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ABSTRACT Accurate navigation of an autonomous underwater vehicle is important for its reliable

operation. However, this task is challenging due to limitations of radio wave propagation and poor visibility

in the aquatic environment. Underwater navigation techniques based on analysing sonar images facilitated

by machine learning have shown promising results. However, previously proposed techniques are still

complicated for real-time applications. This paper investigates low complexity techniques for the motion

estimation based on the use of images obtained by a sonar looking down to the seafloor. The sonar can use

multiple beams within a field of view (FoV). Various configurations of beams are considered according

to portions of the FoV covered and two estimation approaches are investigated. In one approach, the

sonar images are directly processed by a deep learning (DL) network, whereas in the other, the images

are converted into (reduced size) vectors before applying them to a DL network. The vector approach

shows a significantly lower computation time (about 10 times faster), which makes it suitable for real-

time applications. Both the approaches show a similar estimation accuracy, about 10% of the maximum

magnitude of the motion. The vector technique has been used to estimate a simulated trajectory and compare

the estimate with the ground truth, which showed a good match. It has also been applied to estimate the

trajectory of an imaging sonar from a real data set from a ship’s hull inspection. The estimated trajectory

has successfully been used to build a mosaic by merging the sonar images from the real data set.

INDEX TERMS deep learning; motion estimation; sonar; underwater navigation

I. INTRODUCTION

The underwater environment covers a large part of the planet.

However, only a small portion has been explored [1]. Au-

tonomous Underwater Vehicles (AUVs) and Remotely Oper-

ated Vehicles reduce risks to which humans are exposed and

give significant assistance in recognition tasks, playing an

important role in underwater exploration [2], [3]. However,

AUVs need accurate navigation for reliable operation [1], [4].

Underwater navigation is the process of acquiring the

position of an underwater platform in absolute or relative

coordinates with respect to the environment [5]. Applica-

tions requiring underwater navigation include exploration of

the deep ocean [6], naval surveillance [7], aquatic habitat

surveys [8], dam, harbor and ship inspections, military ac-

tions [9], etc. However, autonomous underwater navigation

is still an open problem. The radio signals from satellites

used in systems such as Global Navigation Satellite Systems

(GNSS) are highly attenuated underwater [10]. To solve

this problem, [11] considers deploying buoys equipped with

GNSS. The buoys transmit their positions to users or devices

underwater to calculate the user position through triangula-

tion. Similarly, the work [12] proposes a method that uses

a constellation of underwater acoustic devices with known

positions to estimate the position of underwater platforms.

In [13], a method is presented for navigation, which consists

of reducing the images from a 3D multi-beam sonar to a

depth map that is compared with a pre-registered reference

map of the bottom.

Traditional methods for underwater navigation are based

on using an inertial navigation system (INS) [14], [15] and

Doppler velocity log (DVL) [16]. However, an INS is highly

affected by drift errors and need the vehicle to return to

the surface for resetting its position [12], [15]. The DVL is

highly sensitive to the external environment conditions [16],
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it is expensive and not suitable for mounting on many ve-

hicles due to its size [17]. Two techniques for navigation

based on acoustic ranging are Long Baseline (LBL) [18]

and Ultra Short Baseline (USBL) [19]. LBL systems have a

restricted area of operation and are difficult to deploy and cal-

ibrate [20]. USBL systems require an array of hydrophones

on a ship to give the position information to the underwater

vehicle and have a high energy consumption [21].

Visual odometry [22], [23] is often used as a complement

for other sensors, but visual based navigation methods alone

are inaccurate when the visibility is poor [24], [25]. Acoustic

imaging techniques are not affected by these conditions and

techniques for motion estimation using sonar images have

been developed. For instance, Forward-Looking Sonar (FLS)

images are used for underwater target tracking [26] and

motion estimation approaches with deterministic [10], [25],

[27], [28] or deep learning (DL) techniques [29].

Combinations of the above mentioned methods have been

explored in order to improve the navigation accuracy. The

work [30] proposes mixing the information from a sonar

and an inertial measurement unit (IMU). In [31], an IMU,

DVL and USBL are combined. Furthermore, in [32], even

more methods are combined, by processing data from IMU,

DVL, LBL, and pressure and attitude sensors. In [33], au-

thors propose a method that combines visual odometry with

IMU measurements. The work [1] proposes combining the

information from aerial images with the images obtained by

an FLS.

The combination of multiple methods can alleviate the

problems associated with the original methods but at the

cost of increasing the whole system complexity, making it

expensive and harder to deploy. Some systems attempt to

reduce the complexity and cost, for example [34] presents the

use of two low-cost inertial sensors and a sonar (altimeter).

