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Local and Global Existence for Non-local Multi-Species1

Advection-Diffusion Models ∗2

Valeria Giunta† , Thomas Hillen ‡ , Mark A. Lewis § , and Jonathan R. Potts†3

4

Abstract. Non-local advection is a key process in a range of biological systems, from cells within individuals to5
the movement of whole organisms. Consequently, in recent years, there has been increasing attention6
on modelling non-local advection mathematically. These often take the form of partial differential7
equations, with integral terms modelling the non-locality. One common formalism is the aggregation-8
diffusion equation, a class of advection diffusion models with non-local advection. This was originally9
used to model a single population, but has recently been extended to the multi-species case to model10
the way organisms may alter their movement in the presence of coexistent species. Here we prove11
existence theorems for a class of non-local multi-species advection-diffusion models, with an arbitrary12
number of co-existent species. We prove global existence for models in n = 1 spatial dimension and13
local existence for n > 1. We describe an efficient spectral method for numerically solving these14
models and provide example simulation output. Overall, this helps provide a solid mathematical15
foundation for studying the effect of inter-species interactions on movement and space use.16

Key words. Advection-diffusion, Aggregation-diffusion, Existence theorems, Mathematical ecology, Non-local17
advection, Taxis.18

AMS subject classifications. 35A01, 35B09, 35B65, 35R09, 92-10, 92D4019

1. Introduction. It is essential for individuals, whether cells or animals, to gain infor-20

mation about their local environment [62, 56]. Not only do individuals sense environmental21

features, such as food, temperature, pH-level, and so on, they also are able to detect other22

individuals in a local spatial neighborhood, such as predators, prey, or conspecifics [19, 47].23

This feature is not only restricted to higher level species, but is also found in cells [31]. For24

example human immune cells gather information about their tissue environment and they are25

able to distinguish friend from foe [58, 26]. The process of gaining information about presence26

or absence of other species in the environment is intrinsically non-local [16, 41]. Mathemat-27

ically, the non-local sensing of neighboring individuals leads to non-local advection terms in28

the corresponding continuum models, and that is the topic of this paper.29

Non-local advection is a mechanism underlying a wide range of biological systems. In30

ecology, animals sense their surroundings and make decisions to avoid predators, find prey,31
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2 V. GIUNTA, T. HILLEN, M. A. LEWIS, J. R. POTTS

and/or aggregate in swarms, flocks or herds [16, 21, 27, 38, 44]. This non-local sensing can32

occur on several scales, from near to far [7, 4, 43]. These scales affect the overall spatial33

arrangement of populations [51, 14, 2] and can lead to species aggregation, segregation, and34

also more complex mixing patterns [27, 25, 54]. Whereas animals can sense and interact35

over distances using sight, smell and hearing, in cell biology, cells interact non-locally by36

extending long thin protrusions, probing the environment [2, 49, 48]. Chemotaxis processes,37

leading to the following of chemical trails by organisms, can also be formulated as non-local38

advective processes [33, 59], and have been observed in taxa from single-celled organisms to39

insect populations to large vertebrate animals [34].40

From a mathematical modelling perspective, non-locality in continuum models often arises41

as an integral term inside a derivative. The corresponding models become intrinsically non-42

local, and classical theories, developed for local models, no longer apply [14, 17]. Non-local43

terms in continuum models offer new challenges and new opportunitites [6, 9, 53, 44, 14]. For44

example, in single-species models of aggregation, the structure of the non-local advective term45

is fundamental for avoiding blow-up and ensuring global existence of solutions [33, 23, 8, 17].46

In models of home ranges [11] and territory formation [52], non-local advection is necessary47

for ensuring well-posedness. In the context of modelling swarm dynamics, [44] showed that48

non-local advection is vital for the formation of cohesive swarms.49

Consequently, non-local advection has become a popular feature of biological models [14].50

One common class of such models is the aggregation-diffusion equation [61, 22]. This models51

a single population, u(x, t), that undergoes diffusion and non-local self-attractive advection,52

leading to the following general form [17]53

(1.1)
∂u

∂t
= ∆um −∇ · [u∇(K ∗ u)],54

where K ∗ u is the convolution of u with a spatial averaging kernel, K, and m is a positive55

integer. As such, the structure of K models the non-local interactions of the population56

with itself. Equation (1.1) can lead to the spontaneous formation of non-uniform patterns,57

consisting of single or multiple stationary aggregations of various shapes and sizes, under58

certain conditions [35, 20]. However, there is numerical evidence that the multiple-aggregation59

case is often, and possibly always, metastable [61, 12, 17].60

One can readily generalise the aggregation-diffusion equation to the multi-species situation61

as follows:62

∂ui
∂t

= Di∆umi −∇ ·



ui∇
N∑

j=1

hijK ∗ uj



 ,(1.2)63

64

where u1(x, t), . . . , uN (x, t) are locational densities of N ≥ 1 populations at time t, Di ∈ R>065

is the diffusion constant of population i, and hij ∈ R are constants denoting the attractive66

(if hij > 0) or repulsive (if hij < 0) tendencies of population i to population j. Indeed, the67

N = 2 case has received some attention [28, 18], with equations of the same or similar form to68

Equation (1.2) being applied to predator-prey dynamics [29], animal territoriality [52], cell-69

sorting [49] as well as human gangs [3]. For N = 2, it is possible to observe both aggregation70

and segregation patterns emerge, depending on the relative values of the hij constants [28, 54].71

This manuscript is for review purposes only.



MULTISPECIES NON-LOCAL ADVECTION MODELS 3

An example of Equation (1.2) where N is arbitrary was proposed by [54] as a model of72

animal ecosystems. The authors assumed that each population can detect the population73

density of other populations over a local spatial neighbourhood. The mechanism behind this74

detection could have various forms, three of which are explained in [54]: direct observations75

of individuals at a distance, indirect communication via marking the environment (e.g. using76

urine or faeces), and memory of past interactions with other populations. [54] showed that77

all three of these biological mechanisms lead to the same multi-species aggregation-diffusion78

model in the appropriate adiabatic limit. The authors analysed pattern formation properties79

of Equation (1.2) where the diffusion term is linear, i.e. m = 1, in one spatial dimension80

with periodic boundary conditions. They further assumed that K(x) is a top-hat kernel, i.e.81

K(x) = 1/(2δ) for x ∈ (−δ, δ) and K(x) = 0 otherwise, and also that j ̸= i (i.e. no self-82

attraction or repulsion). With these assumptions in place, the authors showed that, whilst83

the pattern formation properties when N = 2 can be fully categorised, the N = 3 case is much84

richer. Indeed, numerical analysis for N = 3 revealed stationary patterns, regular oscillations,85

period-doubling bifurcations, and irregular spatio-temporal patterns suggestive of chaos [54].86

These insights highlighted the importance of understanding non-linear, non-local feedbacks87

between the locations of animal populations. In the ecological literature, the field of Species88

Distribution Modelling (SDM) is dominated by efforts to find correlations between animal89

locations and environmental features [1, 64]. These features are then used to predict species90

distributions in either new locations or future environmental conditions [5, 42] and hence91

inform conservation actions [63]. However, despite considerable research effort into SDMs,92

a recent meta-analysis of 33 different SDM approaches revealed that none of the models93

studied were good at making predictions in a range of novel situations [46]. Based on the94

results of [54], we conjecture that this may be, in part, due to a failure of these models to95

account for non-linear feedbacks in movement mechanisms. We propose that employing a96

multi-species aggregation-diffusion approach, typified by Equation (1.2), may help improve97

predictive performance when modelling the spatial distributions of animal populations.98

