

This is a repository copy of The selection of income measures in value of travel time models and their implications for the VTT, its cross-sectional income elasticity and transport appraisal.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/184244/</u>

Version: Accepted Version

Article:

Tjiong, J, Dekker, T orcid.org/0000-0003-2313-8419, Hess, S orcid.org/0000-0002-3650-2518 et al. (1 more author) (2022) The selection of income measures in value of travel time models and their implications for the VTT, its cross-sectional income elasticity and transport appraisal. Research in Transportation Economics, 94. 101168. ISSN 0739-8859

https://doi.org/10.1016/j.retrec.2021.101168

© 2021, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

The selection of income measures in value of travel time models and their implications for the VTT, its cross-sectional income elasticity and transport appraisal

Jeff Tjiong^{1*}, Thijs Dekker^{2*}, Stephane Hess^{3*}, Manuel Ojeda-Cabral^{4*}

Abstract

This paper investigates the extent to which the selection of income variables during the estimation of choice models underlying national value of time (VTT) studies affects the cross-sectional income elasticity and the resulting VTT. Using data from the most recent GB (Great Britain) national VTT study, we focus on two contentious issues in relation to the income variable, namely taxation and within household budget allocation. Our work finds that accounting for the progressive nature of income tax and social benefits both increase the cross-sectional income elasticity. In the same vein, assumptions regarding the within-household budget allocation affect the cross-sectional income elasticity. Although the cross-sectional income elasticity is sensitive to the selected income variable, the impact on the nationally representative VTT is insignificant if the stated preference sample is representative with respect to the income variable. The observed discrepancies between the cross-sectional and the inter-temporal income elasticity of the VTT highlight that using these elasticities interchangeably influences the evaluation of future transport infrastructure decisions in terms of value for money.

Keywords: value of travel time, income elasticity, income measure, appraisal, non-business

JEL classification: C25; D12; R41

Competing interests: None

^{*} Institute for Transport Studies & Choice Modelling Centre, University of Leeds, Leeds LS2 9JT, United Kingdom

¹ tjiong@gmail.com (Corresponding author)

² T.Dekker@leeds.ac.uk

³ S.Hess@leeds.ac.uk

⁴ M.A.OjedaCabral@leeds.ac.uk

1 1 Introduction

2 The value of travel time (VTT) is a key parameter in transport appraisal (Daly and Hess, 2020). Assumptions 3 made regarding the VTT are arguably as important for the outcome of cost-benefit analyses (CBA) of transport 4 infrastructure investments as assumptions made regarding the discount rate (Small, 2012). Most VTT studies 5 account for variations in the VTT across different trip purposes, where the distinction between business and 6 non-business travel (e.g. commute and leisure) is especially relevant. Travel time savings for business travellers 7 have often been connected to the cost-savings approach (CSA) through the wage rate. The benefits of 8 reductions in travel time accrue to the business owners as the saved time can now be used productively.¹ For 9 non-business travel, reduced travel time allows people to use their time for alternative activities (e.g. spending 10 more time with family and friends). It is here that we can make a connection between travel time and income. 11 Travellers may be willing to spend more money on shorter journey times to enjoy more time with others. More formally, the VTT is defined by the ratio of the marginal utility of time over the marginal utility of income 12 (Mackie et al., 2003, Wardman, 2001). Both the marginal utility of income and time are not considered to be 13 constant entities because of assumed decreasing marginal utility of spending more income and (or) time on 14 15 given activities. In this paper, we focus on the marginal utility of income, which is generally assumed to be decreasing with income due to the decreasing marginal utility of consumption (i.e. satiation effects). Since the 16 17 marginal utility of income is placed in the denominator of the VTT, the conjecture that the VTT increases with 18 income is widespread in the literature.

For appraisal purposes, the relationship between income and the VTT is important for two reasons. First, for deriving nationally representative VTT measures, it is important to understand how the VTT varies across the different income (and other socio-economic) segments (e.g. Börjesson and Eliasson, 2018, Mouter, 2016). Second, CBA exercises require future VTT values to quantify the benefits of travel time savings for future travellers. Due to economic growth, future travellers are expected to have higher incomes and hence higher VTT values than current generations.²

Economic theory only informs us about the direction of the rate of change of VTT relative to the marginal utility of income but not the size of such income effects (Fowkes, 2010, Hensher, 2011, Hensher and Goodwin, 2004, Small, 2012). Analysts are thus dependent on empirical evidence which typically comes from discrete choice models estimated on stated choice (SC) or more rarely revealed preference (RP) (Daly et al., 2014, Brownstone and Small, 2005, Varela et al., 2018). Whether SC or RP, the data used for such modelling work is typically cross-sectional, i.e. with observations at one point in time, allowing analysts to study the impact of

¹ The most recent UK VTT study (Batley et al., 2019) uses a willingness-to-pay based approach for business travel accounting for the notion that some of the benefits may arise to the business traveller himself.

² The Department for Transport in the UK currently adopts an intertemporal income elasticity of one and uplifts the national VTT annually based on long-term expectations in GDP growth (see DfT, 2019, TAG Data Book A1.3.2).

income differences across people, but not the impact of income changes for the same person. Many national
VTT studies find significant income effects on VTT in such cross-sectional data. Even excluding outliers,
empirical evidence regarding the *cross-sectional* income elasticity for non-business trips ranges from 0.25 to
0.75 (MVA/ITS/TSU, 1987, AHCG 1996, Arup/ITS/Accent, 2015, Fosgerau, 2005, Gunn, 2000, Wardman, 2001,
Mackie et al., 2003, Hensher, 2011).

6 A factor that may explain the observed empirical variation in the cross-sectional income elasticity is the 7 selection of the income variable in the underlying choice models. In these choice models, the income variable 8 represents the (travel) budget of the traveller such that the estimated marginal utility of income captures the 9 shadow price of the (travel) budget. Inaccurate representations of the budget constraint may produce biased 10 estimates of the cross-sectional income elasticity and the VTT (Fosgerau, 2005)³. Four potential sources of 11 measurement error can be identified. First, disposable income can be perceived differently by individuals 12 depending on their knowledge of differences between net and gross income including related social benefits. Second, it is uncertain whether people consider their private or household income, or some alternative 13 14 allocation of disposable income within the household. Third, it is uncertain how budget is allocated between 15 different classes of spending, including travelling (Deaton and Muellbauer, 1980). Lastly, more data specific 16 reasons exist. Measurement errors can be incurred as income measures are typically captured only 17 categorically in most surveys to increase response rates, and there is ample anecdotal evidence of survey respondents falsifying the income information they provide. 18

This paper focuses on examining the impacts of the first and second type of measurement error. More specifically, we test the impact of using alternative representations of the income variable – based on tax implications (i.e., gross, after-tax or disposable income) and household composition and intra-household dynamics (i.e., household, equivalised household and personal income) - on the VTT and its associated crosssectional income elasticity. We base our analysis on the SC survey collected for the 2014/15 GB⁴ VTT study (Arup/ITS/Accent, 2015) and study the impact of the selected income variable on the nationally representative appraisal values.

