma 15 we may assume that almost conjunctive L-(∃̈∗∀∗)d[0,1][=, SUM] (as well as 

L-ESOd[0,1][=, SUM]) contains real constants 0 and 1. Suppose φ is some formula in L-ESO[0,1][=, SUM, 0, 1]. 

Let k be the maximal arity of any function variable/symbol appearing in φ. The total sum of the weights 

of any interpretation of a function occurring in φ on a given structure, whose finite domain is of size n, 

is at most nk. We now show how to obtain from φ an equivalent formula in L-ESOd[0,1][SUM, =, 0, 1]; the 

idea is to scale all function weights by 1/nk. Note first that the value 1/nk can be expressed via a k-ary 

distribution variable g as follows:

∃g∀�x�y g(�x) = g(�y)

Below, we write 1
nk instead of g(�x).

Suppose φ is of the form ∃f1 . . . fm∀�xθ, where θ is quantifier free, and let g1, . . . , gt be the list of (non-

quantified) function symbols of φ. Define

φ′ := ∃f ′
1 . . . f ′

mg′
1 . . . g′

t∀�x�x′ (ψ ∧ θ′),

where each f ′
j (g′(j), resp.) is an ar(fj) + 1-ary (ar(gj) + k + 1-ary, resp.) distribution variable and ψ and 

θ′ are as defined below. The universally quantified variables �x′ list all of the newly introduced variables of 

the construction below. The formula ψ is used to express that each f ′
j (g′(j), resp.) is an 1/nk-scaled copy 

of fj (g(j), resp.). That is, ψ is defined as the formula

∧

i≤m

f ′
j(�y, yl) ≤ 1

nk
∧

∧

i≤t

(

g′
j(�y, �z, zl) = g′

j(�y, �z′, z′
l) ∧ SUM�zg′

j(�y, �z, zl) = gj(�y)
)

,

where yl and zl (here and below) denote the last elements of the tuples �y and �z, respectively.3 Finally θ′ is 

obtained from θ by replacing expressions of the form fj(�y) and gj(�y) by f ′
j(�y, yl) and gj(�y, �z, zl), resp., and 

the real constant 1 by 1
nk . A straightforward inductive argument on the structure of formulae yields that, 

over [0, 1]-structures, φ and φ′ are equivalent. Note that φ′ is an almost conjunctive formula of the prefix 

class ∃̈∗∀∗, if φ is. �

4.3. From probabilistic team semantics to existential second-order logic

Let c and d be two distinct constants. Let φ(�x) ∈ FO(≈, =(· · · )) be a formula whose free variables are 

from the sequence �x = (x1, . . . , xn). We now construct recursively an L-ESO[0,1][=, SUM, 0, 1]-formula φ∗(f)

that contains one free n-ary function variable f . In this formula, a probabilistic team X is represented as a 

function fX such that X(s) = fX(s(x1), . . . , s(xn)).

(1) If φ(�x) is a first-order literal, then

φ∗(f) := ∀�x
(

f(�x) = 0 ∨ φ(�x)
)

.

3 For a 0-ary function f , a construction f ′(�z, zl) = f ′(�z′, z′
l) can be used instead.
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(2) If φ(�x) is a dependence atom of the form =(�x0, x1), then

φ∗(f) := ∀�x �x′(f(�x) = 0 ∨ f(�x′) = 0 ∨ �x0 �= �x′
0 ∨ x1 = x′

1

)

.

(3) If φ(�x) �x0 ≈ �x1, where �x = �x0�x1�x2, then

φ∗(f) := ∀�y SUM�x1,�x2
f(�y, �x1, �x2) = SUM�x0,�x2

f(�x0, �y, �x2).

(4) If φ(�x) is of the form ψ0(�x) ∧ ψ1(�x), then

φ∗(f) := ψ∗
0(f) ∧ ψ∗

1(f).

(5) If φ(�x) is of the form ψ0(�x) ∨ ψ1(�x), then

φ∗(f) := ∃g∀�x (SUMyg(�x, y) = f(�x) ∧ ∀y(y = c ∨ y = d ∨ g(�x, y) = 0) ∧ ψ∗
0(gc) ∧ ψ∗

1(gd)),

where gi is of the same arity as f and defined as gi(�x) := g(�x, i).

(6) If φ(�x) is ∃yψ(�x, y), then

φ∗(f) := ∃g
(

(∀�x SUMyg(�x, y) = f(�x)) ∧ ψ∗(g)
)

.

(7) If φ(�x) is of the form ∀yψ(�x, y), then

φ∗(f) := ∃g
(

∀�x(∀y∀zg(�x, y) = g(�x, z) ∧ SUMyg(�x, y) = f(�x)) ∧ ψ∗(g)
)

.

This translation leads to the following lemma,

Lemma 17. The following hold:

(i) FO(≈, =(· · · )) ≤ L-(∃̈∗∀∗)[0,1][=, SUM, 0, 1].

(ii) FO(≈, =(· · · )) ≤ almost conjunctive L-(∃̈∗∀∗∃∗)[0,1][=, SUM, 0, 1].

(iii) FO(≈) ≤ almost conjunctive L-(∃̈∗∀∗)[0,1][=, SUM, 0, 1].

Proof. By item (ii) of Proposition 12, we may use weighted semantics (Definition 10). Then, a straightfor-

ward induction shows that for all structures A and non-empty weighted teams X : X → [0, 1], with variable 

domain �x, such that |X| ≤ 1,

A |=w
X

φ(�x) ⇐⇒ (A, fX) |= φ∗(f). (4)

Furthermore, the extra constants c and d can be discarded. Define ψ(f) as

∃f ′∀cd∀�x
(

f ′(�x, c, d) = f(�x) ∧
(

c �= d → φ∗∗(f ′))
)

, (5)

where φ∗∗(f ′) is obtained from φ∗(f) by replacing function terms f(t1, . . . , tn) with f ′(t1, . . . , tn, c, d). There 

are only existential function and universal first-order quantifiers in (5). By pushing these quantifiers in front, 

and by swapping the ordering of existential and universal quantifiers (by increasing the arity of function 

variables and associated function terms), we obtain a sentence ψ∗(f) ∈ L-(∃̈∗∀∗)d[0,1][=, SUM, 0, 1] which, 

if substituted for φ∗(f), satisfies (4).

Let us then turn to the items of the lemma.
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(i) The claim readily holds.

(ii) The claim follows if the translation for dependence atoms =(�x0, x1) and �x = �x0x1�x2 is replaced by

φ∗(f) := ∀�x0∃x1SUM�x2
f(�x) = SUMx1�x2

f(�x).

We conclude that φ∗(f) interprets the dependence atom in the correct way and it preserves the almost 

conjunctive form and the required prefix form.

(iii) For the claim, it suffices to drop the translation of the dependence atom. �

This completes the “≤” direction of Theorem 13. For (i), this follows from (i) of Lemma 17, Proposition 16, 

and Lemma 14. For (ii), only (iii) of Lemma 17 is needed.

Recall from Proposition 3 that almost conjunctive (∃̈∗∃∗∀∗)R[≤, +, SUM, 0, 1] is in PTIME in terms of 

data complexity. Since dependence logic captures NP [43], the previous lemma indicates that we have found, 

in some regard, a maximal tractable fragment of additive existential second-order logic. That is, dropping 

either the requirement of being almost conjunctive, or that of having the prefix form ∃̈∗∃∗∀∗, leads to a 

fragment that captures NP; that NP is also an upper bound for these fragments follows by Theorem 6.

Corollary 18. FO(≈, =(· · · )) captures NP on finite structures.

4.4. From existential second-order logic to probabilistic team semantics

Due to Lemma 14 and Proposition 16, our aim is to translate L-ESOd[0,1][=, SUM] and almost conjunctive 

L-ESOd[0,1][=, SUM] to FO(≈, =(· · · )) and FO(≈), respectively. The following lemmas imply that we may 

restrict attention to formulae in Skolem normal form.4

We first need to get rid of all numerical terms whose interpretation does not belong to the unit interval. 

The only source of such terms are summation terms of the form SUM�xi(�y), where �x is a sequence of variables 

that contain a variable z not belonging to �y; we call such instances of z dummy-sum instances. For example, 

the summation term SUMxn, where n is the nullary distribution and x a dummy-sum instance, is always 

interpreted as the cardinality of the model’s domain.

