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Abstract: Environmental contamination with nano‐ and microplastic (NMP) particles is an emerging global concern. The

derivation of species sensitivity distributions (SSDs) is an essential step in estimating a hazardous concentration for 5% of the

species (HC5), and this HC5 value is often used as a “safe” concentration in ecological risk assessment, that is, predicted‐no‐

effect concentration. Although properties of plastics such as particle size can affect toxic effect concentrations, such influ-

ences have not yet been quantitatively considered in estimating SSDs for NMP particles. We illustrate a log‐normal SSD using

chronic lowest‐observed‐effect concentrations (LOECs) of NMP particles from readily available toxicity data sets, considering

the influence of particle size, polymer type, and freshwater or marine test media by adopting Bayesian hierarchical modeling

techniques. Results of the hierarchical SSD modeling suggest that the SSD mean was negatively associated with particle size

and was lower in marine media than in freshwater media. The posterior medians of the HC5 estimated from the LOEC‐based

SSD varied by a factor of 10 depending on these factors (e.g., 1.8–20 μg/L for the particle size range of 0.1–5000 μm in the

marine environment). Hierarchical SSD modeling allows us to clarify the influences of important factors such as NMP

properties on effect concentrations, thereby helping to guide more relevant ecological risk assessments for NMP. Environ

Toxicol Chem 2022;00:1–7. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals

LLC on behalf of SETAC.
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INTRODUCTION

Marine and freshwater contamination with small plastic

particles (nano‐ and microplastics; NMPs) is an emerging con-

cern worldwide (Everaert et al., 2020; Koelmans et al., 2017).

Massive research efforts are underway to understand and

quantify the environmental fate, exposure, and risks and im-

pacts of NMP particles (Adam et al., 2019; Besseling et al.,

2019; de Ruijter et al., 2020; Everaert et al., 2020; Gouin et al.,

2019; Koelmans et al., 2020). Despite several risk assessments

having concluded that the ecological risks of microplastics are

currently not of global concern except at a few hotspots (Adam

et al., 2021; Everaert et al., 2020; Koelmans et al., 2020),

important issues such as consideration of relevant effect

mechanisms and the influences of the NMP properties (e.g.,

particle size and shape and polymer type) still need to be re-

solved to perform more defensible ecological risk assessments.

The application of a species sensitivity distribution (SSD) to

toxic effect concentrations obtained from laboratory toxicity

tests is a crucial step in deriving predicted‐no‐effect concen-

trations (PNECs) in ecological effect assessments of chemicals

(Posthuma et al., 2002, 2019). Although several SSDs have

been derived for NMPs (Adam et al., 2019; Besseling et al.,

2019; Everaert et al., 2020; Koelmans et al., 2020), they were

largely based on available toxicity data without quantitatively

considering the influences of NMP properties or by assuming a

relevant mode of action (“food dilution”); the latter recently

proposed approach is a promising way to align exposure and

effect assessments (Koelmans et al., 2020). In addition, pre-

vious relevant studies examined only the influences of NMP

properties for single species (see Adam et al., 2021; Yang &

Nowack, 2020) or discussed them qualitatively (Besseling et al.,

2019). Although no attempt has been made so far, SSDs that
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quantitatively and simultaneously consider the influences of

NMP properties can be derived by employing an approach of

hierarchical modeling with Bayesian parameter estimation

techniques (Hayashi & Kashiwagi, 2010; Kon Kam King et al.,

2015). Such a statistical modeling approach would be valuable

for examining how effect concentrations for NMPs, which are

expressed by, for instance, the mean and standard deviation of

a log‐normal SSD, are affected by their properties.

In the present study, we aimed to derive a log‐normal SSD

for NMPs by applying hierarchical modeling techniques (hier-

archical SSD [HSSD]) to available effect data acquired directly

from Besseling et al. (2019). By doing so, we also examined the

influence of two properties of NMPs (particle size and polymer

type) and test type of medium (i.e., marine or freshwater) on

effect concentrations of NMPs. Finally, using the derived SSD

for NMPs, we derived the hazardous concentrations for 5% of

species (HC5) considering the influences of these factors

quantitatively. Given that the number of studies reporting ef-

fects of NMPs has been rapidly growing and the quality criteria

for microplastic effect studies have been recently published (de

Ruijter et al., 2020), use of updated effect data sets is ideal to

derive a more scientifically robust SSD and rigorously examine

the influences of those factors, which is not an easy task.