As a step to this end, the aim of this paper is twofold: to begin building solid mathemat-99

ical foundations underlying the model and observations of [54], and to construct an efficient100

numerical scheme for future investigations. For our mathematical analysis, we are able to drop101

the assumption from [54] that j ̸= i, thus allowing for self attraction or repulsion. However,102

we have to assume that K is twice differentiable, so cannot be the same top-hat function used103

by [54] but can be a smooth approximation of the top-hat function. With these assumptions104

in place, we prove the global existence of a unique, positive solution in one spatial dimension105

and local existence (up to a finite time T∗) in arbitrary dimensions. We also propose an ef-106

ficient scheme for solving multi-species aggregation-diffusion models numerically, based on a107

spectral method, and give some example output of both stationary and fluctuating patterns.108

We focus here on the case of linear diffusion m = 1 in Equation (1.2). One reason is that109

linear diffusion models have been used with great success in biological modelling, and the110

common reaction-diffusion setting is a natural place to start ([45]). Also, the use of the heat111

equation semigroup is quite essential in our analysis. The general case for m > 1 has a more112

physical motivation, as it is based on an energy minimizing principle. Variational calculus can113

then be used to address the corresponding well-posedness problem [6, 12, 17].114

Our paper is organised as follows. Section 2 introduces the study system and states115
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4 V. GIUNTA, T. HILLEN, M. A. LEWIS, J. R. POTTS

the main results (global existence and positivity in one spatial dimension; local existence in116

arbitrary dimensions). In Section 3 we prove the main results. Section 4 details a method for117

numerically solving the study system, together with some example numerical output. Section 5118

gives a discussion and concluding remarks.119

2. The Model. We consider N different populations of moving organisms. These could120

either be different species or different groups within a species, such as territorial groupings or121

herds. In either case, we use the term population and write ui(x, t) to denote the density of122

population i ∈ {1, ..., N} at time t. As with Equation (1.2), we assume that each population123

detects the population density of other populations over space, and adjusts its directed motion124

via advection towards a weighted sum of the spatially averaged population densities.125

Before generalising to arbitrary dimensions, we first define our system in one dimension126

(1D) as follows127

∂ui
∂t

= Di
∂2ui
∂x2

− ∂

∂x



ui
∂

∂x





N∑

j=1

hij ūj







 ,128

ūj(x) = (K ∗ uj)(x) :=
∫ L

0
K(x− y)uj(y)dy.(2.1)129

We examine this system on a domain [0, L] with periodic boundary conditions, so that Ω =130

[0, L]/{0, L} (the topological quotient of [0, L] by {0, L}). Here, K ≥ 0 is a local averaging131

kernel (i.e. a probability density function on Ω with zero mean), Di is the diffusion constant132

of population i, and hij is the strength of attraction (resp. repulsion) of population i to (resp.133

from) population j if hij > 0 (resp. hij < 0). The local averaging kernel, K, describes the134

spatial scale over which organisms scan the environment when deciding to move in response135

to the presence of other populations. Here, we will assume K is twice differentiable with136

∇K ∈ L∞(T).137

Notice that
∫

Ω ui(x, t)dx does not vary over time so we define a constant pi =
∫

Ω ui(x, t)dx138

for each i. Consequently, our model is suitable for modelling systems of animal or cell popu-139

lations over timescales where births and deaths have a negligible effect on the population size.140

For example, for systems of organisms whose population sizes vary by only small amounts141

across a season (as is the case for many mammals, birds, and reptiles in summer), this could142

model dynamics over a single season.143

We can use vector notation to write System (2.1) in a more compact form. Let144

u = (u1, . . . uN )T , D = diag(D1, . . . , DN ), H = (hij)i,j ,145

where (hij)i,j denotes the matrix whose i, j-th entry is hij . Then System (2.1) can be written146

as147

(2.2) ut = Duxx − (u · (Hū)x)x.148

In higher dimensions we make the analogous assumption that Ω ⊂ R
n is a periodic domain,149

i.e. a torus T. Then the system on the general n-dimensional torus T becomes150
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MULTISPECIES NON-LOCAL ADVECTION MODELS 5

(2.3) ut = D∆u−∇ · (u · ∇(Hū)).151

To avoid confusion in this vector notation we can write each row as152

uit = Di

∑

k

∂2

∂x2k
ui −

∑

k

∂

∂xk



ui
∑

j

∂

∂xk
(hij ūj)



 ,153

which leads to154

ut = D
∑

k

∂2

∂x2k
u−

∑

k

∂

∂xk



u ◦
∑

j

∂

∂xk
(H·j ūj)



 ,155

where H·j is the j-th column of H and ◦ is the Hadamard product. We now state our main156

result, as follows.157

Theorem 2.1. Assume u0 ∈ H2(T)N and K is twice differentiable. If n ≥ 1 then there158

exists a time T∗ ∈ (0,∞] and a unique solution u to Equation (2.3), valid for t ∈ [0, T∗), such159

that160

u ∈ C1((0, T∗), L
2(T))N ∩ C0([0, T∗), H

2(T))N .161

If n = 1 and u0 ∈ C2(T)N such that u0(x) > 0 for x ∈ T, then there is a unique positive162

solution u to Equation (2.3) such that163

u ∈ C1((0,∞), L2(T))N ∩ C0([0,∞), C2(T))N .164

The first part of this theorem (n ≥ 1) will follow from Lemma 3.8 and does not require a165

non-negative initial data. The second (n = 1) will be established in Theorem 3.10.166

2.1. Notation. We will employ the following notation throughout. Let f : Lp(Ω) → R.167

• ∥f∥Lp = (
∫

Ω |f |p)1/p, where 1 ≤ p < ∞.168

• ∥f∥L∞ = inf{C ≥ 0 : |f(x)| ≤ C, a.e.}.169

Let g = (g1, g2, . . . , gN ) : (Lp)N → R. We will use the following norms170

• ∥g∥(Lp)N =
∑N

i=1 ∥gi∥Lp , where 1 ≤ p < ∞.171

• ∥g∥(L∞)N = maxi=1,2,...,N{∥gi∥L∞}.172

To ease the notation, we will usually omit the index N and write ∥g∥Lp instead of ∥g∥(Lp)N .173

3. Model Analysis.174

3.1. Existence and uniqueness of mild solutions.175

Definition 3.1. Given u0 ∈ (L2(T))N and T > 0. We say that176

u(x, t) ∈ L∞((0, T ), L2(T))N177

is a mild solution of Equation (2.3) if178

(3.1) u = eD∆tu0 −
∫ t

0
eD∆(t−s)∇ · (u · ∇(Hū))ds,179

for each 0 < t ≤ T , where eD∆t denotes the solution semigroup of the heat equation system180

ut = D∆u on T, i.e. on Ω with periodic boundary conditions.181

This manuscript is for review purposes only.



6 V. GIUNTA, T. HILLEN, M. A. LEWIS, J. R. POTTS

The crucial term in (2.2) is the non-local term Hū and the following a-priori estimates for182

ū are essential for the existence theory of this model. We will consider convolution with an183

appropriately smooth kernel, K. Eventually, in Lemma 3.4, we will need to assume that K is184

twice differentiable, but the first two Lemmas only require K to be (once) differentiable, so185

we state them in this more general case.186

Lemma 3.2. Let ϕ ∈ L2(T) and K : T → R be differentiable. Then ∥ϕ̄∥H1 = ∥K ∗ ϕ∥H1 ≤187

(∥K∥L1 + ∥∇K∥L1)∥ϕ∥L2.188

Proof. First, ∥K ∗ ϕ∥H1 = ∥K ∗ ϕ∥L2 + ∥∇(K ∗ ϕ)∥L2 . We also observe that ∇(K ∗ ϕ) =189

∇K ∗ϕ = (∂x1
K ∗ϕ, ∂x2

K ∗ϕ, . . . , ∂xnK ∗ϕ). Then, applying Young’s convolution inequality190

to both summands, we have ∥K ∗ ϕ∥L2 ≤ ∥K∥L1∥ϕ∥L2 and ∥∇(K ∗ ϕ)∥L2 = ∥(∇K) ∗ ϕ∥L2 =191