Lemma 19. For every L-ESOd[0,1][=, SUM]-formula φ there exists an equivalent formula without dummy-sum 

instances.

Proof. Let k be the number of dummy sum-instances in φ. Without loss of generality, we may assume that 

each dummy sum-instance is manifested using a distinct variable in �v = (v1, . . . , vk), whose only instance in 

φ is the related dummy sum-instance. It is straightforward to check that for any structure A with cardinality 

n, the interpretation tA of any term t appearing in φ is at most nk.

We start the translation ψ �→ ψ∗ by scaling each function f occurring in φ by 1
nk as follows. Define f(�x) �→

f∗(�x, �v). For Boolean connectives, =, SUM, and first-order quantification the translation is homomorphic. 

In the case for existential function quantification, the functions are scaled by increasing their arity by k and 

stipulating that their weights are distributed evenly over the arity extension:

∃fψ �→ ∃f∗(

∀�x�v �w f∗(�x,�v) = f∗(�x, �w) ∧ φ∗)

.

Let f1, . . . , ft be the list of free function variables of φ with arities |�x1|, . . . , |�xt|, respectively. Now, define

4 Lemma 20 was first presented in [15, Lemma 3] in a form that included multiplication. We would like to thank Richard Wilke 
for noting that the construction used in [15] to prove this lemma had an element that yields circularity. Furthermore, we would 
like to than Joni Puljujärvi for noting another issue which is circumvented by Lemma 19.
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φ+ := ∃f∗
1 . . . f∗

t

(

∧

l≤t

(

∀�xl SUM�vf∗
l (�xl, �v) = fl(�xl) ∧ ∀�xl �v �w f∗

l (�xl, �v) = f∗
l (�xl, �w)

)

∧ ∃�v φ∗
)

.

It is now straightforward to check that φ+ and φ are equivalent, and that there are no dummy-sum instances 

in φ+. �

Lemma 20. For every formula φ ∈ L-ESOd[0,1][=, SUM] there is a formula φ∗ ∈ L-(∃̈∗∀∗)d[0,1][=, SUM]

such that Strucd[0,1](φ) = Strucd[0,1](φ
∗), and any second sort identity atom in φ∗ is of the form fi(�w) =

SUM�vfj(�u, �v) for distinct fi and fj of which at least one is quantified. Furthermore, φ∗ is almost conjunctive 

if φ is almost conjunctive and in L-(∃̈∗∀∗)d[0,1][=, SUM].

Proof. By the previous lemma, we may assume without loss of generality that φ does not contain any 

dummy-sum instances. That is, any summation term occurring in φ is of the form SUM�vi(�u�v), where it is 

to be noted that the variables of �v occur free in the term i. This, in particular, implies that the terms of φ

can be captured by using distributions.

First we define for each second sort term i(�x) a special formula θi defined recursively using fresh function 

symbols fi as follows:

• If i(�u) is g(�u) where g is a function symbol, then θi is defined as fi(�u) = g(�u). (We may interpret g(�u)

as SUM∅g(�u).)

• If i(�u) is SUM�vj(�u�v), then θi is defined as θj ∧ fi(�u) = SUM�vfj(�u�v).

The translation φ �→ φ∗ then proceeds recursively on the structure of φ. By Lemma 15 we may use the real 

constant 0 in the translation.

(i) If φ is i(�u) = j(�v), then φ∗ is defined as ∃�f(fi(�u) = fj(�v) ∧ θi ∧ θj) where �f lists the function symbols 

fk for each subterm k of i or j.

(ii) If φ is an atom or negated atom of the first sort, then φ∗ := φ.

(iii) If φ is ψ0◦ψ1 where ◦ ∈ {∨, ∧}, ψ∗
0 is ∃�f0∀�x0θ0, and ψ∗

1 is ∃�f1∀�x1θ1, then φ∗ is defined as ∃�f0
�f1∀�x0�x1(θ0◦

θ1).

(iv) If φ is ∃yψ where ψ∗ is ∃�f∀�xθ, then φ∗ is defined as ∃g∃�f∀�x∀y(g(y) = 0 ∨ θ).

(v) Suppose φ is ∀yψ where ψ∗ is ∃�f∀�xθ. Let �g list the free distribution variables in φ. Then φ∗ is defined 

as

∃�f∗∃�g∗∀yy′∀�x
(

∧

g∗∈�g∗

(

g∗(y, �x) = g∗(y′, �x) ∧ SUMyg∗(y, �x) = g(�x)
)

∧

∧

f∗∈ �f∗

(

f∗(y, �x) = f∗(y′, �x)
)

∧ θ∗
)

,

where �f∗ (�g∗, resp.) is obtained from �f (�g, resp.) by replacing each f (g, resp.) from �f (�g, resp.) with 

f∗ (g∗, resp.) such that ar(f∗) = ar(f) + 1 (ar(g∗) = ar(g) + 1, resp.), and θ∗ is obtained from θ by 

replacing all function terms f(�z) (g(�z), resp.) with f∗(y, �z) (g∗(y, �z), resp.).

(vi) If φ is ∃fψ where ψ∗ is ∃�f∀�xθ, then φ∗ is defined as ∃fψ∗.

It is straightforward to check that φ∗ is of the correct form and equivalent to φ. What happens in (v) is 

that instead of guessing for all y some distribution fy with arity ar(f), we guess a single distribution f∗

with arity ar(f) + 1 such that f∗(y, �u) = 1
|A| · fy(�u), where A is the underlying domain of the structure. 

Similarly, we guess a distribution g∗ for each free distribution variable g such that g∗(y, �u) = 1
|A| · g(�u). 
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Observe that case (iv) does not occur if φ is in L-(∃̈∗∀∗)d[0,1][SUM, =]; in such a case, a straightforward 

structural induction shows that φ∗ is almost conjunctive if φ is. �

Using the obtained normal form for existential second-order logic over the reals we now proceed to the 

translation. This translation is similar to one found in [15], with the exception that probabilistic indepen-

dence atoms cannot be used here.

Lemma 21. Let φ(f) ∈ L-(∃̈∗∀∗)d[0,1][=, SUM] be of the form described in Lemma 20, with one free variable 

f . Then there is a formula Φ(�x) ∈ FO(≈, =(· · · )) such that for all structures A and probabilistic teams 

X := fA, A |=X Φ ⇐⇒ (A, f) |= φ. Furthermore, if φ(f) is almost conjunctive, then Φ(�x) ∈ FO(≈).

Proof. By item (ii) of Proposition 12, we can use weighted semantics in this proof. Without loss of generality 

each structure is enriched with two distinct constants c and d; such constants are definable in FO(≈, =(· · · ))

by ∃cd(=(c)∧ =(d) ∧ c �= d), and for almost conjunctive formulae they are not needed.

Let φ(f) = ∃�f∀�x θ(f, �x) ∈ L-(∃̈∗∀∗)d[0,1][=, SUM] be of the form described in the previous lemma, with 

one free variable f . In what follows, we build Θ inductively from θ, and then let

Φ := ∃�y1 . . . ∃�yn∀�x Θ(�x, �y1, . . . , �yn),

where �yi are sequences of variables of length ar(fi). Let m := |�x|. We show the following claim: For M ⊆ Am

and weighted teams Y = X
′[M/�x], where the domain of X′ extends that of X by �y1, . . . , �yn,

A |=w
Y

Θ iff (A, f, f1, . . . , fn) |= θ(�a) for all �a ∈ M, (6)

where fi := X
′ ↾ �yi. Observe that the claim implies that A |=w

X
Φ iff A |= φ(f).

Next, we show the claim by structural induction on the construction of Θ:

(1) If θ is a literal of the first sort, we let Θ := θ, and the claim readily holds.

(2) If θ is of the form fi(�xi) = SUM�xj0
fj(�xj0�xj1), let Θ := ∃αβψ for ψ given as

(α = x ↔ �xi = �yi) ∧ (β = x ↔ �xj1 = �yj1) ∧ �xα ≈ �xβ, (7)

where x is any variable from �x, and the first-order variable sequence �yj that corresponds to function 

variable fj is thought of as a concatenation of two sequences �yj0 and �yj1 whose respective lengths are 

|�xj0| and |�xj1|.
Assume first that for all �a ∈ M , we have (A, f, f1, . . . , fn) |= θ(�a), that is, fi(�ai) = SUM�xj0

fj(�xj0�aj1). 