However, we believe that, as an example, illustrating the HSSD

approach based on the readily available effect data sets in the

present study is valuable as a timely support of its application

to ecological risk assessments for NMPs.

MATERIALS AND METHODS

Data

To derive HSSDs considering the properties of NMP par-

ticles, we collected chronic lowest‐observed‐effect concen-

trations (LOECs) of NMP particles for aquatic organisms directly

from Besseling et al. (2019). Those authors compiled the effect

concentrations of NMP particles in freshwater and marine

media and converted the reported effect concentrations (e.g.,

median lethal concentration, median effect concentration) that

were based on the endpoints of survival, reproduction, and

growth to chronic LOEC values using the extrapolation factors

proposed by Diepens et al. (2016). The extrapolation factors for

deriving chronic LOECs ranged from 1 to 30 and were de-

termined based on the type of effect concentration and the

exposure duration for each effect data (see Besseling et al.

[2019] and Diepens et al. [2016] for more details). In addition,

information on the conditions of individual toxicity tests (e.g.,

type of medium, polymer type, particle size, and particle

shape) is summarized in the data sets available in Besseling

et al. (2019). It should be emphasized that we did not perform

any further quality evaluation given that the primary aim of the

present study is to illustrate the HSSD modeling for NMP

particles. When two or more effect concentrations were avail-

able under the same test conditions (i.e., particle size, polymer

type, and type of medium) for one species, we used their

geometric mean values for the HSSD modeling (see the section

Implications for future model development and application for

more details about considering the intraspecies variations in

effect concentrations). In the present study, effect concen-

trations obtained from tests with spherical NMP particles were

used for the HSSD derivation to minimize the influence of

particle shape and because the effect data for the other shapes

(fiber and irregular) were limited (11% of all available data in

Besseling et al. [2019]). Also, although six LOECs were cate-

gorized as brackish in Besseling et al. (2019), we categorized

five of them as tested in marine media and the LOEC for Hy-

alella azteca as tested in a freshwater medium based on the

original articles. A total of 26 LOECs that included 16 species

across eight phyla (Chordata, Arthropoda, Mollusca, Rotifera,

Echinodermata, Magnoliophyta, Chlorophyta, and Ochro-

phyta) were used for the HSSD modeling. Of the

26 LOECs, 10 and 16 were tested in freshwater and marine

media (salinity of the seawater used [mostly] ~30‰), re-

spectively; and a large portion (~90%) of them were based on

growth and/or survival endpoints.

HSSD model

In the present study, hierarchical modeling techniques were

used to derive SSDs that accounted for the influences of par-

ticle size, polymer type, and/or type of medium on the chronic

LOEC values of NMP particles. The HSSD models were ex-

pressed by the following equations:

μ σ~ ( )log LOEC Normal ,10
(1)

∑μ α β= + ( ) +X ri i j (2)

σ~ ( )r Normal 0,j Ref (3)

In these equations, LOEC is the chronic LOEC; μ and σ are the

mean and standard deviation of the normal SSD, respectively; α

is the intercept; βi is the coefficient for the ith predictor variable

Xi, possibly associated with the mean value (i.e., μ) of the

chronic LOECs (βsize, βmedia, and βpolymer); and rj is the reference‐

level random effects (reference j). Details about the predictor

variables and the reference‐level random effects are described

next. We assumed that rj followed a Gaussian distribution with

a mean of 0 and standard deviation of σRef.

As a predictor variable, the log10‐transformed plastic particle

diameter (micrometers) was used to consider the influence of

particle size on the mean of the SSD (i.e., μ). If a range of particle

sizes was only available for a single effect concentration, we

calculated the arithmetic mean value from the maximum and

minimum particle sizes. The resulting range of particle sizes was

0.04–315.0 μm. In addition, a binary dummy variable corre-

sponding to type of medium (freshwater, 0; marine, 1) was used

as a predictor variable to consider the influence of type of me-

dium (Wheeler et al., 2002). Furthermore, to consider the influ-

ence of polymer type of NMP particles, we categorized them as

(1) polystyrene and mixtures of polystyrene and poly-

ethyleneimine (n= 18 and 4, respectively; hereafter, PS) or

(2) other polymer types (polyethylene, n= 3; polyvinyl chloride,

n= 1). This is because the numbers of individual polymer types,

excluding polystyrene, were very limited and because the

2 Environmental Toxicology and Chemistry, 2022;00:1–7—K.M. Takeshita et al.
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difference in effect concentrations between polystyrene and

non‐polystyrene was detected (Yang & Nowack, 2020). We used

a binary dummy variable corresponding to the two polymer

types (polymer types other than PS, 0; PS, 1) as a predictor

variable. Because of the limited data availability, we assumed

that the standard deviation of SSD was not affected by these

properties in our HSSD modeling, but further study is required

to test this assumption. We did not explicitly model the influ-

ences of the modes of action of NMP particles in the HSSD

models; however, it can be interpreted that such influences were

indirectly modeled by considering the influences of the NMP

particle properties on effect concentrations.