∥(∂x1
K ∗ ϕ, ∂x2

K ∗ ϕ, . . . , ∂xnK ∗ ϕ)∥L2 =
∑n

i=1 ∥∂xi
K ∗ ϕ∥L2 ≤

∑n
i=1 ∥∂xi

K∥L1∥ϕ∥L2 =192

∥∇K∥L1∥ϕ∥L2 , proving the lemma.193

Lemma 3.3. Let ϕ ∈ L∞(T) and K : T → R be differentiable with ∇K ∈ L∞(T). Then194

∥∇K ∗ ϕ∥L∞ ≤ |T|1/2∥∇K∥L∞∥ϕ∥L2.195

Proof. First note that196

∥∇(K ∗ ϕ)∥L∞ = ∥(∇K) ∗ ϕ∥L∞197

= ∥(∂x1
K ∗ ϕ, ∂x2

K ∗ ϕ, . . . , ∂xnK ∗ ϕ)∥L∞198

= max
i=1,2,...,n

{∥∂xi
K ∗ ϕ∥L∞}199

≤ max
i=1,2,...,n

{∥∂xi
K∥L∞∥ϕ∥L1}200

= max
i=1,2,...,n

{∥∂xi
K∥L∞}∥ϕ∥L1201

= ∥∇K∥L∞∥ϕ∥L1 ,202203

using Young’s convolution inequality in the fourth line. Then, since T is of finite measure in204

R
N , we have ∥ϕ∥L1 ≤ |T|1/2∥ϕ∥L2 (this step uses Hölder’s inequality, applied to ∥1ϕ∥L1 where205

1 : T → R such that 1(x) = 1). Hence ∥∇K∥L∞∥ϕ∥L1 ≤ |T|1/2∥∇K∥L∞∥ϕ∥L2 , proving the206

lemma.207

Lemma 3.4. Let ϕ ∈ H1(T) and K : T → R be twice differentiable with ∇K ∈ L∞(T).208

Then ∥∆(K ∗ ϕ)∥L∞ ≤ ∥∇K∥L∞∥∇ϕ∥L2 |T|1/2.209

Proof. First note that210

∥∆(K ∗ ϕ)∥L∞ =

∥
∥
∥
∥
∥

n∑

i=1

∂2
xi
(K ∗ ϕ)

∥
∥
∥
∥
∥
L∞

211

=

∥
∥
∥
∥
∥

n∑

i=1

∂xi
K ∗ ∂xi

ϕ

∥
∥
∥
∥
∥
L∞

212

≤
n∑

i=1

∥∂xi
K ∗ ∂xi

ϕ∥L∞213

214
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215

≤
n∑

i=1

∥∂xi
K∥L∞ ∥∂xi

ϕ∥L1216

≤ ∥∇K∥L∞∥∇ϕ∥L1 ,217218

where the second inequality uses Young’s convolution inequality. Then, as in Lemma 3.3, we219

have ∥∇ϕ∥L1 ≤ |T|1/2∥∇ϕ∥L2 . Hence ∥∇K∥L∞∥∇ϕ∥L1 ≤ |T|1/2∥∇K∥L∞∥∇ϕ∥L2 , proving220

the lemma.221

Before we formulate the proof of local and global existence, we recall a regularity result222

for the heat equation semigroup on a torus as formulated by [60] p.274:223

Lemma 3.5. For all p ≥ q > 0 and s ≥ r we have the embedding224

e∆t : W r,q(T) → W s,p(T), with norm Ct−κ,225

where C is a constant and226

κ =
n

2

(
1

q
− 1

p

)

+
1

2
(s− r).227

Theorem 3.6. For each u0 ∈ L2(T)N , if K is differentiable then there exists a time T > 0228

and a unique mild solution (3.1) of Equation (2.3) with229

u ∈ L∞((0, T ), L2(T))N .230

Proof. The proof uses a Banach fixed-point argument. Let M := 2∥u0∥L2 . We define a231

map232

v 7→ Qv := eD∆tu0 −
∫ t

0
eD∆(t−s)∇ · (v · ∇(Hv̄))ds,233

for v ∈ L∞((0, T ), L2(T))N .234

235

Step 1: Q maps a ball into itself: Let BM (0) ⊂ L2(T)N be the ball of radius M in L2(T)N .236

Let v = (v1, . . . , vN ) ∈ L∞((0, Tmin), BM (0))N , where Tmin will be determined later. Writing237

u0 = (u10, ..., uN0), for each T ∈ (0, Tmin) we have238

∥Qvi∥L2 ≤ ∥ui0∥L2 +

∥
∥
∥
∥

∫ T

0
eD∆(T−s)∇ · (vi∇((Hv̄)i))ds

∥
∥
∥
∥
L2

239

≤ ∥ui0∥L2 +

∫ T

0
C(T − s)−

1

2 ∥vi∇((Hv̄)i)∥L2ds240

≤ ∥ui0∥L2 + 2C
√
T sup

0<t≤T
∥vi∇((Hv̄)i)∥L2 .241

242

In the second inequality we used the regularizing property of the heat equation semigroup243

from H−1 to L2 with a norm Ct−
1

2 , as in Lemma 3.5. Since (Hv̄)i =
∑N

j=1 hijK ∗ vj , we244
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8 V. GIUNTA, T. HILLEN, M. A. LEWIS, J. R. POTTS

continue the previous estimate as:245

∥Qvi∥L2 ≤ ∥ui0∥L2 + 2C
√
T sup

0<t≤T

∥
∥
∥
∥
∥
∥

vi∇





N∑

j=1

hijK ∗ vj





∥
∥
∥
∥
∥
∥
L2

246

≤ ∥ui0∥L2 + 2C
√
T sup

0<t≤T

N∑

j=1

|hij | ∥vi∇ (K ∗ vj)∥L2247

≤ ∥ui0∥L2 + 2C
√
T

N∑

j=1

|hij | sup
0<t≤T

n∥vi∥L2 ∥∇ (K ∗ vj)∥L∞248

≤ ∥ui0∥L2 + 2C
√
T∥∇K∥L∞ |T|1/2

N∑

j=1

|hij | sup
0<t≤T

n∥vi∥L2∥vj∥L2249

250

In the third inequality we used Hölder’s inequality, and in the last one we used Lemma 3.3.251

From the previous estimate, we obtain252

∥Qv∥L2 =
N∑

i=1

∥Qvi∥L2253

≤
N∑

i=1

∥ui0∥L2 + 2C
√
Tn|T|1/2∥∇K∥L∞

N∑

i,j=1

|hij | sup
0<t≤T

∥vi∥L2∥vj∥L2254

≤ ∥u0∥L2 + 2C
√
Tn|T|1/2∥∇K∥L∞∥H∥∞ sup

0<t≤T
∥v∥2L2 ,255

256

where ∥H∥∞ = maxi,j |hij |. Notice that ∥u0∥L2 = M
2 , hence we can always find a time T1257

small enough such that258

sup
0<t≤T1

∥Qv∥L2 ≤ M,259

so that Qv ∈ L∞((0, T1), BM (0))N .260

261

Step 2: Q is a contraction for T small enough: Given v1 = (v11, ..., v1N ), v2 = (v21, ..., v2N ) ∈262
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L∞((0, Tmin), BM (0))N , we compute for T ∈ (0, Tmin) the following263