To show that Y satisfies Θ, let Z be an extension of Y to variables α and β such that it satisfies the 

first two conjuncts of (7). Observe that Z satisfies �xα ≈ �xβ if for all �a ∈ M , Z�x=�a satisfies α ≈ β. For 

a probabilistic team X and a first-order formula α, we write |Xα|rel for the relative weight |Xα|/|X|.
Now, the following chain of equalities hold:

|Z�xα=�ax|rel = |Y�x�xi=�a�yi
|rel = |Y�x�yi=�a�ai

|rel = |Y�x=�a|rel · |Y�yi=�ai
|rel =

|Y�x=�a|rel · fi(�ai) = |Y�x=�a|rel · SUM�xj0
fj(�xj0�aj1) = |Y�x=�a|rel · |Y�yj1=�aj1

|rel

|Y�x�yj1=�a�aj1
|rel = |Y�x�xj1=�a�yj1

|rel = |Z�xβ=�ax|rel.

Note that the absolute weights |Y | and |Z| are equal. The third equality then follows since �x and �yi are 

independent by the construction of Y . It is also here that we need relative instead of absolute weights. 

Thus α and β agree with x in Z�x=�a for the same weight. Moreover, x is some constant a in Z�x=�a, and 
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whenever α or β disagrees with x, it can be mapped to another constant b that is distinct from a. It 

follows that Z�x=�a satisfies α ≈ β, and thus we conclude that Y satisfies Θ.

For the converse direction, assume that Y satisfies Θ, and let Z be an extension of Y to α and β

satisfying (7). Then for all �a ∈ M , Z�x=�a satisfies α ≈ β and thereby for all �a ∈ M ,

|Y�x=�a|rel · fi(�ai) = |Z�xα=�ax|rel = |Z�xβ=�ax|rel = |Y�x=�a|rel · SUM�xk
fj(�xk,�al).

For the second equality, recall that x is a constant in Z�x=�a. Thus (A, f, f1, . . . , fn) |= θ(�a) for all �a ∈ M , 

which concludes the induction step.

(3) If θ is θ0 ∧ θ1, let Θ := Θ0 ∧ Θ1. The claim follows by the induction hypothesis.

(4) If θ is θ0 ∨ θ1, let Θ := ∃z
(

=(�x, z) ∧
(

(Θ0 ∧ z = c) ∨ (Θ1 ∧ z = d)
)

)

.

Alternatively, if θ0 contains no numerical terms, let Θ := θ0 ∨ (θ¬
0 ∧ Θ1), where θ¬

0 is obtained from ¬θ0

by pushing ¬ in front of atomic formulae.

Assume first that (A, f, f1, . . . , fn) |= θ0 ∨ θ1 for all �a ∈ M . Then M can be partitioned to disjoint M0

and M1 such that

(A, f, f1, . . . , fn) |= θi for all �a ∈ Mi. (8)

We have two cases:

• Suppose φ(f) is not almost conjunctive. Let Z be the extension of Y to z such that s(z) = c if s(�x)

is in M0, and otherwise s(z) = d, where s is any assignment in the support of Z. Consequently, Z

satisfies =(�x, z). Further, the induction hypothesis implies that A |=w
Yi

Θi, where Yi := X ′[Mi/�x]. 

Since |M0|
|M | Y0 = Z�z=c and |M1|

|M | Y1 = Z�z=d, we obtain A |=w
Z�z=c

θ0 and A |=w
Z�z=d

Θ1 by item (iii) of 

Proposition 12. We conclude that Z satisfies (Θ0 ∧ z = 0) ∨ (Θ1 ∧ z = 1), and thus Y satisfies Θ.

• Suppose φ(f) is almost conjunctive. Without loss of generality θ0 contains no numerical terms. Then 

A |=X′[M0/�x] θ0 by flatness (i.e., (v) of Proposition 12). We may assume that M0 is the maximal 

subset of M satisfying (8), in which case we also obtain A |=X′[M1/�x] θ¬
0 by flatness. Furthermore, 

A |=X′[M1/�x] Θ1 by induction hypothesis.

The converse direction is shown analogously in both cases. This concludes the proof. �

The “≥” direction of item (i) in Theorem 13 follows by Lemmata 14, 20, and 21; that of item (ii) follows 

similarly, except that Proposition 16 is used instead of Lemma 14. This concludes the proof of Theorem 13.

5. Interpreting inclusion logic in probabilistic team semantics

Next we turn to the relationship between inclusion and probabilistic inclusion logics. The logics are 

comparable for, as shown in Proposition 12, team semantics embeds into probabilistic team semantics con-

servatively. The seminal result by Galliani and Hella shows that inclusion logic captures PTIME over ordered 

structures [18]. We show that restricting to finite structures, or uniformly distributed probabilistic teams, 

inclusion logic is in turn subsumed by probabilistic inclusion logic. There are two immediate consequences 

for this. First, the result by Galliani and Hella readily extends to probabilistic inclusion logic. Second, their 

result obtains an alternative, entirely different proof through linear systems.

We utilize another result of Galliani stating that inclusion logic is equiexpressive with equiextension logic

[17], defined as the extension of first-order logic with equiextension atoms �x1 ⊲⊳ �x2 := �x1 ⊆ �x2 ∧ �x2 ⊆ �x1. In 

the sequel, we relate equiextension atoms to probabilistic inclusion atoms.

For a natural number k ∈ N and an equiextension atom �x1 ⊲⊳ �x2, where �x1 and �x2 are variable tuples of 

length m, define ψk(�x1, �x2) as
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∀�u∃v1v2∀�z0∃�z((�x1 = �u ↔ v1 = y) ∧ (�x2 = �u ↔ v2 = y) ∧ (9)

(�z0 = �y → �z = �y) ∧ (¬�z = �y ∨ �uv1 ≈ �uv2)),

where �z and �z0 are variable tuples of length k, and �y is obtained by concatenating k times some variable y in 

�u. Intuitively (9) expresses that a probabilistic team X, extended with universally quantified �u, decomposes 

to Y + Z, where Y (s) = fsX(s) for some variable coefficient fs ∈ [ 1
nk , 1], and |Y�x1=�u| = |Y�x2=�u|, for any 

�u. Thus (9) implies that �x1 ⊲⊳ �x2. On the other hand, �x1 ⊲⊳ �x2 implies (9) if each assignment weight X(s)

equals gs|X| for some gs ∈ [ 1
nk , 1]. In this case, one finds the decomposition Y + Z by balancing the weight 

differences between values of �x1 and �x2. More details are provided in the proof of the next lemma.

Lemma 22. Let k be a positive integer, A a finite structure with universe A of size n, and X : X → R≥0 a 

weighted team.

(i) Suppose A |=w
X

�x1 ⊲⊳ �x2, |X�x1=�x2
| = 0, and X(s) ≥ |X|

nk for all s ∈ Supp(X). Then A |=w
X

φk(�x, �y).

(ii) If A |=w
X

φk(�x, �y), then A |=w
X

�x1 ⊲⊳ �x2.

Proof. (i) Observe that X[A/�u] = 1
nm X

∗, where X
∗ is defined as the sum X[�a1/�u] + . . . + X[�al/�u], and 

�a1, . . . , �al lists all elements in Am. By Proposition 12(iii) it suffices to show that X∗ satisfies the formula 

obtained by removing the outermost universal quantification of ψk. By Proposition 29 it suffices to show 

that each X[�ai/�u] individually satisfies the same formula. Hence fix a tuple of values �b ∈ Am and define 

Y := X[�b/�u]. We show that Y satisfies

∃v1v2∀�z0∃�z1((�x1 = �b ↔ v1 = c) ∧ (�x2 = �b ↔ v2 = c) ∧ (10)

(�z0 = �c → �z1 = �c) ∧ (�z1 = �c → v1 ≈ v2)).

Observe that we have here fixed �u �→ �b and y �→ c, where c is some value in �b. We have also removed �u from 

the marginal identity atom in (9), for it has a fixed value in Y .