In [35], FLS images and an IMU are used with an adaptive

Kalman filter to replace a DVL. In a similar way, [36] uses an

INS and replaces the DVL by extracting the dynamic model

of the vehicle using Newton-Euler equations.

The aim of this work is to develop a motion estimation

method that can be suitable for real-time applications, keep-

ing a high accuracy. Following the previous work [29], the

basis of this technique is to perform the motion estimation

using a DL network trained with sonar images generated by a

simulator. However, instead of using an FLS, the source of in-

formation is a looking down sonar whose measurements are

pre-processed in different ways. This simplifies the DL net-

work reducing the size of data that the DL network processes.

This is done in two steps: (i) a portion of the sonar field of

view (FoV) is selected and used to generate images; (ii) the

images are converted into vectors and grouped together as

part of the pre-processing.

There are two contributions in this paper:

1) The first contribution is a technique that consists in

converting sonar images into vectors by adding up the

pixels in each row. This reduces the size of the DL

networks that are used to estimate the motion.

2) The second contribution is the division of the FoV of

a simulated sonar into four quadrants. An image is

generated from each quadrant. This is combined with

the vector technique by converting the images into

vectors and grouped together as the input of the DL

network.

The proposed vector-based technique has shown good

results, maintaining the millimeter accuracy level when vali-

dated using simulated data. To evaluate the method using real

data, sonar images were processed by the vector technique

(taking into account the specific of the data available from

a real sonar). The result is presented by recovering the full

trajectory using the real data set and plotting a mosaic by

merging all the sonar images.

The rest of this paper is organized as follows. In Section II,

the DL network, a sonar simulator and the data sets to train

the network are described. In Section III, the proposed mo-

tion estimation methods with different portions of the sonar

FoV are described. Section IV presents results and discussion

for the DL network validation and trajectory estimation with

simulated and real data. Finally, conclusions are given in

Section V.

II. DL NETWORK AND SONAR SIMULATOR
This section presents the DL network for motion estimation,

the simulator which is used to generate the training data sets,

as well as the description of the data sets and the simulated

underwater environment.

A. DL NETWORK ARCHITECTURE USING SONAR

IMAGES AS THE INPUT

In the previous work [29], the performance of numerous

DL networks is evaluated, estimating the motion of an

underwater platform using sonar images acquired from a

FLS mounted on the platform. The PoseNet network [37]

was found to be the most efficient for this application after

optimizing the network parameters such as the number of

convolutional layers, the size of kernels, etc. The resulting

optimized PoseNet for motion estimation with sonar im-

ages was named PoseNet-Normx10. The architecture of the

PoseNet-Normx10 can be seen in Figure 1 (for simplicity, in

the rest of this paper, it will be called PoseNet).

The input of the network is an image obtained by con-

catenating two consecutive sonar images. The input image

passes through a series of 9 convolution layers. Parameters

of the convolutional layers can be seen in Table 1. The first

8 convolutional layers have a ReLU activation function and

batch normalization. An average pooling layer with an aver-

aging window of size 4 is connected to the last convolutional

layer. The values in the column "Output size per channel"

depend on the input image size. In Table 1, the values are

shown for the image size of 512×2000 pixels (two concate-

nated images of 512×1000 pixels), which is the size of the

first configuration described below in Section III. An output

regression layer is connected to the average layer to generate

motion estimates for the three degrees of freedom (3 DoF).
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FIGURE 1: Architecture of the DL network PoseNet as presented in [29]. The grey rectangles represent convolutional layers and
the semitransparent purple rectangles represent the ReLU function and batch normalization. The average (AVG) pooling layer
is represented with a red rectangle and the output regression layer is the purple rectangle at the very right of the diagram.

For simplicity, the scope of this work is to perform motion

estimation in the 3 DoF: forward/backward motion, sideways

motion and yaw rotation, denoted by ∆ = [∆x,∆y,∆θ],
respectively. It is considered that the platform maintains a

constant height from the seafloor when it moves and roll and

pitch rotations are too small to be considered [25], [28]. The

loss function in the regression layer is the Mean Squared

Error (MSE).

B. SONAR SIMULATOR

The sonar simulator described in [38] uses ray-tracing

to generate sonar images. The underwater vehicles and

sonar sensors are implemented in the development platform

Unity [39]. The MATLAB programming platform [40] is

used to generate images from data provided by Unity. The

simulator allows the adjustment of the image noise level,

number of pixels, pixel intensity, etc.

A simulated sonar sends multiple rays in a predefined FoV

specified by aperture and elevation angles, and the maximum

range (see Figure 2).

