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Discontinuous Resistance Change and Domain
Wall Scattering in Patterned NiFe

Wires With a Nanoconstriction
S. Lepadatu and Y. B. Xu

Abstract—A nonlinear current-voltage ( – ) characteristic
was observed in patterned NiFe wires with a central “bow-tie”
point contact constriction. By passing a dc current through the
wire, a sharp resistance drop was obtained for current densities in
the range of 1.1–1.4 107 A/cm2. This is attributed to current-in-
duced domain wall drag, resulting in displacement of a domain
wall away from the constriction. A maximum current-induced re-
sistance change of 0.079% was obtained for a 100-nm constriction,
which is comparable with the magnetoresistance due to domain
wall scattering in NiFe.

Index Terms—Domain wall movement, domain wall scattering,
magnetoresistance, nanoconstriction.

I. INTRODUCTION

R
ESEARCH into spin electronics devices has mainly fo-

cused on two methods of switching the magnetic config-

uration, generating a magnetic field by use of an external cur-

rent line or by passing a current through the device. There are

several drawbacks associated with the use of external magnetic

fields, the most important being crosstalk and high power con-

sumption. This has generated growing interest in the use of cur-

rent-switched magnetic devices. Following theoretical predic-

tions by Slonczewski [1] and Berger [2], magnetization reversal

has been observed in multilayered devices [3]. A spin-polarized

current is passed perpendicular to two magnetic thin films sep-

arated by a metallic spacer, resulting in a rotation of the magne-

tization of the free layer. This was explained by a spin-transfer

torque mechanism [3]. Another method of switching the mag-

netic configuration was demonstrated recently [4], where the

current-induced domain wall motion was used to unpin a do-

main wall from a constriction in a spin-valve structure. This

effect was predicted theoretically by Berger [5]. In ferromag-

netic metals, the interaction between itinerant electrons and a

domain wall can give rise to domain wall motion due to the

s-d exchange torque exerted by the current carrying electrons

on the domain wall magnetic configuration. Gan et al. [6] have

demonstrated this effect in NiFe thin films by using magnetic

force microscopy (MFM) imaging to show the displacement of

Bloch walls when dc current pulses are applied. It was found
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that current densities of the order A/cm are required to

displace a domain wall and its motion is always in the direction

of the current carriers. In this paper, we report the observation

of a nonlinear – characteristic in patterned NiFe wires with a

central nanoscale constriction. This current-induced change in

resistance is shown to be attributable, in both sign and magni-

tude, to the domain wall resistivity associated with current-in-

duced domain wall motion.

II. SAMPLE FABRICATION AND MEASUREMENTS

The devices were fabricated on Si(100) using e-beam lithog-

raphy and liftoff technique. Polymethylmethacrylate (PMMA)

was spin coated at a speed of 2000 r/min and baked for 5 min

on a hot plate at 150 C. Using electron beam lithography (FEI

Sirion), a set of straight wires and necked wires were defined

on the same substrate with the length and the width fixed at

400 and 1 m, respectively. For the necked wires, a constriction

was defined halfway along the wire, forming “bow-tie” point

contacts of nominal widths 100, 200, and 300 nm, respectively.

Following thermal evaporation of Ni Fe , 30 nm thick, and

an Au capping layer, 2 nm thick, at a pressure of mBar,

ultrasonic assisted liftoff in acetone was used to obtain the sam-

ples. A second level of lithography was used, following PMMA

spin coating and baking as for the first level, to define the elec-

trical measurement pads. Thermal evaporation was used to de-

posit 150-nm Al at a pressure of mBar followed again by

ultrasonic assisted liftoff. A sample with a 100-nm constriction

is shown in Fig. 1 together with the measurement pads. A stan-

dard four-point dc measurement method was used by bonding

with Al wires to the pads, with the voltage measurement pads

4 m apart, centered on the constriction. The applied current

was in a range of about 1.5 mA with a 10- A step. The –

measurements were performed at zero applied magnetic field

after reversal from saturation in the transverse configuration. All

the measurements were carried out at room temperature.

III. RESULTS AND DISCUSSION

Fig. 2(a)–(d) shows, respectively, the resistance versus the

current for four different samples: the straight wire, and the

wires with 100-, 200-, and 300-nm constriction width. For the

straight wire, the resistance does not change with applied cur-

rent, as expected. For the necked wires, however, a sharp drop

in resistance is observed as the current exceeds a critical value.

By comparing the areas at the constriction for the 100-, 200-,

and 300-nm point contacts with their switching currents—460,
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Fig. 1. SEM images of the sample with 100-nm constriction width showing
(a) measurement pads geometry and (b) junction area geometry.

Fig. 2. Resistance versus applied current plots for the (a) straight wire and the
necked wires with constriction width of (b) 100 nm, (c) 200 nm, and (d) 300
nm.

610, and 930 A, respectively—it is found that the current den-

sity at the constriction required to change the resistance is in

the range of 1.1–1.39 A/cm for all the necked wires. The

percentage changes in resistance, calculated with respect to the

higher resistance state, show a decrease with increasing point

contact width, 0.079%, 0.042%, and 0.024% for the 100-, 200-,

and 300-nm point contacts, respectively.

Extensive micromagnetic simulations on similar necked

wires [7] have shown the presence of a domain wall at the

constriction, which was also demonstrated experimentally [4].