The second part of the paper moves beyond the cross-sectional income elasticity. CBA exercises require today's and future VTT values to quantify the benefits of travel time savings of travellers during the lifespan of a transport project. Due to economic growth, future travellers are expected to have higher incomes and hence higher VTT values than current generations. Limited attention has been paid to how the cross-sectional income elasticity relates to the inter-temporal income elasticity. In theory, when preferences are not subject to change over time, the two elasticities should be closely related as non-business travellers would simply

³ By assuming an income elasticity exists, indirect utility is implicitly assumed to be non-linear in income.

⁴ The 2014/2015 study excluded Northern Ireland, hence GB instead of United Kingdom (UK).

'adopt' the preferences of the higher income segment. In practice, the cross-sectional and inter-temporal
income elasticities are, however, not consistent with each other (see Börjesson et al., 2012, Hensher, 2011,
Mackie et al., 2003, Small, 2012, Wardman, 2001). Empirical evidence from meta-analyses of VTT estimates
indicate that the inter-temporal elasticity of the VTT with respect to GDP (per capita) points towards a unit
value (Abrantes and Wardman, 2011, Wardman et al., 2016). The latter evidence base is considered as the
state-of-practice for uplifting the VTT over time with applied *inter-temporal* income elasticities between 0.5
and 1, with the lower bound set out for prudency (Sartori et al., 2014, De Jong et al., 2004, Bickel et al., 2006)⁵.

8 The disparity between the cross-sectional and inter-temporal income elasticity on the VTT can occur for three 9 reasons. First, the growth in the VTT over time may not arise entirely due to income effects but rather emerge 10 due to other factors including changes in preferences, socio-demographics, journey quality, productive time 11 use during journey, or technological advances over time. inter-temporal income elasticity inferred from meta-12 analyses may therefore represent a combination of effects when these confounding factors are not fully disentangled from the income effect (Laird et al., 2013, Arup and Leeds ITS, 2017). Second, the cross-sectional 13 14 income elasticity may not be constant across income groups. By relaxing the conventional assumption of a 15 constant cross-sectional income elasticity, Börjesson et al. (2012) and Börjesson (2014) provide empirical 16 evidence that the (non-constant) cross-sectional relationship between income and VTT remains stable 17 between two repeated VTT studies. They concluded that the (non-constant) cross-sectional income elasticity 18 by income group can be used as the inter-temporal elasticity. Thirdly, the disparity between the cross-sectional 19 and inter-temporal income elasticity can be the result of measurement error in the income variable used in cross-sectional studies. Fosgerau (2005) highlighted that the first and third are plausible explanations for the 20 21 observed disparity and that the two are not significantly different from each other after taking these factors 22 into account. In the final part of the paper we continue on this line of research and show the implications of 23 adopting the cross-sectional income elasticity as inter-temporal income elasticity for transport appraisal.

The remainder of the paper is structured as follows. **Section 2** reviews the treatment of income in the VTT literature and provides the essential information regarding the 2014/15 VTT estimation framework which this empirical work is based on. Research questions are also laid out in this section. **Section 3** outlines the research methodology, while **Section 4** summarises the model results discusses policy implications. Finally, **Section 5** concludes.

⁵ The unit value is in line with the cost savings approach (CSA), which is used for valuing business travel time and implies a unit income elasticity since all the released travel time is assumed to be utilised for productive work (Harrison, 1974, Wardman et al., 2015).

1 2 Literature review and research questions

2 2.1 Variations in income re-distribution measures

3 Fosgerau (2005) is one of the rare studies to have explored the impact of the choice of income variable on the 4 VTT and its associated cross-sectional income elasticity. His work showed that by replacing gross income with 5 after-tax income, the cross-sectional income elasticity increases and approaches the commonly adopted unit 6 value for the inter-temporal income elasticity. An argument in favour of this approach is that after-tax income 7 is a more accurate representation of the budget available for consumption and travel. Fosgerau (2005) only 8 took into account tax implications but did not specifically adjust for social benefits (e.g. unemployment, 9 housing subsidy etc.) despite the fact that such benefits significantly affect the budget available for 10 consumption and travel especially for lower income groups. The use of real disposable income to characterise 11 income effects on consumer behaviour is also recommended by Ben-Akiva, McFadden and Train (2019, p.42). 12 This paper therefore sets out to account for social benefits in the income variable. This is in sharp contrast 13 with VTT studies that have removed observations from the lowest income group during estimation, based on 14 the rationale that income is not a key determinant of VTT for those who rely on benefits (e.g. Börjesson et al., 15 2012).

Statistically speaking, changing the income variable from gross income to after-tax income alters the shape of the income distribution in the sample (and population). It reduces the variation in income across respondents especially when tax rates are progressive. In terms of modelling implications, the smaller variation in after-tax income now needs to explain the same amount of cross-sectional variation in the VTT and thus explains the higher cross-sectional income elasticity observed by Fosgerau (2005). The same logic can be applied to social benefits that uplift disposable income at the lower end of the income distribution.

This paper uses the term 'gross income' to measure the gross earnings from employment and investments only⁶. After-tax income accounts for tax deductions from the gross income and *disposable* income additionally takes social benefits into account. Past UK national VTT studies (including the 2014/15 GB VTT study) have used the gross household income in the non-business VTT models. Other international studies have adopted the after-tax income (Börjesson et al., 2012, Fosgerau et al., 2007, Ramjerdi et al., 2010). Within this context, we set out the following questions regarding the impacts of the use of after-tax and disposable income as opposed to gross income:

29 30 • **Question 1**: Is the cross-sectional income elasticity of VTT based on after-tax income variables higher than the one obtained using the gross income variable under a progressive tax system?

⁶ This is different to the convention adopted by the UK Office for National Statistics, in which the gross income refers to the *original* income (from labour costs and take-home pay) plus the social benefits (ONS, 2015, p.4).