The rays are equally separated in the elevation and aperture

angles. The ray separation is a parameter that can be set

in the simulator and it is independent for the aperture and

elevation dimensions (see Figure 3). When any of the rays

hits an object, the sonar measures the range to the hit point

and stores this value along with the angle of incidence on

the surface of the hit object, a reflectivity value, the angle

values in the elevation and aperture dimensions and the

position and orientation of the sonar sensor in the underwater

environment. To generate a sonar image, range intensities are

’binned’ based on range values. The intensities of rays along

the elevation are summed together. Rows and columns of the

resulting image represent the range and aperture of the sonar,

respectively.

The simulator uses a hop-and-generate process, which

means that when the platform with the sonar follows a

trajectory, it stores the data to generate an image in a certain

position in the scenario, then it "hops" to another position

according to the trajectory by following a rule of first rotate

then translate. In the new position, it collects the data for the

next image and it hops again. The steps are repeated until

completing the trajectory.

The noise if needed is added to the final image. The

added noise consists of two parts [41]: (i) Gaussian noise is

added to the pixels of acoustic shadows in the images; (ii) to

represent the scattering noise, the Rayleigh noise is added to

the remaining pixels.

The simulator is used to generate large volumes of data

with ground truth information for the position and orientation

of the sonar platform. Simulated data is used to train a DL

network effectively, since such training requires large amount

of ground truth data, which would be almost impossible

to collect in real sea experiments. In this work, new sonar

FoV configurations are considered and implemented in the

simulator.

C. GENERATION OF DATA SETS FOR TRAINING THE DL

NETWORK

The use of the simulator to generate training and validation

sets represents an essential part of the method described in

this work. It provides the ground truth data that prevents pos-

sible labeling errors introduced when trying to use real data

for training. This eliminates data uncertainty of the platform

motion and the information collected from the underwater

environment to generate the sonar images. Furthermore, a fair

validation of a method and comparison of different methods

can only be possible using the simulated data accompanied

with the ground truth positions.

The training data sets are generated by concatenating pairs

of consecutive sonar images into a single image. The images

obtained from the simulator are represented in polar coor-

dinates, they are not transformed to cartesian coordinates.

The PoseNet described in subsection II-A is trained using

supervised learning. Therefore, labels with information on

the platform displacement need to be associated with the

training samples. The parameters to be estimated by the DL

network are ∆ = [∆x,∆y,∆θ], where ∆x, ∆y and ∆θ

are the displacements in x- and y-translation and z-rotation,
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TABLE 1: Parameters of PoseNet layers as presented in [29].

Layer Kernel Channels Stride Output size per channel ReLU & Batch norm

Conv 1 7×7 32 2×2 256×1000 Yes

Conv 2 5×5 64 2×2 128×500 Yes

Conv 3 3×3 128 2×2 64×250 Yes

Conv 4 3×3 256 2×2 32×125 Yes

Conv 5 3×3 512 2×2 16×63 Yes

Conv 6 3×3 512 2×2 8×32 Yes

Conv 7 3×3 512 2×2 4×16 Yes

Conv 8 3×3 1024 2×2 2×8 Yes

Conv 9 3×3 1024 2×2 1×4 No

Average 4×4 1024 1×1 1×4 No

FIGURE 2: The sonar in the simulator is characterized by the
aperture and elevation angles, and the maximum range that it
can measure.

FIGURE 3: The simulated sonar FoV is made of multiple rays
that are sent from the sonar with a defined separation in the
aperture and elevation dimensions.

respectively. The actual displacement of the platform be-

tween two consecutive positions is provided by the simulator.

However, the units for the translation in x and y axes are in

meters, while the rotation units are in degrees (◦). In order

to give the same weight to the three DoFs, the corresponding

displacements are normalized by considering the maximum

displacement possible between two platform positions. These

normalized values are used as the displacement labels, de-

noted by Γ = [Γx,Γy,Γθ]. The labels are associated with the

concatenated images and together they form the data set.

To generate a data set, the simulated underwater vehicle

moves in a random scenario. For all the experiments in this

work, the maximum displacement between two positions

(corresponding to two consecutive sonar images, and assum-

ing the maximum platform velocity 0.42 m/s) is ± 20 mm

for translation in one direction and the maximum rotation is

± 0.45◦ [29]. The maximum translation value is selected ac-

cording to the specification of the Bluefin Robotics Hovering

Autonomous Underwater Vehicle [42] and an approximation

to the observed translation in the real data set described in

subsection IV-E. Each scenario is generated as described

in [29]. A scenario consists of a flat surface representing the

seabed, covered with randomly placed rocks. The size of each

rock is randomly defined and it is not bigger than 0.45 m

for each of its three dimensions (length, width, and height).

An example of a simulated scenario is shown in Figure 4.

Given that the trajectory is also randomly generated, it is un-

likely that the platform passes through the same position and

orientation more than once. However, to avoid any possible

similarities, several different scenarios are used. Each data

set is generated using 17 scenarios. The data sets are shuffled

and split into 95% and 5% for the training and validation,

respectively.