Fix some d ∈ A that is distinct from c, and denote by Y be the support of Y . For existential quantification 

over vi, extend s ∈ Y by vi �→ c if s(�xi) = �b, and otherwise by vi �→ d, so as to satisfy the first two conjuncts. 

Denote by Y ′ : Y ′ → R≥0 the weighted team, where Y ′ consists of these extensions, and the weights are 

inherited from Y .

Observe that Y
′(s) ≥ |X|

nk for all s ∈ Supp(Y ′). Fix i ∈ {1, 2}, and assume that |X�xi=�b| > 0. Then 

|X�xi=�b| ≥ |X|
nk , and thus using |X�x1=�x2

| = 0 and |X| = |Y ′| we obtain

wi := |Y ′
vi=c∧v3−i=d| = |X�xi=�b∧�x3−i �=�b| = |X�xi=�b| ≥ |Y ′|

nk
.

Since X |= �x1 ⊲⊳ �x2, we obtain that w1 and w2 are either both zero or both at least |Y ′|
nk .

Next, let us describe the existential quantification of �z1 (later we show how the universal quantification 

of �z0 can be fitted in). The purpose of this step is to balance the possible weight difference between |Y ′
�x1=�b

|
and |Y ′

�x2=�b
|, which in turn is tantamount to balancing |Y ′

�v1=c∧v2=d| and |Y ′
v1=d∧v2=c|. For s′ ∈ Y ′,

(i) if s′(v1) = c and s′(v2) = d, allocate respectively w2

|Y ′| and 1 − w2

|Y ′| of the weight of s′ to s′(�c/�z1) and 

s′(�d/�z1);

(ii) if s′(v1) = d and s′(v2) = c, allocate respectively w1

|Y ′| and 1 − w1

|Y ′| of the weight of s′ to s′(�c/�z1) and 

s′(�d/�z1); or

(iii) otherwise, allocate the full weight of s′ to s′(�c/�z1).
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Denote by Z the probabilistic team obtained this way, and define Z′ := Z�z1=�c. We observe that

|Z′
v1=c∧v2=d| = |Z′

v1=d∧v2=c| =
w1w2

|Y ′| .

Furthermore, |Z′
v1=c∧v2=c| = 0 and hence |Z′

v1=d∧v2=d| = |Z′| − 2w1w2

|Y ′| . We conclude that Z′ satisfies v1 ≈ v2, 

whence Z satisfies �z1 = �c → v1 ≈ v2.

Finally, let us return to the universal quantification of �z0, which precedes the existential quantification 

of �z in (10). The purpose of this step is to enforce that for each s ∈ Supp(Y ′), the extension s(�c/�z1)

takes a positive weight. Observe that wi

|Y ′| is either zero or at least 1
nk , for wi is either zero or at least |Y ′|

nk . 

Furthermore, note that universal quantification distributes 1
nk of the weight of s′ to s′(�c/�z0). Thus the weight 

of s′ can be distributed in such a way that both the conditions (i)-(iii) and the formula �z0 = �c → �z1 = �c

simultaneously hold. This concludes the proof of case (i).

(ii) Suppose that the assignments in X mapping �x1 to �b have a positive total weight in X. By symmetry, 

it suffices to show that the assignments in X mapping �x2 to �b also have a positive total weight in X. By 

assumption there is an extension Z of X[�b/�u] satisfying the quantifier-free part of (10). It follows that the 

total weight of assignments in Z that map v1 to c is positive. Consequently, by �z0 = �c → �z1 = �c where �z0 is 

universally quantified, a positive fraction of these assignments maps also �z1 to �c. This part of Z is allocated 

to v1 ≈ v2, and thus the weights of assignments mapping v2 to c are positive as well. But then, going 

backwards, we conclude that the total weight of assignments mapping �x2 to �b is positive, which concludes 

the proof. �

We next establish that inclusion logic is subsumed by probabilistic inclusion logic at the level of sentences.

Theorem 23. FO(⊆) ≤ FO(≈) with respect to sentences.

Proof. As FO(⊆) ≡ FO(⊲⊳) ([17]), it suffices to show FO(⊲⊳) ≤ FO(≈) over sentences. Let φ ∈ FO(⊲⊳)

be a sentence, and let k be the number of disjunctions and quantifiers in φ. Let φ∗ be obtained from φ

by replacing all equiextension atoms of the form �x1 ⊲⊳ �x2 with ψk(�x1, �x2). We can make four simplifying 

assumptions without loss of generality. First, we may restrict attention to weighted semantics by item (ii) 

of Proposition 12. Thus, we assume that A |=w
X

φ for some weighted team X and a finite structure A with 

universe of size n. Second, we may assume that the support of X consists of the empty assignment by 

item (iv) of Proposition 12. Third, since FO(⊲⊳) is insensitive to assignment weights, we may assume that 

the satisfaction of φ by X is witnessed by uniform semantic operations. That is, existential and universal 

quantification split an assignment to at most n equally weighted extensions, and disjunction can only split 

an assignment to two equally weighted parts. Fourth, we may assume that any equiextension atom �x1 ⊲⊳ �x2

appears in φ in an equivalent form ∃uv(u �= v ∧ �x1u ⊲⊳ �x2v), to guarantee that the condition |X�x1=�x2
| = 0

holds for all appropriate subteams X. We then obtain by the previous lemma and a simple inductive 

argument that A |=w
X

φ∗. The converse direction follows similarly by the previous lemma. �

Consequently, probabilistic inclusion logic captures P, for this holds already for inclusion logic [18]. 

Another consequence is an alternative proof, through probabilistic inclusion logic (Theorem 23) and linear 

programs (Theorems 13 and 4), for the PTIME upper bound of the data complexity of inclusion logic. For 

this, note also that quantification of functions, whose range is the unit interval, is clearly expressible in 

ESOR[≤, SUM, 0, 1].

Corollary 24. Sentences of FO(≈) capture P on finite ordered structures.

Theorem 23 also extends to formulae over uniform teams. Recall that a function f is uniform if f(s) =

f(s′) for all s, s′ ∈ Supp(f).
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Theorem 25. FO(⊆) ≤ FO(≈) over uniform probabilistic teams.

Proof. Recall that FO(⊆) ≡ FO(⊲⊳). Let φ be an FO(⊲⊳) formula, A a finite structure, and X a uniform 

probabilistic team. Let ∗ denote the translation of Theorem 23. Now

A |=X φ ⇔ (A, R := X) |= ∀x1 . . . xn

(

¬R(x1 . . . xn) ∨
(

R(x1 . . . xn) ∧ φ
))

⇔ (A, R := X) |= ∀x1 . . . xn

(

¬R(x1 . . . xn) ∨
(

R(x1 . . . xn) ∧ φ
))∗

⇔ (A, R := X) |= ∀x1 . . . xn

(

¬R(x1 . . . xn) ∨
(

R(x1 . . . xn) ∧ φ∗))

⇔ A |=X φ∗,

where X is the support of X and Dom(X) = {x1, . . . , xn}. �

6. Definability over open formulae

We now turn to definability over open formulae. In team semantics, inclusion logic extended with de-

pendence atoms is expressively equivalent to independence logic at the level of formulae. This relationship 

however does not extend to probabilistic team semantics. As we will prove next, probabilistic inclusion 

logic extended with dependence atoms is strictly less expressive than probabilistic independence logic. The 

reason, in short, is that logics with marginal identity and dependence can only describe additive distribution 

properties, whereas the concept of independence involves multiplication.

We begin with a proposition illustrating that probabilistic independence logic has access to irrational 

weights.5

Proposition 26. Define φ(x) = ∃c∃y∀zθ, where θ is defined as

=(c) ∧ x ⊥⊥ y ∧ x ≈ y ∧ ((x = c ∧ y = c) ↔ z = c). (11)

Let A be a finite structure with domain A of size n, and let X be a probabilistic team. Then

A |=X φ(x) =⇒ |Xx=a| =
1√
n

for some a ∈ A. (12)

Proof. Suppose A |=X φ(x), and let Y be an extension of X, in accord with the quantifier prefix of φ, that 

satisfies (11). Then in Y c is constant and z uniformly distributed over all domain values. Hence z equals 

c for weight 1
n , and consequently x and y simultaneously equal c for the same weight. Since x and y are 

independent and identically distributed, in isolation they equal c for weight 1√
n

. Since X and Y agree on 

the weights of x, the claim follows. �

It follows, then, that independence atoms are not definable in additive existential second-order logic.