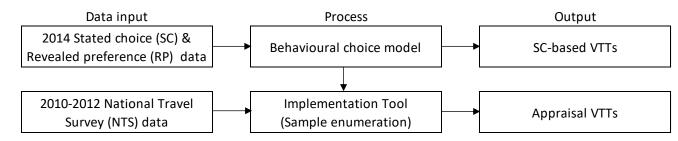
Question 2: Is the cross-sectional income elasticity of VTT based on disposable income variables (i.e.
 additionally including social benefits and tax deductions) higher than that obtained using either the
 gross or after-tax income variables?

4 2.2 Variations in household composition and intra-household dynamics

5 It is reasonable to assume that individuals perceive their money budget differently depending on their 6 household compositions and intra-household dynamics (Mackie et al., 2003, Wardman, 2001). Using the total 7 household income as proxy for the travel budget assumes that household members have access to the income 8 contributed by all household members. Alternatively, individuals can measure their travel budget based on 9 their personal income levels or an uneven allocation of budget across household members. A common 10 approach for dealing with the economies of scale in consumption within a household is to re-scale the household income based on the OECD (Organisation for Economic Co-operation and Development)-modified 11 12 equivalence scale. The resulting 'equivalised' income measure offers a better assessment of expenditure 13 patterns for households of different size and composition as each member of the household requires a 14 different level of income to maintain a comparable standard of living (Anyaegbu, 2010). The 2014/15 GB VTT 15 study made use of the household income as proxy for the travel budget for non-business trips.

16 In this context, this paper sets out to answer the following questions:

- Question 3: Is there a difference in the cross-sectional income elasticity of VTT when using personal
 income or household income?
- Question 4: Is the cross-sectional income elasticity of VTT when using equivalised household income
 different from that derived using household and personal income variables?


The potential direction of change in income elasticity is unclear from the outset for both questions since the difference between the perceived budget and respective income variable used may vary across respondents.

23 2.3 2014/15 GB VTT modelling framework

The 2014/15 GB VTT study produced a new set of value of travel time, reliability and other journey quality attributes for the Great Britain to be used in the appraisal of transport investment projects. To arrive at a set of nationally representative VTT measures that vary by mode-purpose segment, an elaborate data collection, estimation and implementation procedure was followed as described by **Figure 1**. Firstly, for 11 mode-purpose segments (modes: car, rail, bus, other public transport; purposes: commute, business, and leisure and other non-business travel - excluding the bus-business segment) Stated Choice (SC) data were collected supplemented by a limited amount of Revealed Preference (RP) data on rail operator choice for validation

- 1 purposes. Advanced choice modelling techniques were applied to understand how the VTT values vary across
- 2 various trip and traveller characteristics, including the various mode-purpose segments (see Hess et al., 2017).

3 Figure 1 – Overview of the 2014/15 GB VTT modelling framework

4

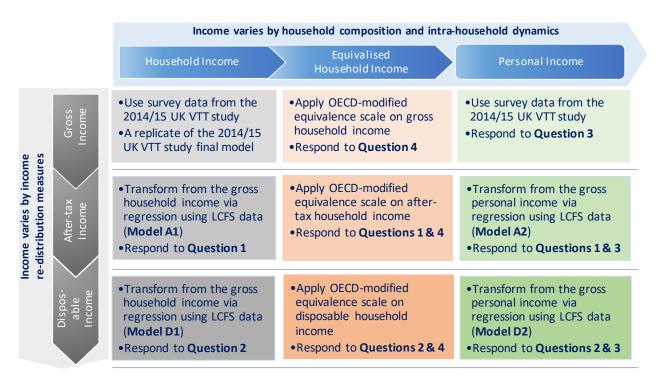
5 The 2014/15 GB VTT modelling framework incorporates and expands on the latest advances in VTT estimation 6 techniques (see Hess et al., 2017 for details). First, this model framework made use of multiplicative error 7 terms (Fosgerau and Bierlaire, 2009, Fosgerau et al., 2007), which was found to provide better performance 8 and more reasonable results than the additive error structure during the model development. The 9 multiplicative error structure facilities a constant variance for the error term, which is compatible with the 10 general finding that utility variance increases as utility increases, a fact that is important in the context of studies combining short and long journeys. Second, the modelling framework also incorporates reference 11 12 dependence in the form of size and sign effects relative to the 'reference' trip (De Borger and Fosgerau, 2008). 13 This considers the common findings of the asymmetries (sign) of the VTT and also the non-linearities (size) of 14 time or cost changes relative to the reference case (see Daly et al., 2014). Third, the impact of a wide range of 15 trip and socio-economic characteristics on the VTT was examined alongside potential design effects as model 16 covariates. These behavioural elements modelled include time, cost, distance and income elasticities of VTT; SP effects to consider the impact of the position of attributes and alternatives in the presentation of SC tasks; 17 18 and finally covariates such as age, gender household composition and car ownership. Fourth, unobserved 19 preference heterogeneity is incorporated in the VTT model, using flexible distributions within a Mixed Logit 20 framework. Finally, data from all three SC games⁷ were jointly estimated within a single modelling framework 21 to increase robustness for parameters that are shared across games. The choice models directly estimated the 22 VTT and the extent to which it varies with trip and traveller characteristics, including the cross-sectional 23 income elasticity which is of key interest to this paper. Hence, for each observation in the sample a personal 24 (or SC-based) expected VTT emerges as an output of the choice model.

As is commonly the case, the sampling strategy adopted in the SC survey was not nationally representative and particular segments were oversampled to better understand the key relationships for the VTT under given

⁷ Three experiments are designed to collect trade-offs between time and money in SC1; time, money and reliability in SC2, and; time, money and quality in SC3 (Arup/ITS/Accent, 2015, Batley et al., 2019, Hess et al., 2017).

travel conditions (e.g. long- distance trips) (Arup/ITS/Accent, 2015, p.58). Deriving a nationally representative
VTT thus requires applying the behavioural models to a nationally representative sample of trips and then
averaging the trip specific VTTs using the necessary population and distance weights accordingly. Data from
the National Travel Survey (NTS) over the 2010-2012 period were used for this purpose (DfT, 2014). To
facilitate this procedure, a sample enumeration procedure was coded in *R* to connect the NTS data with the
behavioural models and conduct the necessary averaging of trip specific VTTS. The output of this *Implementation Tool* was a nationally representative set of VTT for the different mode-purpose segments.