III. PROCESSING WHOLE SONAR IMAGES AND
IMAGES COMPRESSED INTO VECTORS
A sonar which looks down with a FoV of 100◦×100◦ is sim-

ulated. The height (distance from the sonar to the seafloor) is

2.5 m as shown in Figure 5. It can be seen that the platform

forward direction corresponds to the x-axis, the sideways

direction to the y-axis and the upward direction to the z-axis,

which is the rotation axis associated with θ. This coordinate

system will be used in the rest of this paper to analyze and

validate the proposed techniques.

Two techniques for motion estimation are considered:

1) Processing the whole image (intensity over the

aperture-range plane): Images are generated by com-
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FIGURE 4: Example of the simulated underwater environ-
ment with a moving vehicle.

pressing the FoV in elevation. This is done by adding

up all reflections from objects which are at the same

aperture angle and range from the sonar. This process

eliminates the elevation dimension.

2) Processing a compressed image, i.e., a vector (in-

tensity over the range): In addition to the FoV com-

pression in the elevation dimension, the image is also

compressed in the aperture dimension. The result of

this compression is a vector with the summation of all

the reflections from objects that are located at the same

distance from the sonar. The aim of this technique is to

reduce the amount of data representing the sonar image

and thus reduce the complexity and computing times of

the motion estimation system.

A. DL NETWORK ARCHITECTURE USING VECTORS AS

THE INPUT

When using the vector technique, every sonar image is con-

verted into a vector, therefore, the input of the DL network

is the concatenation of two vectors (one vector obtained

from each image), rather than two images. The kernel and

stride of each convolutional layer is now changed to avoid

a reduction of the number of columns, where each column

corresponds to a vector. The summary of the DL network is

shown in Table 2. This modified version of the PoseNet is

called PoseNetVec.

The next subsections describe the use of different portions

of the sonar FoV to find a configuration that gives the best

estimates of the platform motion.

B. COMPRESSION OF THE FOV INTO A SINGLE

VECTOR

The 100◦×100◦ sonar FoV described above is generated by

multiple rays that are sent by the simulated transducer. The

separation between rays for the transducer in the simulation

is 0.1◦ in each direction. The value of 0.1◦ was observed to

give a moderate computation time with a good resolution.

To produce the images, the range dimension is dis-

cretized into 512 values while the aperture dimension is

discretized into 1000 values. The size of the resulting image

is 512×1000 pixels (range by aperture). An example of a

generated image can be seen in Figure 6. The pixels in the

first row of the image correspond to the range of 2 m from

the sonar and the pixels in the last row correspond to the

range 6.1 m. These values are selected because out of these

boundaries there is no information collected by the sonar. For

the vector technique, a vector of size 512 is computed by

adding up all the pixel values on each row of the image. This

produces a vector of 512 range levels, where the first and last

levels correspond to ranges (distance from the sonar) of 2 m

and 6.1 m, respectively.

C. COMPRESSION OF A HALF OF THE FOV INTO A

VECTOR

Given that the sonar is looking down and that images are

generated by adding up the data in the elevation angle, the

resulting images have objects from both sides of the platform,

by overlapping the objects that are at the same distance and

aperture angle. An example of overlapping can be seen in the

third image in Figure 7. If the rays of only one single side of

the platform are used to generate the image, the overlapping

can be avoided. For example, the first and second images in

Figure 7 are generated with the rays of the right and left side

of the platform, respectively. If both images are combined,

the result is the third image.

The overlapping causes the following: when the platform

rotates, half of the objects in the images are displaced to

one side of the image and the other half of the objects are

displaced to the other side of the image, which introduces an

ambiguity in the estimation process.

To avoid the overlapping, images are generated using the

rays of only one side of the platform. Figure 8 highlights with

a blue line the corresponding portion of the FoV. The size of

the generated images and vectors are the same as in the case

of using the whole FoV.

D. COMPRESSION OF FOUR FOV QUADRANTS INTO

FOUR VECTORS

Rather than separating the sonar FoV into two segments, a

new configuration that splits the whole FoV into four quad-

rants is now used. Figure 9 shows the quadrant segmentation.

The images are still generated by adding up the informa-

tion in the elevation angle corresponding to each quadrant.

An example of an image generated using the quadrant seg-

mentation can be seen in Figure 10, which corresponds to

Q4.

With the quadrant configuration, two variants are consid-

ered to train the DL network:

• Single quadrant: The PoseNet is trained using images

from quadrant Q4.

