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Abstract—Predictive functional control (PFC) is a cheap and
simplified model predictive controller, which competes with PID
in price and performance. While the tuning process in PFC
for simple dynamics is well established and straightforward,
it becomes far more ambiguous and often less effective for
processes exhibiting challenging behaviour, such as poor damp-
ing, instability and/or non-minimum phase characteristics. In
this paper, we present a relative PFC algorithm that, when
implemented with pre-stabilised prediction dynamics if needed,
simplifies performance tuning to merely adjusting one parameter.
Furthermore, it provides far superior closed-loop control in
practical scenarios, where the conventional PFC and PID fail
to perform, as demonstrated with three simulation case studies.

Index Terms—predictive functional control, pre-stabilisation,
tuning

I. INTRODUCTION

Predictive functional control (PFC) is a simplified and cost-

effective model based predictive controller that competes with

PID in cost and performance [1]. Being model based, it inherits

most attributes from the mainstream MPC; properties such

as dead-times and constraints handling are straightforward to

implement unlike PID which requires additional complexity

such as a Smith predictor [2] and anti-windup techniques [3].

Moreover, controller tuning in PFC distinctively relates to a

physical characteristic (i.e. system rise time) which makes

the tuning process comparatively meaningful. Consequently

numerous successful PFC applications have been reported in

the literature [4], [5].

For a well damped open-loop process, the conventional

PFC operates by enforcing a match, the so-called coincidence,

between the predicted and the desired response at a future

sample by assuming constant control moves, where the desired

response represents an ideal exponential trajectory initiated on

the current output. By doing so, PFC comfortably achieves any

desirable performance for stable first-order systems provided

the coincidence occurs exactly one sample ahead [5], [6].

Similarly, parameter tuning guidelines for overdamped higher

order systems are well established [7], although 100% target

tracking is usually not achieved due to the initial lag in the

system dynamics.

However, controller tuning becomes significantly less

straightforward when difficult open-loop dynamics are present;

for example processes with poor damping, instability and/or

non-minimum phase characteristics have been particularly

challenging to control [7], [8]. Clearly it is counter-intuitive

to match an ideal exponential trajectory with such exotic

behaviour at merely one future sample and expect a well-

behaved response, although the overall closed-loop may still

work due to the receding horizon. Nevertheless, such a design

is highly unreliable and prone to failure, especially with

uncertainties and/or tight actuation limits.

The primary reason for poor performance in challenging

applications is the use of a constant input within the predic-

tions which clearly lacks enough flexibility to handle such

dynamics. An obvious solution in such cases is to use a

more flexible parametrisation of the input function (see for

instance [9]–[11]); nevertheless, these modifications deal with

one aspect at a time, for instance, using Laguerre function

for tuning improvement [9] and input shaping/pre-stabilisation

to handle difficult dynamics [10], [11]. Furthermore, a recent

study has pointed out the anomaly in prediction mechanism

for higher order dynamics wherein the initialisation of target

trajectory on the current process output embeds unnecessary

delay into the future target values causing poorer tuning

efficacy [12].

In this study, we tackle this discrepancy in two stages.

Firstly, the concept of pre-stabilisation is utilised, if necessary,

to transform difficult open-loop dynamics into a well-damped

closed-loop prediction behaviour [10], [13], [14]. Secondly, a

relative PFC algorithm is presented which simplifies controller

tuning to simply selecting one parameter that speeds up or

slows down the closed-loop performance as compared to a

suitable benchmark response. Simulation case studies highlight

the superior efficacy and performance of the proposal.

The rest of the paper is organised as follows: Section II

briefly reviews the technicalities associated with conventional

PFC, before moving on to the concept of pre-stabilised predic-

tion dynamics in Section III. Next, the proposed relative PFC

algorithm is presented in Section IV, followed by the tuning

and closed-loop performance evaluation with computer simu-

lations discussed in Section V. Finally, the paper concludes in

Section VI highlighting the main contributions of the study.