8 In this paper, we only focus on the commuting and other non-business trip (leisure) purpose segments. As 9 explained in Section 1, it is in this context that a connection between the VTT and income can be made. In the 10 business segment, the marginal utility of income is not measured when applying the cost-savings approach or 11 the related 'Hensher-equation' (Hensher, 1977). More generally, there is potential confounding between the 12 attribution of travel time saving benefits to the individual and the firm (see Wardman et al., 2015). The separation of the non-business trips into commute trips and 'other' non-business (non-work) trips is well-13 14 established practice in national appraisal guidelines for European countries (see Bickel et al., 2006). We limit 15 ourselves to a single mode, namely car, to be able to present a focused discussion. Finally, we rely on estimates 16 generated by SC1 (SC game 1, trade-offs between time and money) as used in deriving the official appraisal 17 VTT (Batley et al., 2019). All the VTT estimates are in 2014 perceived prices, in £ (pound sterling) per hour.


18 3 Methodology

We re-estimated the behavioural models as used in the 2014/15 GB VTT study (Batley et al., 2019, Hess et al., 19 20 2017) on two mode-purpose segments, respectively car-commute and car-other non-business. The key 21 variations that are introduced in this paper are associated with the income variable (nine combinations of 22 gross, after-tax, disposable income; and private, household and household equivalised income, respectively). 23 We will examine the impact of these income variables on the estimated cross-sectional income elasticity, the 24 VTT derived in the SP sample and the appraisal VTT. The latter makes use of the Implementation Tool using 25 the updated model specification and relevant income variables. The remainder of this Section will set out the 26 nine alternative income variables used.

Figure 2 provides an overview of the nine alternative income variables and their connections with the research questions to be examined (See Section 2). The vertical axis depicts the transformation from the gross income to after-tax and disposable income, respectively. These three income measures vary depending on whether tax deductions and provision of social benefits are considered. The horizontal axis presents the variations in the assumption of within- household budget allocation. Notably, the income variable implemented in the 2014/15 GB VTT study for the two mode-purpose segments under considerations was the gross household
 income (top left).

The 2014/15 GB VTT survey only collected gross household and gross personal income, which was implemented by converting the categorical responses into actual income levels⁸. The transformations of these original income variables into after-tax and disposable income and equivalised household income for the purposes of this paper was more involved. **Appendix A** provides a full description of the necessary transformations, where we only provide a high-level discussion in this section.

8 Figure 2 - Overview of the income measurement approaches and the corresponding research questions

9

10 The conversion from gross income to after-tax household income is straightforward as the amount of tax 11 deduction depends largely on the income level. Income is, however, taxed at the personal rather than 12 household level in the UK. Hence, we rely on a regression analysis on data from the Living Cost and Food Survey 13 (LCFS) to establish conversion factors for each household income band between gross and after-tax income. 14 LCFS is the primary data source in the UK for assessment of the effects of tax and benefits on household 15 income (ONS, 2015, p.26). The LCFS dataset is also used to transform the gross personal income into after-tax 16 personal income, instead of applying the official income tax rates directly to gross personal income as in 17 Börjesson et al. (2012) and Fosgerau (2005). This allows us to derive a realistic representation of the combined

⁸ 'Midpoints' of each income category are assumed when converting categorical income variables to continuous variables, with the exception of £130K for the upper bracket, and £7.5K or £5K for the lowest category in the case of household income or personal income, respectively (Arup/ITS/Accent, 2015, p.126). A total of 8 categories were used.

tax deductions applied to taxpayers, which includes different types of direct taxes including income tax, council
 tax and Employees' National Insurance (NI).

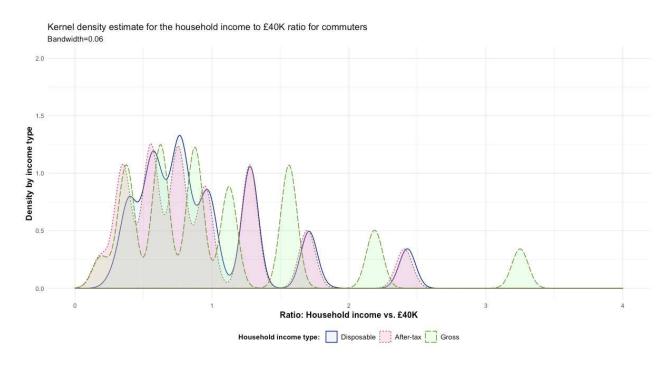
The LCFS is also used to establish conversion factors to move from gross household and personal income (i.e. the top row in **Figure 2**) to disposable household and personal income (i.e. the bottom row in **Figure 2**). In determining the conversion factors, socio-economic information beyond income is also used to establish whether households or individuals are entitled to social benefits (e.g. child benefits). Households from the lowest income group are estimated to receive 112% additional income (£8.4K approx.) on top of their gross income from cash benefits on average while the top earning households are anticipated to pay 25% of income for tax deduction on average. Again, full details can be found in **Appendix A**.

10 In moving from the left to the middle column in **Figure 2**, the OECD-modified equivalence scale was applied. 11 The measure falls in between household and personal income and assumes that household income is not 12 distributed equally amongst all household members. Instead, the distribution depends on household 13 composition and dynamics. In the UK, the OECD-modified equivalence values for the first adult, additional 14 adult, child aged 14 and over, and child aged 0 to 13 are typically assumed to be 1.0, 0.5, 0.5 and 0.3, respectively (Anyaegbu, 2010, Howell et al., 2015, p.44). These values for children are simplified in our analysis 15 16 since the number of children by age category is unavailable in the survey data. We therefore rely on the 17 midpoint between the two equivalence values for children, i.e. 0.4. For instance, a family comprising two 18 adults produces an equivalence household size of 1.5 (i.e. 1 + 0.5). Two additional children will push up the 19 equivalence household size to 2.3 (i.e. 1 + 0.5 + 0.4*2). The equivalised income is the total household income 20 divided by the equivalised household size. We apply this conversion factor to gross, after-tax and disposable 21 income.

Figure 3 shows that for the car-commute sample the distribution of after-tax household is relatively skewed to the right, corresponding to the progressive tax system. Provision of social benefits, on the other hand, increases the available money budget for the lower income groups and thereby increases the lower bound of the disposable income distribution. Overall, the disposable income variable retains the shape of the gross household income variable but is squeezed inward at both ends, representing a reduced level of income variation within the car-commute sample. Similar effects are observed for other non-business trips.