• Four quadrants: The PoseNet is trained using images

from all 4 quadrants. This variant is equivalent to 4

sonars pointing to different directions. For motion es-

timation, 8 images (2 from each quadrant) are concate-

nated into a single image which is the input to the DL

network. An image example with the concatenation of

8 images and its order is shown in Figure 11. For the
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FIGURE 5: Sonar with a looking down FoV of 100◦

×100◦. The sonar is mounted on a platform whose forward direction
corresponds to the negative direction of the x-axis.

TABLE 2: Parameters of PoseNetVec layers for the compressed images.

Layer Kernel Channels Stride Output size per channel ReLU & Batch norm

Conv 1 7×2 32 2×1 256×2 Yes

Conv 2 5×2 64 2×1 128×2 Yes

Conv 3 3×2 128 2×1 64×2 Yes

Conv 4 3×2 256 2×1 32×2 Yes

Conv 5 3×2 512 2×1 16×2 Yes

Conv 6 3×2 512 2×1 8×2 Yes

Conv 7 3×2 512 2×1 4×2 Yes

Conv 8 3×2 1024 2×1 2×2 Yes

Conv 9 3×2 1024 2×1 1×2 No

Average 4×4 1024 1×1 1×2 No

FIGURE 6: Image generated using the FoV of 100◦

×100◦ and a ray separation of 0.1◦. This image is compressed in elevation.

vector technique, the DL network receives as input, 8

concatenated vectors (2 from each quadrant), which is

equivalent to a 512×8 matrix.

E. COMPRESSION OF CIRCULAR SEGMENTS OF THE

FOV QUADRANTS INTO VECTORS

The four segments defined in subsection III-D are now cut to

a circular shape to form a cone as shown in Figure 12. The

rays within the cone are used to generate the sonar images.

An example of an image obtained with the circular segment

(Q4) is shown in Figure 13. The image is very similar to

the one for a quadrant in Figure 10, with the difference that

there is slightly less data, as seen in the rounded edges of

the illuminated area. Similar to the quadrant configuration,

each circular segment produces an image that is concatenated

with the consecutive image obtained for the same circular

segment, to transfer a total of 8 concatenated images into one.
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FIGURE 7: Images generated using elevation angles (from left to right) [-50, 0], [0, 50] and [-50, 50]. In the third image, which is
the sum of the first two images, it can be seen the overlapping of objects from the first two images.

FIGURE 8: The FoV for one side of the underwater platform.
The size of the FoV is 100◦

×50◦.

FIGURE 9: Segmentation of the FoV into 4 quadrants. Each
quadrant points to a different direction and has a portion of
the FoV of 50◦

×50◦.

FIGURE 10: Image generated using the information from
segment Q4.

IV. RESULTS AND DISCUSSION

In this section, results of validating the use of the sonar FoV

portions described above are presented.

A. COMPARISON OF THE FOV PORTIONS USING

SIMULATED DATA

To evaluate the use of different FoV portions detailed in

section III, for each techniques, a data set with 1000 pairs

of images/vectors is generated with their motion labels in the

three DoFs. The data set is split into 950 training samples and

50 validation samples. The following notation will be used:

• Whole FoV: Images and vectors are generated using all

the rays in the FoV.

• Single side: Images and vectors are generated using

the rays of one side of the platform. The selected side

corresponds to the segment of the FoV from -50◦ to 50◦

in aperture and from -50◦ to 0◦ in elevation as shown in

Figure 8.

• Single quadrant: The rays from Q1 quadrant are used

to generate the images and vectors of the data set.

• Four quadrants: All four quadrants are used to gener-

ate the images and vectors.

• Circular segments: Circular segments from all four

quadrants are used to generate the images and vectors.

The root mean square error (RMSE) for the motion estima-

tion is obtained individually for each of the 3 DoF. The DL

networks are trained using noiseless images. However, the

validation is based either on noiseless images or on images

with a high-level noise added to the pixels. Following the

considerations specified in subsection II-B, the noise is added

with parameters: (i) the Gaussian distribution has a mean and

standard deviation of 13.7% and 3.1% of the maximum pixel

value, respectively; (ii) the Rayleigh distribution has a scale

parameter of 13.7% of the maximum pixel value.

Every time a PoseNet and a PoseNetVec are trained in this

work, the following setup is considered. The learning rate at

the start of the training is set to 10−4 and it is reduced to 0.5×
10−4 at epoch 12. At epoch 16, it is reduced to 10−5. The

training is stopped at epoch 24 or when the validation loss

converges. The Adam optimization algorithm is used [43].

As in [29], the MSE loss function is given by

VOLUME xx, 2021 7
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FIGURE 11: Concatenation of 8 images (2 consecutive images from each quadrant) as input to the DL network.

FIGURE 12: Representation of the circular segment.

FIGURE 13: Image generated using the information from a
single circular segment.

