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Rotating spheres in cylindrical channels roll or slide along the channel depending on
the physical and geometric conditions. For a thorough investigation of the phenomenon,
finite-element modelling is utilized to obtain the resistance coefficients for the motion
of a sphere in a cylindrical channel, with an emphasis on near-wall motion. Extracted
coefficients are compared with the data in the literature and utilized in exploring the
conditions for rolling versus sliding along the channel. Sliding occurs due to the pressure
build-up in the nip region between the wall and the rotating sphere in small confinement
ratios, whereas rolling occurs when the shearing forces on the sphere are dominant in
larger ratios. According to numerical results, a flow reversal takes place in the nip region
and reduces the shear as well. Rolling versus sliding is demonstrated in experiments by
using magnetic spherical particles, which are rotated by means of an external magnetic
field inside cylindrical channels filled with viscous fluids. Faster axial velocities are
observed in narrow channels while sliding than in wider channels while rolling for the
same rotation rate of the sphere. Experiment observations are compared with the velocities
evaluated from the resistance coefficients, showing that the distance between the sphere
and the wall, which is dominated by roughness, plays an important role in the velocity of
the sphere.

Key words: Stokesian dynamics

1. Introduction

The motion of spherical particles in channels is a quintessential problem in fluid mechanics
and has been studied extensively in the literature with a range of applications in many
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fields, such as sedimentation (Jayaweera, Mason & Slack 1964; Batchelor 1972; Bungay
& Brenner 1973; Herron, Davis & Bretherton 1975; Arigo et al. 1995; Zhang & Muller
2018), lubrication (O’Neill & Stewartson 1967; Barnocky & Davis 1989; Higdon &
Muldowney 1995; Gopinath, Chen & Koch 1997; Marston, Yong & Thoroddsen 2010),
microfluidics (Bhagat, Kuntaegowdanahalli & Papautsky 2009; Koklu, Sabuncu & Beskok
2010) and micro/nanorobotics (Avron, Kenneth & Oaknin 2005; Golestanian & Ajdari
2008; Silverberg et al. 2020). Limited analytical solutions are available under simplifying
assumptions, especially at low Reynolds numbers. Basset (1888), Boussinesq (1903) and
Oseen (1927) studied the motion of a sphere settling under the gravity force in a quiescent
fluid. In such a fluid, disturbance to the flow occurs solely due to the settling motion of the
sphere, which is of low Reynolds number, and this allows the deduction of the resulting
fluid force on the sphere using the Stokes equations (Maxey & Riley 1983). Tchen (1947)
included the effects of unsteady flows in his PhD thesis, which prompted an immense
number of studies suggesting corrections to his equations. Among the notable corrections,
Corrsin and Lumley’s (1956) remark on the contribution of the pressure gradient on the
net force acting on the particle, and Buevich’s (1970) correction on the term suggested
by Corrsin & Lumley (1956) should be listed as well. Soo (1975) and Gitterman &
Steinberg (1980), on the other hand, offered their own solutions. Maxey & Riley (1983)
gave the equation the form that is widely used to this day, with corrections by Auton,
Hunt & Prud’Homme (1988) and Maxey himself. Brenner & Happel (1958) investigated
the frictional drag on a confined sphere subjected to a Poiseuille flow using the method
of reflections. They concluded that the drag is minimized at an optimal distance away
from the cylindrical channel boundaries. However, their results are valid in asymptotic
cases where the distance between the sphere and the channel wall is much larger than
the sphere radius. Later, Brenner & Sonshine (1964) calculated the torque required to
maintain steady rotation of a sphere inside a cylindrical conduit. Their data show that
the resistance to rotation increases logarithmically as the confinement increases. Bungay
& Brenner (1973) studied the motion of spherical particles in a tightly fitting cylindrical
conduit and proposed an improvement on the existing lubrication theories, which is still
widely used in the cases where the sphere and the channel wall are in close proximity.

The limitations of asymptotic models have been overcome only recently. Higdon &

Muldowney (1995) used a spectral boundary element method to obtain translational
resistance coefficients of torque-free spheres moving inside cylindrical conduits. They
presented tabulated results for a range of confinement ratios at any distance from the
channel wall. For the cases when the sphere is too close to the channel wall, they employed
the lubrication theory. As zero torque conditions are applied, rotational resistance
coefficients and coupling coefficients are not reported. The most recent and comprehensive
study on the topic is presented by Bhattacharya, Mishra & Bhattacharya (2010) in which
the authors presented a semi-analytical method called the basis transformed spectral
method (BTSM) to calculate translational, rotational and coupling resistance coefficients
for spheres at a wide range of radial positions and for various confinement ratios. In this
method, reflection relations for separable solutions of the flow field, represented by a basis
function expansion governed by the Stokes equations, at the surfaces of the spherical
particle and the cylindrical channel wall are utilized. The study is the first to report the
exact coupling coefficients between the rotation and translation of a spherical particle
inside a cylindrical channel. The authors explain the transition from rolling to sliding
through the change in the sign of the coupling coefficients, which come out from the
opposing effects of the pressure and shear forces on the particle.

One of the earliest reports on rolling and sliding is by Goldman, Cox & Brenner
(1967), where the authors deduce that a sphere should slip as it rolls near a boundary.
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Rolling and sliding motion of rotating spheres

The phenomenon is demonstrated by Liu et al. (1993) experimentally. The authors found
that when a sphere is dropped near a planar wall, depending on the nature of the fluid used

(Newtonian versus non-Newtonian) and the angle of inclination of the wall, the sphere
might perform normal or anomalous rolling. Anomalous rolling is defined as the sphere
rolling in a direction against its direction of rolling in the dry rolling case, for example,

rolling upwards as it falls through a vertical tube. It is similar to what we call sliding in

this study, but the translation is induced not by the rotation of the sphere but by gravity.

The sphere exhibits anomalous rolling in both Newtonian and non-Newtonian fluids, and it
shies away from the wall when the wall is vertical. The researchers observed that the sphere
transitions to normal rolling in Newtonian fluids once the inclination of the planar wall
is beyond a critical angle. However, anomalous rolling persists in non-Newtonian fluids
regardless of the inclination angle. Similar behaviour patterns are observed for spheres

falling down cylindrical tubes as well (Humphrey & Murata 1992), and more studies

reporting the behaviour of spherical particles approaching a boundary or falling near a

boundary (Dreyfus et al. 2005; Takagi et al. 2014; Djellouli et al. 2017), and studies on

the collective behaviour of multiple particles (Brenner 1961; Bico et al. 2009), are also
available in the literature.

Anomalous rolling is attributed to shearing at the large space between the sphere
and the wall (Humphrey & Murata 1992). Bhattacharya et al. (2010) highlight the
effect of lubrication as the sphere gets closer to the boundaries, so much so that the
coupling resistance changes its sign and the sphere exhibits rolling instead of sliding.
One important consideration at close proximity becomes the surface morphology of
the sphere as roughness elements start to affect the distance from the sphere to the
boundaries. Smart, Beimfohr & Leighton (1993) investigate rough spheres rolling down
planes and find that the change in the distance from the sphere to the plane changes the
coefficient of friction of the sphere, which manifests itself as fluctuations in the sphere
velocity. When a roughness element makes contact with the plane, the contact may initiate
normal motion relative to the plane that would decrease the rotation and increase the
slip. The authors also provide a theoretical model that is in quantitative agreement with
their experimental results with rough spheres. A more rigorous model is developed by