II. REVIEW OF PREDICTIVE FUNCTIONAL CONTROL

This section briefly reviews the basic characteristics of a

conventional PFC algorithm. Consider a nth order transfer

function model a(z)ŷk = b(z)uk of a well-damped open-

loop process, which is used recursively to obtain i−step ahead

predictions as follows [6]:

yk+i|k = Hu−→k +Pu←−k−1 +Q ŷ
←−

k + dk i = 1, 2, . . . (1)

where the vectors H, P and Q are derived from the model

parameters a(z) and b(z), with the associated input and output

vectors defined accordingly:
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The term dk = yk − ŷk is added to remove prediction bias

(yk being the true process output and ŷk the model output)

and ensure offset free tracking. An ideal first order reference,

initiated on the current yk, is also defined:

rk+i = R− (R− yk)ρ
i i = 1, 2, . . . (3)

where R is the set-point and ρ is the target pole (the primary

tuning parameter), defined as ρ = e−Ts/τ with Ts and τ being

the sampling time and the target time constant respectively.

At each sample k, the current control uk is used to enforce a

match between the predicted yk and rk at a coincidence point

ny samples ahead. The prediction is based on an assumption

of a constant future control signal uk = uk+1 = · · · = uk+ny ,

but the decision is re-evaluated and updated at every sampling

instant, thus forming a feedback mechanism. The conventional

PFC control law is obtained using (1)-(3):

uk =
1

h
[R− (R− yk)ρ

ny − (Pu←−k−1 +Q ŷ
←−

k + dk)] (4)

where h =
∑ny

j=1
H(j) and H(j) is the jth element of H and

it is re-iterated that the conventional PFC tuning parameters

are ρ, ny .

Remark 1. With the input prediction being constant, it is

straightforward to implement simple saturation for a system-

atic handling of input constraints. Thus before applying to the

plant, uk is verified such that [6]:

|uk| > U ⇒ |uk| = U, |∆uk| > DU ⇒ |∆uk| = DU (5)

where ∆uk = uk − uk−1 represents the sample wise rate of

actuation. State and output constraints can also be handled

relatively simply (iff feasible).

III. PRE-STABILISED PREDICTION DYNAMICS

While the standard PFC works sufficiently well with simple

dynamic problems, it performs poorly in challenging appli-

cations [7] and indeed appropriate selection of (ρ, ny) may

no longer be systematic or effective. The problem with dif-

ficult open-loop predictions obtained from unstable or poorly

G(z)+-

vk uk yk

C(z)

^ ^

Fig. 1. Pre-stabilisation loop structure.

damped dynamics is the potential loss of numerical robust-

ness due to large inconsistency between sample to sample

computation of prediction matrices. The resulting predictions

are, therefore, highly unreliable and could eventually lead

to ill-posed decision making and loss of feasibility even if

the unconstrained performance appears satisfactory [6]. The

accepted practice in the mainstream MPC literature in such

cases is to form closed-loop predictions using some form of

classical feedback compensation [15], [16]. Based on a similar

approach, a pre-stabilised PFC algorithm has been developed

which demonstrates manifold performance improvement in

comparison to the conventional PFC [10], [13], [14]. This

concept is summarised below and will be utilised by the

proposed Relative PFC algorithm presented in the following

section.

A. Concept of Pre-stabilisation

Consider a difficult open-loop process modelled as a nth

order strictly proper transfer function G(z) given as:

G(z) =
ŷk

ûk
=

b(z)

a(z)
(6)

where a(z) = 1 + a1z
−1 + · · · + anz

−n, b(z) = b1z
−1 +

· · · + bnz
−n and a(z) has factors including unstable and/or

complex poles. G(z) is compensated using a mth order bi-

proper feedback controller C(z), as shown in Fig. 1. Note

that:

C(z) =
q(z)

p(z)
(7)

where p(z) = 1 + p1z
−1 + · · · + pmz−m and , q(z) = q0 +

q1z
−1 + · · ·+ qmz−m. The resulting pre-stabilised prediction

model is then:

Gs(z) =
ŷk

vk
=

p(z)b(z)

p(z)a(z) + q(z)b(z)
=

β(z)

α(z)
(8)

where vk is now the decision variable computed via an

outer PFC loop. The actual process input uk is related to vk
indirectly via the model input ûk (uk = ûk only in the absence

of uncertainties) as detailed in [10]. Here, we will use the final

result:

uk = B0vk + fk; fk = −Au←−k−1 +Bv←−k−1 +Ed←−k (9)

where vectors A, B and E are obtained from the parameters

a(z), α(z), p(z) and q(z). Evidently, after pre-stabilisation,

the degree-of-freedom is reparametrised appropriately, given a



suitable inner controller, which can now work easily with the

difficult dynamics.