L =
1

2SR

S∑

k=1

‖Γ̂k − Γk‖
2, (1)

where Γ̂k =
[
Γ̂xk

, Γ̂yk
, Γ̂θk

]
are estimates obtained by the

DL network for each DoF, k is the index that refers to the

training samples in the mini-batch, S is the mini-batch size

and R is the number of parameters to estimate. For this work,

S and R are set to 4 and 3, respectively.

Figures 14a, 14b, and 14c show the RMSE of the estimates

for the displacement in x and y directions and rotation around

z-axis, respectively. The RMSE are shown in pairs, the blue

bars correspond to validation with noiseless images and the

orange bars correspond to validation with the high-level noise

images. Also, Table 3 presents the computation time required

to obtain one motion estimate. The time values in the table are

averaged over 50 measurements for each of the DL networks.

(a)

(b)

(c)

FIGURE 14: (a) Validation RMSE for the motion parameters
∆x, ∆y and ∆θ, shown in (a), (b) and (c), respectively.

The comparison is done for a standard PC with i5-6500 CPU

@3.0GHz processor, 8.0 GB of RAM and without a GPU.

From Figure 14 and the computation times in Table 3

and focusing on validation with noiseless images only, the

following observations are made:

• For any FoV configuration, the image technique has

a better estimation accuracy than the corresponding

vector technique. However, the difference is not high,

and, for the best estimation techniques using data from
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TABLE 3: Average computation time required by the DL
networks for one measurement.

Configuration DL network time (ms)

Whole FoV (Image) 160
Whole FoV (Vector) 16
Single side (Image) 139
Single side (Vector) 17

Single quadrant (Image) 65
Single quadrant (Vector) 13
Four quadrants (Image) 309
Four quadrants (Vector) 27

Circular segments (Image) 307
Circular segments (Vector) 29

the four quadrants, the difference is negligible.

• In general, the motion estimation in x and y directions

show a similar accuracy. This can be due to the same

size of the FoV in the aperture and elevation dimensions.

• Splitting the whole FoV into smaller portions results in

improvement of the estimation accuracy.

• The vector techniques require an order of magnitude

smaller computation time to produce the measurement

than the corresponding image technique.

• The lowest estimation error is obtained with the config-

urations of 4 quadrants (for both the rectangular or cir-

cular segmentation). The image and vector techniques

show an RMSE for translation in either x or y directions

slightly above 2 mm and for rotation between 0.042◦

and 0.051◦.

• Using the FoV for one side of the platform is preferable

over both sides. It helps to avoid the ambiguity men-

tioned in subsection III-C.

• The single quadrant configuration further improves the

accuracy in estimation of the translations, but not the

rotation.

• The four quadrant configuration shows better estimation

accuracy compared to the single quadrant and single

side configurations, at the cost of a higher computation

time.

• The circular segmentation provides results similar to the

rectangular segmentation, despite some loss of infor-

mation due to removing data from the corners of the

quadrants.

• The results obtained with quadrant configurations are

a hint to future work to develop a system for motion

estimation using signals obtained from four single hy-

drophones facing down.

When validating with noisy images, the motion estima-

tion accuracy presents higher error than the validation with

noiseless images. This is expected, given that the networks

are trained using noiseless data for both types of validation.

However, the obtained RMSE that corresponds to each FoV

configuration shows the same trend as in the case of valida-

tion with noiseless data described in the points above.

FIGURE 15: Image generated using the information from only
one circular segment at a distance of 10 m from the seabed.

B. RESULTS FOR AN INCREASED DISTANCE OF THE

SONAR PLATFORM FROM THE SEAFLOOR

To investigate how the distance can affect the accuracy of

the motion estimation, a new data set of 1000 samples is

generated using the circular segments in the four quadrants.

The difference is that the distance of the sonar to the seafloor

is now 10 m rather than 2.5 m. An example of an image

obtained with this distance from the seafloor is shown in

Figure 15. The pixels in the first row of the image correspond

to the range of 9 m from the sonar and the pixels in the last

row correspond to the range 24.5 m.

Additionally, to reduce the estimation error for validation

with noisy images, the image and vector techniques were

trained with a data set containing noisy images. For com-

parison, the training with noisy images was done using the

data sets for the cases of 2.5 m and 10 m heights. The noisy

images have a high-level noise with the same parameters as

described in subsection IV-A.

Figures 16a, 16b, and 16c show validation results for

training with noiseless and noisy data at two different heights

from the seafloor. It can be seen that the RMSE is signifi-

cantly reduced when training with high-level noise images

compared to training with noiseless data and validating with

noisy data. The obtained RMSE is comparable with the case

of training and validating with noiseless data for the image

and vector techniques. The results give a better idea of what

is the approximate error when using real data, given that real

images are noisy. Regarding the results of having the sonar at

2.5 m and 10 m from the seafloor, the distance does not affect

significantly the estimation accuracy.