The reduction in income variation when after-tax income is used can also be articulated through the calculation of the residual income progression (RIP) for measuring the degree of tax progression (Musgrave and Tun Thin, 1948; Jackobsson, 1976), which yields a weighted average elasticity of after-tax income of 0.879 with respect to gross income for the car-commute sample. A RIP value lower than 1 indicates a progressive tax system in GB. Accordingly, if we find a positive income elasticity of the VTT with respect to gross income, than due to RIP being lower than 1 but positive, the income elasticity of the VTT with respect to after-tax
income will be higher than the one based on gross income. This argument is also used by Fosgerau (2005).

3 We have further expanded the RIP calculations to take into consideration disposable income rather than after-

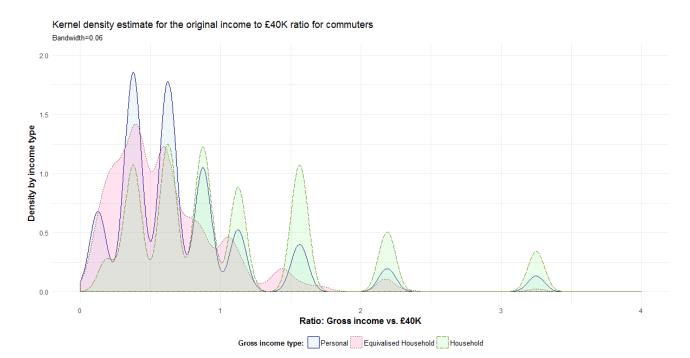

4 tax income. Accounting for income transfers, including social benefits, further reduces RIP from 0.879 to 0.736.

5 Applying the same logic as in the previous paragraph, we can accordingly expect a higher cross-sectional

6 income elasticity of the VTT with respect to residual (or disposable) income compared to its gross-income and

7 after-tax income equivalents.

8 Figure 3 – Distribution of the household income to reference income ratio for commuters



9

Figure 4 presents the income distributions for the gross household, equivalised household and personal income in the car commute sample. Overall, these three income distributions embody different shapes and there is no clear conclusion as to how the household budget allocation assumptions would affect the income

elasticity, as previously. This explains the neutral formulation of research questions 3 and 4 in **Section 2**.

14 **Figure 4** – Distribution of the gross income to reference income ratio for commuters

1

All the 9 income measures that differ in income measurement approaches are incorporated in the 2014/15 GB VTT modelling framework for estimation of (SC-based) VTTs, followed by the compilation of the nationally representative VTTs for appraisal, as described in **Section 2.3**. Further details on the interaction between income and the base VTT specified in the behavioural modelling framework and the VTT re-weighting by NTS trips are provided in **Appendix B**.

7 4 Empirical findings

8 4.1 Variations of income elasticities

9 Table 1 reports the eighteen estimated income elasticities based on the nine alternative income variables for 10 the car-commute and car-other non-business samples. The discussion presented here focuses on the 11 commuter trips as similar findings are observed for other non-business trips. The use of gross household 12 income yields an income elasticity of 0.58. This is equivalent to the official income elasticity for commuting car 13 trips recommended in the 2014/15 GB VTT study and forms our basis for comparison. The cross-sectional 14 income elasticity increases as we progress vertically down Table 1, i.e. from gross income to after-tax income, 15 and then further down to disposable income. When tax payments and social benefits are accounted for in the 16 income variable, the cross-sectional income elasticity increases considerably to 0.64 and 0.78, respectively. 17 This finding supports our hypotheses related to research questions 1 and 2. A similar pattern is observed for 18 the use of equivalised and personal income. For other non-business trips, the income elasticity increases from 19 a higher base of 0.68 to the near-unit elasticity of 0.93.

1	Table 1 – Income elasticities of VTT and final LL on the 2014/15 GB VTT data	
---	--	--

	Househ	old Inco	ome		Equivalise	ed HH I	ncome		Perso	nal Inco	me	
Income		Inco	ne Elas	ticity	I	Inco	me Elas	ticity		Incor	ne Elast	icity
Measure	Final LL	Est	t-s	tat	Final - LL	Est	t-s	tat	Final - LL	Est	<i>t</i> -stat	
		LSU	vs O	vs 1		LSU	vs O	vs 1			vs O	vs 1
Commuting (n=	=922)											
Gross	-7332.67	0.58	6.10	-4.42	-7344.37	0.45	4.84	-5.84	-7356.05	0.32	3.19	-6.80
After-tax	-7332.74	0.64	6.09	-3.38	-7346.19	0.47	4.60	-5.17	-7356.29	0.35	3.15	-5.87
Disposable	-7332.06	0.78	6.08	-1.71	-7346.95	0.57	4.43	-3.30	-7351.96	0.54	3.78	-3.18
Other non-busi	iness (<i>n=97)</i>	7)										
Gross	-7585.74	0.68	7.76	-3.62	-7595.96	0.59	6.89	-4.76	-7608.36	0.44	5.96	-7.73
After-tax	-7585.82	0.75	7.77	-2.55	-7597.58	0.63	6.78	-3.90	-7608.53	0.48	5.94	-6.49
Disposable	-7589.81	0.93	7.35	-0.58	-7598.97	0.83	6.52	-1.29	-7606.65	0.70	6.12	-2.65

2

3 The observed increase in the cross-sectional income elasticity using after-tax and disposable income can be 4 explained by the fact that we have effectively tightened the income variations to explain the same VTT 5 variations (i.e. trade-offs between time and cost). Empirical evidence in Table 2 also supports this proposition, 6 which shows that changes in the income elasticity of VTT estimates, relative to the gross income-based 7 estimates, are relatively close to the inverse of the residual income progression values. Such finding supports 8 hypotheses 1 and 2 that a reduced level of income variation, as in the after-tax and disposable income relative 9 to gross income, will lead to increase of the income elasticity of VTT. Provided that the elasticity of disposable 10 income is higher than after-tax income, income elasticity of VTT estimated by using disposable income will be higher than using after-tax income. 11

Table 2 – Change in income elasticity of VTT and residual income progression relative to gross income-based
 measure

	Но	usehold In	come	Equiv	alised HH	Income	Pe	ersonal Inco	ome
Income	Income	elasticity		Income	elasticity		Income	elasticity	
Measure	Est.	vs. gross income	Inverse of RIP	Est.	vs. gross income	Inverse of RIP	Est.	vs. gross income	Inverse of RIP
Commuting									
Gross	0.58			0.45			0.32		
After-tax	0.64	111%	114%	0.47	104%	114%	0.35	109%	114%
Disposable	0.78	135%	136%	0.57	126%	136%	0.54	170%	135%
Other non-business									
Gross	0.68			0.59			0.44		
After-tax	0.75	110%	113%	0.63	107%	114%	0.48	110%	114%
Disposable	0.93	136%	145%	0.83	141%	135%	0.70	160%	154%

Comparing the final LLs vertically in **Table 1**, it is shown that the model fit remains stable. Indeed, the three behavioural models that incorporate different income measures all explain the same VTT variations but do so by using different income variables. Since the shape of the income distribution is largely retained except for being squeezed by the income transformation as shown in **Figure 3**, the behavioural model gains no additional explanatory power and thus the final LLs remain the same.

