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Abstract— A Pipe is a ubiquitous product in the industries that 
is used to convey liquids, gases, or solids suspended in a liquid, e.g., 
a slurry from one location to another. Both internal and external 
cracking can result in structural failure of the industrial piping 
system and possibly decrease the service life of the equipment. The 
chaos and complexity associated with the uncertain behavior 
inherent in pipeline systems lead to difficulty in detection and 
localisation of leaks in real-time. The timely detection of leakage is 
important in order to reduce the loss rate and serious envi-
ronmental consequences. To address this issue, in this paper an 
auto regressive with exogenous input (ARX)-Laguerre fuzzy 
proportional -derivative (PD) observation system is pro-posed to 
detect and estimate a leak in pipelines. In this work, the ARX-
Laguerre model has been used to generate better performance in 
the presence of uncertainty. According to the results, the proposed 
technique can detect leaks accurately and effectively.  

Keywords— Autoregressive with eXogenous Input Laguerre 
(ARX-Laguerre); Fuzzy; Pipeline; PD; Controller; PD observer. 

I. INTRODUCTION  
Pipelines are the safest way for transporting crude oil, 

petroleum products, and natural gas over long distances. 
Pipelines deliver clear benefits in supporting economic growth 
as they provide a cheaper means to transport. However, oil and 
gas pipelines may be significantly damaged due to internal and 
external defects (e.g., corrosion, dents, gouges, weld defects). 
Construction and operational defects of pipes can pose major 
risks to supplies. Pipeline safety is possible using inspection and 

monitoring techniques which can be either internal or external 
in nature. 

Over the last few years, a number of technologies have been 
reported to monitor pipelines such as acoustic emission  [1-4], 
fibre optic sensor [5, 6], digital signal processing and mass-
volume balance  [7]. In  [8, 9] an approach for the detection and 
location of leaks in a pipeline using only measurements at the 
extremes of the pipe is suggested. In [10] the technique of 
acoustic pulse reflectometry is proposed for the detection of 
leaks in pipes. In  [11]  the cepstrum method is used to analyse 
a series of different pipe networks, both with and without leaks. 
Fuzzy logic and artificial intelligence techniques have been 
used successfully in many real-world applications[12-17]. They 
have been used for leak detection in water networks as well as 
in the oil and gas industry. In  [18, 19] neural network method 
is used to fault pattern recognition of pipeline leakage. In [20] 
and [21] neural network method has been proposed for the 
purpose of detecting and localizing leakage in pipeline. In [12, 
22-24] neural network technique is used for detection of the gas 
leakage in pipeline. In [20] a fault detection model based on 
multi-layer neural network using data mining technique is used 
for pattern recognition in oil pipe networks [24-27]. 
Various researchers have used observational approaches for 
fault diagnosis in pipes that are based on different algorithms 
[28-30]. In [31], a nonlinear adaptive state observer approach is 
used for timely detection of leakage in pipelines. In [32] 
second-order sliding mode algorithm is used for estimating the 



position of the leak in a pipeline. In [33, 34] an exponentially 
convergent observer is used for detection of leakage in 
pipelines. 
This paper presents a new approach based on ARX-Laguerre 
fuzzy PD approach for detection of leakage in pipelines. First, 
in this study, the ARX-Laguerre technique is used for pipeline 
modeling. In the second step, the PD observer based on the 
ARX-Laguerre model is designed to improve leak estimation in 
the presence of uncertainties. The performance and reliability 
of the proposed technique is numerically assessed based on 
simulation results for a pipeline with a leakage. This paper is 
structured as follows: in the next section the fundamental 
equations which describe the flow through pipelines are given. 
Afterwards, the pipeline model equations based on the ARX-
Laguerre Technique are given. Then the proposed new 
technique based on ARX-Laguerre fuzzy PD observer is 
explained to detect and locate leaks in a pipe. Next, the 
simulation results are given. Finally, conclusions are provided. 