Some reference (or test)–specific unmodeled factors may

also influence the effect concentrations. For example, previous

studies noted the variations in effect concentrations due to

other properties of NMP particles, including origin (pristine

particles or particles collected in the field) and removal of so-

dium azide (NaN3) stabilizer for nanoplastic particles (Besseling

et al., 2019; Yang & Nowack, 2020). Thus, we included the

reference‐level random effects (rj) in the HSSD models to

consider such influences that could not be captured by the

three predictor variables of particle size, polymer type, and

type of medium.

Parameter estimation, model selection, and
estimation of HC5 values

Parameter estimation of the hierarchical models was

conducted using a Bayesian framework. Posterior samples of

the parameters were obtained using Hamiltonian Monte

Carlo (HMC) sampling. Stan (Carpenter et al., 2017) with R

3.4.4 (R Core Team, 2018) and the package “rstan,” Ver.

2.18.2 (Stan Development Team, 2018) were used to conduct

the HMC sampling. The two parameters for standard devia-

tion (i.e., σ and σRef) were lower‐censored at zero. Two types

of uniform distributions, the default settings of Stan, were set

as the noninformative prior distributions of individual param-

eters: uniform distributions ranging from −∞ to ∞ for α and β

and uniform distributions ranging from 0 to ∞ for σ and σRef.

The R and Stan code for the HSSD model with all the predictor

variables is available in the Supporting Information. We ran

three chains in parallel with a burn‐in of 20,000 samples, which

were discarded, followed by 10,000 samples that were

thinned to retain every 10th sample, resulting in a total of

3000 samples as the posterior distributions of individual pa-

rameters. Convergence of sampling was assured with the

criterion that the Gelman‐Rubin statistic R̂ was <1.1 (Gelman

et al., 2014).

Based on all possible combinations of the three predictor

variables, we developed a total of eight candidate HSSD

models. To rank the candidate models, we calculated the

widely applicable information criterion (WAIC; Watanabe,

2010) values using the R package “loo,” Ver. 2.3.1 (Vehtari

et al., 2018). The model with a smaller WAIC value has the

higher predictive power for the dependent variable value (i.e.,

the log10‐transformed chronic LOECs) among the models

evaluated, but a small difference in WAIC values indicates

similar predictive powers between models. However, there is

no theoretical criterion for the cutoff value for the difference in

WAIC values, and cutoff values differ greatly among studies.

Thus, in the present study, we selected the model with the

minimum WAIC value as the best model and discuss results of

the model selection considering other competitive models.

Note that WAIC is not a metric reflecting the goodness of fit for

the data analyzed.

We then obtained the SSD curves using the HMC samples of

parameters of the best model and derived the posterior dis-

tribution of HC5. In the estimation of HC5, we did not in-

corporate the reference‐level random effects (rj) in the

derivation of μ because our primary interest was to estimate the

HC5 value unaffected by reference‐specific unmodeled factors.

However, we also examined the influence of the random effects

on the model predictions. Note that because the HSSD was

estimated based on LOECs in the present study, the resulting

HC5 values should be less conservative that those based on

no‐observed‐effect concentrations but valuable to assess the

likely ranges of “safe” concentrations.

RESULTS AND DISCUSSION

Overview of HSSD model selection

Among the eight candidate models, the HSSD model with

two predictors of particle size and type of medium had the

minimum WAIC value (Table 1; see also Supporting In-

formation, Figure S1, for the relationship between observed

and predicted LOECs). The plastic particle size was negatively

associated with μ (i.e., the posterior median of the parameter

βsize; Table 2) in the best model, indicating that chronic LOEC

values decreased with increasing particle size in this model.