∥Qv1i −Qv2i∥L2 =

∥
∥
∥
∥

∫ T

0
eD∆(T−s) [∇ · (v1i∇((Hv̄1)i))−∇ · (v2i∇((Hv̄2)i))] ds

∥
∥
∥
∥
L2

264

≤
∥
∥
∥
∥

∫ T

0
eD∆(T−s)∇ · ((v1i − v2i)∇((Hv̄1)i)ds

∥
∥
∥
∥
L2

265

+

∥
∥
∥
∥

∫ T

0
eD∆(T−s)∇ · [v2i∇(H(v̄1i − v̄2i))i]ds

∥
∥
∥
∥
L2

266

≤
∫ T

0
C(T − s)−1/2∥(v1i − v2i)∇((Hv̄1)i)∥L2ds267

+

∫ T

0
C(T − s)−1/2∥v2i∇((H(v̄1 − v̄2))i)∥L2ds268

≤ 2C
√
T sup

0<t≤T
(∥(v1i − v2i)∇((Hv̄1)i)∥L2 + ∥v2i∇((H(v̄1 − v̄2))i)∥L2)269

270

In the second inequality we used the regularizing property of the heat equation semigroup271

from H−1 to L2 with a norm Ct−
1

2 , as in Lemma 3.5. Since (Hv̄1)i =
∑N

j=1 hijK ∗ v1j and272

(Hv̄2)i =
∑N

j=1 hijK ∗ v2j we continue the previous estimate as:273

∥Qv1i −Qv2i∥L2 ≤ 2C
√
T sup

0<t≤T





∥
∥
∥
∥
∥
∥

(v1i − v2i)

N∑

j=1

|hij |(∇K ∗ v1j)

∥
∥
∥
∥
∥
∥
L2

274

+

∥
∥
∥
∥
∥
∥

v2i

N∑

j=1

|hij |(∇K ∗ (v1j − v2j))

∥
∥
∥
∥
∥
∥
L2



275

≤ 2C
√
T sup

0<t≤T
(∥v1i − v2i∥L2n

N∑

j=1

|hij |∥∇K ∗ v1j∥L∞276

+ ∥v2i∥L2n

N∑

j=1

|hij |∥∇K ∗ (v1j − v2j)∥L∞)277

≤ 2C
√
T∥H∥∞∥∇K∥L∞ |T|1/2n sup

0<t≤T



∥v1i − v2i∥L2

N∑

j=1

∥v1j∥L2278

+∥v2i∥L2

N∑

j=1

∥v1j − v2j∥L2



 ,279

280

where ∥H∥∞ = maxi,j |hij |. In the second inequality we used Hölder’s inequality, and in the281
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last one we used Lemma 3.3. From the previous estimate, we obtain282

∥Qv1 −Qv2∥L2 =

N∑

i=1

∥Qv1i −Qv2i∥L2283

≤ 2C
√
T∥H∥∞∥∇K∥L∞ |T|1/2n sup

0<t≤T





N∑

i=1

∥v1i − v2i∥L2

N∑

j=1

∥v1j∥L2284

+

N∑

i=1

∥v2i∥L2

N∑

j=1

∥v1j − v2j∥L2



285

≤ 2C
√
T∥H∥∞∥∇K∥L∞ |T|1/2n sup

0<t≤T
(∥v1 − v2∥L2(∥v1∥L2 + ∥v1∥L2))286

≤ 4MC
√
T∥H∥∞∥∇K∥L∞ |T|1/2n sup

0<t≤T
∥v1 − v2∥L2 .287

288

The last inequality is obtained from v1, v2 ∈ L∞((0, Tmin), BM (0))N , so ∥v1∥L2 , ∥v2∥L2 ≤ M .289

For290

T < T2 :=
1

|T|(4MCn∥H∥∞∥∇K∥L∞)2
291

we have292

sup
0<t≤T

∥Qv1 −Qv2∥L2 < sup
0<t≤T

∥v1 − v2∥L2 ,293

which meansQv1−Qv2 ∈ L∞((0, T2), BM (0))N . ThusQ is a strict contraction in L∞((0, Tmin), BM (0))N ,294

where we can finally define Tmin as295

Tmin := min {T1, T2} .296

Step 3: The previous argument also shows that Q is Lipschitz continuous, hence, by the297

Banach fixed point theorem, Q has a unique fixed point for T < Tmin. This fixed point is a298

mild solution of (2.2) and it satisfies299

u ∈ L∞((0, T ), L2(T))N300

for T < Tmin. The mild solution automatically satisfies the initial condition:301

lim
t→0

u(x, t) = u0(x).302

3.2. Global existence in time. Let u be a mild solution of Equation (2.3). Our strategy303

moving forward will be to show that, for the period of time that ∥u∥L1 remains bounded,304

solutions exist and grow at most exponentially in L2. We will then show that the statement305

‘∥u∥L1 is unbounded’ leads to a contradiction.306

With this in mind, we define a time T∗ as follows: if ∥u∥L1 is bounded for all time, then307

let T∗ = ∞. Otherwise, ∥u∥L1 → ∞ as t → Tmax for some Tmax ∈ (0,∞], so let T∗ be the308

earliest time at which ∥u∥L1 = 2∥u0∥L1 . Our objective will be to show that the case where309

∥u∥L1 → ∞ as t → Tmax leads to a contradiction when n = 1 (one spatial dimension), so that310

∥u∥L1 is bounded for all time. This will enable us to prove that the solution from Theorem 3.6311

is global in time when n = 1.312
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Lemma 3.7. Let u = (u1, . . . , uN ) be a mild solution and K : T → R be differentiable with313

∇K ∈ L∞(T). Then there exists a constant νi such that ∥∇(K ∗ ui)∥L∞ ≤ νi for all t < T∗,314

i ∈ {1, . . . , N}. If ν = ν1 + · · ·+ νN then ∥∇(K ∗ u)∥L∞ ≤ ν.315

Proof. Applying Young’s convolution inequality, we have ∥∇(K∗ui)∥L∞ ≤ ∥∇K∥L∞∥ui∥L1 .316

By the definition of T∗, ∥ui∥L1(t) is bounded for t < T∗. Thus there exists a constant νi such317

that ∥∇K∥L∞∥ui∥L1 ≤ νi. The result ∥∇(K ∗ u)∥L∞ ≤ ν follows from the definitions of ν and318

the norm on (L1)
N .319

Lemma 3.8. Assume u0 ∈ H2(T)N and K is twice differentiable. Then the mild solution320

from Theorem 3.6 satisfies321

u ∈ C1((0, T∗), L
2(T))N ∩ C0([0, T∗), H

2(T))N322

In one spatial dimension this implies323

u ∈ C1((0, T∗), L
2(T))N ∩ C0([0, T∗), C

2(T))N ,324

and mild solutions are classical up to time T∗.325

Proof. As we are dealing with a system of equations u = (u1, . . . , uN ), we consider each326

component separately. For each of the components ui for i = 1, . . . , N we multiply the i-th327

row of Equation (2.3) by ui and integrate:328

1

2

d

dt
∥ui∥2L2 =

∫

T

uiuitdx329

=

∫

T

Diui∆uidx−
∫

T

ui∇ · (ui∇((Hū)i))dx330

= −
∫

T

Di|∇ui|2dx+

∫

T

ui∇ui · ∇((Hū)i)dx331

= −
∫

T

Di

n∑

h=1

(∂xh
ui)

2dx+

∫

T

ui

n∑

h=1

(∂xh
ui)∂xh

((Hū)i)dx332

≤
n∑

h=1

(

−
∫

T

Di(∂xh
ui)

2dx+ ∥∂xh
((Hū)i)∥L∞

∫

T

|ui∂xh
ui|dx

)