 

II. PIPELINE MODELING  
First, Here, we do not consider convective speed changes 

and compressibility effects in process lines (Γ). The mass flow 
rate (�), the flow in a pipe system (Φ), and the inlet pressure (℘�)  and outlet pressure (℘�) at pipeline are assumed to be 
computable. Furthermore, the area of cross section	(Å) is fixed 
along the pipe. The suggested pipeline architecture is illustrated 
in Figure 1. 

 
Figure 1. The suggested pipeline architecture 

The differential equation describing the dynamic behavior of 
a fluid in a duct is based on the mass, momentum and the 
conservation of energy. Newton's 2nd law of motion (� = ��), 
when implemented to a control volume generated the following 
momentum equation[35, 36], 

 
�ℋ�� + ���Å�Φ�� = 0 (1) 

in which � represents the speed of the wave inside a fluid 
filled elastic duct. The wave velocity depends on the elastic 
properties of the fluid and pipe. The pressure head (ℋ) and flow 
rate (Φ) change as functions of position and time, ℋ(�, �) and Φ(�, �), respectively, so that, � ∈ [0, Γ], where Γ represents the 
length of the duct. When the flow rate is small enough, you get 
the following equation of momentum, 

 �Φ�� + Å� ��� ℋ + ℑΦ�2ðÅ = 0 (2) 

 

Now we can create a model of the pipe applying (1) and (2). 
These equations need to be solved, however getting analytical 
solutions is not easy. Because of this, different methods need to 
be used to solve these equations like characteristics and finite 
difference approaches [37]. Here, the finite difference approach 
is implemented such that (1) and (2) are discretized to obtain a 
system of ordinary differential equations. The considered finite 
difference approach discretizes the whole pipe into � smaller 
sections[37, 38].  

The computational domain � ∈ [0, Γ] is divided up into three 
smaller domains	{��} ≔ {0, ����� , Γ}, so that ����� indicates the 
location of leak, see Figure 2. The leak flow rate can be 
measured by Φ���� = ��Å�����2��ℋ(����� , �), such that �� 
represents efflux coefficient, and Å����  the cross-sectional area 
along the leak path. The leak flow rate can be calculated by Φ���� = Λ�ℋ(����� , �) , in which Λ = ��Å�����2� . The 
behaviour of a dynamic pipeline network can be described by an 
ordinary differential equation system,  

 

Φ̇� = �Å� (ℋ� − ℋ�) − ℑΦ��2ðÅ  

ℋ̇���� = ���Å� (Φ� − Φ� − Λ�ℋ����) 

Φ̇� = �ÅΓ − � (ℋ� − ℋ�) − ℑΦ��2ðÅ  

(3) 

 

Suppose that both inlet and outlet pressures, ℋ�  and ℋ� , 
respectively, are known and have been defined using external 
means such as a pump. The pressure ℋ�	 and the inlet and outlet 
flow rate (Φ�  and Φ� , respectively) of the leakage point are 
considered to be variables. From the continuity equation we can 
write, 

 Φ� = Φ���� + Φ� (4) 

 

 
Figure 2. The suggested pipeline architecture 

III.  PIPELINE MODELING BASED ON THE ARX-LAGUERRE 
TECHNIQUE 

For many years pipeline play a huge role in oil and gas 
industries as they significantly reduce transport costs. Leakage 
inspection in transmission pipelines is crucially significant for 
safe operation. In general, there are various fault detection 
methods, each with different potentials, however the selection 
of proper leak detection technique is difficult. This is 



particularly important when they deal with various types of 
uncertainties of conditions. To deal with this problem we 
introduce a fuzzy ARX-Laguerre PD observer in Section 4. 
First, in this study, the ARX-Laguerre technique is used for 
pipeline modeling. In the second step, the PD observer based on 
the ARX-Laguerre model is designed to improve leak estimation 
in the presence of uncertainties. The proposed model-based 
ARX-Laguerre orthonormal method is represented by 
developing its coefficients associated to the flow input and flow 
output, Fourier coefficients, and Laguerre-based orthonormal 
function as follows [29]: ��(�) = ∑ ��.��∑ ℓ� ∗ ��(�)���� �. ��.��(�)��� +∑ ��.��∑ ℓ� ∗ ��(�)���� �. ��.��(�)���   