Galvin, Zhao & Davis (2001) for a sphere rolling down a tilted plane, in which they
define two roughness scales for the sphere. Large roughness elements temporarily lift
the sphere, and as it rotates, it moves away from the plane, and this causes the sphere

to lose contact with the plane. The sphere is then pulled down by gravity to be lifted off

from the surface once again, with an upcoming roughness element. The authors report
that the sphere is in contact with the plane for a longer time at lower inclination angles
than in higher inclination angles, but the hydrodynamic resistance appears to be greater
at high inclination angles. This is explained by the sphere’s faster rotation leading to
more frequent contact of the large roughness elements with the plane. Based on the

model of Galvin et al. (2001), Zhao, Galvin & Davis (2002) study the problem of a
smooth sphere rolling down a rough plane with two different roughness scales again.
Upon contact with a large bump, the translational velocity of the sphere decreases as
the rotational velocity increases, then the sphere quickly loses contact with the bump
and the translational velocity decreases further upon contact with the small bumps. The
dimensionless translational velocity is much greater than the dimensionless rotational
velocity, indicating that the sphere slips all this time. Upon contact with the second large
bump, the velocities coincide and slipping stops. These observations are quite critical as
the gap size between the sphere and the channel wall determines the mode of motion of
the sphere.
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A comprehensive investigation of the motion of a rotating sphere in close proximity
to the boundaries is necessary. Our study aims to understand the effects of geometric
parameters and to elucidate the rolling and sliding of spheres in cylindrical channels. In
that regard, we study the effects of the distance of the sphere from the channel boundaries,

and the confinement ratio, which is the ratio of the radii of the channel and the sphere,
numerically and experimentally. The transition between rolling and sliding is demonstrated
with respect to the confinement ratio. To this end, we first introduce a finite-element
method-based (FEM) numerical model to obtain the complete set of resistance coefficients
for a sphere inside a cylindrical channel especially for the case where the sphere is very
close to the channel wall. The resistance coefficients are systemically derived by evaluating
the forces and torques on the sphere for given swimming velocities. Unlike in Higdon &
Muldowney (1995), coupling and rotational resistances are included here alongside the
translational resistance coefficients. Moreover, we verify that the FEM model is more
efficient and accurate especially for the case when the sphere is very close to the channel
wall compared to the semi-analytical model presented by Bhattacharya et al. (2010).
Furthermore, we demonstrate the rolling and sliding of rotating spheres in cylindrical
channels experimentally for the first time in the literature. In our experiments, magnetized
spheres with considerable roughness are placed in viscous fluid-filled cylindrical channels
and rotated with the help of a rotating magnetic field. Both the rolling and sliding cases
are reported and characterized. Finally, the experiment results are confirmed with the
velocities obtained from the resistance coefficients, showing that the sphere is rotating
in close proximity to the channel boundaries but the exact proximity cannot be determined
due to the roughness of the spheres used in the experiments and limitations in image
processing capabilities.

2. Methodology

2.1. Resistance coefficients

Consider a sphere with diameter Ds rotating inside a viscous fluid-filled cylindrical
channel with diameter Dch, as shown in figure 1. Inertial effects in low Reynolds number

motion are generally negligible, which is why the forces and torques acting on the sphere
are directly related to the linear and angular velocities of the sphere through a resistance
matrix, R. The matrix is generally expressed in terms of its four subcomponents as

[

F
τ

]

=
[

R
]

[

U
ω

]

=

[

F
tt

F
tr

F
rt

F
rr

] [

U
ω

]

. (2.1)

In this equation, F is the viscous force acting on the sphere and τ is the torque. F
tt is the

translational resistance matrix, F
rr is the rotational resistance matrix, and F

tr and F
rt are

the coupling resistance matrices with F
tr = F

rt′ where the ‘′’ sign indicates the transpose.
The linear velocity vector is U , and the angular velocity vector is ω. Two coordinate

frames will be used in the text. One follows the notation in Bhattacharya et al. (2010):
it is a cylindrical coordinate frame with the z axis placed alongside the long axis of the
cylindrical channel. The radial direction is identified with ρ̂, and the tangential direction

is identified with β̂ – unit vectors in figure 1 – along with a global Cartesian frame.
The elements of the resistance matrix are obtained in the cylindrical coordinates by

running a series of simulations in which one component of linear or angular velocities is
set to unity and the rest are set to zero. Most of the off-diagonal entries are found to be

infinitesimally small (105 times smaller than the parameters listed in table 1) so they are
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Rolling and sliding motion of rotating spheres

β̂
ρ̂

ẑ

z

z

y

x
Dch

Dsx

ρ

ρs

β

δ

Figure 1. Geometric set-up for the sphere of diameter Ds inside a cylindrical channel of diameter Dch, and

the coordinate frames.

Inputs Outputs

Uρ Uβ Uz ωρ ωβ ωz (Equations)

1 0 0 0 0 0 Ftt
ρρ = Fρ

0 1 0 0 0 0 Ftt
ββ = Fβ G = −τz

0 0 1 0 0 0 Ftt
zz = Fz G′ = −τβ

0 0 0 1 0 0 Frr
ρρ = τρ

0 0 0 0 1 0 G′ = −Fz Frr
ββ = τβ

0 0 0 0 0 1 G = −Fβ Frr
zz = τz

Table 1. Combinations of linear and angular velocity values, and the resultant equations.

assumed to be zero, resulting in the following explicit form for (2.1):

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Fρ

Fβ

Fz

τρ

τβ

τz

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ftt
ρρ 0 0 0 0 0

0 Ftt
ββ 0 0 0 −G

0 0 Ftt
zz 0 −G′ 0

0 0 0 Frr
ρρ 0 0

0 0 −G′ 0 Frr
ββ 0

0 −G 0 0 0 Frr
zz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

uρ

uβ

uz

ωρ

ωβ

ωz

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (2.2)

The whole set of cases and the resulting equations from each one of the cases are listed in

table 1. A total of six separate simulation runs are required to obtain all of the components
in (2.2) for a given position of the sphere.

2.2. The finite-element model

Sphere motion in viscous fluids and at very small scales (Re ≪ 1) is governed by the
Stokes equations. The equations are written in non-dimensional form as

∇2u − ∇p̄ = 0, ∇ · u = 0. (2.3a,b)

Here, u and p̄ are the non-dimensional fluid velocity field and the pressure, respectively.
The length scale for non-dimensionalization is the sphere radius Rs, the time scale is
the rotation frequency of the sphere f , and the mass scale is the fluid viscosity µ; u is
non-dimensionalized with lf while p̄ is non-dimensionalized with µf .
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H.O. Caldag, E. Demir and S. Yesilyurt

(a) (b)

Dense meshing domain

Sphere surface

Symmetry plane

Figure 2. Geometries for the FEM models. (a) Half-cut model in the yz plane and (b) half-cut model in the xy

plane. Regions shown in orange are densely meshed for the simulations where ρ̄s ≥ 0.9.

The COMSOL Multiphysics software package is used to solve the incompressible Stokes
equations. No-slip boundary conditions are applied on the channel boundaries and the
sphere surface. The sphere surface is modelled as a moving wall with a velocity profile

expressed as

us = U + ω × (r − r0) , r ∈ S, (2.4)

where r is a position on the sphere surface S and r0 is the position of the centroid of the
sphere.

Taking advantage of the symmetries in the model, the computational domain is cut
in half in circular and rectangular cross-sections of the cylinder through the sphere for
computational efficiency, as shown in figure 2. A slip boundary condition is applied at the

cut planes as a symmetry condition. The complete three-dimensional (3-D) geometry is

required only to obtain the rotational resistance of the sphere in the radial direction, Frr
ρρ ,

with the same meshing parameters used in the cut geometries.
The P2+P2 discretization of the fluid and MUMPS direct solver are employed for the

simulations. Tetrahedral elements are used to mesh the fluid domain, and triangular surface

mesh is applied to the sphere surface, with the same meshing applied to symmetric pairs
of the sphere faces to improve the accuracy of the solutions. The coefficients in (2.2) are
obtained from the scenarios listed in table 1 for a wide range of non-dimensional radial

positions, defined as

ρ̄s =
ρs

Rch − Rs

, (2.5)

where ρs is the dimensional radial position of the sphere and Rch is the radius of
the cylindrical channel. The minimum distance from the sphere surface to the channel
boundaries is identified by δ and is non-dimensionalized as

δ̄ =
δ

Rs

(2.6)

We first demonstrate the mesh convergence for the configuration ρ̄s = 0.8 and Rch/Rs =
1.6. The narrowest channel size is considered here so as to demonstrate the convergence
with respect to the densest meshing possible. The converged configuration will be used to
obtain the resistance coefficients for 0 ≤ ρ̄s < 0.9. The meshing strategy is slightly altered
for ρ̄s ≥ 0.9 as the convergence in this range is much more demanding.