Remark 2. The parametrisation of uk in (9) clearly makes the

simple saturation policy for constraint handling less straight-

forward to implement; nevertheless, the methods for constraint

validation in such cases are well documented (see for instance

[10], [13], [17]). Since the current work does not bring

any particular novelty in this regard, the available constraint

handling algorithm [10] will be utilised in the simulation

studies presented in the later section.

B. Design of pre-stabilising compensator

The reader is reminded of the core purpose of pre-

stabilisation, that is to transform the challenging open-loop

dynamics into something more manageable for PFC. This in-

cludes filtering out unwanted oscillations from poorly damped

systems and stabilising the open-loop unstable systems. There-

fore, any standard feedback compensator that does the job

without overly complicating the design is suitable. Neverthe-

less, it is recommended to start with the simple options such

as P(D) or lead compensation [18] which are sufficient for

a majority of first and second order difficult dynamics, and

only implement more sophisticated alternatives such as pole

placement [10] or pole cancellation [13] if the simpler choices

are ineffective.

IV. RELATIVE PFC ALGORITHM

Previous studies have highlighted the tuning deficiency of

PFC for processes with difficult open-loop dynamics where it

generally fails to meet the target performance [7], [19]. Clearly

parameter selection in such cases is far less intuitive, and there

is an obvious need for a more transparent mechanism that

simplifies the tuning procedure. This section presents a relative

PFC algorithm with simplified tuning as the core contribution,

wherein the closed-loop performance is tuned relative to a

suitable benchmark, rather than searching for ρ and ny on

absolute terms.

First it is noted that pre-stabilisation, if necessary, trans-

forms the open-loop prediction model into α(z)ŷk = β(z)vk
providing output predictions as follows:

yk+ny|k = Hv−→k +Pv←−k−1 +Q ŷ
←−

k + dk (10)

where H, P and Q are now determined from α(z) and β(z).
If one selects vk+i = vss, ∀i ≥ 0 where vss is the expected

steady-state input, the control law then obtained is the so-

called mean level (or open-loop) PFC [6], which mirrors

the open-loop transient performance along with offset free

tracking. For the pre-stabilised system Gs(z):

vss =
R− dk

Gs(1)
∵ yss = y(1) = R (11)

where Gs(1) is the steady-state system gain. In practice, it is

straightforward to achieve the mean-level PFC by simply se-

lecting a large enough horizon, preferably beyond the settling

time of the pre-stabilised step response. With target R and

vk+i = vss ∀i ≥ 0, the tracking error converges as follows:

ess(k + i) = R− (hvss +Pv←−k−1 +Q ŷ
←−

k + dk) (12)

which compares to the error convergence when an alternative

fixed input vk+i = vk ∀i ≥ 0 is used. In this case:

e(k + i) = R− (hvk +Pv←−k−1 +Q ŷ
←−

k + dk) (13)

Thus to obtain a faster convergence than the benchmark (12),

one has to select a vk correspondingly more active than vss.

Lemma 1 below formalises this concept.

Lemma 1. In the nominal state and zero initial conditions,

the choice vk = θvss for the target R provides an error

convergence which is γ times (12) such that:

γ =
Gs(1)− hθ

Gs(1)− h
(14)

Proof. With dk, v←−k−1 and ŷ
←−

k all zero, and vk = θvss the

initial errors are related as follows:

R− hθvss = γ(R− hvss)

using (11) then implies:

1−
hθ

Gs(1)
= γ

(

1−
h

Gs(1)

)

which simplifies to (14) after simple manipulations.