(5) 

in which ��(�), (��.�	���	��.�),  (�� , ��) (ℓ�, ℓ�),∗,	��(�), ��.��(�)  and ��.��(�)  represent the pipe outflow, Fourier 
coefficients, the order of the system, Laguerre orthonormal 
function, convolution product, pipe inflow, exhaust filter, and 
entrance filter, respectively. By expanding the ARX model on 
Laguerre orthonormal bases the following state-space model can 
be obtained, 

��(� + 1) = [��(�) + ����(�) + ��(�)�+���(�)]�(�) = (�)��(�) + ����(�)  (6) 

in which, �(�), �(�), �(�), ��(�)  represent the state 
vector, calculated output, control input, and sensor defect 
respectively. �, �� , ��	, ��as	well	as	�  	 represent matrices of 
coefficients. The flowchart of the proposed methodology is 
shown in Figure 3. 

 
Figure 3. The flowchart of the proposed methodology 

 

IV.   ARX-Laguerre Fuzzy PD OBSERVATION TECHNIQUE 
In this section the ARX-Laguerre fuzzy PD observation 

system is proposed to detect and estimate a leak in pipelines. 

A.  Modeling of Dynamic System by ARX-Laguerre  
Let us consider the linear ARX state space model with 

disturbances illustrated by following equation to formulate the 
dynamic fault detection problem, 

 ��(� + 1) = [�	�(�) + ���(�)]�(�) = (�)��(�) + ����(�)  (7) 

We define the ARX model on Laguerre base as follows [39, 40]:  

 

�(�) = ∑ �(�,�)�(�,�)(�)����� +∑ �(�,�)�(�,�)(�)�����   �(�) = [�(�,�)(�) �(�,�)(�)] �(�,�)(�) = �����, ��� ∗ �(�) �(�,�)(�) = ��� (�, ��) ∗ �(�) 
(8) 

in which �(�), �(�), �(�,�)		, (��, ��), 			�(�,�)(�),�(�,�)(�) and	(��� (�, ��), ��� (�, ��)) represent the pipe outflow, 
pipe inflow, Fourier coefficients, exhaust filter, entrance filter, 
and Laguerre orthonormal function, respectively. 

Using (8), the following state-space model can be obtained 
in the presence of failures of the sensor as well as disturbances, 

���(� + 1) = [���(�) + �����(�) + ��(�)� +���(�)]�(�) = (�)���(�) + ����(�)  (9) 

The fault of the sensor is calculated using the following 
formula,  ��(�) = ��(�) − �(�)��(�) = � ��(�,�)(�) − �(�,�)(�)��(�,�����)(�) − �(�,�)(�)� (10) 

such that 

 
��(�,�����)(�) ≠ �(�,�)(�) → ��(�) ≠ �(�) → ��(�) ≠ �(�) → ��(�) ≠ 0. (11) 

Pipe with fault can be recognized using (11). The fuzzy PD 
observation method using the ARX-Laguerre technique is used 
for diagnosing fault in pipe. 

B.  Fault Diagnosis 
In this study the ARX-Laguerre fuzzy PD observation 

system is proposed to identify sensor defects in pipes. We define 
the proposed technique by following formulas in the presence of 
failures of the sensor in the pipe, 

⎩⎪⎪⎨
⎪⎪⎧��(� + 1) = ���(�) + �����(�) + ���(�)� +���(�) + ���(�)��(�) = (��(�) − ���(�))���(� + 1) = ���(�) + ���(��(� + 1)+��(�) + ��(� − 1))��(� + 1) = (�)���(� + 1) + �����(�)

  (12) 

where ��(�) represents the state vector, ��(�) sensor defect 
and ��(�) the output of the system. In accordance with (12), in 



this paper, we particularly study three main cases and types of 
faults in pipe.  