The mesh convergence study over the domain element size shows that the system is
relatively insensitive to this parameter (maximum element size ranging from 0.1Rs to
Rs), with a relative error of less than 1 % even at the coarsest meshing configuration (not
shown). The meshing on the spherical surface appears to be more critical for convergence,
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Rolling and sliding motion of rotating spheres

(a)

(b)

2

e (%)

e (%)

eFtt

eG

4 6 8 10 12 14

2

1

0

zz

eFrr
zz

(×105)

(×106)

1.0 1.5 2.0

Degrees of freedom (DOF)

2.5 3.0 3.5
0

2

4

6

8

Figure 3. Convergence of Ftt
zz, Frr

zz and G for (a) ρ̄s = 0.8 and Rch/Rs = 1.6, and (b) ρ̄s = 0.99 and

Rch/Rs = 1.6.

with the results demonstrated in figure 3(a) for several key resistance coefficients. The

relative percentile error, e, is defined as

e{Ftt
zz,F

rr
zz ,G} = 100

∣

∣

∣

∣

{Ftt
zz, Frr

zz , G} − {Ftt
zz, Frr

zz , G}max

{Ftt
zz, Frr

zz , G}max

∣

∣

∣

∣

, (2.7)

where {Ftt
zz, Frr

zz , G}max indicate the values obtained at the maximum degrees-of-freedom
that corresponds to the smallest mesh element size. The converged configuration results in
around 4 × 105 degrees-of-freedom in cut geometries and takes up to 100 GB of random
access memory (RAM) usage.

When the sphere is very close to the channel wall, special care must be taken to
ensure converging results. In this work, we take 0.9 ≤ ρ̄s ≤ 0.99 to be the close proximity
range, corresponding to 0.006 ≤ δ̄ ≤ 0.2. The minimum element dimension in the mesh
is adjusted to accommodate properly the small gap between the sphere and the channel.
As the sphere gets closer to the channel boundaries, a large pressure gradient builds up
across the nip region between the sphere and the channel wall when the sphere rotates
in the β direction (azimuthal). An accurate solution of the pressure gradient is critical

to obtain resistance coefficients with high accuracy. Hence the meshing density in the

fluid surrounding the sphere is increased to match the density on the sphere (the regions

coloured orange in figure 2). A mesh convergence study is carried out for ρ̄s = 0.99 and

Rch/Rs = 1.6, corresponding to the tightest configuration in the scope of this work, and

the convergence of Ftt
zz, Frr

zz and G are displayed in figure 3(b). The results indicate that the

relative error falls below 1 % as the degrees-of-freedom approach 3million. The maximum

element size around the sphere is δ/2, and the minimum element size is δ/40 in the
converged configuration.
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(c)

(a) (b)

(d)

Glass channel Helmholtz coils

Drivers

Camera

Camera

Iy = I0sin(2πft)

Iz = I0cos(2πft)

Ix = I0cos(2πft) (= 0)

0.5 mm

y

B

x

z

z

m

g
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ω
β

β

ρ

ζ

Glass
tube

Figure 4. (a) Close-up image of the magnetic sphere with Ds = 1 mm used in the experiments. (b) Schematic

drawing of the Helmholtz coil set-up, showing the currents applied to each pair. (c) Experiment set-up for

rotating the magnetic spheres. (d) Schematic description of magnetic actuation of the spheres.

2.3. Experiments

In experiments, radially magnetized nickel-plated sintered neodymium (NdFeB) spheres
(SM Magnetics, Pelham, AL, USA) of diameters 1 mm and 1.9 mm are placed inside glass

channels of diameters 1.6 mm, 3 mm and 5.7 mm. The roughness of the spheres, which is

critical in their motility, is investigated using a Nanofocus 3-D surface metrology system.

The results of the measurements are provided in Appendix A. We present a close-up image

of the sphere with Ds = 1 mm in figure 4(a), which shows the roughness of the spherical
surface. Since the spheres are made of magnetic ceramics with nickel coating, it is very
difficult to clean them free from pieces of chipped coating and other magnetic debris that
accumulates at the surface.

The channels are filled with silicone oil mixtures with µ = 0.5 Pa s and µ = 1 Pa s.
Removal of excessive air inside the liquid is critical in order to obtain matching results
with the simulations. The tubes are placed into a vacuum chamber (0 PSIA, measured with
Omega DPG5600B-30A PSIA) for degassing before experimentation. After the degassing
procedure, the tubes are sealed tightly to prevent air from leaking back into the liquid.
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Rolling and sliding motion of rotating spheres

The sealed tubes are placed horizontally inside the experiment set-up consisting of three
orthogonal Helmholtz coil pairs to induce sphere rotation. The coil system is controlled
with custom LabVIEW software via Maxon drivers connected to the computer controlling

the experiments. The experiment set-up is drawn in figure 4(b) and pictured in figure 4(c).
The spheres are rotated with a rotating magnetic field to observe sliding and rolling

trajectories. Two of the coil pairs, placed along the y and z directions, are excited with
sinusoidal out-of-phase currents with amplitude I0 to create a magnetic field rotating about
the x direction in the global frame. The magnetic field applied by each coil is measured
using Phidgets 1108 Magnetic Field Sensors to assure equal magnetic field strength in both
directions. The magnetic spheres are actuated at different magnetic rotation frequencies
(f ) ranging between 0.1 Hz and 20 Hz, and the trajectories are recorded using a digital

microscope from above (refer to figure 4c). Gravity, denoted g, is acting in the −y

direction.
As the rotating magnetic field is applied to the magnetic sphere, magnetic torque tends to

align the sphere’s magnetic dipole moment, m, with the direction of the applied magnetic
field, B, so that the sphere rotates around the β direction in the cylindrical frame as the
magnetic field rotates in the x direction in the global frame. The relationship to evaluate
the induced magnetic torque, τm, is given by the equation

τm = m × B. (2.8)

As implied by the cross-product, actual magnetic torque acting on the sphere at any
given instance depends on the sine of the angle, ζ , between the magnetic dipole moment
vector of the sphere and the magnetic field vector, when the two vectors are co-planar
as shown in figure 4(d). The angle depends on the viscous torque, which balances the

magnetic torque assuming that the sphere rotates at the same rate as the rotating magnetic
field. A schematic of the sphere motion due to the rotating magnetic field inside the
channel is given in figure 4(d). The spheres are not able to rotate indefinitely faster as
the magnetic torque rotating the sphere cannot overcome the viscous resistance beyond a
certain f . The sphere rotation stutters at larger f , which is called step-out in the literature
(Zhang et al. 2009).

A rotating sphere near the channel wall translates along the z axis of the cylindrical
channel. The translation velocity, uz, is extracted from the experiment recordings using the
image processing code reported in our previous work, which utilizes MATLAB’s Image
Processing Toolbox functions (Caldag, Acemoglu & Yesilyurt 2017).

3. Results

3.1. Validation of the finite-element model

The results from the FEM model are compared with two different datasets from the
literature for validation purposes. ρ̄s is varied from 0 to 0.99 in the FEM simulations.
Selected Rch values are 1.6, 2 and 3, while Rs is fixed at 1. For the sake of brevity, the
verification results will be presented only for Rch = 2 in this section. The complete list of
the resistance coefficients and comparisons with the data from the literature for Rch = 1.6
and Rch = 3 are provided in Appendices B and C.