Lemma 2. For the chosen input activity θ and the error con-

vergence γ defined above, the Relative PFC (RPFC) control

law is given by:

vk = γvss +
1− γ

h

[

R−
(

Pv←−k−1 +Q ŷ
←−

k + dk

)]

(15)

Proof. Using Lemma 1 and equations (12)-(13), it is clear

that:

e(k + i) = γess(k + i), ∀i ≥ 0

or,

R− (hvk +Pv←−k−1 +Q ŷ
←−

k + dk) =

γ
[

R− (hvss +Pv←−k−1 +Q ŷ
←−

k + dk)
]

which simplifies to the control law (15).

Theorem 1. The closed-loop performance can be tuned with

the parameter θ via plant control uk given by (9).

Proof. Assuming zero initial conditions and no uncertainty, it

is clear from (9) that after pre-stabilisation the initial plant

control is uk = B0vk. If vk = θvss then uk = θ(B0vss) =
θuss. Hence, the initial uk will be θ times the one obtained

via mean-level PFC, and therefore will tune the closed-loop

performance accordingly.

Algorithm 1 discusses parameter selection for the desired

closed-loop performance.



Algorithm 1 Selecting parameter θ.

• 0 < θ < 1 reduces input activity resulting in a slower

closed-loop performance. For example, θ = 0.5 uses an

initial input half as active as the mean-level benchmark

to produce a relatively slower response.

• θ = 1 is equivalent to the mean-level (open-loop) tuning.

• θ > 1 increases input activity with a faster performance.

For example, θ = 2 uses an initial input twice as

aggressive as the mean-level benchmark to produce a

comparatively faster response.
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Fig. 2. Tuning efficacy of RPFC for open-loop G1 in nominal conditions.

Remark 3. It is advised not to select too large θ or the initial

input could be too aggressive to achieve practically. Generally

a commendable performance is attainable with θ up to 2-3,

given a satisfactory open-loop dynamic behaviour.

To sum up, the main benefit of the proposal is obvious: it

reduces performance tuning to simply one statement, that is

how fast or slow one wants the closed-loop system to respond.

Of course, a well-behaved (implicitly stable) prediction model

is necessary for implementation, which is achievable via pre-

stabilisation of difficult dynamics if required. This is unlike

the standard procedure generally implemented in PFC, which

requires tedious offline analysis of open-loop step response

overlaying multiple target trajectories to find the appropriate

(ρ, ny) pair [7]. A similar argument holds with PID for which

selecting parameters Kp, Ki and Kd is arguably less intuitive

than the proposed tuning algorithm discussed above.
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Fig. 3. Tuning efficacy of RPFC for pre-stabilised G2 in nominal conditions.

V. SIMULATION STUDIES

In this section, the tuning efficacy and closed-loop per-

formance of the proposal will be evaluated with three dif-

ficult open-loop systems. The process G1 exhibits slightly

underdamped but significantly non-minimum phase character-

istics [20], G2 is the representative second-order model of

thermoacoustic oscillations in mechanical engines [21], and

G3 represents a second-order unstable model of a continuous

stirred tank reactor [10]. These models are given as follows:

G1 =
−6.69z3 + 7.86z2 + 2.39z + 0.002

z4 − 1.23z3 + 0.54z2 − 0.006z
,

G2 =
0.19z + 0.18

z2 − 1.23z + 0.96
, and G3 =

2.102z + 0.401

z2 − 1.465z + 0.058

To highlight the benefits of the proposed RPFC algorithm,

the closed-loop performance will be evaluated in real world

scenarios against conventional PFC (CPFC), PID and pre-

stabilised conventional PFC (PCPFC) for G2 and G3 which

require pre-stabilisation as discussed in Section III.

A. Pre-stabilisation of difficult open-loop dynamics

Clearly the open-loop predictions obtained with G1 will

be convergent albiet with an initial lag due to non-minimum

phase characteristic, therefore can be used without pre-

compensation. On the other hand, both G2 (poorly damped)

and G3 (unstable) exhibit challenging behaviour that must be

pre-stabilised for a well-posed decision making with PFC.