Similarly, the fact that the posterior median of the coefficient

for type of medium (βmedia in Table 2) was negative in the

minimum WAIC HSSD model indicates that the chronic LOEC

values in marine environments were lower than those in fresh-

water environments in this HSSD model. It should be noted

that the 95% Bayesian credible intervals of the posterior dis-

tributions for particle size and type of medium included zero,

such that further examination is required to reach more

TABLE 1: Results of model selection for the eight hierarchical species
sensitivity distribution models with different combinations of the three
predictor variables (particle size, type of medium, and polymer type)

Model rank Particle size
Medium
type

Polymer
type WAIC ΔWAIC

1 + + 68.77 0.00
2 + + + 69.16 0.39
3 + 69.29 0.52
4 + 69.78 1.01
5 70.23 1.46
6 + + 70.33 1.56
7 + + 70.86 2.09
8 + 71.70 2.93

WAIC=widely applicable information criterion; ΔWAIC= difference in WAIC
value relative to the minimum WAIC value; += variable included in the hier-
archical species sensitivity distribution models.

Hierarchical SSD modeling for nano‐ and microplastics—Environmental Toxicology and Chemistry, 2022;00:1–7 3
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informative conclusions. The best model did not include pol-

ymer type, although the median coefficient (and 95% Bayesian

credible interval) for polymer type in the second ranked model

was –1.09 (–2.82 to 0.64; see Supporting Table S1). It is im-

possible to conclude which HSSD models are unsuitable for

hazard assessment of NMPs based on WAIC values, but model

selection results showed that the null model (i.e., with no pre-

dictor variables) was ranked fifth. This at least implies that the

null SSD model is not the first choice to estimate an HC5 in

terms of the predictive power, indicating the importance of

including the properties of NMP particles, such as particle size,

and type of medium as predictor variables.

Estimated HC5 values

Based on the HMC samples of individual parameters of the

minimum WAIC HSSD model, we obtained the SSD curves

(Figure 1) and the posterior distributions of HC5 values for

NMPs in freshwater and marine environments (Table 3). The

estimated HC5 values differed by a factor of 10 depending on

the type of medium; the HC5 values were 166.0 μg/L (95%

credible interval, 7.6–2344.9 μg/L) and 17.6 μg/L (1.3–147.3 μg/L)

in freshwater and marine environments, respectively, when the

plastic particle size was assumed to be 0.1 μm (i.e., the lower size

limit based on the definition of microplastics). Similarly, the SSD

curves derived from posterior medians differed by a factor of

approximately 10 between those based on NMPs with particle

sizes of 0.05 and 5000 μm (Figure 1B), that is, within the ranges of

the NMP categories. It should be noted that the HSSD modeling

results for particle sizes of 1000 and 5000 μmwere extrapolations

because of the size range of the data sets used. The posterior

median of HC5 values for NMPs with particle sizes of

0.05–5000 μm were 18.3–187.9 and 1.8–20.2 μg/L in freshwater

and marine environments, respectively, although their 95%

credible intervals largely overlapped.

Despite some caveats, our results suggest that failing to

take these factors into account when deriving SSDs may result

in HC5 estimates that depend on effect data used (e.g., the

proportion of freshwater or marine effect concentrations) and

thereby can be difficult to rigorously compare and interpret.

For example, by combining effect data obtained in freshwater

and marine media, Besseling et al. (2019) estimated HC5 values

(95% confidence intervals) to be 5.4 μg/L (0.93–31 μg/L)

and 1.7 μg/L (0.086–33 μg/L) for nano‐ and microplastics, re-

spectively. Those estimates were approximately equivalent to

our estimates of HC5 for particle sizes of 10–5000 μm in marine

environments even though our estimates were based on their

data sets; however, we removed and processed several effect

data for practical reasons (see Materials and Methods for

TABLE 2: The posterior medians (95% Bayesian credible intervals) of
individual parameters in the hierarchical species sensitivity distribution
model with the smallest widely applicable information criterion value

Parameter Median (2.5th percentile, 97.5th percentile)

α 3.20 (2.23, 4.19)
βsize –0.21 (–0.62, 0.21)
βmedia –0.95 (–2.20, 0.30)
σ 0.72 (0.48, 1.22)
σRef 0.92 (0.42, 1.62)

βsize and βmedia= coefficients for the predictor variables particle size and type of
medium (marine vs. freshwater), respectively. See the text for details about the
parameters.