The resistance coefficients are normalized as in Bhattacharya et al. (2010):

F̄tt
{ρ,β,z}{ρ,β,z} =

Ftt
{ρ,β,z}{ρ,β,z}

6πµRs

, (3.1)
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Figure 5. Comparison of the translational and rotational resistance coefficients obtained from the FEM

simulations and the data in the literature for Rch/Rs = 2. (a) F̄tt
ρρ , (b) F̄tt

ββ , (c) F̄tt
zz, (d) F̄rr

ρρ , (e) F̄rr
ββ , and

( f ) F̄rr
zz . The insets show the coefficients for ρ̄s ≥ 0.9.

F̄rr
{ρ,β,z}{ρ,β,z} =

Frr
{ρ,β,z}{ρ,β,z}

8πµR3
s

, (3.2)

Ḡ =
G

µR2
s

, (3.3)

Ḡ′ =
G′

µR2
s

. (3.4)

Figures 5 and 6 show the parameters obtained via the FEM model and the results from
two studies in the literature. Translational and rotational resistance coefficients match quite
well with the reported data for 0 < ρ̄s < 0.9. When we compared our results with those
in Bhattacharya et al. (2010), we observed some discrepancies, especially as ρ̄s → 1. The

authors kindly provided their code for the re-evaluation of the resistance coefficients with

higher accuracy at Λmax = 16, µmax = 10, lmax = 12 and δλ = 0.02 (refer to Bhattacharya
et al. (2010) for the definitions of these parameters). Updated resistance coefficient values
are shown in red in figures 5 and 6, and agree much better with the FEM results than the

values reported in Bhattacharya et al. (2010), especially for near-wall values (ρ̄s > 0.9).

For the coupling resistances Ḡ and Ḡ′, shown in figure 6, the results show a good match

up to ρ̄s = 0.98 with the re-evaluated coefficients from the Bhattacharya et al. (2010)

model. For Ḡ, the original results of Bhattacharya et al. (2010) predicted a decrease for
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Rolling and sliding motion of rotating spheres
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Figure 6. Comparison of the coupling resistance coefficients obtained from the FEM simulations and the

data in the literature for Rch/Rs = 2. (a) Ḡ, (b) Ḡ′. The insets show the coefficients for ρ̄s ≥ 0.9.

ρ̄s > 0.95, whereas the updated results show that the decrease occurs only for ρ̄s > 0.98.

Our FEM results exhibit no such decrease at all. For Ḡ′, while we see a decrease in
magnitude in all cases, there is a great discrepancy between the FEM result and the

Bhattacharya et al. (2010) result for ρ̄s = 0.99. The discrepancies between the published

results in Bhattacharya et al. (2010) and the re-evaluated coefficients stem from the

selection of the model parameters that are critical for convergence. The output of the

Bhattacharya et al. (2010) model is a grand mobility matrix whose dimensions ideally go to

infinity. The matrix is truncated to a certain dimension, denoted by q = 3lmax(lmax + 2),

for matrix inversion, which is a required step in obtaining the friction matrix that gives
out the resistance coefficients. Each term in the mobility matrix is also an approximation
in itself as each term includes a truncation of an infinite summation and an infinite
integration. The authors reported a convergence study over multiple model parameters,
including Λmax, δλ, µmax and lmax for translational and rotational resistance coefficients,
which tend to converge fast for ρ̄s = 0.5 and ρ̄s = 0.9, with relatively low computational

requirements. The convergence of the coupling coefficients is omitted in that study; we find

that they do not converge as fast, especially as ρ̄s → 1. The results of a new convergence

study with the Bhattacharya et al. (2010) code over lmax for ρ̄s = 0.99 (provided in the

figure in Appendix D) show that the coupling coefficients barely converge for the largest
lmax tested. Increasing lmax further had convergence issues in the model. The improvement
in the matching of the results with the re-evaluated data from Bhattacharya et al. (2010)
permits confidence in the high-resolution FEM results. One more point to note here is

that it takes up to 24 hours for the Bhattacharya et al. (2010) code to finish running for

lmax = 18, whereas our FEM model with the densest meshing takes up to 10 hours on
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H.O. Caldag, E. Demir and S. Yesilyurt

the same workstation (a minimum of six separate simulations are required, with around

1.5 hours of runtime for each) and provides high accuracy for most of the parameters at
a much lower computational cost. Furthermore, one has to carry out a multi-parameter
convergence study for the Bhattacharya et al. (2010) model by covering other parameters

listed above, which would increase the overall computational cost even further. The FEM

model is very useful for single-particle systems but it may become costly for solving

systems involving multiple particles. In that case, BTSM can be utilized for a global

solution, and the FEM model can be used to resolve local fields involving fewer particles.

The convergence of BTSM in earlier work appears to be incomplete, especially in terms
of the coupling resistances and at close proximities. A multi-parameter convergence on
BTSM is necessary to fully benefit from this approach for spheres in close proximity to
the channel boundaries.

3.2. Rolling and sliding

Rolling and sliding are tied to the coupling and translational resistance coefficients. From
(2.2), one can write

uβ =
G

Ftt
ββ

ωz, (3.5)

uz =
G′

Ftt
zz

ωβ , (3.6)

where uβ and uz are the rolling/sliding velocities in the respective directions. Utilizing the
normalization in (3.3) and (3.4), we define a non-dimensional velocity ū:

ūβ =
uβ

ωβRs

=
Ḡ

6πF̄tt
ββ

, (3.7)

ūz =
uz

ωzRs

=
Ḡ′

6πF̄tt
zz

. (3.8)

Figure 7 depicts the non-dimensional velocities ūβ and ūz for all Rch/Rs values tested

for ρ̄s > 0.9 with respect to δ̄. The rotation of the sphere around the z axis gives rise
to the sliding motion in the β direction, as shown in figure 7(a). As the sphere rotates,
a pressure gradient (with maximum p̄ = pH and minimum p̄ = pL) develops between the
fore and aft of the sphere that induces sliding motion. Previous experiments had shown the
sliding behaviour along the channel boundaries as the sphere rotates around the channel’s
long axis (z axis), resulting in circular trajectories around the long axis of the channel
without any translation in the z direction (Demir 2018). At sufficiently high rotation rates,
the radius of the circular trajectory decreases and the sphere settles at the centre of the

channel radially (Demir 2018). Here, ūβ is positive for the cases depicted in the figure;

however, it starts to decrease as δ̄ → 0, especially at high values of the curvature (shown

in figure 7b). Although Ḡ keeps increasing as δ̄ → 0, F̄tt
ββ exhibits a logarithmic increase

(also predicted by Higdon & Muldowney 1995) that leads to an overall decrease in the
ratio.

Rotation around the β axis results in axial sliding or rolling motion along the channel,
as shown in figure 7(c). As shown in figure 7(d), ūz values are mostly negative, indicating

that the sphere slides. Also worth noting is the fact that ūz varies logarithmically with δ̄.

935 A9-12

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 2
13

.3
1.

72
.1

38
, o

n 
04

 M
ar

 2
02

2 
at

 1
1:

38
:0

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
44



Rolling and sliding motion of rotating spheres

(a) (c)

(b) (d)
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z

z

ωz ω
β

u
β
 > 0 Sliding

Rch/Rs = 1.6

Rch/Rs = 2

Rch/Rs = 3

u
β
 < 0 Rolling

uz > 0 Rolling

uz < 0 Sliding

β
β

ρ

pLpH pLpH

ρ

10–110–2
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10–110–2
0.04

–0.10

–0.05

0

0.05

0.07

0.06

0.08

u–
β

u–z

Figure 7. (a) Coupling-induced velocity uβ . (b) ūβ for all curvature ratios for near-wall swimming conditions.

