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Abstract: Tracking patient progress through a course of robotic tele-rehabilitation requires constant
position data logging and comparison, alongside periodic testing with no powered assistance. The
test data must be compared with previous test attempts and an ideal baseline, for which a good
understanding of the dynamics of the robot is required. The traditional dynamic modelling techniques
for serial chain robotics, which involve forming and solving equations of motion, do not adequately
describe the multi-domain phenomena that affect the movement of the rehabilitation robot. In this
study, a multi-domain dynamic model for an upper limb rehabilitation robot is described. The
model, built using a combination of MATLAB, SimScape, and SimScape Multibody, comprises the
mechanical electro-mechanical and control domains. The performance of the model was validated
against the performance of the robot when unloaded and when loaded with a human arm proxy.
It is shown that this combination of software is appropriate for building a dynamic model of the
robot and provides advantages over the traditional modelling approach. It is demonstrated that
the responses of the model match the responses of the robot with acceptable accuracy, though the
inability to model backlash was a limitation.

Keywords: dynamic modelling; rehabilitation robotics; computational modelling; simulation; MAT-
LAB; Simulink; SimScape; SimScape Multibody

1. Introduction

There is increasing interest in the use of robots to assist the rehabilitation of stroke
patients, partly due to the repetitive nature of post-stroke rehabilitation and the integration
of stimulating video games [1] to increase patient motivation and partly due to a projected
increase in strokes due to an ageing population, causing a strain on rehabilitation ser-
vices [2]. Stroke can have severe consequences for the patient’s quality of life, with reports
estimating that up to 20% of patients require intensive rehabilitation programs [3].

Rehabilitation robots may be broadly classified into two categories: Class 1 or Class 2 [4,5].
Class 1 robots are high cost and are designed for clinical use with a therapist. Class 2 robots
are low cost and intended for home use. Rehabilitation robots that are commercially available
are Class 1 robots, and therefore high cost. Examples include the InMOTION (previously
known as MIT Manus [6,7]) and the Armeo Power (previously known as the ARMin [8,9]).
However, a large study has recently shown that the use of expensive robotics in a clinical
setting provides little additional benefit to traditional rehabilitation alone and is not cost
effective [10]. Essentially, if there is a choice between traditional physiotherapist-led post-
stroke rehabilitation or robot-based rehabilitation, there is little benefit to selecting robot-based
rehabilitation. Both options require travel to a clinical setting and face-to-face contact with
a physiotherapist.

As a response to the COVID-19 pandemic, many countries imposed national lock-
downs, with non-essential travel banned and social mixing criminalised. Health services
were put under considerable strain dealing with the effects of COVID-19, with many
services limited or cancelled. There was a noted decrease in stroke patient admissions,
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particularly patients presenting with minor symptoms and transient ischaemic attack (TIA)
in Italy, France, Germany [11], Canada [12], and Norway [13]. In the U.K., there was a 12%
reduction in the number of admissions for stroke patients between 1 October 2019 and 30
April 2020 compared to the same period in the three previous years [14]. It was noted that
quality of care did not decrease for admitted stroke patients, but there are no data on access
to rehabilitation or long-term outcomes. It is postulated that hospital avoidance is the likely
cause of the decrease in stroke patients rather than a decrease in the number of strokes.

There is little doubt that social distancing has had an effect on post-stroke rehabilita-
tion. Indeed, in Canada, it was noted that access to rehabilitation care has been significantly
reduced [12]. According to the Stroke Association, around half of stroke survivors in the
U.K. have had therapy appointments cancelled or postponed [15]. These cancellations may
have occurred due to an increase in protective measures, which require more turnaround
time between patients, a reduced capacity in rehabilitation centres due to social distancing
requirements, and staff absence due to self-isolating or infection. Further to this, 56% of
stroke patients have not felt safe to attend scheduled appointments. This is likely due to
fear of becoming infected with COVID-19, especially considering that stroke patients are at
higher risk [16].