Lemma 27. FO(⊥⊥) � ESOR[≤, +, 0, 1].

Proof. Let φ(x) be as in the previous proposition. Assume towards contradiction that it has a translation 

Ψ(f) in ESOR[≤, +, 0, 1]. Then Ψ contains one free unary function variable f to encode the probabilistic 

team over {x}. Let A be a structure with universe {0, 1} and empty vocabulary. By the previous proposition 

A satisfies Ψ(f) if and only if {f(0), f(1)} = {1/
√

2, 1 − 1/
√

2}.

5 We thank Vadim Weinstein for the idea behind this proposition.
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We define a translation Φ �→ Φ∗ from ESOR[≤, +, 0, 1] over A to the additive existential (first-order) 

theory over the reals. Without loss of generality Φ has no nested function terms. In the translation, we 

interpret function terms of the form g(a1, . . . , aar(g)), for a1, . . . , aar(g) ∈ {0, 1}, as first-order variables. The 

translation, defined recursively, is identity for numerical inequality atoms, homomorphic for disjunction and 

conjunction, and otherwise defined as:

• (∀yΦ)∗ := Φ∗(0/y) ∧ Φ∗(1/y),

• (∃yΦ)∗ := Ψ∗(0/y) ∨ Φ∗(1/y),

• (∃gΦ)∗ := (∃g(a1, . . . , aar(g))a1,...,aar(g)∈{0,1}Φ∗,

where Φ∗(a/y) is obtained from Φ∗ by substituting h(x1, . . . , xi−1, a, xi+1, . . . xn) for any variable of the 

form h(x1, . . . , xi−1, y, xi+1, . . . xn). Applying the translation to Ψ(f) we obtain a formula Ψ∗(f(0), f(1))

that contains two free first-order variables f(0) and f(1).

It is easy to see that A |= Ψ(f) if and only if Ψ∗(f(0), f(1)) holds in the real arithmetic. Consequently, Ψ∗

has only irrational solutions. On the other hand, Ψ∗ can be transformed to the form ∃x1 . . . ∃xn

∨

i

∧

j Cij , 

where each Cij is a (strict or non-strict) linear inequation with integer coefficients and constants. Since Ψ∗

is satisfiable, some system of linear inequations 
∧

j Cij has solutions, and thus also rational solutions.6 Thus 

Ψ∗ has rational solutions, which leads to a contradiction. We conclude that φ(x) does not translate into 

ESOR[≤, +, 0, 1]. �

The following result is now immediate.

Theorem 28. FO(=(· · · ), ≈) < FO(⊥⊥).

Proof. Dependence and marginal identity atoms are definable in FO(⊥⊥) (i.e., in first-order logic extended 

with marginal probabilistic independence atoms) [25, Proposition 3, Theorem 10, and Theorem 11]. Fur-

thermore, φ(x) in Proposition 26 is not definable in FO(=(· · · ), ≈). For this, recall that by Theorem 13, 

FO(= (· · · ), ≈) corresponds to L-ESO[0,1][≤, +, 0, 1]. This logic is clearly subsumed by ESOR[≤, +, 0, 1], 

which in turn cannot translate φ(x) by the previous lemma. �

There are, in fact, more than one way to prove that FO(⊥⊥) � FO(=(· · · ), ≈). Above, we use the fact 

that probabilistic independence cannot be defined in terms of additive existential second-order logic, which 

in turn encompasses both dependence and marginal independence atoms. Another strategy is to apply the 

closure properties of these atoms.

Let φ be a formula over probabilistic team semantics. We say that φ is closed under scaled unions if for 

all parameters α ∈ [0, 1], finite structures A, and probabilistic teams X and Y : A |=X φ and A |=Y φ imply 

A |=Z φ, where Z := αX + (1 − α)Y . In the weighted semantics, we say that φ is closed under unions if for 

all finite structures A and weighted teams X and Y : A |=w
X

φ and A |=w
Y

φ imply A |=w
X+Y

φ. We say that φ

is relational if for all finite structures A, and probabilistic teams X and Y such that Supp(Y ) = Supp(X): 

A |=X φ if and only if A |=Y φ. We say that φ is downwards closed if for all finite structures A, and 

probabilistic teams X and Y such that Supp(Y ) ⊆ Supp(X): A |=X φ implies A |=Y φ. Furthermore, a logic 

L is called relational (downward closed, closed under scaled union, resp.) if each formula φ in L is relational 

(downward closed, closed under scaled unions, resp.).

Proposition 29. The following properties hold:

6 To see why, observe that such a system can be expressed as a linear program in the canonical form (e.g., as in the proof of 
Theorem 8). Since the optimal solution of a linear program is always attained at a vertex of the feasible region, a linear program 
with rational coefficients and constants has at least one rational optimal solution if it has optimal solutions at all (see, e.g., [13]).
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• FO(=(· · · )) is relational. [Self-evident]

• FO(≈) is closed under scaled unions. [25]

In the context of multiteam semantics, Grädel and Wilke have shown that probabilistic independence 

is not definable by any logic that extends first-order logic with a collection of atoms that are downwards 

closed or union closed [23, Theorem 17]. In fact, their proof works also when downwards closed atoms are 

replaced with relational atoms (which, in their framework as well as in the probabilistic framework, is a 

strictly more general notion). While their proof technique does not directly generalize to probabilistic team 

semantics, it can readily be adapted to weighted semantics (Definition 10).

Theorem 30 (cf. [23]). Let C be a collection of relational atoms, and let D be a collection of atoms that are 

closed under unions. Then under weighted semantics FO(⊥⊥) � FO(C, D).

This theorem can be then transferred to probabilistic semantics by using the following observations: For 

any probabilistic n-ary atom D, we can define an n-ary atom D∗ in the weighted semantics as follows:

A |=w
X

D∗(x1, . . . , xn) if and only if A |= 1
|X| ·X D(x1, . . . , xn)

It follows via a straightforward calculation that D∗ is union closed, whenever D is closed under scaled 

unions: Assume that A |=w
X

D∗(x1, . . . , xn) and A |=w
Y

D∗(x1, . . . , xn). Fix k = |X|
|X|+|Y | and note that then 

1 − k = |Y |
|X|+|Y | . By definition, we get A |= 1

|X| ·X D(x1, . . . , xn) and A |= 1
|Y| ·Y D(x1, . . . , xn), from which 

A |= k
|X| ·X+ 1−k

|Y| ·Y D(x1, . . . , xn) follows via closure under scaled unions. Finally, since k
|X| · X + 1−k

|Y | · Y =
1

|X|+|Y | · X + 1
|X|+|Y | · Y = 1

|X|+|Y | · (X + Y ), we obtain that A |=w
X+Y

D∗(x1, . . . , xn).

The final piece of the puzzle is the following generalization of [25, Proposition 8]. The original proposition 

was formulated for concrete atomic dependency statements satisfying the proposition as an atomic case for 

induction. The inductive argument of the original proof works with any collection of atoms that satisfy the 

proposition as an atomic case.

Proposition 31. Let D be a collection of atoms. If A |=w
X

D(�x) ⇔ A |= 1
|X| ·X D(�x), for every structure A, 

weighted team X : X → R≥0 of A, and D ∈ D, then A |=w
X

φ ⇔ A |= 1
|X| ·X φ, for every A, X, and φ ∈ FO(D)

as well.

By combining Theorem 30 and Proposition 31 with the two observation made above, we obtain the 

probabilistic analogue of Theorem 30.

Theorem 32. Let C be a collection of relational atoms, and let D be a collection of atoms that are closed 

under scaled unions. Then FO(⊥⊥) � FO(C, D).

From this, FO(⊥⊥) � FO(=(· · · ), ≈) follows as a special case by Proposition 29.