(c) Coupling-induced velocity uz. (d) ūz for all curvature ratios for near-wall swimming conditions. The orange

line in (d) is where ūz = 0 and highlights the transition from negative to positive values. Colour bars in (a) and

(c) are taken for the configuration Rch/Rs = 1.6 and ρ̄s = 0.9. The sphere and channel sizes are not to scale.

As δ̄ → 0, ūz decreases and changes sign at δ̄ = 0.02 for the largest curvature ratio

Rch/Rs = 3, which indicates that the force due to the pressure difference in the nip region
is not large enough to overcome the shear force for sliding.

Rolling and sliding phenomena are associated with the relative dominance of lubrication
(Fv) and pressure forces (Fp) acting on the sphere in the literature. Bhattacharya
et al. (2010) report that the rapid increase of shear forces compared to the increase in
pressure forces at close proximity (ρ̄ → 1) leads to decreases in the magnitudes of these
coefficients. However, the underlying mechanisms for Ḡ and Ḡ′ are not exactly the same. Ḡ

is the term that relates the axial torque with tangential motion or the tangential force with
axial rotation, while Ḡ′ relates the axial force with tangential rotation or the tangential

torque with axial motion. When the ratio of the magnitudes of the pressure and shearing

forces in coupling resistances is plotted as in figure 8(a) for Ḡ, and figure 8(b) for Ḡ′, it

is observed that the pressure-induced forces remain dominant in Ḡ (|F
p
β/Fv

β | > 1, where

the subscripts denote the direction) even as δ̄ → 0, meaning that the sphere tends to slide
along the boundary. On the other hand, for Ḡ′, dominance of the pressure contribution
lessens as δ̄ → 0. As the sphere moves closer to the boundaries, it tends to roll along the
channel boundary as dictated by the dominating shearing effects. The sphere slides as it
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Figure 8. The ratio of magnitudes of viscous and pressure forces contributing to (a) Ḡ (|F
p
β/Fv

β |) and (b) Ḡ′

(|F
p
z /Fv

z |). The subscripts on the terms indicate the direction. The orange lines indicate the transition from

sliding to rolling.

rotates around the z axis in most of the configurations, because the pressure-induced forces
remain dominant.

The distributions of pressure and shear on the sphere help in understanding the dynamics
of rolling and sliding. As the sphere rotates around the β axis (azimuthal direction), a
pressure gradient develops between the fore and aft of the sphere (shown in figure 9a).
Regions with large pressure amplitude are quite small but significant. The pressure profile
along the bottom half of the sphere is drawn in figure 9(b). Note the dramatic change from
positive to negative pressure values through the nip region between the sphere and the
cylindrical channel. Negative pressure levels may be deemed an indicator for cavitation,
but it should be noted that the zero pressure level is with respect to a faraway point
inside the channel, meaning that the absolute values must be calculated with respect to
the reference pressure. A simple calculation, provided in Appendix E, shows that there
should be no cavitation. The difference between the maximum and minimum pressures,
	p̄ = p̄H − p̄L, increases monotonically with respect to δ̄. As plotted in figure 9(c), 	p̄

due to rotation of the sphere follows a monotonic trend with δ̄ for all confinement ratios
as δ̄ → 0, and the slope in the logarithmic scale is −0.5, which is consistent with the
lubrication theory (Higdon & Muldowney 1995).

Looking at the shear stress distribution along the bottom arc (the non-dimensional shear
stress is denoted as τ̄ ), plotted in figure 9(d), a striking dip is observed right at the bottom

of the sphere. This could be explained by the flow reversal in the back and front of the

sphere, as shown by the streamlines in figure 9(a). Shear rates go through a maximum at
the edges of the nip region due to the flow reversal. The dip in τ̄ disappears completely
when the sphere is sufficiently far from the wall, at ρ̄s = 0.2. The maximum shear τ̄max at

low δ̄ (shown in figure 9e) exhibits a trend similar to that of 	p̄, albeit that the magnitude

is an order of magnitude lower for a given δ̄. Also note that the slope is smaller than the
value of −0.5 observed for the pressure gradient; it comes out as −0.833.

3.3. Experiment results

This subsection reports the velocities of the magnetically rotated spheres from our
experiments. The spheres are observed to be ‘rolling’, i.e. translating in the positive z

direction as they are rotated counter-clockwise about the β axis when Rch/Rs = 3, as
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Rolling and sliding motion of rotating spheres
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Figure 9. (a) Schematic depiction of the pressure gradient between the fore and aft of the sphere, the directions

of rolling and sliding motion, and the streamlines around the sphere for Rch/Rs = 1.6 and ρ̄s = 0.9. (b) The

pressure distribution along the arc shown with the gold dashed line in (a) for Rch/Rs = 1.6 at selected ρ̄s. The

inset shows the p̄ distribution for ρ̄s ≤ 0.9. (c) The magnitude of the pressure gradient 	p̄ with respect to the

non-dimensional proximity parameter δ̄. (d,e) are similar to (b,c) but τ̄ and τ̄max are plotted instead. The dotted

lines in (c,e) depict a line with slope −0.5 at logarithmic scale.

sketched in figure 9(a). Translation in the opposite of the rolling direction, which is
referred to as ‘sliding’, occurs as a response to counter-clockwise rotation about the β

axis when Rch/Rs = 1.6, also shown in figure 9(a).
Values of uz for the experiments with Rch/Rs = 3 are plotted against the rotation

frequency, f , in figure 10(a,b). Fluids with two different viscosities, µ = 0.5 Pa s

and µ = 1 Pa s, and spheres with diameters Ds = 1 mm and Ds = 1.9 mm, are tested.
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Figure 10. Change in uz with respect to f for the magnetically rotated spheres in various configurations. The

configurations are: (a) Ds = 1 mm, Dch = 3 mm; (b) Ds = 1.9 mm, Dch = 5.7 mm; (c) Ds = 1 mm, Dch =
1.6 mm; and (d) Ds = 1.9 mm, Dch = 3 mm. The red lines passing through uz = 0 are placed to highlight the

transition from rolling (uz > 0) to sliding (uz < 0). The error bars indicate the standard deviation values.

When Ds = 1 mm, Dch = 3 mm and µ = 1 Pa s, uz increases linearly with increasing f up
to 8 Hz (figure 10a). As the rotation frequency is increased beyond this value, the sphere
fails to rotate synchronously with the rotating magnetic field, thus the sphere velocity
decreases with increasing f up to 20 Hz. Step-out also causes large deviations in uz, as

shown by the error bars in the plots, which denote the standard deviation values. The

fluctuations in uz outside the step-out regime can be explained easily by the roughness of

the spheres, which leads to a time-varying δ that alters the resistance coefficients (Smart

et al. 1993). The step-out frequency and translation velocities are higher overall for the

Ds = 1.9 mm and Dch = 5.7 mm configuration (10b), owing to the stronger magnetization

and increased weight of the sphere that improves the traction. uz values for µ = 1 Pa s
and µ = 0.5 Pa s are more or less similar up to f = 3 Hz at both geometric configurations
(shown in the insets), but they deviate at larger f .

Values of uz for the experiment configurations with sliding (Rch/Rs = 1.6) are displayed

in figure 10(c,d). The red lines passing through uz = 0 highlight the transition from rolling

(i.e. uz > 0) to sliding (i.e. uz < 0). The transition to sliding occurs at very low f (around

0.5 Hz) for µ = 0.5 Pa s, as shown in the insets. At low frequencies, having a considerable
roughness at the surface, spheres establish contact with the wall and roll slowly due to
traction. Note that such a motion occurs in only a very small number of experiments.