The COVID-19 pandemic has created a need for social distancing and a new paradigm
of hospital avoidance due to the fear of infection. It was noted by [12] that telerehabilitation
is an effective and well-accepted method for providing access to therapy, though it was
considered that this requires family members and care givers to be given additional training.
Virtual reality (VR) technologies and existing computer game systems such as the Nintendo
Wii could be used to supplement rehabilitation [17], though it was noted that most home-
based exercises require oversight from a physiotherapist. It is clear from the literature that
there is a need for Class 2 rehabilitation robotics in the current climate of social distancing.

1.1. MyPAM Rehabilitation Robot

MyPAM, shown by Figure 1, is a low-cost planar robot designed for upper limb
rehabilitation of stroke patients in the home. The robot workspace exists in the x-y plane,
with gravity acting in the z-plane. The robot is a 2 DoF powered arm, which assists the
patient to reach targets presented to them on a computer screen. It is important to monitor
patient progress during the course of rehabilitation to ensure that the recovery program
is appropriate. Tracking patient progress through a course of tele-rehabilitation requires
continuous logging of the robot position data during exercise and periodic testing with no
robotic assistance. These test data must be compared with previous test attempts and an
ideal baseline, which requires a good understanding of the dynamics of the robot when
connected to a human arm.

Joint 0 is driven using a MAXON RE40 DC motor and has gear reduction of 40:1,
composed of a planetary gear set attached to the motor with a gear reduction of 15:1
driving a spur gear pair with a gear reduction of 8:3. Joint 1 is driven using a MAXON
DCX32L 24V DC motor and has a gear reduction of 70:1, composed of a planetary gear
set attached to the motor with a gear reduction of 35:1 driving a bevel gear pair with a
gear reduction of 2:1. The motors are powered using bespoke motor control boards, which
handle current protection and disconnect the motors from power when the motor demand
is 0V. Disconnecting the motors in this way prevents the braking effect caused by back EMF
and allows the back-drivability of the robot, which is necessary for rehabilitation robotics.
Joint position feedback is provided by quadrature encoders. MyPAM is controlled using a
National Instruments MyRIO programmed using LabVIEW.

Whilst most upper limb rehabilitation robots use an admittance control or an impedance
control approach, the high cost of force sensors required makes admittance control or
impedance control inappropriate for a low-cost Class 2 robot such as MyPAM. As such,
MyPAM uses position control as the control paradigm. A previous iteration of MyPAM
(known as HCARR [5]) using a similar position control approach was tested in a clinical
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trial. In this trial, seventeen participants used the HCAAR for eight weeks, and statistically
significant improvements were observed in kinematic and clinical outcomes.

Figure 1. MyPAM upper limb rehabilitation robot.

1.2. Dynamic Modelling

The traditional approach to modelling involves forming dynamic equations (equations
of motion), typically using Newtonian or Lagrangian formulations [18]. This becomes
cumbersome and error prone as more components and more degrees of freedom are
modelled. There has been a growing trend towards simulation-based dynamic modelling
due to the increased capability of physics-based simulation software and the increased
availability of computing power. Furthermore, efficient recursive algorithms have been
developed, increasing the performance of simulation software [19].

The model presented in this paper incorporates three domains (mechanical, electro-
mechanical, and control) and is constructed using a combination of software packages
from MATLAB. The mechanical components were modelled using SimScape Multibody,
which allows three-dimensional dynamic modelling and simulation of mechanical systems.
The motors in each of the powered joints of MyPAM were modelled using SimScape, which
allows modelling and simulation of electrical and electro-mechanical systems. Simulink
and MATLAB were used to apply control to the model. SimScape and SimScape Multibody
utilise a physical network approach, whereby block connections communicate information
about power [20] and are presented within the Simulink environment. The SimScape
Multibody MultiPhysics library was used to provide an interface between SimScape and
SimScape Multibody, such that the motor models may be used to drive the joints.