C. DEPENDENCE OF THE RMSE ON THE RANGE

QUANTIZATION

The number of range levels (quantization levels) in the vec-

tors can be tuned to improve the estimation accuracy. For this,

data sets with different number of range levels are generated.

When generating the images, the intensities collected by the

sonar are spread along range dimension of the image. The

chosen number of range levels are a power of 2 (16, 32, ...,

512, and 1024). For validating each number of range levels,

a data set of 1000 samples is generated and used to train a

VOLUME xx, 2021 9
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(a)

(b)

(c)

FIGURE 16: (a) Validation RMSE when training with noiseless
images and high-level noise images and validating with noisy
images for the motion parameters ∆x, ∆y and ∆θ, shown in
(a), (b) and (c), respectively.

PoseNetVec. The data sets are generated for the sonar at a

height of 10 m and the circular segment configuration.

Figure 17 presents the RMSE obtained using different

number of range levels to generate the images. The curves

show that for the vector technique, the best cases are with

128 and 256 range levels, where the error is minimized. The

increase of the RMSE while decreasing the number of levels

can be due to the poor range resolution when having a small

number of levels. This is equivalent to adding some noise

to the data. The RMSE increase with an increased number

of levels can be caused by the large number of internal

parameters to be trained by the DL network.

In the work [29], for the case of noiseless images, an

RMSE of around 1 mm is achieved in the direction the FLS

is looking, but in the sideways direction the RMSE is always

higher than 2.3 mm. The vector technique proposed here

with 128 and 256 range levels provides the RMSE for the

translation motion (x and y) between 0.8 mm and 1.2 mm,

which is an improvement in the estimation accuracy.

FIGURE 17: RMSE obtained for each motion estimation
parameter against the number of range levels for the vector
technique with the circular segmentation. The platform’s dis-
tance from the seabed is 10 m. The training and validation are
using noiseless images.

For the rotation, the RMSE in [29] in the best case is

0.047◦. This is higher than the RMSE obtained by the vec-

tor technique, which is around 0.025◦, which is again an

improvement in the accuracy. These results show that the

vector technique can provide a high estimation accuracy.

The great advantage of the vector technique is reduction

in the complexity of the DL network. This allows a high

processing speed and makes the technique suitable for real-

time applications.

D. TRAJECTORY RECONSTRUCTION USING

SIMULATED DATA

As described in [29], a trained DL network can be used to

estimate the displacements between each pair of consecutive

images. With these estimates, the platform trajectory can be

recovered. The points of the trajectory are represented as xi

and yi and the orientation of the platform is represented as

θi, where i is an index that refers to the positions where the

images were obtained.

The initial position and orientation x1, y1 and θ1 are

set to zero and the other points are calculated using the

equations [44]:

θi+1 = θi + ∆̂θi ,

xi+1 = xi + ∆̂yi
sin(θi + ∆̂θi) + ∆̂xi

cos(θi + ∆̂θi),

yi+1 = yi + ∆̂yi
cos(θi + ∆̂θi)− ∆̂xi

sin(θi + ∆̂θi),

(2)

where ∆̂xi
, ∆̂yi

and ∆̂θi are the x- and y-translation and

z-rotation estimates for each pair of consecutive images,

respectively.

Two examples of trajectories generated with simulated
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FIGURE 18: First simulated trajectory (256 range levels):
Ground truth trajectory (green line), ground truth orientation
(cyan arrows), estimated trajectory (red line), estimated plat-
form orientation (blue arrows) using 50 pairs of vectors of
simulated data.
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FIGURE 19: Second simulated trajectory (512 range levels):
Ground truth trajectory (green line), ground truth orientation
(cyan arrows), estimated trajectory (red line), estimated plat-
form orientation (blue arrows) using 54 pairs of vectors of
simulated data.

data are shown in Figures 18 and 19. Both trajectories have

most of the motion in sideways direction with no rotation.

The motion estimates are done using the vector technique.

The platform height from the seafloor is 10 m as in the

cases described in the previous subsection with two numbers

of range levels. The first trajectory is made of 51 platform

positions (50 pairs of vectors for estimation) and the number

of range levels is 256. The second trajectory is made of 55

positions using vectors of 512 range levels.

It can be seen that both estimated trajectories follow the

ground truth trajectory with most of the motion in sideways

direction. The recovered trajectory for the case of 256 range

levels seems smoother when the platform moves backwards

almost at the end of the trajectory, whilst the recovered trajec-

tory presents abrupt changes in the same part of the trajectory.

The better performance using 256 levels was expected, given

that the motion estimation with 256 levels is slightly more

accurate than the case of 512 as shown in Figure 17.