Contact of the roughness elements with the channel boundary could induce a lift that
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Rolling and sliding motion of rotating spheres

would deter the traction and cause sliding, but the lift appears to be limited as the sphere

is able to maintain rolling motion, whereas at higher rotation frequencies the traction is

lost and the pressure difference leads to a sliding motion. The variations in uz with respect

to f are mostly linear at the sliding region. Note the overall increases in the magnitudes of
the maximum velocities attained before step-out in comparison to uz observed in rolling
spheres. The increase is particularly notable as the viscous effects at narrower channels are
expected to be more restraining against motion, as implied by the resistance coefficients
reported in § 3.2. The enhanced swimming speeds are due to the large 	p̄ that contributes
to the sliding of the sphere as opposed to rolling, where 	p̄ hinders the sphere motion.

The experiment results can also be compared with the velocities evaluated from the
resistance coefficients with (3.6). This simple calculation means that several types of
forces will be neglected. Unsteady forces, such as the history force and added mass forces,

are known to play an important role in the swimming of micro-organisms. Jakobsen (2001)

reports that Balonion comatum, a ciliate plankton, increases its velocity fivefold in a time
period shorter than the time needed to advance the organism more than one body length.
Such motions create unsteady disturbances in the flow field that can affect the velocity and
trajectory of the swimmers even after the motion causing the disturbance ceases. However,
in the scope of the study reported here, these unsteady forces can be neglected, as the
density of the particle used in this study is not comparable to the density of the fluid used in
the experiments (Van Aartrijk & Clercx 2010). Wang & Ardekani (2012) model a spherical
unsteady swimmer and show that the Boussinesq–Basset history term and the added mass

term can be neglected when the product of Strouhal (Sl) and Reynolds numbers is smaller
compared to unity:

F hist + F mass → 0, Sl Re =
(0.5mf + ms)2πf

6πµRs

≪ 1. (3.9a,b)

Here, ms is the mass of the swimmer and mf is the mass of the fluid displaced by
the swimmer. In this study, the highest Sl Re that occurs throughout the experiments is
0.1886, which is achieved when µ = 1 Pa s, f = 20 Hz and Rs = 0.95 mm. However, as
this rotation frequency is above the step-out frequency, above which the sphere rotation
loses its synchronization with the rotating magnetic field, the rotation rate of the sphere
does not reach 20 Hz at all. Therefore, the actual Sl Re value for this configuration is below

0.1886. Thus the effects of history and added mass can be discarded safely.
A critical omission in this approach is the roughness of the sphere, which would bring

about a time-varying δ̄ that would lead to time-varying resistance coefficients as reported
in Galvin et al. (2001). The roughness causes non-continuous traction of the sphere on
the surface of the channel, which is highly critical for rolling motion. Note δ in the
experiments cannot be determined as accurately as needed due to the limitations in our
image processing capabilities. With δ̄ being unknown, the calculation in (3.6) is carried
out for multiple δ̄.

Another consideration would be the effect of the lift force on the sphere. There exist an
extensive number of studies investigating the lift force on spheres at low Reynolds numbers
(Saffman 1965; Cox & Brenner 1968; Ho & Leal 1974; Vasseur & Cox 1976; Cox & Hsu
1977; Drew 1988; McLaughlin 1993; Cherukat & McLaughlin 1995), but these studies

either do not fit into our configuration or cannot be implemented due to their nonlinear
nature. Other models for spheres swimming in bulk or at higher Reynolds numbers point to
a strong correlation between an increase in lift force with increasing angular velocity. Lift
force is reported to affect δ, and a relevant example would be the study by Bhattacharya,

Gurung & Navardi (2013), where the authors report equilibrium radial positions (where
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H.O. Caldag, E. Demir and S. Yesilyurt

the inertial lift is balanced by the rest of the hydrodynamic forces) for the spheres inside
cylinders with respect to the curvature ratio. Nonetheless, the lift induced by the roughness
elements on the spheres appears to be more significant as the inertial lift force should be
very low considering the Reynolds number of the system.

Experiment results and calculated uz values for multiple δ̄ values are plotted in figure 11
with respect to f up to step-out frequencies for each case. Resistance coefficients for
δ̄ = 0.002 and δ̄ = 0.0006 (where ρ̄s > 0.99) are evaluated with the FEM model (only
the necessary terms), while the coefficients for δ̄ = 0.01 and δ̄ = 0.003 are interpolated

using piecewise cubic spline interpolation. The results for the Ds = 1 mm and Dch = 3 mm

configuration (figure 11a) show that δ̄ is between 0.01 and 0.002 in experiments, whereas

in Ds = 1.9 mm and Dch = 5.7 mm configuration (figure 11b) the experiment values fall

between the uz values for δ̄ = 0.02 and δ̄ = 0.01, which indicates that the gap for the
larger sphere in the larger channel is higher. Either way, the sphere appears to be very
close to the boundaries and rolls along with the help of the traction. For both of the sliding
configurations (figure 11c,d), uz in experiments are between the results for δ̄ = 0.006 and

δ̄ = 0.003. The sphere is still close enough to get traction, but 	p is so great that it results
in sliding motion. Galvin et al. (2001) state that the average δ between the sphere and
the boundary should be between the smaller and larger roughness sizes, so these fits give

an estimate for the average roughness element sizes, giving 1–5 µm for the sphere with

Ds = 1 mm, and 9.5–19 µm for the sphere with Ds = 1.9 mm, in dimensional terms. The
scale of the values with respect to sphere radii is in agreement with what Smart et al. (1993)
report. Also worth noting is that the values of uz fit to different δ̄ values at low and high f

values, meaning that δ is higher at larger f . This is consistent with the Galvin et al. (2001)

report where the authors state that a faster rotating sphere would have its large roughness

elements making contact with the boundaries more frequently, which results in a larger δ

in average. Finally, note that the estimated sizes of average roughness elements are of the

order of the gap sizes reported for cavitation in Appendix E, therefore it is possible that

cavitation might have occurred but we do not expect it to be significant compared to the
effects caused by the roughness elements.

Sliding and rolling velocities of the sphere are higher in magnitude in the higher
viscosity fluid than the ones in the lower viscosity fluid. This indicates that the sphere’s
distance to the wall, δ, is larger during sliding at the more viscous fluid, but also that δ

is smaller during rolling at the more viscous fluid. It is not clear why such a dichotomy
occurs in the results. Furthermore, the competing effects, pressure and viscous forces,
scale linearly with µ at the Stokes regime, thus there should be no difference with respect
to µ in sphere motion. For sliding, the roughness elements appear to deter the traction.
As reported by Galvin et al. (2001), when a large roughness element on the sphere makes
contact with the boundary, the sphere is temporarily lifted off from the surface. In a more
viscous fluid, it would take more time for the gravitational forces to pull the sphere down

to lower δ. That is why uz is higher in magnitude with the more viscous fluid and also why
uz data for large f from the experiments fit better to the velocity profile for the larger δ. For
rolling, the roughness elements appear to improve the traction of the sphere with increasing
viscosity, thereby decreasing δ. A second possibility would be that in the high viscosity

case, pressure may drop to a level that causes evaporation in the silicon oil, limiting the
minimum pressure to vaporization pressure, which is very small for silicon oil. On the
other hand, the high pressure in the nip region is not bounded, thus pressure forces may
not cancel and a net pressure force may lead to the levitation of the sphere. However, the
analysis in Appendix E indicates that no cavitation should occur. In our numerical analysis,
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Figure 11. Comparison of uz from experiments with the velocities obtained from the resistance coefficients

for (a) Ds = 1 mm, Dch = 3 mm; (b) Ds = 1.9 mm, Dch = 5.7 mm; (c) Ds = 1 mm, Dch = 1.6 mm; and (d)

Ds = 1.9 mm, Dch = 3 mm. Insets show uz for small f .

we could not confirm the presence of a lift force on the rotating sphere with or without the
inertial forces. Therefore, the trend appears to be related to the roughness elements on the
sphere.