A simple proportional compensator C2 = −1.88 sufficiently

filters out the unwanted oscillations in the open-loop step

response of G2, providing the pre-stabilised prediction model
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Fig. 4. Tuning efficacy of RPFC for pre-stabilised G3 in nominal conditions.

Gs,2 =
0.19z + 0.18

z2 − 1.58z + 0.61
with overdamped poles at z =

0.88, 0.70. For G3, a P(D) compensator fails to satisfactorily

stabilise the dynamics, therefore a pole placement controller

C3 =
0.303z − 0.012

z + 0.085
was designed ([10]) resulting in the pre-

compensated model Gs,3 =
2.102z2 + 0.580z + 0.034

z3 − 0.743z2 + 0.028z
and

stable poles at z = 0, 0.04, 0.7.

B. Analysis of tuning efficacy with RPFC

The tuning efficacy of the proposed RPFC algorithm for

the open-loop G1 and the pre-stabilised G2 and G3 has been

analysed in Figs. 2-4 respectively. It is clear that the parameter

θ is succesful in slowing down (with θ = 0.5) or speeding up

(with θ = 1.5, 2) the closed-loop response by correspondingly

changing the initial input as compared to the mean-level

benchmark (θ = 1). Clearly performance tuning with θ in

the proposal is far more straightforward and meaningful than

finding ρ and ny in the conventional PFC, or indeed Kp, Ki

and Kd in the standard PID algorithms even when presented

with difficult open-loop dynamic behaviour.

C. Comparison of closed-loop performance with constraints

and uncertainties

We compare and analyse the closed-loop performances for

G1, G2 and G3 as shown in Figs. 5-7. Notably, the proposed

RPFC in each case outperforms the conventional PFC, pre-

stabilised or not, and the PID controllers in the presence of

constraints and uncertainties. The key observations are:

• With θ = 2, the initial RPFC control input is slightly

less than 2vss due to the effect of constraints (except
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Fig. 5. Comparison of closed-loop performance for G1 subject to |∆uk| ≤
0.125 and 10% output disturbance introduced at 25th second between RPFC
(θ = 2), CPFC (ρ = 0.75, ny = 5) and PI (Kp = 0.0012, Ki = 0.0023).

for G3). Yet, the achieved closed-loop performance is

faster than every alternative, with smooth and quicker

disturbance rejection in each case, and especially for G3

in the presence of unmodelled dynamics.

• The CPFC for G1 although appears satisfactory albeit

with significantly slower transient performance, it fails

completely for both G2 and G3 with uncertainties. While

the pre-stabilised CPFC considerably improves perfor-

mance, it is still slower than RPFC with relatively slug-

gish disturbance rejection.

• The PI(D) controller, tuned using MATLAB’s robust PID

tuner [22], exhibits the poorest closed-loop performance,

clearly signifying the importance of using (pre-stabilsed)

prediction dynamics in the decision making.

To sum up, these examples have clearly highlighted the

benefits of RPFC in difficult applications where both the

conventional PFC and PID fail to perform.

VI. CONCLUSIONS

This paper has addressed the tuning deficiency of PFC,

especially associated with difficult open-loop dynamics, by

proposing a relative predictive functional control algorithm

that simplifies performance tuning to trivial selection of one

parameter that speeds up or slows down the transient response

as compared to an open-loop benchmark. This implementa-

tion implicitly assumes availability of a smooth and well-

damped prediction behaviour, which in turn necessitates pre-

conditioning of difficult open-loop systems, for instance, using
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Fig. 6. Comparison of closed-loop performance for G2 subject to |uk| ≤ 2.5
and 10% input disturbance introduced at 40th second between PRPFC (θ =

2), PCPFC/CPFC (ρ = 0.86, ny = 4) and PI (Kp = 0.028, Ki = 0.055).

classical feedback compensation. The techniques to do so

are, nonetheless, straightforward and trivial enough to be

implemented easily without expert intervention. The numerical

examples have clearly demonstrated the superiority of the

proposal in real world scenarios where the standard PID and

PFC algorithms have displayed a rather below par control

performance. Although these results are promising, as a future

work, the authors plan to extend the scope of validation to re-

altime experiments in a range of difficult industrial processes.
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