333

= −
∫

T

Di |∇ui|2 dx+ ∥∇((Hū)i)∥L∞

∫

T

|ui∇ui|dx334

= −
∫

T

Di |∇ui|2 dx+ ∥
N∑

j=1

hij∇(K ∗ uj)∥L∞

∫

T

|ui∇ui|dx335

≤ −
∫

T

Di |∇ui|2 dx+ ∥H∥∞
N∑

j=1

∥∇(K ∗ uj)∥L∞

∫

T

|ui∇ui|dx336

337
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338

≤ −
∫

T

Di |∇ui|2 dx+ ∥H∥∞ν

∫

T

|ui∇ui|dx339

≤
(

−Di +
ε

2
(∥H∥∞ν)2

)∫

T

|∇ui|2 dx+
n

2ε

∫

T

|ui|2dx340

341342

where ∥H∥∞ = maxi,j |hi,j |. In the third equality we used integration by parts and the343

periodic boundary conditions, the first inequality uses Hölder’s inequality, the third inequality344

uses Lemma 3.7, which is valid for t < T∗, and the fourth inequality uses Young’s inequality.345

Now we choose ε such that −Di +
ε
2 (∥H∥∞ν)2 < 0 for all i, j = 1, . . . , N so that346

1

2

d

dt
∥ui∥2L2 ≤ n

2ε
∥ui∥2L2 .347

Applying Grönwall’s Lemma, we find348

∥ui∥L2 ≤ ∥ui0∥L2e
nt
2ε .349

Finally, we observe that350

N∑

i=1

∥ui∥L2 ≤
N∑

i=1

∥ui0∥L2e
nt
2ε ,351

from which we obtain352

∥u∥L2 ≤ ∥u0∥L2e
nt
2ε .(3.2)353354

Hence solutions exist and grow at most exponentially in L2 up to time T∗.355

356

Now we find an estimate in H1 for each component ui, i = 1, . . . , N :357

1

2

d

dt
∥∇ui∥2L2 =−

∫

T

(∇uit) · (∇ui)dx358

= −
∫

T

uit∆uidx359

= −
∫

T

Di(∆ui)
2dx+

∫

T

∆ui∇ · (ui∇((Hū)i))dx360

=
(

−Di +
ε2
2

)∫

T

(∆ui)
2dx+

1

2ε2

∫

T

(∇ · (ui∇((Hū)i)))
2dx,361

362

where we used Young’s inequality to obtain the last estimate. We now chose ε2 > 0 small363

enough such that −Di+
ε2
2 < 0 for every i = 1, . . . , N . We then continue the previous estimate364
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as365

1

2

d

dt
∥∇ui∥2L2 ≤ 1

2ε2
∥∇ · (ui∇((Hū)i))∥2L2366

=
1

2ε2

∥
∥
∥
∥
∥
∥

n∑

h=1

∂xh



ui∂xh

N∑

j=1

hijK ∗ uj





∥
∥
∥
∥
∥
∥

2

L2

367

≤ 1

2ε2

∥
∥
∥
∥
∥
∥

n∑

h=1

(∂xh
ui)∂xh

N∑

j=1

hijK ∗ uj +
n∑

h=1

ui∂
2
xh

N∑

j=1

hijK ∗ uj

∥
∥
∥
∥
∥
∥

2

L2

368

≤ 1

2ε2





∥
∥
∥
∥
∥
∥

n∑

h=1

(∂xh
ui)∂xh

N∑

j=1

hijK ∗ uj

∥
∥
∥
∥
∥
∥
L2

+

∥
∥
∥
∥
∥
∥

n∑

h=1

ui∂
2
xh

N∑

j=1

hijK ∗ uj

∥
∥
∥
∥
∥
∥
L2





2

369

≤ 1

ε2





∥
∥
∥
∥
∥
∥

n∑

h=1

(∂xh
ui)∂xh

N∑

j=1

hijK ∗ uj

∥
∥
∥
∥
∥
∥

2

L2

+

∥
∥
∥
∥
∥
∥

n∑

h=1

ui∂
2
xh

N∑

j=1

hijK ∗ uj

∥
∥
∥
∥
∥
∥

2

L2



370

≤ 1

ε2





n∑

h=1

∥∂xh
ui∥L2

N∑

j=1

|hij |∥∂xh
(K ∗ uj)∥L∞





2

371

+
1

ε2



∥ui∥L2

N∑

j=1

n∑

h=1

|hij |∥∂2
xh
(K ∗ uj)∥L∞





2

372

≤ 1

ε2



∥∇ui∥L2∥H∥∞
N∑

j=1

∥∇(K ∗ uj)∥L∞





2

373

+
1

ε2



∥ui∥L2∥H∥∞
n∑

h=1

N∑

j=1

∥(∂xh
K) ∗ (∂xh

uj)∥L∞





2

374

≤ 1

ε2



∥∇ui∥L2∥H∥∞
N∑

j=1

∥∇K∥L∞∥uj∥L2 |T|1/2




2

375

+
1

ε2



∥ui∥L2∥H∥∞
n∑

h=1

N∑

j=1

∥∂xh
K∥L∞∥∂xh

uj∥L1





2

376

≤ 1

ε2



∥∇ui∥L2∥H∥∞|T|1/2
N∑

j=1

∥∇K∥L∞∥uj∥L2





2

377

+
1

ε2



∥ui∥L2∥H∥∞|T|1/2
N∑

j=1

∥∇K∥L∞∥∇uj∥L2





2

378

≤ 1

ε2
∥H∥2∞|T|∥∇K∥2L∞



∥∇ui∥2L2





N∑

j=1

∥uj∥L2





2

+ ∥ui∥2L2





N∑

j=1

∥∇uj∥L2





2

379

≤ N

ε2
∥H∥2∞|T|∥∇K∥2L∞



∥∇ui∥2L2

N∑

j=1

∥uj∥2L2 + ∥ui∥2L2

N∑

j=1

∥∇uj∥2L2



 ,380

381
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in which we have used Young’s inequality in the fourth inequality, Lemma 3.3 in the seventh,382

Lemma 3.4 in the eighth, and Young’s inequality in the ninth.383

384

Taking the sum over all the components i ∈ {1, . . . , N}, we have385

1

2

d

dt

N∑

i=1

∥∇ui∥2L2 ≤ 2N

ε2
∥H∥2∞|T|∥∇K∥2L∞

N∑

i=1

∥∇ui∥2L2

N∑

j=1

∥uj∥2L2 .386

387

By defining388

A =
4N

ε2
∥H∥2∞|T|∥∇K∥2L∞

N∑

j=1

∥u0j∥2L2 ,389

390

and using (3.2), we arrive at391

1

2

d

dt

N∑

i=1

∥∇ui∥2L2 ≤ A

2
e

nt
2ε

N∑

i=1

∥∇ui∥2L2 .392

393

Applying Grönwall’s Lemma, we have394

N∑

i=1

∥∇ui∥2L2(t) ≤
N∑

i=1

∥∇ui0∥2L2 exp

(

A

∫ t

0
exp

(ns

2ε

)

ds

)

,395

for each time t < T∗. Thus solutions remain bounded in H1(T) until time T∗.396

Now let us consider the claim:397

u ∈ C1((0, T∗), L
2(T))N

︸ ︷︷ ︸

(I)

∩C0([0, T∗), H
2(T))N

︸ ︷︷ ︸

(II)

.398

Looking again at the mild formulation in Equation (3.1), we have that u ∈ H1, ∇(Hū) ∈ H1399

and the integral term is in H1. The first term involves the heat equation semigroup and the400

initial condition, and by the classical theory of the linear heat equation, the term eD∆tu0 is401

in H1 and differentiable in time. Hence also ut exists and is in L2. This explains (I). Finally,402

writing down the equation once more:403

ut = D∆u−∇ · (u∇ · (Hū))404

we now know that ut is in L2 and the non-local term as well. Hence ∆u ∈ L2, which implies405