FIGURE 1: (A) Species sensitivity distribution (SSD) curves for nano‐ and microplastic (NMP) particles estimated using the Hamiltonian Monte Carlo
samples of the best hierarchical SSD model in freshwater (solid black line, posterior median; dark gray area, 95% credible interval) and marine (black
dashed line, posterior median; light gray area, 95% credible interval) environments. Only for illustration purposes, SSD plots of the chronic lowest‐
observed‐effect concentrations are shown separately for freshwater (open circles) and marine (open downward triangles) media. The plastic particle
size was fixed at 0.1 μm for this illustration (the lower size limit of the definition for microplastics). (B) The SSD curves for different NMP particle sizes
(0.05, 0.1, 10, 1000, and 5000 μm) in a marine environment using the posterior medians of the parameters of the best model. Note that because the
maximum particle size was 315 μm in the data set analyzed, the SSD curves for the particle sizes of 1000 and 5000 μm were extrapolated using the
best model.

4 Environmental Toxicology and Chemistry, 2022;00:1–7—K.M. Takeshita et al.
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details). Compared to Besseling et al. (2019), the credible in-

tervals for the HC5 values estimated in the present study were

often wider (Table 3). This is likely because our HSSD had more

parameters to be estimated but generally used the same data

set. Consequently, applying our HSSD modeling to larger data

sets would be valuable to narrow the ranges of credible

intervals.

Influence of test type of medium

Our results of HSSD modeling suggest that chronic LOECs

obtained from tests with marine media were on average

lower than those with freshwater media, although we could

not strictly discriminate whether this result was caused by the

difference in the media tested and/or in the species tested.

For chemicals, on average, such systematic differences in

effect concentrations between freshwater and saltwater

species were not observed (see de Zwart, 2002; Wheeler

et al., 2002, 2014). According to a previous study that derived

SSDs for nanoplastics (Yang & Nowack, 2020), the HC5 value

estimated based on the full data set obtained in marine

media (1.3 μg/L) was lower than that obtained in freshwater

media (71 μg/L), but values were comparable after removing

data measured in the presence of NaN3. It is not possible

to identify the underlying reasons because of the limited

availability of data. Thus, more effect data should be acquired

to clarify the difference in effect concentrations of NMPs in

freshwater and marine media; particularly, comparing effect

concentrations obtained for the same species that can be

tested in both freshwater and marine media (e.g., Japanese

medaka [Oryzias latipes]) would allow the influence of test

media to be further investigated. In addition, in the analyzed

data set, the salinity of the seawater used varied among the

studies and was not reported in some of the studies.

Although the importance of water quality parameters such as

salinity for predicting effect concentrations of NMPs is still

uncertain, we recommend reporting the details of the water

quality in the test media.

Influence of plastic particle size

Evidence from the literature indicates that smaller plastic

particles have lower effect concentrations than larger particles,

which is likely related to the ease of accumulation and longer

retention time of smaller particles in digestive organs com-

pared to larger particles, as well as their larger relative surface

area (Jacob et al., 2020; Jeong et al., 2017; Li et al., 2020). In

addition, smaller‐sized nanoplastics can penetrate the cell

membranes and exhibit ecotoxicity to aquatic organisms (Shen

et al., 2019). However, the results of our HSSD modeling did

not support the positive relationship. In our HSSD modeling,

we used the log10‐transformed particle diameter to examine

the influence of particle size on the effect concentrations, and

we did not consider the relative size of NMP particles for each

test species. However, when we used the ratio of particle size

to body size of each test species, we still found a negative

association between this particle size variable and effect con-

centrations (Supporting Information, Tables S2 and S3). Some

empirical studies have not observed particle size–dependent

toxicity (e.g., Choi et al., 2020; Niu et al., 2021). Furthermore,

Yang and Nowack (2020) concluded that nanoplastics are likely

less hazardous than microplastics based on the comparison of

several published PNECs. Again, there are still issues to over-

come before we can accurately account for size‐dependent

bioavailability and toxicity in estimating HSSDs (see Koelmans

et al. [2020] for the correction method to estimating the bio-

available fraction), but our results regarding the influence of

particle size in the HSSD modeling support the conclusion by

Yang and Nowack (2020).

Influence of polymer type

The predictor variable polymer type was not included in the

best model, suggesting that the difference in chronic LOECs

between PS and other polymer types was not substantial in the

data set analyzed. Although a few previous studies support this

result (e.g., Adam et al., 2019), caution is required when inter-

preting this result. First, it may have been difficult to detect

substantial differences in effect concentrations between PS and

other polymer types because most of the polymer types avail-

able in the data set (22 of 26) were PS. Second, note that pol-

ymer type was included as a predictor variable in the second‐

best model (Table 1). Based on the parameter βpolymer in the

second‐best model, the chronic LOECs for PS were estimated

to be lower (i.e., more toxic) than those for other polymer

types (Supporting Tables S1 and S4). Given the importance of

differentiating between physical effect and chemical toxicity

(Zimmermann et al., 2020), more detailed research on differ-

ences in effect concentrations among polymer types is

warranted.