1.3. Human Arm Proxy

A human arm proxy capable of replicating the seven degrees of freedom of a human
arm was used for this work. The human arm proxy was previously developed for the vali-
dation of a different upper limb rehabilitation robot [21]. The human arm proxy emulates
posterior/anterior translation and superior/inferior translation at the shoulder using a
flexible steel rod secured at a distance away from the shoulder joint. Extension/flexion of
the upper arm is achieved using a rotational joint at the shoulder. Abduction/adduction
is achieved using hinge at the shoulder. Extension/flexion of the lower arm is achieved
by a hinge at the elbow, with the addition of a spring contributing to the stiffness of the
elbow joint. External/internal rotation and pronation/supination are achieved with rota-
tional joints, with stiffness of these rotations facilitated by the addition of friction clutches.
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The human arm proxy is shown by Figure 2, with four of the seven degrees of freedom
illustrated in the front view and the remaining three degrees of freedom shown in the
lateral view.

Figure 2. The 7 degrees of freedom of the human arm proxy.

1.4. Aim

The aim of this study is to create a multi-domain dynamic model capable of character-
ising movement to better understand patient progress.

2. Computational Modelling
2.1. Computational Modelling and Simulation—SimScape Multibody and the Mechanical Domain

The mechanical components of MyPAM were identified and replicated in SimScape
Multibody to create a three-dimensional dynamic model in the mechanical domain. Joint
0 was constrained to rotate about the global origin. Similarly, a 3D dynamic model was
created for the human arm proxy. The shoulder of the human arm proxy was constrained
to rotate about an appropriate point in the global workspace, and the hand was connected
to the MyPAM model with a 6-DoF rotational joint. The modelling procedure for each
model followed the workflow:

1. Define the global reference point, coordinate system, and simulation settings by
placing the world frame block in parallel with the solver configuration block and the
mechanism configuration block;

2. In turn, place and configure a solid body block for a component or place and configure
a joint;

3. Connect the block input/output ports, ensuring that rigid body transforms are used
where appropriate to translate or rotate frames.

All solid bodies were configured with dimensions and assigned a material density,
from which the inertia and mass were automatically calculated. Coordinate frames were as-
signed at suitable locations for each solid body, which created the input/output connection
ports required for components and joints to be connected. Joints 0 and 1 of the MyPAM
model were not assigned internal mechanics (friction) because these were instead applied
to the motor model for each joint. The two joints were configured to receive a torque input,
which was provided by the motor model. All joints in the human arm proxy model were
configured with internal mechanics. Finally, Joint 1 and the end-effector of MyPAM were
configured to the output position in the global workspace, which was externally logged
to MATLAB as the output of each test. The SimScape Multibody model for the unloaded
MyPAM and the SimScape Multibody model for MyPAM connected to the human arm
proxy are shown by Figure 3.



Robotics 2021, 10, 134 5 of 18

(a) (b)

Figure 3. (a) SimScape Multibody model for the unloaded MyPAM. (b) SimScape Multibody model for MyPAM connected
to the human arm proxy.

2.2. Computational Modelling and Simulation—SimScape and the Electro-Mechanical Domain

A multi-domain motor model for each powered joint of MyPAM was created in
SimScape using a combination of electrical and mechanical blocks. For each powered
joint, the motor demand from the control model was provided to a controllable voltage
source block. The output of the controllable voltage source block was provided to a DC
motor block.

The DC motor block in each motor model was configured with the parameters defined
in the datasheet for each joint, which are shown by Table 1.

Table 1. The DC motor block parameters.

Parameter DC Motor Block (Joint 0) DC Motor Block (Joint 1)

Armature Resistance (Ohm) 0.299 0.331
Armature Inductance (mH) 0.082 0.103
Torque Constant (mNm/A) 30.2 27.3

No-load Current (A) 0.137 0.164
Nominal Voltage (V) 24 24
Rotor Inertia (gcm2) 142 72.8

The output of the motor was passed through a gear ratio block configured with the
correct gear ratio. A friction block was placed in parallel across the motor and gear blocks
to model the friction across the joint. The friction block in each motor model was configured
as the friction parameters found in a previous experiment, which are shown by Table 2.
Note that the breakaway friction velocity was set to the default value, which is close to
zero. Finally, a conversion block from the SimScape Multibody MultiPhysics library was
placed so that the torque output of the motor modelled in SimScape may be provided to
the relevant joint of MyPAM modelled in SimScape Multibody. The motor model is shown
by Figure 4.