(II).406

In one spatial dimension, we also have the Sobolev embedding from H2 to C1. Indeed, we407

can use this to show that solutions are in C2 for n = 1. First note that408

((Hū)i)x =
N∑

j=1

hij
∂K

∂x
∗ ui,409
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and410

((Hū)i)xx =
N∑

j=1

hij
∂K

∂x
∗ ∂ui
∂x

,411

which are both continuous. Therefore [ui((Hū)i)x]x = uix((Hū)i)x+ui((Hū)i)xx is continuous.412

It follows from the mild formulation in Equation (3.1) that uit is continuous. Consequently,413

Diuixx = uit + [ui((Hū)i)x]x is continuous, so ui is in C2(T) (where T = [0, L] here, since414

n = 1).415

Lemma 3.9. Consider the solution from Lemma 3.8 in one spatial dimension, so that n =416

1, T = [0, L], and u ∈ C1((0, T∗), L
2(T))N ∩ C0((0, T∗), C

2(T))N . Let u0 ∈ C2(T)N such that417

u0(x) > 0 for x ∈ T. Then u(x, t) > 0 for x ∈ T and t < T∗.418

Proof. We let u = (u1, . . . , uN ) and work with each component separately. Assume that419

there is a first time t0 > 0 such that the solution for ui becomes zero at a point x0. We can420

rule out the case that ui(t0, x) ≡ 0, since the system (2.3) conserves total mass. Then we have421

u(t0, x0) = 0, uix(t0, x0) = 0, uixx(t0, x0) > 0, uit(t0, x0) < 0.422

System (2.1) evaluated at (t0, x0) becomes423

uit(t0, x0)
︸ ︷︷ ︸

<0

= Diuixx(t0, x0)− [ui(t0, x0)((Hū)i(t0, x0))x]x424

= Diuixx(t0, x0)
︸ ︷︷ ︸

>0

−
[

uix(t0, x0)
︸ ︷︷ ︸

=0

((Hū)i(t0, x0))x + u(t0, x0)
︸ ︷︷ ︸

=0

(Hū(t0, x0))ixx

]

,425

leading to a contradiction. Hence ui(x, t) > 0.426

Theorem 3.10. Let u0 ∈ C2(T)N such that u0(x) > 0 for x ∈ T. Then the solution from427

Lemma 3.8 is global in time (i.e. T∗ = ∞) when working in one spatial dimension (n = 1).428

Proof. Recall that if T∗ < ∞ then ∥u∥L1 → ∞ at some point in time and T∗ defined as429

the earliest time at which ∥u∥L1 = 2∥u0∥L1 . Therefore ∥u∥L1 will be strictly greater than430

∥u0∥L1 for some t∗ ∈ (0, T∗). But, since
∫

T
udx = ∥u0∥L1 for all time, we have

∫

T
u(x, t∗)dx <431

∫

T
|u(x, t∗)|dx, which implies that there must be some x such that u(x, t∗) < 0, contradicting432

positivity (Lemma 3.9). Thus we must have T∗ = ∞ and solutions are global in time.433

4. Numerics. In this section we describe a method to solve System (2.1) numerically,434

based on the general class of spectral methods [15]. For simplicity, we focus on simulations435

within 1D domains. However, this procedure may be also extended to any spatial dimension.436

Although our analytic results rely on the averaging kernel, K, being twice differentiable, our437

numerical method does not rely on this constraint. Since the study of [54] used a top-hat438

kernel (which is not differentiable), we demonstrate our method using this kernel as well as439

an example twice-differentiable kernel.440

The leading idea behind a spectral method is to write the solution of a PDE as a sum of441

smooth basis functions with time dependent coefficients. By substituting this expansion in442

the PDE, we obtain a system of ordinary differential equations (ODEs), which can be solved443

using any numerical method for ODEs [13].444
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In the previous section we showed that, under the hypothesis of Lemma 3.8, any solution
u(x, t) to System (2.1) is C2-smooth, so it is possible to expand it as

u(x, t) =

∞∑

h=−∞

ûh(t)φh(x),

where the coefficients ûh are computed by using the global behaviour of the function u and445

{φh}h is a complete set of orthogonal smooth functions.446

Since System (2.1) is periodic in space with period L, we adopt the Fourier basis as com-447

plete set of orthogonal functions and expand each component of the solution u = (u1, . . . , uN )448

as449

(4.1) uj(x, t) =

∞∑

h=−∞

ûjh(t)e
2πi
L

hx, for j = 1, . . . , N,450

where ûjh(t) =
1
L

∫ L
0 uj(x, t)e

− 2πi
L

hxdx are the Fourier coefficients, which represent the solution451

in the frequency space.452

One of the advantages of working with the Fourier expansion is that the operation of453

derivation becomes particularly simple if performed in the frequency space. Indeed, differen-454

tiating Equation (4.1), we find455

(4.2) ∂xuj(x, t) =
∞∑

h=−∞

2πi

L
hûjh(t)e

2πi
L

hx, for j = 1, . . . , N,456

we see that the Fourier coefficients of the derivative are obtained by multiplying each ûjh by457

the term 2πi
L h.458

Another important property of the Fourier transform, particularly useful in our case, is459

that the convolution in the physical space is equivalent to a multiplication in the frequency460

space. Indeed, the Convolution Theorem states that the convolution between two functions461

f(x) =
∑∞

h=−∞ f̂he
2πi
L

hx and g(x) =
∑∞

h=−∞ ĝhe
2πi
L

hx has the following Fourier expansion462

(4.3) f ∗ g(x) =
∞∑

h=−∞

f̂hĝhe
2πi
L

hx.463

Therefore, to solve numerically System (2.1) the operations of differentiations and convolution464

will be performed in the frequency space, while multiplications will be done in the physical465

space.466

To implement our numerical method, we discretize both spatial and temporal domain,467

and consider the approximation of the solution u(x, t) on the grid points xm = m∆x and468

tn = n∆t, with m ∈ {0, 1, . . . ,M − 1} and n ∈ N. We define Un
jm = uj(xm, tn). Then, in469

discrete space, the coefficients ûjh(t) of Equation (4.1) are replaced by470

(4.4) Ûn
jh =

1

M

M−1∑

m=0

Un
jme−

2πi
M

hm,471
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which represent the discrete Fourier transform (DFT) of uj(x, t).472

The inverse discrete Fourier transform (IDFT), used to compute Un
jm from Ûn

jh, is given473

by the formula474

Un
jm =

M−1∑

h=0

Ûn
jhe

2πi
M

hm.(4.5)475

We can convert the solution from physical to frequency space, and vice versa, using the476

relations (4.4) and (4.5). However, we can speed the procedure up considerably by using a477

Fast Fourier Transform (FFT) algorithm, which reduces the number of computations from M2478

to M logM [55]. Analogously, an Inverse Fast Fourier Transform (IFFT) algorithm can be479

used to perform a fast backward Fourier transform from the frequency domain to the physical480

domain.481

Let Un
j = [Un

j0, . . . , U
n
j(M−1)], for j = 1, . . . , N and Ûn

j = [Ûn
j0, . . . , Û

n
j(M−1)], for j =482

1, . . . , N , which represent the solution in the frequency domain at time t = n∆t. Then the483

algorithm for calculating the solution is as follows.484

First, we calculate the non-local terms Ūn
j = K ∗Un

j by passing to the frequency domain485

and applying the Convolution Theorem (Equation (4.3)). We then stay in the frequency486

domain to calculate the derivative ∂xŪ
n
j . Passing back to physical space, we calculate the487

product Un
i · ∂xŪn

j . Then the derivative of this product, ∂x(U
n
i · ∂Ūn

j ), is calculated in the488

frequency domain. This deals with the second term in our PDE (System 2.1). Finally, we489

calculate the diffusion term from System (2.1) by passing to frequency space.490

This whole procedure results in defining a function, f(Un
j ), which is a discrete represen-491

tation of the right-hand side of the PDE in System (2.1). Thus we have the following system492

of ODEs493

dUn
j

dt
= f(Un

j ), j = 1, . . . , N,(4.6)494

which can be solved using any ODE solver. In particular, we used a Runge-Kutta scheme.495