In case �� ≠ 0, ���(�) ≠ ��(�) we have: (�(� + 1) − ��(� + 1) ≠ 0)&	(�(� + 1)− ��(� + 1)) ≠ 0	 ⟹ [���(� + 1) ���(� + 1)]�− ����,��� (� + 1) ����(� + 1)�� ≠ 0⟹ �(�,�)(�) − ��(�,����)(�) ≠ 0 

(13) 

Also, in case �� ≠ 0 as well as ���(�) = ��(�), we have: (�(� + 1) − ��(� + 1) ≠ 0)&	(�(� + 1)− ��(� + 1)) ≠ 0 ⟹ �(�,�)(�) − ��(�,����)(�) ≠ 0 
(14) 

In accordance with (14), in case the pipe includes sensor and 
pump failures, the signals received from pump and joint variable 
can identify the defects. Signal sensor faults are:   

 	��� = �� → �� = � − �� ≫ 0	 (15) 

To increase the signal estimation accuracy and to modify the 
performance of fault estimation of the ARX-Laguerre PD 
technique, optimal fuzzy observer coefficients, ��� , and ���are 
applied which are defined as follows: 

 	��� = ��� . ��� (16) 

where ��� , represent the derivative gain for sensor failure, 
respectively. Following (14), we have: 

 		��� = �����������  (17) 

Normalization of the above equation can be done by the 
formula described below, 

 �′�� = ��� − ���(���)���(���) − ���(���) ∈ [0,1], �′��= ��� − ���(���)���(���) − ���(���)∈ [0,1], 2 ≤ �� ≤ 5 

(18) 

such that � = ∑ �(��)� 	.	��	∑ �(��)�  represents a membership function. 

V.  SIMULATION RESULTS 
In this section we evaluate our proposed technique on a pipe 

model under the leak condition in the presence of failures of the 
sensor in the pipe. In order to check the efficiency of the 
proposed ARX-Laguerre fuzzy PD observation technique for 
fault detection conditions. 

Pipe under fault condition. In this case, the duct functions 
under fault circumstances. The duct has two kinds of defects 
simultaneously, the sensor defect and the pump defect. 

The input-output signals from sensor in the pipe with fault 
state can be computed as follows: �(�) = � − �� → �(�) = � − (��������� + ��) ≫ 0 (19) 

where, 

 ����(�) = �0.6,					10 ≤ � ≤ 250,						��ℎ������  (20) 

The sensor signal for the pipe under fault condition is shown 
in Figure 4.  

 
Figure 4. The sensor signal for the pipe under fault 
condition 

The effectiveness of the proposed technique for fault estimation 
under fault condition is shown Figures 5. The error between the 
predicted output and the expected output based on the proposed 
technique under fault condition is shown in Figures 6. 

 
Figure 5. The effectiveness of the proposed technique for 

fault estimation under fault condition 

 
Figure 6. The error between the predicted output and the 
expected output based on the proposed technique under fault 
condition 



The effectiveness of the proposed technique for fault 
estimation at leakage point is shown in Figures 7. It can be seen 
from this figure that our proposed method detects fault in less 
time in comparison with PD observer technique. 

 
Figure 7. The effectiveness of the proposed technique for 
fault estimation at leakage point in pipe 

 

VI. CONCLUSIONS 
The task of precise defect detection in the pipeline system is 

a formidable challenge due to the uncertainties in leak signal. To 
better deal with uncertainties in the leak signal, in this paper, an 
ARX-Laguerre PD-observer is introduced to perform fault 
diagnosis in the pipeline system. First, in this study, the ARX-
Laguerre technique is used for pipeline modeling. In the second 
step, the PD observer based on the ARX-Laguerre model is 
designed to improve leak estimation in the presence of 
uncertainties. The performance of the proposed algorithm is 
tested on numerical simulation. According to the results, the 
proposed technique can accurately locate the leakage point. In 
the future, the proposed observation method will be used to 
enhance the performance of fault diagnosis when the 
uncertainties are in the form of Z-numbers. 
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