Household income consistently produces the highest income elasticities of VTT while personal income gives
the lowest income elasticities of VTT overall. Such a finding of a lower elasticity of VTT generated by the use
of personal income is contrary to the Scandinavian experience (Algers et al., 1995, Fosgerau et al., 2007, p.29,
Ramjerdi et al., 1997, p.57). However, this finding still adheres to our hypotheses 3 and 4, which state that
income elasticities can go either way depending on how respondents within the sample perceive their budgets
provided the possibility of budget allocation within households.

12 4.2 Impacts on SC-based VTTs

Table 3 presents the average SC-based VTT for the car-commute and car-other non-business samples in the 13 14 SC surveys based on the models associated with each of the nine income variables. We see that the average SC-based VTTs do not differ significantly across these nine income measurement approaches, with a range 15 16 from £12.25/hr to £13.16/hr for commuters and similarly small variation for the other non-business segment. As we progress vertically down Table 3, the average VTT estimates remain largely unchanged, despite the 17 18 increasing cross-sectional income elasticities when tax implications and social benefits are additionally 19 accounted for in the income measurement as described earlier. Comparing the VTT estimates horizontally 20 across Table 3, the personal income based VTTs are approximately 6% lower for car commute trips compared to the household income based values, which is not significant given the confidence intervals for the VTT⁹. 21 22 Overall, the small variation in SC-based VTTs indicates that the measurement error due to assumed income variable is limited. For the car-other non-business trips, the average SC-based VTT estimates are comparable 23 across the nine income measurement approaches, also shown in Table 3. 24

- 25
- 26
- 27
- 28

⁹ The 95% confidence intervals for car-commute and car-other non-business journeys are 33% and 70%, respectively. The range of confidence intervals are also results from the flexibility given in behavioural models in terms of preference heterogeneity and functional form (Arup/ITS/Accent, 2015, p.249).

1 **Table 3** – SC-based VTTs (2014 perceived prices, £/hr)

		Househo	old Income	Equi	valised HH In	come	Pe	ersonal Inco	me
Journey Type	Income	Mean	Diff	Mean	Diff		Mean	Diff	
	Туре	VTT	vs. Gross HH Inc	VTT	vs. Gross EqvHH Inc	vs. Gross HH Inc	VTT	vs. Gross Pers Inc	vs. Gross HH Inc
	Gross	13.09	-	12.76	-	-2.5%	12.25	-	-6.4%
Commuting (n=922)	After-tax	13.09	0.0%	12.70	-0.4%	-3.0%	12.25	0.0%	-6.4%
(11-522)	Disposable	13.16	0.5%	12.75	-0.1%	-2.6%	12.33	0.6%	-5.8%
Other	Gross	9.29	-	9.17	-	-1.2%	9.17	-	-1.3%
non-business	After-tax	9.28	0.0%	9.16	-0.2%	-1.4%	9.16	0.0%	-1.3%
(n=977)	Disposable	9.33	0.4%	9.22	0.5%	-0.7%	9.23	0.7%	-0.6%

2 4.3 Impacts on appraisal VTTs

The nine behavioural models were next applied to the 2010-2012 NTS data to calculate the VTT for each trip within the NTS sample. The sample sizes in the NTS for the car-commute and car-other non-business are 95,758 and 413,198, respectively. Following the specification in the 2014/15 GB VTT study, the appraisal VTTs presented here are derived by weighting each trip by its corresponding expansion factors provided by the NTS survey¹⁰ and by trip distance. The weighted averages as summarised in **Table 4** thus provide a nationally representative appraisal VTT for each mode-purpose segment¹¹.

9 Table 4 – Mean appraisal VTTs (weighted by NTS expansion factors and trip distance) (2014 perceived prices,

10 £/hr)

Journey		Househo	old Income	Equivalised	HH Income	Persona	l Income
Туре	Income Type	Mean	St. err. Mean	Mean	St. err. Mean	Mean	St. err. Mean
	Gross	11.70	1.96	11.20	1.79	8.97	1.15
Commuting (<i>n=95,758</i>)	After-tax	11.70	1.95	11.02	1.72	8.97	1.14
(11-33,730)	Disposable	11.79	2.03	11.20	1.83	9.23	1.20
Other	Gross	4.91	1.74	5.19	1.79	3.77	1.17
non-business	After-tax	4.89	1.72	5.18	1.77	3.77	1.17
(n=413,198)	Disposable	5.02	1.89	5.58	2.02	3.98	1.25

¹⁰ The NTS expansion factors are provided to re-weight the trip rates to match the frequency of reporting long and short trips in NTS travel diaries to a nationally representative sample; it additionally accounts for non-response and drop-off in reporting trips (Lepanjuuri et al., 2017, Section 5).

¹¹ The income effect incorporated for deriving appraisal VTTs reflect income distribution of the travelling population, an approach which is recommended for appraisals of all sizes (for small, medium sized and major schemes and policies) in general for the UK (Batley et al., 2019).

1 The UK's official appraisal VTT of £11.7/hr for car commuting trips was derived using household income and 2 acts as the point of reference. It can first be seen that all appraisal VTTs presented in Table 4 are lower than 3 their corresponding SC-based VTTs (see **Table 3**). For our reference case, the SC-based VTT reduces from the 4 £13.1/hr to £11.7/hr based on the NTS data. Again, we observe that the VTT hardly changes when we move 5 from the gross household income to the after-tax and disposable income despite the increase in the estimated 6 cross-sectional income elasticity. This picture is consistent across the different assumptions made about the 7 distribution of income within the household. In fact, the equivalised household income case results in highly 8 comparable VTT values to the household income case. The largest discrepancy is, however, observed when 9 applying the personal income variable, where the appraisal VTT drops somewhat unexpectedly to approximately £9/hr, which represents a 22% decrease relative to the official VTT for car commuters. This 10 11 disparity is also observed for the other non-business trips.