7. Axiomatization of marginal identity atoms

Next we turn to axioms of the marginal identity atom, restricting attention to atoms of the form 

x1 . . . xn ≈ y1 . . . yn, where both x1 . . . xn and y1 . . . yn are sequences of distinct variables. It turns out 

that the axioms of inclusion dependencies over relational databases [9] are sound and almost complete for 

marginal identity; we only need one additional rule for symmetricity. Consider the following axiomatiza-

tion:
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1. reflexivity: x1 . . . xn ≈ x1 . . . xn;

2. symmetry: if x1 . . . xn ≈ y1 . . . yn, then y1 . . . yn ≈ x1 . . . xn;

3. projection and permutation: if x1 . . . xn ≈ y1 . . . yn, then xi1
. . . xik

≈ yi1
. . . yik

, where i1, . . . , ik is a 

sequence of distinct integers from {1, . . . , n}.

4. transitivity: if x1 . . . xn ≈ y1 . . . yn and y1 . . . yn ≈ z1 . . . zn, then x1 . . . xn ≈ z1 . . . zn.

For a set of marginal identity atoms Σ ∪ {σ}, a proof of σ from Σ is a finite sequence of marginal identity 

atoms such that (i) each element of the sequence is either from Σ, or follows from previous atoms in the 

sequence by an application of a rule, and (ii) the last element in the sequence is σ. We write Σ ⊢ σ if there 

is a proof of σ from Σ. For a probabilistic team X and a formula φ over the empty vocabulary τ∅, we write 

X |= φ as a shorthand for A |=X φ, where A is the structure over τ∅ whose domain consists of the values 

in the support of X. We use a shorthand X |= φ, for a team X, analogously. We write Σ |= σ if every 

probabilistic team Y that satisfies Σ satisfies also σ. The proof of the following theorem is an adaptation of 

a similar result for inclusion dependencies [9].

Theorem 33. Let Σ ∪ {σ} be a finite set of marginal identity atoms. Then Σ |= σ if and only if Σ ⊢ σ.

Proof. It is clear that the axiomatization is sound; we show that it is also complete.

Assume that Σ |= σ, where σ is of the form x1 . . . xn ≈ y1 . . . yn. Let V consist of the variables appearing 

in Σ ∪ {σ}. For each subset V ⊆ V, let iV be an auxiliary variable, called an index. Denote the set of all 

indices over subsets of V by I. Define Σ∗ as the set of all inclusion atoms u1 . . . uliU ⊆ v1 . . . vliV , where 

U = {u1, . . . , ul}, V = {v1, . . . , vl}, and u1 . . . vl ≈ v1 . . . vl or its inverse v1 . . . vl ≈ u1 . . . vl is in Σ.

To show that Σ ⊢ x1 . . . xn ≈ y1 . . . yn, we will first apply the chase algorithm of database theory to 

obtain a finite team Y that satisfies Σ∗, where the codomain of Y consists of natural numbers. The indices 

iV in Y , in particular, act as multiplicity measures for values of V , making sure that both sides of any 

marginal identity atom in Σ appear in Y with equal frequency. This way, the probabilistic team Y , defined 

as the uniform distribution over Y , will in turn satisfy Σ. Finally, we show that the chase algorithm yields 

a proof of σ, utilizing the fact that Y satisfies σ by assumption.

Next, we define a team X0 that serves as the starting point of the chase algorithm. We also describe how 

assignments over V that are introduced during the chase are extended to V ∪ I.

Let X0 = {s∗}, where s∗ is an assignment defined as follows. Let s∗(xi) = i, for 1 ≤ i ≤ n, and s∗(x) = 0, 

for x ∈ (V ∪ I) \ {x1, . . . , xn}. For a team Y with variable domain V ∪ I and an assignment s with variable 

domain V, define sY : V ∪ I → N as the extension of s such that

sY (iV ) = |{t ∈ Y | t ↾ V = s ↾ V }|, (13)

for iV ∈ I. That is, the value sY (iV ) is the number of repetitions of s ↾ V in Y .

In what follows, we describe a chase rule to expand a team X. We say that an assignment s′ witnesses

an inclusion atom �x ⊆ �y for another assignment s, if s(�x) = s′(�y). Consider the following chase rule:

Chase rule. Let X be a team with variable domain V ∪ I, s ∈ X, and σ := u1 . . . uliU ⊆ v1 . . . vliV ∈ Σ∗. 

Suppose no assignment in X witnesses σ for s. Now let s′ be the assignment with variable domain V that 

is defined as

s′(x) :=

{

s(uj) if x is vj , and

0 otherwise.

Then we say that s and σ generate the assignment s′
X .
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Next, let S = (X0, X1, X2, . . .) be a maximal sequence, where Xi+1 = Xi ∪ {s′
Xi

} for an assignment s′
Xi

generated non-deterministically by some s ∈ Xj and τ ∈ Σ∗ according to the chase rule, where j ≤ i is 

minimal. Define Y as the union of all elements in S. Note that Y is finite if S is. In particular, if Y is finite, 

then it equals Xi, where i is the least integer such that the chase rule is not anymore applicable to Xi. 

Below, we will show that Y is finite, which follows if the chase algorithm terminates.

It is easy the verify that the following holds, for each i ∈ N: For any U = {u1, . . . , un} and s ∈ Xi, if 

the team Xs := {t ∈ Xi | t ↾ U = s ↾ U} is of size m, then {t(iU ) | t ∈ Xs} = {0, . . . , m − 1}. That is, 

the values of iU in Xs form an initial segment of N of size |Xs|. Therefore, if s ∈ Xi has no witness for 

u1 . . . uliU ⊆ v1 . . . vliV in Xi, then for any t ∈ Xi such that s(u1 . . . ul) = t(v1 . . . vl), we have s(iU ) > t(iV ). 

It follows that

s(iU ) ≥ s′
Xi

(iV ) if s′
Xi

is generated by s ∈ Xi and u1 . . . uliU ⊆ v1 . . . vliV . (14)

We will next show how Σ ⊢ x1 . . . xn ≈ y1 . . . yn follows from the following two claims. We will then prove 

the claims, which concludes the proof of the theorem.

Claim 1. Y is finite.

Claim 2. If Y contains an assignment s that maps some sequence of variables zj, for 1 ≤ j ≤ k, to distinct 

1 ≤ ij ≤ n, then Σ ⊢ xi1
. . . xik

≈ z1 . . . zk.

It follows by construction that Y |= Σ∗. Since Y is finite by Claim 1, we may define a probabilistic team 

Y as the uniform distribution over Y . By the construction of Y and Σ∗, it follows that Y |= Σ, and hence 

Y |= x1 . . . xn ≈ y1 . . . yn follows from the assumption that Σ |= σ. Consequently, Y contains an assignment 

s which maps yi to i, for 1 ≤ i ≤ n. We conclude that by Claim 2 there is a proof of x1 . . . xn ≈ y1 . . . yn

from Σ.7

To complete the proof, we prove Claims 1 and 2.

Proof of Claim 1. Assume towards contradiction that Y is infinite, which entails that the sequence S =

(X0, X1, X2, . . .) is infinite. W.l.o.g. the chase rule is always applied to s that belongs to the intersection 

Xi ∩ Xj , for minimal j ≤ i. Define S ′ = (X ′
0, X ′

1, X ′
2, . . .) as the sequence, where X ′

0 = X0, and X ′
i+1 is 

defined as Xj where j is the least integer such that all s ∈ X ′
i and σ ∈ Σ∗ have a witness in Xj . Due to the 

application order of the chase rule, it follows that

any assignment in X ′
i+1 \ X ′

i is generated by some assignment in X ′
i \ X ′

i−1, (15)

assuming X ′
−1 = ∅. Moreover, S ′ is a subsequence of S which is finite iff S is.

We first define some auxiliary concepts. For an assignment s in X, we use a shorthand Base(s) for s ↾ V, 

called the base of s. We also define Base(X) := {Base(s) | s ∈ X}. The multiplicity in X of an assignment 

s is defined as |{s′ ∈ X | Base(s) = Base(s′)}|. Note that Base(Y ) is finite, for Base(s) is a mapping from V
into {0, . . . , n} for all s ∈ Y . Thus, since Y is infinite, it contains assignments with infinite multiplicity in 

Y . Next, we associate each assignment s with the set of its positive variables Pos(s) := {x ∈ V | s(x) > 0}, 

the size of which is called the degree of s.