Table 2. Friction parameters.

Parameter Joint 0 Joint 1

Breakaway Friction Torque (Nm) 0.25 0.29
Breakaway Friction Velocity (rad−1) 0.1 0.1

Coulomb Friction Torque (Nm) 0.18 0.23
Viscous Friction Torque (Nm/rad−1) 0.181 0.372

2.3. Computational Modelling and Simulation—MATLAB, Simulink, and the Control Domain

The control scheme was implemented in MATLAB and Simulink and followed the
block diagram shown by Figure 5.
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Figure 4. The SimScape motor model.

Figure 5. Control scheme block diagram.

A discretised minimum jerk trajectory between the start and end point of the reaching
movement was initially generated using MATLAB to produce a set of Cartesian position
vectors for the end-effector, which were used as an input to the whole Simulink model.
A MATLAB function block was used in Simulink to perform the inverse kinematics,
converting the Cartesian position vectors into joint position demand vectors used for
control. Joint position feedback from the MyPAM SimScape Multibody models was used
to evaluate the joint position error using standard Simulink mathematics blocks. Simulink
PID blocks were used to generate a motor control signal u (in Volts) for each joint using
the respective joint position errors. MyPAM uses PI position control only, as stated in
Section 1.1. In the unloaded case for both the robot and the simulation, the gains were
P = 1, I = 0.01. In the loaded case for both the robot and the simulation, the gains were
P = 1.5, I = 0.01.

3. Testing and Validation
Methodology

A series of tests was performed to validate the performance of the model against the
performance of MyPAM. The first pair of tests compared the performance of the MyPAM
model against the performance of the MyPAM in the unloaded condition, with no external
loading applied. In the first of these tests, a desired trajectory was applied only in the
x-direction, and in the second test, a desired trajectory was applied only in the y-direction.
The second pair of tests compared the performance of the MyPAM model against the
performance of the MyPAM in the loaded condition, with the human arm proxy model
connected. The same desired trajectories were applied only in the x-direction and only in
the y-direction for each test, respectively. A summary of the testing is provided by Table 3.

Figure 6 shows MyPAM with the human arm proxy and a simulation of the MyPAM
and human arm proxy models.
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Table 3. Model validation test summary.

Test MyPAM Loading Condition Trajectory Direction

1 Unloaded X-Direction
2 Unloaded Y-Direction
3 Loaded X-Direction
4 Loaded Y-Direction

(a) (b)

Figure 6. (a) MyPAM with the human arm proxy. (b) Simulated MyPAM with the human arm proxy.

4. Results
4.1. Unloaded MyPAM: Tests 1 and 2

The graph shown by Figure 7 shows the simulated response and the mean real
response of MyPAM when subjected to a minimum jerk trajectory in the x-direction,
with the mean x- and y-positions against time shown by Figure 8. It may be observed that
both responses show a characteristic curve, caused by the small demand of the motor at
Joint 0 and the large demand of the motor at Joint 1. The graph shown by Figure 9 shows
the simulated response and the real responses of MyPAM when subjected to a minimum
jerk trajectory in the x-direction, with the x- and y-positions across all repeats against time
shown by Figure 10.

Figure 7. Unloaded simulated MyPAM and average MyPAM x-direction trajectory response.
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Figure 8. Unloaded simulated MyPAM and average MyPAM x-direction trajectory response
against time.

Figure 9. Unloaded simulated MyPAM and MyPAM x-direction trajectory response.

The graph given by Figure 11 shows the simulated response and the mean real
response of MyPAM when subjected to a minimum jerk trajectory in the y-direction,
with the mean x- and y-positions against time shown by Figure 12. The graph given by
Figure 13 shows the simulated response and the real responses of MyPAM when subjected
to a minimum jerk trajectory in the y-direction, with the x- and y-positions across all repeats
against time shown by Figure 14.
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Figure 10. Unloaded simulated MyPAM and MyPAM x-direction trajectory response against time.