To calculate the coefficients of Fourier transform and inverse Fourier transform, we used the496

drealft fast Fourier transform subroutine from [55]. This routine requires that the number497

of grid points must be a power of 2. We used the spatial domain [0, 1] with 128 spatial grid498

points (so ∆x = 1/128) and periodic boundary conditions.499

For the spatial averaging kernel K, we used two different functions. The first is the von500

Mises distribution501

(4.7) Ka(x) =
ea cos(2πx)

I0(a)
,502

defined on [−1/2, 1/2] (which is equivalent to [0, 1] due to the periodic boundary condi-503

tions), where I0(a) is the modified Bessel function of order 0. This distribution both sat-504

isfies the periodic boundary conditions and is twice differentiable, as required by Lemma 3.2,505

Lemma 3.3, Lemma 3.4 and Lemma 3.7. We compare this with the following top-hat function506
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σ = 0.1, ∆t = 10−4

E t(s)

O(10−6) 0.5216

O(10−8) 0.6043

O(10−10) 0.8522

σ = 0.05, ∆t = 10−4

E t(s)

O(10−6) 0.2354

O(10−8) 0.4131

O(10−10) 0.6768

σ = 0.025, ∆t = 10−6

E t(s)

O(10−6) 1.785

O(10−8) 3.918

O(10−10) 5.908
Table 1

Three tables showing numerical computation time, each for a different set of values of σ and ∆t. The first
column of each table contains the order of magnitude of the maximum distance between numerical solutions
at times t and t + ∆t (first column) at the point when we stop the numerics. The second column shows the
computational time in seconds to reach this point. The corresponding numerical simulations are shown in
Figure 1

on [−1/2, 1/2], used by [54]507

(4.8) Kγ(x) =







1
2γ , −γ ≤ x ≤ γ,

0, otherwise.

508

To compare numerical solutions with the two averaging kernels, Ka and Kγ , we use a common509

standard deviation510

(4.9) σ =

√
√
√
√

∫ 1/2

−1/2
x2K(x)dx−

(
∫ 1/2

−1/2
xK(x)dx

)2

.511

We implemented our algorithm in the C programming language and demonstrated it using512

the simple case of two interacting populations, u1 and u2. The numerical code is available at513

https://github.com/MathGiu/MS.514

In Figure 1 we show the spatiotemporal evolution of the numerical solution, with K = Ka,515

for different values of the standard deviation σ. For σ = 0.1, we used a smooth random516

perturbation of the homogeneous steady state as initial condition. In this case, the solution517

appears to evolve towards a stationary state, and we stopped the numerics when the maximum518

distance between solutions at times t and t+∆t is below 10−10. This took about 0.8 seconds519

of computational time to reach (see Table 1). We then used this stationary state as initial520

condition for a simulation with σ = 0.05, whose spatiotemporal evolution is shown in the521

second line of Figure 1. As in the previous case, the solution appears to settle into a stationary522

state, which was used as initial condition to perform a simulation with σ = 0.025. We see523

that, as σ is decreased, the steady state solutions become increasingly flat-topped.524

In each of these examples, hii = 0 for i = 1, 2. In this case, [54] showed that the system525

admits an energy functional which decreases over time, a feature that often accompanies526

systems that reach a stable steady state, and indeed this is what we observe in our numerics.527

However, if we drop the hii = 0 assumption, it is possible to observe patterns that exhibit528

oscillatory behaviour that does not appear to stabilise over time (Figure 2).529

Comparing the numerical solutions obtained with the von Mises kernel (4.7) and top-hat530

kernel (4.8) for different values of σ, we see a good numerical agreement between numerical531

steady-state solutions (Figure 3). Hence, numerically, either choice is possible.532
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Figure 1. Spatio temporal evolution of the numerical solution of (2.1) with K = Ka defined in Equa-
tion (4.7), for different values of the standard deviation σ. On the right column: spatial profile of the numerical
stationary solution. The parameter values are: D1 = D2 = 1, h11 = h22 = 0, h12 = h21 = −2. For σ = 0.1,
a = 3.225; for σ = 0.05, a = 10.664; for σ = 0.025, a = 41.01.

5. Discussion. The development of our model (Equation (1.2)) has been driven by the533

need to include non-local spatial terms into realistic models for organism interactions. How-534

ever, when developing a new modelling framework, it is always a good idea to show that the535

model is well defined and biologically sensible, as we do here. In particular, it is important536

to identify the mathematical conditions that are needed to prove existence and uniqueness of537

solutions. In our case, for example, we find that the smoothness of the averaging kernel is538

essential to prove existence of classical solutions for the PDE model. This implies that our539

favorite choice, the indicator function on a ball of radius R, used by [54], is not included in540

the existence results. This is not a large restriction for the biology, since the indicator func-541

tion can always be mollified (smoothed out) to obtain a regular kernel. However, it opens an542

interesting mathematical question to try to understand what goes wrong when the averaging543

kernel has jumps. In our case we cannot find a uniform L∞ estimate for convolution with ∇K,544

which is an observation, but not an explanation of this limitation. In numerical simulations,545

we compare smooth and non-smooth averaging kernels and we see no appreciable difference.546

The difference is certainly much smaller than can ever be expected from errors that arise547

through empirical measurements of species distributions.548

In our theory we consider a periodic domain, represented through the n-torus T. Other549
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Figure 2. Spatio temporal evolution of the numerical solution of (2.1) with K defined in Equation (4.7),
for different values of σ. The parameter values are: D1 = D2 = 1, h11 = h22 = h21 = 1.5, h12 = −1. For
σ = 0.1, a = 3.1; for σ = 0.05, a = 10.5; for σ = 0.01, a = 250.

domains with other boundary conditions can be studied with minimal modifications. The550

boundary conditions were essential to establish Lemma 3.5 about the regularity of the heat551

equation semigroup on T. Similar regularity results are known for other boundary conditions552

[36, 40], and in those cases our method applies directly.553

Non-local models for one or two species have been extensively studied before (see for554

example [18, 16] and the references that were mentioned in the Introduction). Our emphasis555

here is on a multiple species situation. This system was originally introduced in [54], in a556

slightly modified form, for the purposes of understanding the effect of between-population557

movements on the spatial structure of ecosystems, something generally ignored in species558

distribution modelling [24]. Understanding the spatial distribution of species has been named559

as one of the top five research fronts in ecology [57], so the model presented here has potential560

for giving insights into various important problems in biology where biotic interactions affect561

movement. These include, but are not limited to, the emergence of home range patterns [10],562

the geometry of selfish herds [30], the landscape of fear [37], and biological invasions [39].563
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Figure 3. Comparison between the spatial profiles of the stationary solutions obtained with the smooth
kernel K (4.7) and the non-smooth kernel Kγ (4.8), for different values of the standard deviation σ. The
parameter values are: D1 = D2 = 1, h11 = h22 = 0, h12 = h21 = −2. For σ = 0.1, a = 3.225 and γ = 0.1732.
For σ = 0.05, a = 10.664 and γ = 0.0866. For σ = 0.025, a = 41.01 and γ = 0.0433.