Let k be some integer such that X ′
k contains every assignment in Y that has finite multiplicity in Y , and 

denote X ′
k by Z. Let M ∈ {1, . . . , n} be the maximal degree of any assignment in Y with infinite multiplicity 

in Y , that is, the maximal degree of any assignment in Y \ Z. Then, take any sL ∈ X ′
L \ X ′

L−1 of degree M , 

7 Claim 2 is essentially from [9], with the exception that here we also need to consider symmetricity. This claim intuitively states 
that the chase procedure produces only assignments whose corresponding marginal identity atoms are provable from Σ.
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where L > k +S for S := |Base(Y )|. By property (15), we find a sequence of assignments (s0, . . . , sL), where 

si+1 ∈ X ′
i+1 \ X ′

i, for i < L, was generated by si ∈ X ′
i \ X ′

i−1 with the chase rule. Since S is sufficiently 

large, this sequence has a suffix (sl, . . . , sm, . . . , sL) in which each assignment belongs to Y \ Z, has degree 

M , and where l < m and Base(sl) = Base(sm).

It now suffices to show the following subclaim:

Subclaim. If t, t′ ∈ Y \ Z are two assignments with degree M such that t′ was generated by t by the chase 

rule, then t(iPos(t)) ≥ t′(iPos(t′)).

The subclaim implies that sl(iPos(sl)) ≥ sm(iPos(sm)), which leads to a contradiction. For this, observe 

that the assignment construction in (13), together with Base(sl) = Base(sm), implies that sl(i) < sm(i)

for all indices i. In particular, we have sl(iPos(sl)) < sm(iPos(sm)) since Pos(sl) = Pos(sm). Hence, the 

assumption that Y is infinite must be false. �

Proof of the subclaim. Suppose t′ is generated by t and u1 . . . uliU ⊆ v1 . . . vliV ∈ Σ∗. Without loss of 

generality Pos(t) = {u1, . . . , uM }, in which case Pos(t′) = {v1, . . . , vM }. We need to show that t(iPos(t)) ≥
t′(iPos(t′)). Now, (t(u1), . . . , t(ul)) is a sequence of the form (i1, . . . , iM , 0 . . . , 0), where ij are positive integers. 

By the assumption that t ∈ Y \ Z, there is an integer m such that t ∈ Xm+1 \ Xm and Z ⊆ Xm. We obtain 

that

t(iPos(t)) = |{s ∈ Xm | (s(u1), . . . , s(uM )) = (i1, . . . , iM )}| (16)

=
∑

jM+1,...,jl∈{0,...,n}
|{s ∈ Xm | (s(u1), . . . , s(ul)) = (i1, . . . , iM , jM+1, . . . , jl)}|

= |{s ∈ Xm | (s(u1), . . . , s(ul)) = (i1, . . . , iM , 0 . . . , 0)}|+
∑

jM+1,...,jl∈{0,...,n}
(jM+1,...,jl) �=(0,...,0)

|{s ∈ Xm | (s(u1), . . . , s(ul)) = (i1, . . . , iM , jM+1 . . . , jl)}|

= t(iU ) +
∑

jM+1,...,jl∈{0,...,n}
(jM+1,...,jl) �=(0,...,0)

|{s ∈ Z | (s(u1), . . . , s(ul)) = (i1, . . . , iM , jM+1, . . . , jl)}| (17)

≥ t′(iV ) +
∑

jM+1,...,jl∈{0,...,n}
(jM+1,...,jl) �=(0,...,0)

|{s ∈ Z | (s(v1), . . . , s(vl)) = (i1, . . . , iM , jM+1, . . . , jl)}| (18)

= t′(iPos(t′))

Here, the assignment construction in (13) entails (16), and it is also used in (17). For the summation term 

appearing in (17), we note that each assignment whose degree is strictly greater than M must belong 

to Z. It remains to consider (18); the last equality is symmetrical to the composition of the first four 

equalities.

To show that (18) holds, observe first that t(iU ) ≥ t′(iV ) by property (14). For the summation term 

appearing in (18), suppose α = |{s ∈ Z | (s(v1), . . . , s(vl)) = (i1, . . . , iM , jM+1, . . . , jl)}|, for some se-

quence jM+1, . . . , jl ∈ {0, . . . , n} containing a positive integer. By the assignment construction in (13), 

we find an assignment s0 ∈ Z such that (s0(v1), . . . , s0(vl), s0(iV )) = (i1, . . . , iM , jM+1, . . . , jl, α − 1). 

Observe that v1 . . . vliV ⊆ u1 . . . uliU ∈ Σ∗, because Σ∗ is symmetrical. Now, since Z is subsumed 

by Y , which in turn satisfies v1 . . . vliV ⊆ u1 . . . uliU , we find an assignment s1 ∈ Y such that 

(s1(u1), . . . , s1(ul), s1(iU )) = (i1, . . . , iM , jM+1, . . . , jl, α − 1). Since the degree of s1 is greater than M , 

we observe that s1 ∈ Z. This entails that α ≤ |{s ∈ Z | (s(u1), . . . , s(ul)) = (i1, . . . , iM , jM+1, . . . , jl)}|
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Table 1

The known expressivity hierarchy of logics with probabilistic team semantics and corresponding ESO variants on 
metafinite structures. The results of this paper are marked with an asterisk (*).

almost conjunctive L-(∃̈∗∀∗)[0,1][=, SUM, 0, 1] L-ESO[0,1][=, +, 0, 1] L-ESO[0,1][=, ×, +, 0, 1]

≡ ∗ ≡ ∗ ≡ [26]

FO(≈) <[25] FO(≈, =(· · · )) <∗ FO(⊥⊥)

≡ [25]

FO(⊥⊥c)

by the assignment construction in (13). From this, we obtain that (18) holds. This shows the sub-

claim. �

Proof of Claim 2. Note that, if s ∈ Y , then there exists a minimal i such that s ∈ Xi \ Xi−1. We prove the 

claim by induction on i. For the initial team X0 = {s∗}, we have s∗(xi) = i, for 1 ≤ i ≤ n. By reflexivity 

we obtain xi1
. . . xik

≈ xi1
. . . xik

, and thus the claim holds for the base step.

For the inductive step, suppose s ∈ Xi+1 \ Xi is generated by some s′ ∈ Xj \ Xj−1, j ≤ i, and some 

u1 . . . uliU ⊆ v1 . . . vliV in Σ∗. For a variable vi from v1, . . . , vl we say the variable ui from u1, . . . , ul is 

its corresponding variable. Let z1, . . . , zk be variables as in the claim, i.e., s(zj) = ij ≥ 1, for 1 ≤ j ≤
k. Now from the construction of s (i.e., (13)) it follows that z1, . . . , zk are variables from v1, . . . , vl. Let 

z′
1, . . . , z′

k from u1, . . . , ul denote the corresponding variables of z1, . . . , zk. Since s was constructed by s′ and 

u1 . . . uliU ⊆ v1 . . . vliV , it follows that s(z1, . . . , zk) = s′(z′
1, . . . , z′

k). By applying the induction hypothesis 

to s′, we obtain that Σ yields a proof of xi1
. . . xik

≈ z′
1 . . . z′

k. Since u1 . . . ul ≈ v1 . . . vl or its inverse is in 

Σ, using projection and permutation (and possibly symmetricity) we can deduce z′
1 . . . z′

k ≈ z1 . . . zk. Thus 

by transitivity we obtain a proof of xi1
. . . xik

≈ z1 . . . zk. This concludes the proof of the claim. � �

8. Conclusion

Our investigations gave rise to the expressiveness hierarchy in Table 1. Furthermore, we established that 

FO(≈) captures P on finite ordered structures, and that FO(≈, =(· · · )) captures NP on finite structures. 

It’s worth to note that almost conjunctive (∃̈∗∃∗∀∗)R[≤, +, SUM, 0, 1] is in some regard a maximal tractable 

fragment of additive existential second-order logic, as dropping either the requirement of being almost 

conjunctive, or that of having the prefix form ∃̈∗∃∗∀∗, leads to a fragment that captures NP. We also 

showed that the full additive existential second-order logic (with inequality and constants 0 and 1) collapses 

to NP, a result which as far as we know has not been stated previously.