12 It is not surprising to see that VTT differs between the stated choice and NTS samples, and hence the difference 13 between the SC-based and appraisal VTTs. As noted in Section 2.3, the socio-demographics and travel 14 characteristics for the SC sample cannot be fully representative, despite considerable effort put into 15 representative sampling. Also, some market segments are purposefully oversampled to ensure recruitment of 16 adequate samples of specific groups of target respondents (e.g. long-distance car and rail travellers). These 17 residual biases in the sampling are anticipated to be corrected at the implementation stage to re-weight the 18 SC-based VTTs for national representativeness. Given the limited variations in SC-based VTTs across all income 19 measurement approaches, however, one would not expect such large differences in appraisal VTTs across the 20 different income variables. The large difference in appraisal VTTs between the use of personal income and 21 household income warrants further investigation below.

We trace back the potential causes of this discrepancy by providing a breakdown of the appraisal VTT calculation for the different income measures. The final model specification for commuting trips accounts for deterministic heterogeneity in traveller and trip covariates by estimating multipliers on the VTT, one of which is the income effect associated with the selected income variable. By comparing the average multipliers on VTT across the model specifications, we can pinpoint the specific multiplier that causes the disparity in appraisal VTTs.

- 28
- 29
- 30
- 31

32

1 **Table 5** – Mean VTTs and mean VTT multipliers and commuting trips by using gross income (2014 perceived

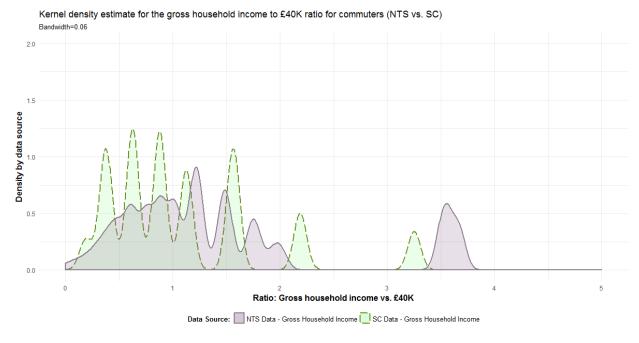
2 prices, £/hr)

	Gross H	ousehol	d Income		ss Equiva sehold In		Gross I	Personal	Income
	SC	NTS	Diff from SC	SC	NTS	Diff from SC	SC	NTS	Diff from SC
Base underlying VTT	10.19	10.19	0%	12.46	12.46	0%	10.20	10.20	0%
VTT multipliers - traveller covariates									
Aged 17–29 (vs. 30+)	1.07	1.06	-1%	1.06	1.06	-1%	1.06	1.06	-1%
Female (vs. male)	1.17	1.14	-2%	1.16	1.14	-2%	1.20	1.17	-3%
Self-employed (vs. any other)	1.05	1.04	-1%	1.05	1.04	-1%	1.05	1.04	0%
Travel costs paid by company (vs. respondent or other paid)	1.19	1.13	-5%	1.18	1.13	-5%	1.18	1.13	-5%
VTT multipliers - trip covariates									
Travelling with others (vs. travelling alone)	0.94	0.92	-2%	0.94	0.93	-2%	0.94	0.93	-2%
Light / heavy congestion (vs. free flow)	1.31	1.30	-1%	1.33	1.31	-1%	1.35	1.33	-2%
Driving on rural roads (vs. urban or motorway)	0.94	0.94	0%	0.95	0.95	0%	0.96	0.96	0%
VTT multipliers - key elasticities									
Time	0.99	1.52	54%	0.98	1.45	48%	0.98	1.44	48%
Cost	0.96	0.39	-60%	0.95	0.40	-58%	0.96	0.39	-59%
Income	1.00	1.16	16%	0.76	0.89	16%	0.86	0.84	-2%
SC-based VTT in SC / appraisal VTT in NTS (unweighted)	13.23	9.03	-32%	12.87	8.66	-33%	12.43	6.87	-45%
Appraisal VTT in NTS (weighted)		11.70			11.20			8.97	

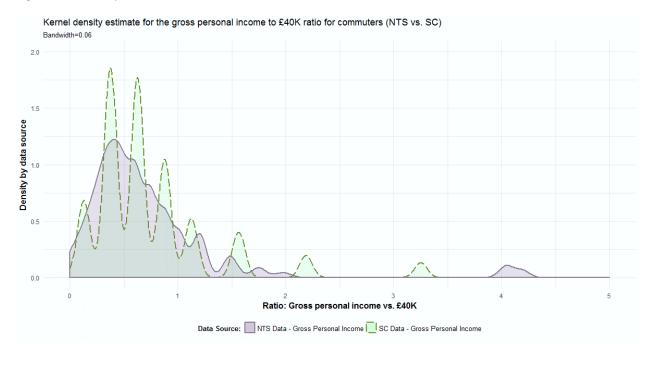
3

Table 5 shows the mean values of the multipliers associated with each of the explanatory variables in the model. Multipliers on VTT for deriving the appraisal VTTs are grouped into 3 categories for presentation: traveller covariates, trip covariates, or elasticity-based multipliers. We first compare the average VTT multipliers for traveller and trip covariates between the SC and NTS data. The covariate effects that relate to the characteristics of travellers and trips are not significantly different between the two data sources and for different income measures. The decrease in average VTT multipliers in the NTS results is consistent amongst income measurement approaches that use gross household, equivalised household and personal income.

With respect to the elasticity-based multipliers, changes in the VTT multipliers for the travel time and cost between the SC and NTS data are quite large, but again consistent across income measures. This is because the commuting journeys in the NTS sample are shorter and cheaper on average. This finding is common in practice and reflects the difficulty in capturing shorter trips in field surveys. As a manifestation of the negative elasticity on travel time, the decrease of travel time pushes up the average VTT multiplier for travel time by 54%, from 0.99 to 1.52. In contrast, the decrease in average travel cost in the NTS sample leads to a 60% reduction of the average VTT multiplier for travel cost, from 0.96 to 0.39, which is a direct result of reduced
 cost damping. Combining these two contrasting effects leads to a net decrease of the VTT in the NTS results
 relative to the SC results.