The study of [54] focused on pattern formation via the tools of linear stability, numerical564

bifurcation, and energy functional analysis. This study showed that the linear stability prob-565

lem became ill-posed in the ‘local limit’, i.e. as K tends towards a Dirac delta function so566

that advection becomes local. Analogously, here we show that solutions exist for smooth K,567

but depend upon ∥∇K∥∞ being finite, so will also break down if K is a Dirac delta function.568

This highlights the importance of non-locality in our advection term. Indeed, numerical sim-569

ulations (e.g. Figure 1) suggest that, as K narrows (i.e. its standard deviation decreases),570

the maximum gradient of any non-trivial stable steady state increases. We conjecture that571

failure to include non-locality in the advection term (equivalently, setting K to be a Dirac572

delta function) will lead to gradient blow-up.573

Our results, together with those of [54], suggest a rich variety of pattern formation prop-574

erties in non-local multi-species advection-diffusion models. Here, specifically, we see two new575

features related to pattern formation. The first is the appearance of oscillatory solutions in576

two-species models, enabled by the inclusion of self-attractive terms. Second, we see that577

changing the width of spatial averaging, given by σ, can have a qualitative effect on the pat-578

terns that emerge (Figure 2). We have only scratched the surface here, in order to introduce579

our numerical method, the main purpose of this work being to establish existence of solutions.580
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Nonetheless, the ability to link underlying processes with emergent patterns is a principal581

question in biology [32, 19, 50], and the evident rich pattern formation properties of these582

models suggest this will be a formidable task for future work, building on the increasing lit-583

erature in this area [52, 14, 17].584
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[6] J. Bedrossian, N. Rodŕıguez, and A. L. Bertozzi, Local and global well-posedness for aggregation601
equations and patlak–keller–segel models with degenerate diffusion, Nonlinearity, 24 (2011), p. 1683.602

[7] S. Benhamou, Of scales and stationarity in animal movements, Ecology Letters, 17 (2014), pp. 261–272.603
[8] A. L. Bertozzi and T. Laurent, Finite-time blow-up of solutions of an aggregation equation in Rn,604

Communications in Mathematical Physics, 274 (2007), pp. 717–735.605
[9] A. L. Bertozzi, T. Laurent, and J. Rosado, lp theory for the multidimensional aggregation equation,606

Communications on Pure and Applied Mathematics, 64 (2011), pp. 45–83.607
[10] L. Börger, B. D. Dalziel, and J. M. Fryxell, Are there general mechanisms of animal home range608

behaviour? a review and prospects for future research, Ecology Letters, 11 (2008), pp. 637–650.609
[11] B. Briscoe, M. Lewis, and S. Parrish, Home range formation in wolves due to scent marking, Bull.610

Math. Biol., 64 (2002), pp. 261–284, https://doi.org/10.1006/bulm.2001.0273.611
[12] M. Burger, R. Fetecau, and Y. Huang, Stationary states and asymptotic behavior of aggregation612

models with nonlinear local repulsion, SIAM Journal on Applied Dynamical Systems, 13 (2014),613
pp. 397–424.614

[13] J. C. Butcher and N. Goodwin, Numerical methods for ordinary differential equations, vol. 2, Wiley615
Online Library, 2008.616

[14] A. Buttenschön and T. Hillen, Non-local Cell Adhesion Models: Symmetries and Bifurcations in 1-D,617
Springer, New York, 2021.618

[15] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral methods: fundamentals in619
single domains, Springer Science & Business Media, 2007.620

[16] J. Carrillo, F. Hoffmann, and R. Eftimie, Non-local kinetic and macroscopic models for self-621
organised animal aggregations, Kinetic and Related Models, 8 (2015), p. 413, https://doi.org/10.622
3934/krm.2015.8.413, http://aimsciences.org//article/id/8639187c-b075-4a23-bba4-de4c12abfb7d.623

[17] J. A. Carrillo, K. Craig, and Y. Yao, Aggregation-diffusion equations: dynamics, asymptotics, and624
singular limits, in Active Particles, Volume 2, Springer, 2019, pp. 65–108.625

[18] J. A. Carrillo, Y. Huang, and M. Schmidtchen, Zoology of a nonlocal cross-diffusion model for two626
species, SIAM Journal on Applied Mathematics, 78 (2018), pp. 1078–1104.627

[19] C. Cosner and R. Cantrell, Spatial Ecology via Reaction-Diffusion Equations, Wiley, Hoboken, 2003.628
[20] K. Craig and A. Bertozzi, A blob method for the aggregation equation, Mathematics of computation,629

This manuscript is for review purposes only.



MULTISPECIES NON-LOCAL ADVECTION MODELS 23

85 (2016), pp. 1681–1717.630
[21] F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007),631

p. 852–862.632
[22] M. G. Delgadino, X. Yan, and Y. Yao, Uniqueness and nonuniqueness of steady states of aggregation-633

diffusion equations, Communications on Pure and Applied Mathematics, (2019).634
[23] J. Dolbeault and B. Perthame, Optimal critical mass in the two dimensional keller–segel model in635

r2, Comptes Rendus Mathematique, 339 (2004), pp. 611–616.636
[24] C. F. Dormann, M. Bobrowski, D. M. Dehling, D. J. Harris, F. Hartig, H. Lischke, M. D.637

Moretti, J. Pagel, S. Pinkert, M. Schleuning, et al., Biotic interactions in species distribu-638
tion modelling: 10 questions to guide interpretation and avoid false conclusions, Global ecology and639
biogeography, 27 (2018), pp. 1004–1016.640

[25] R. Eftimie, Hyperbolic and kinetic models for self-organized biological aggregations and movement:641
a brief review, Journal of Mathematical Biology, 65 (2012), pp. 35–75, https://doi.org/10.1007/642
s00285-011-0452-2, https://doi.org/10.1007/s00285-011-0452-2.643

[26] R. Eftimie, J. Bramson, and D. Earn, Interactions between the immune system and cancer: A brief644
review of non-spatial mathematical models, Bulletin of Mathematical Biology, 73 (2011), pp. 2–32.645

[27] R. Eftimie, G. de Vries, and M. Lewis, Complex spatial group patterns result from different animal646
communication mechanisms., Proceedings of the National Academy of Sciences of the United States647
of America, 104 (2007), pp. 6974–6979, https://doi.org/10.1073/pnas.0611483104.648

[28] J. H. Evers, R. C. Fetecau, and T. Kolokolnikov, Equilibria for an aggregation model with two649
species, SIAM Journal on Applied Dynamical Systems, 16 (2017), pp. 2287–2338.650

[29] S. Fagioli and Y. Jaafra, Multiple patterns formation for an aggregation/diffusion predator-prey sys-651
tem, arXiv preprint arXiv:1904.05224, (2019).652

[30] W. D. Hamilton, Geometry for the selfish herd, Journal of theoretical Biology, 31 (1971), pp. 295–311.653
[31] T. Hillen and M. Lewis, Mathematical ecology of cancer, in Managing complexity, reducing perplexity.654

Modeling biological systems, J. Marsan and M. Delitala, eds., Springer, 2014, pp. 1–14.655
[32] T. Hillen and K. Painter, Transport and anisotropic diffusion models for movement in oriented656

habitats, in Dispersal, Individual Movement and Spatial Ecology, M. A. Lewis, P. K. Maini, and657
S. V. Petrovskii, eds., Lecture Notes in Mathematics, Springer Berlin Heidelberg, 2013, pp. 177–222,658
https://doi.org/10.1007/978-3-642-35497-7 7, http://dx.doi.org/10.1007/978-3-642-35497-7 7.659

[33] T. Hillen, K. Painter, and C. Schmeiser, Global existence for chemotaxis with finite sampling radius,660
Discr. Cont. Dyn. Syst. B, 7 (2007), pp. 125–144.661

[34] T. Hillen and K. J. Painter, A user’s guide to pde models for chemotaxis, Journal of mathematical662
biology, 58 (2009), pp. 183–217.663

[35] F. James and N. Vauchelet, Numerical methods for one-dimensional aggregation equations, SIAM664
Journal on Numerical Analysis, 53 (2015), pp. 895–916.665

[36] O. Ladyžhenskaja, V. Solonnikov, and N. Ural’ceva, Linear and Quasilinear Equations of Parabolic666
Type, AMS Providence, Rhode Island, 1968.667
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