4. Conclusion

Motion of rotating spherical particles in cylindrical conduits is investigated here
numerically and experimentally. For the first time, a unique experiment set-up is used

to demonstrate the rolling and sliding behaviour of magnetically rotated spheres inside
cylindrical channels filled with a viscous fluid. Elements of the resistance matrix are
calculated using a validated finite-element model with a lower computational cost than
analytical models, especially for the case when the motion of a single sphere very close
to the channel wall is considered. The resistance coefficients are reported for different
confinement ratios and a range of radial positions, with a special focus on the motion in
close proximity to the channel boundaries.

Resistance and coupling coefficients in the resistance matrix are used to study the rolling
and sliding phenomena. A near-wall rotating sphere slides along the channel for small

confinement ratios due to the very high pressure gradient in the nip region between the
channel and the sphere, whereas the shearing forces are dominant in rolling observed for
larger confinement ratios. Another interesting finding is that a flow reversal causes a dip
in the shear stress in the nip region.
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H.O. Caldag, E. Demir and S. Yesilyurt

In the experiments, radially magnetized spherical magnets are placed in viscous
fluid-filled horizontal cylindrical channels. Due to their weight, spheres are observed to
be resting on the channel wall. When the spheres are rotated in the azimuthal direction
with the help of a rotating magnetic field, sliding motion is observed along the channel
in the opposite direction to the rolling direction at high confinement ratios owing to the
pressure buildup near the nip region between the sphere and the channel. It is shown
that the pressure gradient has similar magnitudes in different confinement ratios for a
given non-dimensional gap size between the sphere and the channel. This would imply
that sliding should be possible at all confinement ratios, but the differences in resistance
coefficients at different confinement ratios prevent this from happening.

In the experiments, sliding is observed for the confinement ratio 1.6, whereas rolling

is observed for the confinement ratio 3 for both viscosity values. Sliding velocities are
larger in magnitude than the rolling velocities for a given magnetic rotation frequency as
the sphere has to overcome the pressure gradient in the rolling motion whereas the sphere
is pushed by the pressure gradient in the sliding regime. Translation velocities evaluated
from the resistance coefficients for the experiment configurations indicate that the sphere
is very close to the channel boundaries in both swimming modes. The proximity to the wall
cannot be predicted accurately due to both image processing limitations and the roughness
of the spherical surface. In small confinement ratios, rolling can take place at very low
rotation rates, but as the rotation rate increases, a transition from rolling to sliding occurs.

Surface roughness of the sphere causes a lift-off from the channel boundaries that affects
the average gap size between the channel wall and the sphere, leading to fluctuations
in the axial velocity and loss of traction that is critical for rolling, and also larger axial
velocities at more viscous fluids. Faster rotation rates of the sphere amplify the effects
of the surface roughness, increasing the gap size as evidenced by the evaluated velocities
from the resistance coefficients. Overall, the findings of this study are expected to improve
understanding on the motion of spherical particles in cylindrical channels, which is of
interest from different perspectives in fluid mechanics. For a specific example, results
could prove useful to study magnetic spherical particles as micro robots in cylindrical
conduits in microfluidic applications.
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Appendix A. Measurements on the roughness of the spheres used in the experiments

We report the roughness measurements for the spheres used in the experiments here. A

Nanofocus 3-D surface metrology system is used for the measurements. Figure 12(a)

shows a close-up image of the sphere with Ds = 1 mm, while figure 12(b) shows the
roughness surface plot for the same sphere. The surface height distribution for the same
sphere is provided in figure 12(c). According to the measurements carried out at ISO 4287

standards, the Rt parameter comes out as 8.56 µm, while Ra = 1.16 µm. A large Rt/Ra
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Figure 12. (a) Close-up image of the magnetic sphere with Ds = 1 mm used in the experiments. (b) Surface

height distribution measurement results for the sphere with Ds = 1 mm. (c) Surface profile measurement of a

part of the same sphere.

ratio indicates that the surface has significant dips or peaks along the measured profile,
and for this sphere the ratio comes out as 7.37. The sphere with Ds = 1.9 mm exhibits
lower roughness, with an Rt/Ra ratio of 3.68. A ratio of 1 would indicate that there are no
significant dips and peaks that go further beyond the average roughness on the surface.

Appendix B. Complete list of resistance coefficients

The complete list of the resistance coefficients in normalized form is provided here. Table 2

lists the coefficients for Rch/Rs = 1.6, table 3 lists the coefficients for Rch/Rs = 2, and

table 4 lists the coefficients for Rch/Rs = 3. Refer to (2.5) for the definition of ρ̄s, and to
(3.1)–(3.4) for the normalization equations.

Appendix C. Comparison of the resistive coefficients with the results from the

literature

This section contains figures comparing the resistance coefficients obtained from the FEM

model and the Bhattacharya et al. (2010) code. Figures 13 and 14 show the plots for

Rch/Rs = 1.6, and figures 15 and 16 show the comparisons for Rch/Rs = 3.
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Figure 13. Comparison of the translational and rotational resistance coefficients obtained from the FEM

simulations and the data in the literature for Rch/Rs = 1.6. (a) F̄tt
ρρ , (b) F̄tt

ββ , (c) F̄tt
zz, (d) F̄rr

ρρ , (e) F̄rr
ββ and

( f ) F̄rr
zz . The insets show the coefficients for ρ̄s ≥ 0.9.

ρ̄s F̄tt
ρρ F̄tt

ββ F̄tt
zz F̄rr

ρρ F̄rr
ββ F̄rr

zz Ḡ Ḡ′

0 7.0069 7.0066 13.2850 1.2337 1.2337 1.2424 0 0

0.1 7.0792 7.0283 13.2033 1.2350 1.2401 1.2458 1.1277 −4.1017

0.2 7.3053 7.0952 12.9674 1.2392 1.2593 1.2560 2.2768 −8.0183

0.3 7.7165 7.2131 12.6005 1.2465 1.2916 1.2740 3.4718 −11.5920

0.4 8.3762 7.3939 12.1383 1.2574 1.3377 1.3015 4.7440 −14.7077

0.5 9.4106 7.6589 11.6227 1.2728 1.3998 1.3415 6.1388 −17.2998

0.6 11.0818 8.0462 11.0986 1.2942 1.4831 1.3995 7.7287 −19.3464

0.7 14.0143 8.6339 10.6172 1.3240 1.5994 1.4866 9.6497 −20.8490

0.8 20.1114 9.6061 10.2502 1.3674 1.7786 1.6286 12.2047 −21.7907

0.9 39.0319 11.5869 10.1705 1.4368 2.1256 1.9117 16.3589 −21.9758

0.91 43.2940 11.9170 10.1983 1.4464 2.1827 1.9583 16.9750 −21.9242

0.92 48.6263 12.2943 10.2378 1.4566 2.2477 2.0113 17.6629 −21.8458

0.93 55.5157 12.7323 10.2927 1.4677 2.3229 2.0726 18.4418 −21.7378

0.94 64.7428 13.2508 10.3675 1.4798 2.4118 2.1447 19.3411 −21.5925

0.95 77.7030 13.8780 10.4696 1.4932 2.5194 2.2317 20.3948 −21.3938

0.96 97.3510 14.6690 10.6114 1.5081 2.6550 2.3406 21.6913 −21.1253

0.97 129.8689 15.7188 10.8153 1.5251 2.8348 2.4842 23.3590 −20.7277

0.98 195.3429 17.2449 11.1338 1.5449 3.0970 2.6915 25.6958 −20.1102

0.99 392.9893 19.9601 11.7327 1.5696 3.5645 3.0563 29.7064 −18.9414

Table 2. The resistance coefficients for Rch/Rs = 1.6.
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Figure 14. Comparison of the coupling resistance coefficients obtained from the FEM simulations and the

data in the literature for Rch/Rs = 1.6. (a) Ḡ and (b) Ḡ′. The insets show the coefficients for ρ̄s ≥ 0.9.