Lastly, extending the axiom system of inclusion dependencies with a symmetry rule, we presented a 

sound and complete axiomatization for marginal identity atoms. Beside this result, it is well known that 

also marginal independence has a sound and complete axiomatization [19]. These two notions play a central 

role in statistics, as it is a common assumption in hypothesis testing that samples drawn from a population 

are independent and identically distributed (i.i.d.). It is an interesting open question whether marginal 

independence and marginal identity, now known to be axiomatizable in isolation, can also be axiomatized 

together.
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Appendix A. BSS-toolbox

In this section we give a short introduction to BSS machines (see e.g. [5]). The inputs for BSS machines 

come from R∗ :=
⋃{R

n | n ∈ N}, which can be viewed as the real analogue of Σ∗ for a finite set Σ. The 

size |x| of x ∈ R
n is defined as n. We also define R∗ as the set of all sequences x = (xi)i∈Z where xi ∈ R. 

The members of R∗ are thus bi-infinite sequence of the form (. . . , x−2, x−1, x0, x1, x2, . . .). Given an element 

x ∈ R
∗ ∪ R∗ we write xi for the ith coordinate of x. The space R∗ has natural shift operations. We define 

shift left σl : R∗ → R∗ and shift right σr : R∗ → R∗ as σl(x)i := xi+1 and σr(x)i := xi−1.

Definition 34 (BSS machines). A BSS machine consists of an input space I = R
∗, a state space S = R∗, and 

an output space O = R
∗, together with a connected directed graph whose nodes are labeled by 1, . . . , N . 

The nodes are of five different types.

1. Input node. The node labeled by 1 is the only input node. The node is associated with a next node β(1)

and the input mapping gI : I → S.

2. Output node. The node labeled by N is the only output node. This node is not associated with any next 

node. Once this node is reached, the computation halts, and the result of the computation is placed on 

the output space by the output mapping gO : S → O.

3. Computation nodes. A computation node m is associated with a next node β(m) and a mapping gm :

S → S such that for some c ∈ R and i, j, k ∈ Z the mapping gm is identity on coordinates l �= i and on 

coordinate i one of the following holds:

• gm(x)i = xj + xk (addition),

• gm(x)i = xj − xk (subtraction),

• gm(x)i = xj × xk (multiplication),

• gm(x)i = c (constant assignment).

4. Branch nodes. A branch node m is associated with nodes β−(m) and β+(m). Given x ∈ S the next 

node is β−(m) if x0 ≤ 0, and β+(m) otherwise.

5. Shift nodes. A shift node m is associated either with shift left σl or shift right σr, and a next node β(m).

The input mapping gI : I → S places an input (x1, . . . , xn) in the state

(. . . , 0, n, x1, . . . , xn, 0, . . .) ∈ S,

where the size of the input n is located at the zeroth coordinate. The output mapping gO : S → O maps 

a state to the string consisting of its first l positive coordinates, where l is the number of consecutive ones 

stored in the negative coordinates starting from the first negative coordinate. For instance, gO maps

(. . . , 2, 1, 1, 1, n, x1, x2, x3, x4, . . .) ∈ S,

to (x1, x2, x3) ∈ O. A configuration at any moment of computation consists of a node m ∈ {1, . . . , N} and 

a current state x ∈ S. The (sometimes partial) input-output function fM : R
∗ → R

∗ of a machine M is now 

defined in the obvious manner. A function f : R
∗ → R

∗ is computable if f = fM for some machine M . A 

language L ⊆ R
∗ is decided by a BSS machine M if its characteristic function χL : R

∗ → R
∗ is fM .

Deterministic complexity classes. A machine M runs in (deterministic) time t : N → N, if M reaches the 

output in t(|x|) steps for each input x ∈ I. The machine M runs in polynomial time if t is a polynomial 

function. The complexity class PR is defined as the set of all subsets of R∗ that are decided by some machine 

M running in polynomial time.
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Nondeterministic complexity classes. A language L ⊆ R
∗ is decided nondeterministically by a BSS machine 

M , if

x ∈ L if and only if fM ((x, x′)) = 1, for some x′ ∈ R
∗.

Here we assume a slightly different input mapping gI : I → S, which places an input (x1, . . . , xn, x′
1, . . . , x′

m)

in the state

(. . . , 0, n, m, x1, . . . , xn, x′
1, . . . , x′

m, . . .) ∈ S,

where the sizes of x and x′ are respectively placed on the first two coordinates. When we consider lan-

guages that a machine M decides nondeterministically, we call M nondeterministic. Sometimes when we 

wish to emphasize that this is not the case, we call M deterministic. Moreover, we say that M is [0,1]-

nondeterministic, if the guessed strings x′ are required to be from [0, 1]∗. L is decided in time t : N → N, if, 

for every x ∈ L, M reaches the output 1 in t(|x|) steps for some x′ ∈ R
∗. The machine runs in polynomial 

time if t is a polynomial function. The class NPR consists of those languages L ⊆ R
∗ for which there exists 

a machine M that nondeterministically decides L in polynomial time. Note that, in this case, the size of x′

above can be bounded by a polynomial (e.g., the running time of M) without altering the definition. The 

complexity class NPR has many natural complete problems such as 4-FEAS, i.e., the problem of determining 

whether a polynomial of degree four has a real root [6].

Complexity classes with Boolean restrictions. If we restrict attention to machines M that may use only 

c ∈ {0, 1} in constant assignment nodes, then the corresponding complexity classes are denoted using an 

additional superscript 0 (e.g., as in NP0
R). Complexity classes over real computation can also be related to 

standard complexity classes. For a complexity class C over the reals, the Boolean part of C, written BP(C), 

is defined as {L ∩ {0, 1}∗ | L ∈ C}.

Descriptive complexity. Similar to Turing machines, also BSS machines can be studied from the van-

tage point of descriptive complexity. To this end, finite R-structures are encoded as finite strings of reals 

using so-called rankings that stipulate an ordering on the finite domain. Let A be an R-structure over 

τ ∪ σ where τ and σ are relational and functional vocabularies, respectively. A ranking of A is any bijec-

tion π : Dom(A) → {1, . . . , |A|}. A ranking π and the lexicographic ordering on N
k induce a k-ranking

πk : Dom(A)k → {1, . . . , |A|k} for k ∈ N. Furthermore, π induces the following encoding encπ(A). First we 

define encπ(RA) and encπ(fA) for R ∈ τ and f ∈ σ:

• Let R ∈ τ be a k-ary relation symbol. The encoding encπ(RA) is a binary string of length |A|k such 

that the jth symbol in encπ(RA) is 1 if and only if (a1, . . . , ak) ∈ RA, where πk(a1, . . . , ak) = j.

• Let f ∈ σ be a k-ary function symbol. The encoding encπ(fA) is string of real numbers of length |A|k
such that the jth symbol in encπ(fA) is fA(�a), where πk(�a) = j.

The encoding encπ(A) is then the concatenation of the string (1, . . . , 1) of length |A| and the encodings of 

the interpretations of the relation and function symbols in τ ∪σ. We denote by enc(A) any encoding encπ(A)

of A.

Let C be a complexity class and ESOS [O, E, C] a logic, where O ⊆ {+, ×, SUM}, E ⊆ {=, <, ≤}, C ⊆ R, 

and S ⊆ R or S = d[0, 1]. Let X ⊆ R or X = d[0, 1], and let S be an arbitrary class of X-structures 

over τ ∪ σ that is closed under isomorphisms. We write enc(S) for the set of encodings of structures in S. 

Consider the following two conditions:

(i) enc(S) = {enc(A) | A ∈ StrucX(φ)} for some φ ∈ ESOS [O, E, C][τ ∪ σ]},
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(ii) enc(S) ∈ C.

If (i) implies (ii), we write ESOS [O, E, C] ≤X C, and if the vice versa holds, we write C ≤X ESOS [O, E, C]. 

If both directions hold, then we write ESOS [O, E, C] ≡X C. We omit the subscript X in the notation if 

X = R.

The following results due to Grädel and Meer extend Fagin’s theorem to the context of real computation.

Theorem 35 ([22]). ESOR[+, ×, ≤, (r)r∈R] ≡ NPR.
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