It can be seen that, even with this simple trajectory re-

covery procedure described above, the estimated trajectory

FIGURE 20: Each of two sonar images is split into two parts,
representing two quadrants. The quadrants are re-ordered as
shown and are converted into vectors to be used as the input
of the DL network.

is close to the ground truth. More sophisticated recovery

techniques based on regularized spline interpolation and/or

Kalman filtering could improve the trajectory estimation.

This will be a subject of our future research.

E. TRAJECTORY RECONSTRUCTION AND MOSAIC

BUILDING USING REAL DATA

The accuracy of the vector technique is evaluated using real

data. Therefore a data set obtained by a real sonar sensor

is used. The selected data set has a total of 4464 images.

It shows several passes along a ship’s hull during its in-

spection. From the full data set, 520 images are extracted.

These images correspond to one single pass from end to end

of the ship. The sonar employed for this inspection is the

DIDSON 300 [45] mounted on a Bluefin Robotics Hovering

Autonomous Underwater Vehicle [42]. The images from the

sonar have a size of 512×96 pixels, and intensity values in

the range of 0 to 255. The FoV of this sonar in aperture

and elevation angles is 29◦×14◦, respectively. The sonar

generates 21 images per second (21 fps).

A data set generated from a simulated environment that

resembles a ship’s hull is used for training [29]. The data

set contains 76000 training samples. The images have the

same aperture and elevation angles as images obtained by

the DIDSON sonar. The DIDSON sonar is an FLS, therefore

the vertical axis on the image corresponds to the forward

motion of the sonar and the horizontal axis corresponds to

the sideways motion. To train the network, noise is added to

the images given that the real images are noisy. The noise

parameters were adjusted to give the best estimates with

the real data set and they are as follows: For the Gaussian

distribution the mean and standard deviation are set to 4%
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FIGURE 21: Reconstructed platform trajectory (red line), platform orientation (blue arrows) and mosaic built using 520 sonar
images of the ship’s hull real data. From the mosaic, multiple parts of the ship’s hull are clearly recognizable, like the sacrificial
anodes, the propeller and the keel.

and 2% of the maximum pixel value, respectively. And for

the Rayleigh distribution, the scale parameter is set to 4% of

the maximum pixel value.

The images obtained from the DIDSON sonar cannot be

taken from 4 quadrants and the aperture and elevation angles

are different from the data sets used in previous subsections.

Therefore, the images are modified by separating them in

azimuth in two halves, where each half represents a quad-

rant. Using pairs of consecutive images, the input of the

PoseNetVec is the concatenation of 4 vectors of size 512. The

first 2 vectors correspond to the left columns of the first and

second images and the other 2 vectors correspond to the right

columns of the images as shown in Figure 20.

In Figure 21, the full estimated trajectory and orientation

of the platform are displayed with red line and blue arrows,

respectively. According to the reconstructed trajectory, a mo-

saic is built by merging the 520 images in the data set. When

the images are combined, the pixel intensities are averaged in

the overlapping images. It can be seen that during the ship’s

hull inspection, the sonar mostly moves in the sideways di-

rection with small motions in the forward/backward direction

and rotation. This can be seen in the estimated trajectory,

while the small rotation can be seen pointing forward most

of the time.

The estimated trajectory and mosaic look accurate com-

pared to similar pictures in the other works [25], [28]. Fur-

thermore, the time to obtain the motion estimates using the

computer described in subsection IV-A was about 12 ms per

estimate. This computing time is considerably smaller than

for the methods in [28], [29], whose computing times for

each pair of images are 25.69 s and 56.9 ms, respectively.

Moreover, the computing time is much smaller than the time

that it takes for the DIDSON sonar to generate an image

with a frame rate of 21 fps (an image every 48.62 ms).

This shows that the vector technique is suitable for accurate

motion estimation in real-time.

V. CONCLUSIONS

Two main contributions for underwater motion estimation are

presented in this paper. The first contribution is a technique

that consists in converting sonar images into vectors by

adding up the pixels in each row. The use of vectors reduces

the size of the DL networks that are used to estimate the mo-

tion. The second contribution is the division of the beams in
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the FoV of a simulated sonar into four groups (quadrants). An

image is generated from each group. This is combined with

the vector technique by converting the images into vectors

and grouped together as the input of the DL network. The

network is trained using simulated data. The proposed vector

technique using the four images shows better accuracy and

faster computation times compared to other similar methods

from the literature.

Validation of the vector technique with simulated and real

data is presented. For the case of real data, sonar images from

an FLS are used by adapting the quadrants with the vector

technique to the features of the images. The application on

real data shows good results and the potential to perform low-

cost and fast motion estimation in real time.

These results suggest that it might be possible to design a

motion estimation system with a few hydrophones possessing

a low space directivity. In our future work, we are going

to investigate such designs and compare them with known

techniques.
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