ρ̄s F̄tt
ρρ F̄tt

ββ F̄tt
zz F̄rr

ρρ F̄rr
ββ F̄rr

zz Ḡ Ḡ′

0 4.0070 4.0069 5.9487 1.1047 1.1047 1.1107 0 0

0.1 4.0432 4.0177 5.9205 1.1056 1.1084 1.1129 0.6456 −1.8004

0.2 4.1562 4.0511 5.8393 1.1085 1.1193 1.1198 1.3031 −3.5249

0.3 4.3611 4.1101 5.7141 1.1135 1.1380 1.1319 1.9862 −5.1069

0.4 4.6892 4.2012 5.5588 1.1211 1.1654 1.1507 2.7119 −6.4953

0.5 5.2017 4.3356 5.3911 1.1322 1.2035 1.1787 3.5045 −7.6570

0.6 6.0254 4.5339 5.2322 1.1480 1.2566 1.2203 4.4025 −8.5720

0.7 7.4623 4.8377 5.1107 1.1711 1.3341 1.2849 5.4748 −9.2220

0.8 10.4282 5.3460 5.0752 1.2063 1.4600 1.3944 6.8730 −9.5572

0.9 19.5414 6.3950 5.2631 1.2664 1.7191 1.6239 9.0633 −9.3387

0.91 21.5848 6.5715 5.3104 1.2750 1.7630 1.6627 9.3810 −9.2527

0.92 24.1666 6.7734 5.3676 1.2843 1.8136 1.7072 9.7327 −9.1465

0.93 27.4898 7.0088 5.4376 1.2944 1.8726 1.7591 10.1318 −9.0135

0.94 31.9057 7.2871 5.5239 1.3056 1.9428 1.8205 10.5849 −8.8420

0.95 38.1096 7.6244 5.6328 1.3181 2.0283 1.8950 11.1097 −8.6156

0.96 47.4311 8.0484 5.7742 1.3322 2.1367 1.9890 11.7397 −8.3069

0.97 63.0519 8.6134 5.9679 1.3484 2.2819 2.1141 12.5454 −7.8723

0.98 94.3160 9.4357 6.2572 1.3677 2.4956 2.2964 13.6509 −7.1993

0.99 188.4593 10.9018 6.7815 1.3921 2.8805 2.6209 15.5173 −5.9294

Table 3. The resistance coefficients for Rch/Rs = 2.
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H.O. Caldag, E. Demir and S. Yesilyurt

ρ̄s F̄tt
ρρ F̄tt

ββ F̄tt
zz F̄rr

ρρ F̄rr
ββ F̄rr

zz Ḡ Ḡ′

0 2.2324 2.2324 2.6994 1.0284 1.0284 1.0305 0 0

0.1 2.2476 2.2371 2.6917 1.0288 1.0297 1.0314 0.2542 −0.5633

0.2 2.2953 2.2516 2.6696 1.0300 1.0338 1.0343 0.5140 −1.1053

0.3 2.3815 2.2777 2.6366 1.0323 1.0409 1.0397 0.7855 −1.6069

0.4 2.5189 2.3184 2.5979 1.0360 1.0519 1.0483 1.0765 −2.0518

0.5 2.7323 2.3793 2.5610 1.0416 1.0681 1.0618 1.3971 −2.4271

0.6 3.0729 2.4709 2.5366 1.0503 1.0925 1.0832 1.7623 −2.7204

0.7 3.6618 2.6144 2.5419 1.0642 1.1316 1.1192 2.1967 −2.9120

0.8 4.8634 2.8609 2.6114 1.0882 1.2026 1.1865 2.7456 −2.9489

0.9 8.5062 3.3881 2.8546 1.1360 1.3694 1.3462 3.5235 −2.6083

0.91 9.3176 3.4780 2.9014 1.1435 1.3997 1.3750 3.6228 −2.5196

0.92 10.3329 3.5813 2.9562 1.1518 1.4349 1.4085 3.7283 −2.4107

0.93 11.6391 3.7017 3.0212 1.1610 1.4767 1.4481 3.8411 −2.2753

0.94 13.3826 3.8451 3.0996 1.1715 1.5273 1.4958 3.9633 −2.1043

0.95 15.8219 4.0198 3.1965 1.1835 1.5901 1.5549 4.0955 −1.8815

0.96 19.5239 4.2412 3.3206 1.1973 1.6713 1.6308 4.2436 −1.5850

0.97 25.6464 4.5376 3.4879 1.2138 1.7822 1.7338 4.4145 −1.1629

0.98 37.9332 4.9700 3.7341 1.2340 1.9487 1.8872 4.5985 −0.4942

0.99 75.5703 5.7439 4.1775 1.2607 2.2566 2.1669 4.8180 0.7712

Table 4. The resistance coefficients for Rch/Rs = 3.
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Figure 15. Comparison of the translational and rotational resistance coefficients obtained from the FEM

simulations and the data in the literature for Rch/Rs = 3. (a) F̄tt
ρρ , (b) F̄tt

ββ , (c) F̄tt
zz, (d) F̄rr

ρρ , (e) F̄rr
ββ and ( f ) F̄rr

zz .

The insets show the coefficients for ρ̄s ≥ 0.9.
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Figure 16. Comparison of the coupling resistance coefficients obtained from the FEM simulations and the

data in the literature for Rch/Rs = 3. (a) Ḡ and (b) Ḡ′. The insets show the coefficients for ρ̄s ≥ 0.9.

Appendix D. Convergence study on the Bhattacharya et al. (2010) model

A convergence study over lmax for the Bhattacharya et al. (2010) model is presented in

figure 17. For reference, the FEM results are given by dashed lines in the same figure. The

rotational coefficients exhibit reasonable accuracy at all lmax, while F̄tt
ρρ , Ḡ and Ḡ′ require

large lmax to converge. Note that the Bhattacharya et al. (2010) BTSM model results are

also dependent on the parameters µmax, Λmax and δλ, and a multi-parameter convergence

study is required to achieve complete convergence. The BTSM results are expected to

fully match our FEM results once multi-parameter convergence is achieved. In this study,

we limit ourselves to a set of parameters that exhibit sufficient convergence (parameters

given in § 3.1). Multi-parameter convergence of BTSM in close proximity is outside the

scope of this study, and it is noted for future work.

Appendix E. On cavitation in the flow

This appendix provides estimations on the cavitation conditions in the flow. The vapour

pressure of silicone oil at 25◦C is reported to be 5 mmHg, which converts to 666.61 Pa
at maximum for a kinematic viscosity level of 1000 cSt that corresponds to a dynamic
viscosity of 0.97 Pa s (Merck KGaA 2021). In our simulation model, we apply a pressure
point constraint at the end of the tube, with reference pressure 0. Figure 9(b) shows that

the non-dimensional pressure level goes down to −1578 at the tightest configuration tested

in the scope of this work for δ̄ < 0.006. Dimensionalizing this value requires µ and f .
The largest µ = 1 Pa s and f = 20 Hz give p = p̄µf = −31 560 Pa. Considering that our
reference is atmospheric pressure, 105 Pa, we observe a minimum absolute pressure of
68 440 Pa, much bigger than the vapour pressure for the silicone oil. However, cavitation
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Figure 17. Convergence of the resistance coefficients in the Bhattacharya et al. (2010) model for Rch/Rs = 2

and ρ̄s = 0.99. (a–c) The translational resistances; (d–f ) the rotational resistances; (g,h) the coupling

resistances. Finite-element results are shown with dashed lines.

may occur at closer distances under those conditions (µ = 1 Pa s, f = 20), at δ̄ < 0.0027,
or δ < 2.7 µm. For a smaller frequency, f = 10 Hz, for which we assume a synchronous
rotation of the sphere with the magnetic field, the gap thickness for which cavitation is

expected would be smaller, i.e. δ̄ < 0.0019, or δ < 1.9 µm.
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