Figure 11. Unloaded simulated MyPAM and average MyPAM y-direction trajectory response.

4.2. Loaded MyPAM: Tests 3 and 4

The graph given by Figure 15 shows the simulated response and the mean real
response of MyPAM when subjected to an x-direction minimum jerk trajectory, with the
mean x- and y-positions against time shown by Figure 16. It may be observed that the
curved response in Figure 7 is present. The graph given by Figure 17 shows the simulated
response and the real responses of MyPAM when subjected to an x-direction minimum jerk
trajectory, with the x- and y-positions across all repeats against time shown by Figure 18.
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Figure 12. Unloaded simulated MyPAM and average MyPAM y-direction trajectory response
against time.

Figure 13. Unloaded simulated MyPAM and MyPAM y-direction trajectory response.

The graph given by Figure 19 shows the simulated response and the mean real re-
sponse of MyPAM when subjected to a y-direction minimum jerk trajectory, with the mean
x- and y-positions against time shown by Figure 20. The graph given by Figure 21 shows
the simulated response and the real responses of MyPAM when subjected to a y-direction
minimum jerk trajectory, with the x- and y-positions across all repeats against time shown
by Figure 22.
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Figure 14. Unloaded simulated MyPAM and MyPAM y-direction trajectory response against time.

Figure 15. Loaded simulated MyPAM and average MyPAM x-direction trajectory response.
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Figure 16. Loaded simulated MyPAM and average MyPAM x-direction trajectory response
against time.

Figure 17. Loaded simulated MyPAM and MyPAM x-direction trajectory response.
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Figure 18. Loaded simulated MyPAM and MyPAM x-direction trajectory response against time.

Figure 19. Loaded simulated MyPAM and average MyPAM y-direction trajectory response.
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Figure 20. Loaded simulated MyPAM and average MyPAM y-direction trajectory response
against time.

Figure 21. Loaded simulated MyPAM and MyPAM y-direction trajectory response.
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Figure 22. Loaded simulated MyPAM and MyPAM y-direction trajectory response against time.

5. Discussion

In both the unloaded and loaded cases, the x-direction trajectory tracking shown by
Figures 7 and 15 (Tests 1 and 3) is much smoother than the y-direction trajectory tracking
shown by Figures 11 and 19 (Tests 2 and 4) for both the simulated response and the robot
response. This is because in this area of the robot workspace, x-direction movement is
achieved mainly by rotation of Joint 1, with very little movement required by Joint 0.
As expected, the effects of inertia are less pronounced when the majority of the movement
occurs at Joint 1 because the majority of the mass of the robot is located between Joint 0
and Joint 1. Similarly, the y-direction trajectory tracking was poorer because most of the
movement is achieved moving Joint 0, where the effects of inertia are more pronounced.

In the unloaded case, the x-direction trajectory tracking (Test 1), seen in Figure 8,
shows good x-position agreement between the simulated response and the robot response,
with both closely following the trajectory demand. It should be noted, however, that the
robot response shows a small amount of overshoot that the simulated response does not
show. There is a similar good x-position agreement between the simulated response and
the robot response in the loaded case (Test 3) seen in Figure 16, though there is a greater
difference between the robot response and the simulated response than is present in the
unloaded case. This is likely caused by imperfect modelling of the human arm proxy.
The human arm proxy has a greater number of joints than MyPAM, making it considerably
more difficult to correctly account for the effects of friction.

The y-position agreement between the robot response and the simulated response
for the unloaded x-direction trajectory tracking (Test 1) shown by Figure 8 is satisfactory
since both lie within the 10 mm dead-zone allowed between the position of the end-effector
and the target, though it is noted that the robot response shows greater overshoot and
steady-state error than the simulated response. This may be accounted for by the absence of
backlash modelling in the MyPAM model. There is a greater y-position agreement between
the robot response and the simulated response for the loaded x-direction trajectory tracking
(Test 3) shown by Figure 16, though the simulated response shows a small overshoot at
around 1 s that the robot does not. This is again likely caused by imperfect modelling of
friction in the human arm proxy, which added less damping to the simulated response
than the human arm proxy added to the robot response.