We have also performed extensive micromagnetic simulations

on the geometry of our samples, and these have revealed the

formation of a 180 domain wall at the narrowest part of

the constriction at zero applied magnetic field—accessible

reversibly from saturation—as shown in Fig. 3. The rotation

of magnetization occurs in plane, as for a Néel wall, since the

thickness of the ferromagnetic layer prevents any Bloch walls

Fig. 3. Micromagnetic simulation for the sample with 100-nm constriction
width at zero applied magnetic field, after reversal from saturation in the
transverse geometry.

from forming. It is well known that domain walls contribute an

additional magnetoresistance, called domain wall scattering,

in ferromagnetic materials. This subject is still an open area of

research with both positive contributions of domain walls to

resistance [8] and negative contributions [9] reported. García

et al. [10] have also shown that both negative and positive

magnetoresistance may be obtained in an electrodeposited

Ni nanocontact, dependent on the combination of applied

current and magnetic fields, which was discussed in terms

of movement of domain walls in the contact region. Several

theoretical models have been proposed to account for positive

contributions [11] and negative contributions [12]. Of particular

interest is the model proposed by Levy and Zhang [11], which

suggests that positive contributions of domain walls are due

to spin-dependent impurity scattering of conduction electrons

at the domain wall. By comparing the percentage changes

of resistance for the 100-, 200-, and 300-nm point contacts,

respectively 0.079%, 0.042%, and 0.024%, the change in resis-

tance is seen to decrease for larger point contact widths. As the

point contact width increases, the density of the domain wall

at the constriction decreases, resulting in smaller contributions

to resistance due to domain wall scattering. We have found in

a previous publication [8] a positive domain wall resistance of

around 0.03% in a 30-nm-thick Ni Fe submicron cross. The

current-induced resistance changes observed here are in excel-

lent agreement with the magnetoresistance of the domain wall

scattering in both sign and magnitude. Thus, we suggest that

the drop in resistance, as shown in Fig. 2, is due to the removal

of a domain wall from the constriction by current-induced

domain wall motion.

Three mechanisms have been proposed for current-induced

domain wall motion [6]. The first is known as the hydromagnetic

domain wall drag, which is based on the Hall effect. The direc-

tion of domain wall displacement is dependent on the anoma-

lous Hall coefficient and the direction of the applied current.

For Ni Fe at room temperature, the anomalous Hall coeffi-

cient assumes a positive value resulting in domain wall displace-

ment in the same direction as that of the current. This effect is

strongly dependent on the thickness of the material, and Gan et

al. [6] have shown that it becomes the dominant effect respon-

sible for domain wall drag, in NiFe samples with a thickness

greater than 1 m. This reduces to zero for very thin samples,

and its effect is negligible in our sample with a thickness of 30

nm. The second mechanism is due to the current-induced mag-

netic field, which runs in closed loops perpendicular to the direc-

tion of current flow, studied by Hung and Berger for NiFe thin

films [5]. They have shown that this mechanism is not present

in films with a thickness smaller than 35 nm. The third mech-

anism, predicted theoretically by Berger [5], is due to the ex-
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change interaction between 3d electrons in the material and 4s

electrons in the conduction band. A spin-polarized current will

exert a torque on the electrons in the domain wall, effectively

resulting in a displacement of the domain wall, which is in the

same direction as the current flow and its effect is independent

of sample thickness. Experimental investigations of this effect

[5], carried by applying current pulses to thin film samples and

observing the motion of domain walls by Kerr microscopy, have

shown that the current density required to move a domain wall

is of the order A/cm , which is in excellent agreement with

our results. For our samples, it was not necessary to apply cur-

rent pulses, as the required current density can be reached by ap-

plying dc currents without heating of the wires, due to the small

cross-sectional area at the constriction. By varying the width of

the constriction, we demonstrate clearly that a critical current

density of 1.1–1.4 A/cm is needed to move the domain

wall in NiFe wires.

A nonlinear – has been reported first in ferrimagnetic

nanocontacts of Fe O , and crystals of La Sr MnO

[13]. The resistance was found to drop gradually as the current

exceeds a critical value, which was discussed in terms of

domain wall movement due to spin pressure, resulting in a

“magnetic balloon effect.” For our samples, the resistance

drops sharply due to the confined domain wall being com-

pletely removed from the constriction at the critical current

density. While the resistance change observed here is much

smaller than that in Fe O [13], the critical current density

needed to move the domain wall in NiFe wires is two orders

of magnitude smaller. These distinct differences may be due to

different materials studied, different contact areas, and possibly

different approaches. The ferrimagnetic magnetite crystals [13]

were brought together by means of a piezoelectric device to

form a nanocontact of 1 nm in area, which allows electrical

measurements to be made. By precisely defining the point

contact width and device geometry using e-beam lithography,

we have determined the critical current density and found

a discrete resistance change comparable with domain wall

magnetoresistance. In a recent experiment on NiFe rings with

a nanoconstriction [14], an applied magnetic field was used to

pin and unpin domain walls from the constriction. The observed

negative contribution to magnetoresistance was attributed to

anisotropic magnetoresistance (AMR). However, in our experi-

ments, we observed a positive contribution to resistance without

the use of magnetic fields. This approach has the advantage of

canceling any additional contributions, such as AMR and Hall

effect contributions, which can lead to misinterpreted domain

wall scattering in domain wall magnetoresistance studies.

IV. CONCLUSION

In summary, we have fabricated using advanced e-beam

lithography NiFe wires with a “bow-tie” nanoscale constriction

and have shown for the first time a discontinuous current-in-

duced resistance change in patterned single-layer ferromagnetic

wires. A sharp drop in resistance of up to 0.079% for a 100-nm

constriction was observed, and the critical current density was

determined to be 1.1–1.4 A/cm , attributed to current-in-

duced domain wall movement via s-d exchange interaction.

This may serve as a basis for nanomagnetic devices such as

magnetic logic gates or magnetic random access memory,

where the applied current should be able to switch the magnetic

configuration locally.
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