Influence of reference‐specific unmodeled
factors

We incorporated the reference‐level random effects

(parameter r) in the HSSD modeling to describe the variations

TABLE 3: The posterior medians (95% Bayesian credible intervals) of
hazardous nano‐ and microplastic concentrations for 5% of species
derived from the species sensitivity distribution curves using the
Hamiltonian Monte Carlo samples of the best modela

Medium type Particle size (μm) HC5 (μg/L)

Freshwater 0.05 187.9 (8.0–2978.3)
0.1 166.0 (7.6–2344.9)
10 62.6 (2.6–899.5)

1000 25.3 (0.3–896.0)
5000 18.3 (0.1–1031.0)

Marine 0.05 20.2 (1.4–192.9)
0.1 17.6 (1.30–147.3)
10 6.7 (0.5–64.5)

1000 2.5 (0.1–81.1)
5000 1.8 (<0.1–104.5)

aFor the HC5 estimation, we did not consider the reference‐level random effects
(see the text for more details.
HC5 = hazardous concentration for 5% of species.

Hierarchical SSD modeling for nano‐ and microplastics—Environmental Toxicology and Chemistry, 2022;00:1–7 5
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in effect concentrations due to reference‐specific unmodeled

factors. These unmodeled factors include differences in phys-

icochemical conditions (e.g., the presence or absence of NMP

particle preprocessing including removal of sodium azide sta-

bilizer (Besseling et al., 2019; Yang & Nowack, 2020) and bio-

logical conditions (e.g., developmental stage and origin of

organisms) in tests. Without incorporating random effects in the

estimation of HC5, the posterior medians of HC5 were 166.0 and

17.6 μg/L for plastic particles with a size of 0.1 μm in freshwater

and marine environments, respectively. On the other hand, when

the influence of σRef was accounted for in the estimation of HC5

(i.e., by adding values randomly generated from the Gaussian

distribution with mean 0 and standard deviation σRef in the cal-

culation of μ), the posterior medians of the HC5 largely did not

change (141.6 and 15.2 μg/L, respectively), but the 95% credible

intervals of HC5 increased approximately by a total of 2 orders

of magnitude (1.1–39,370.1 and 0.1–3980.1 μg/L in freshwater

and marine media, respectively; see Table 3 and Supporting

Information, Table S5, for more details). Although such un-

certainties have been noted (Besseling et al., 2019) or partly

addressed (Yang & Nowack, 2020) in previous studies, our study

has provided the first quantitative assessment of the magnitude

of the influence of the unmodeled factors on HC5 estimates.

As noted, the magnitude of credible intervals for HC5 values in

the HSSDs should have been affected largely by the relatively

small sample size of the analyzed data set, so our quantitative

conclusion regarding “a total of 2 orders of magnitude” should

be interpreted with caution. Nevertheless, our study still em-

phasizes the importance of addressing such factors in the SSD

derivation to reduce estimation uncertainties.

Implications for future model development and
application

To our knowledge, this is the first study that has illustrated

HSSD modeling for NMP particles and estimated the HC5

values by quantitatively and simultaneously considering the

influences of NMP properties (particle size and polymer type)

and type of medium, despite the use of limited effect data. In

contrast to the SSD estimation for single chemicals in general,

NMP particles are mixtures of particles with diverse properties.

The HSSD approach illustrated in the present study would be

particularly useful for such situations because it can directly

incorporate the influences of diverse properties into the SSD

derivation. Similar approaches can be applied to certain

chemical groups such as pesticides. In the present study,

geometric means were used for the HSSD estimation if multiple

effect concentrations were available under the same test con-

ditions. However, as was modeled in the probabilistic SSD

approach (Wigger et al., 2020), the HSSD approach can directly

use these effect concentrations in modeling by considering the

intraspecies variations in effect concentrations, though we

could not adopt such modeling here, largely because of the

limited availability of effect data used in the present study.

Given that knowledge about the ecotoxicity of NMP particles

has been rapidly growing, further work on the application of

HSSD models to larger (preferably quality‐assured) data sets

should help guide and improve the hazard assessment in

ecological risk assessments for NMPs.
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