In the unloaded case, the y-direction trajectory tracking (Test 2), seen in Figure 11,
shows poorer x-position agreement between the simulated response and the robot response
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than may be observed in the response to the x-direction trajectory (Test 1). This is likely
due to the lack of backlash modelling, which is relatively large at Joint 1. The effect of
backlash is pronounced in the robot response because tracking a y-direction trajectory in
this area of the robot workspace requires small movements of Joint 1 where the backlash
to the x-position demand ratio is high. Despite this, it was observed that the steady-state
response in the x-position, seen in Figure 12, is closely matched between the robot response
and the simulated response. In the loaded case, the x-position agreement between the
simulated response and the robot response while tracking the y-direction trajectory (Test 4),
seen in Figure 20, is poorer than was observed in the unloaded case. This is again likely
caused by imperfect modelling of friction in the joints of the human arm proxy model.

In the unloaded case, the y-direction trajectory tracking (Test 2), seen in Figure 11,
shows reasonable y-position agreement between the simulated response and the robot
response, though it was observed that the model tracks the trajectory demand better
than the robot. This likely occurred due to the backlash at Joint 1, which caused greater
error in the x-position with corresponding inertial effects on the robot. The loaded case
(Test 4) shows a better y-position agreement between the simulated response and the
robot response, seen in Figure 19, due to the damping effects of the friction in the human
arm proxy.

It has been noted that SimScape Multibody was poor at modelling instability. This
became apparent when attempting to tune the PID gains for the motor controllers using
the Ziegler–Nichols method on the unloaded MyPAM model, where it was not possible
to introduce instability even with an extremely large derivative gain. Indeed, the model
response with large PID gains followed the trajectory perfectly. This means that the PID
tuning strategy required a balance of rough tuning with the models to identify sensible
gains, followed by finer tuning and validation on the robot. The set of software cannot be
relied upon for tuning the control system.

SimScape Multibody does not provide a function for modelling backlash. This was a
problem because the backlash in Joint 1 of MyPAM is relatively large. It would be preferred
to model the backlash because it has a significant effect on the dynamics, particularly in
circumstances where Joint 0 must make frequent changes in direction to track the trajectory.
The effects of the backlash on MyPAM can be clearly seen by the jagged motion of the real
MyPAM in Figure 10. In the same figure, the jagged motion, which would be caused by
the effects of the backlash, is absent from the response of the simulated MyPAM, which
instead shows a smoother response.

The agreement between the robot response and the model response is acceptable in
the primary direction of travel in all cases (i.e., for motion primarily in the x-direction,
there is good agreement in the x-position against time). The agreement between the robot
response and the model response perpendicular to the primary direction of travel is less
good, though it is considered acceptable because this particular region of the workspace
was selected for testing as it is where the robot has the most difficulty. It is apparent that
the performance of the model more closely matches the performance of the robot when
loaded than when unloaded, which is a useful outcome from a rehabilitation perspective
since the main purpose of the model is to provide a baseline against which patient data
may be compared.

6. Conclusions

The combination of MATLAB, SimScape, and SimScape Multibody provides an appro-
priate tool for multi-domain modelling of MyPAM. While the response of the simulation is
closer to the response of the robot in the loaded case than in the unloaded case, the model
has sufficient accuracy to allow the dynamics of the robot to be accounted for when
analysing patient movement data. Importantly, it can be seen that the shape and direction
of the response curves produced by the models adequately match the shape and direction
of the response curves produced by MyPAM. Modelling the robot using this combination
of software allowed the creation of a model with a greater deal of both fidelity and com-
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plexity than traditional mathematical modelling alone would allow, though it was noted
that the absence of backlash from the model is a limitation. The failure of the models to
produce instability in response to a large control input means that this set of software is
not appropriate for tuning the control system.
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