We finally look at the last remaining elasticity-based multiplier presented in the table. The income effect appears to have positive influence (+16%) on the base VTT by applying household and equivalised household income to NTS trips while it has limited impact (-2%) when personal income is in use. Given that other VTT multipliers are comparable between different income measurements, we conclude that the income effect is the driving force between the observed discrepancy between the NTS VTT based on household (and equivalised) income and personal income.

A further investigation shows that the differential income effects that affect the appraisal VTTs are a direct result of sampling bias. As shown in **Figure 5**, the SC survey appears to be under-representing household income in general. The mean household income in the NTS data is £56,650, which is 30% higher than the mean household income for SC respondents. The increase of household income translates into a 16% increase of the average VTT multiplier, from 1.0 to 1.16. In contrast, the personal income distribution does not change substantially between the NTS and SC data as shown in **Figure 6**. The mean personal income decreases by 2% only, which translates into a 2% decrease in average VTT multiplier, from 0.86 to 0.84.

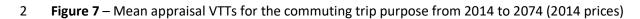

17 The mismatch of the household income distribution between the SC and NTS sample raises an important 18 question of which income variable should be used as the basis for the appraisal VTT computation. Economic 19 theory does not provide any guidance as to which income measure is more justified. At best, an assumption 20 can be made on what best represents the travel budget of the traveller. Indeed, there may be a mismatch 21 between the two samples in the household income measure which does not rule out the latter as long as each 22 income category is sufficiently covered in the SC sample. Hence, what we observe here is that the income 23 measure in the SC survey is not sampled representatively and hence leads to diverging appraisal values, but 24 we are unable to make a decision on which income measure is most appropriate, especially not without a new 25 specification search with different income measures where model specifications that hinge on the choice of 26 income variable are evaluated based on statistics including Akaike Information Criterion (AIC) or Bayesian 27 Information Criterion (BIC). For completeness, the weighting does not contribute to the disparity between 28 appraisal VTTs as shown in **Table 5**.

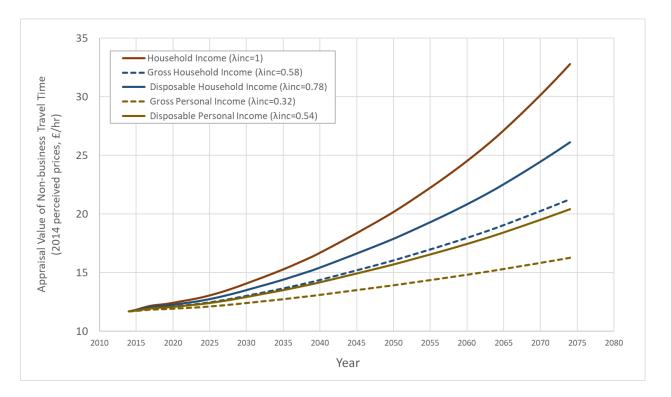
- 30
- 31
- 32

3 Figure 5 – Gross household income to reference income ratio for commuters (SC vs. NTS)

Figure 6 – Gross personal income to reference income ratio for commuters (SC vs. NTS)

8 4.4 Choice of inter-temporal income elasticity and implications for transport appraisal


9 The preceding results highlight that the VTT (based on the SC and on the NTS sample) for the base year 2014 10 shows little variation with respect to the income variable selected - provided the SC survey is sampled


representatively. The cross-sectional income elasticity, however, does vary substantially across selected 1 2 income variables. Indeed, this may be a direct and intuitive result based on the smaller cross-sectional 3 variation in income when taxes and social benefits are considered. Nevertheless, the discrepancy between the 4 cross-sectional and inter-temporal income elasticity prevails in most instances but varies in size. As argued in 5 Section 1, unless preferences change over time, there is no direct reason to assume a difference between the 6 cross-sectional and inter-temporal income elasticity of the VTT. The argument of using the cross-sectional 7 income elasticity as the inter-temporal income elasticity is supported empirically by Börjesson et al. (2012). 8 Although we are not able to confirm the argument of Börjesson et al. (2012) due to not having repeated 9 (identical) SC surveys at our disposal and not having tested the non-constant cross-sectional income elasticity 10 of the VTT, we display the impact of deviating from the unit inter-temporal income elasticity in the worked 11 example below.

12 The inter-temporal income elasticity induces differences in the VTT over the span of the appraisal period. Impacts of transport investments are typically assessed over a standard 60 years of economic life in the UK 13 14 (DfT, 2018, TAG A1.1). As a common starting point for all scenarios, we use the UK's official appraisal VTT of 15 £11.7/hr for car commuting trips in the base year 2014. The first scenario adopts the official unit value for the 16 inter-temporal income elasticity. Scenarios two-five adopt the cross-sectional income elasticities found in 17 Table 1 for respectively gross and disposable; and household and personal income (ranging between 0.32 and 0.78). Figure 7 illustrates how the VTT for commuting in the UK increases over a 60-year appraisal period and 18 19 diverges with the assumed inter-temporal income elasticity. Please note that income is assumed to grow based on forecasted GDP growth rates (DfT, 2019, TAG Data Book Annual Parameters). By 2074, the appraisal 20 21 VTTs for commute based on a unit income elasticity is expected to be more than double than that when 22 income elasticities of 0.32 or 0.54 are applied (i.e. the personal income based models).

23 The divergence in the VTT over time will lead to significant differences in the Benefit-Cost-Ratio (BCR). 24 Assuming that a project is built between 2014-2017, each year incurring £5 million in investment cost. Once 25 the project is finished, 100K hours of annual travel time savings for commuters will be realised in 2018; and these time savings are assumed to increase at 2% p.a. from 2018 onwards. Based on this simple worked 26 27 example, we can apply the different time paths for changes in the VTT over time. Conventional assumptions 28 on discounting are assumed. A BCR of 2.46 is computed based on the unit income elasticity assumption. The 29 BCR, however, drops well below 2 in Table 6 once the lower income elasticities are applied (1.48 and 1.75 respectively). In terms of the Department for Transport's Value for Money framework¹², this implies that the 30 31 project drops from 'High' to 'Medium' in terms of its evaluation and hence may lead to significantly different 32 policy conclusions.

¹² https://www.gov.uk/government/publications/dft-value-for-money-framework

3

4

Table 6 - Benefit-to-cost ratios by different income elasticity assumptions (£, 2014 prices)

) _1	Household	Income	Personal Income		
	$\lambda_{inc}=1$	Gross	Disposable	Gross	Disposable	
Income elasticity of VTT, λ_{inc}	1.00	0.58	0.78	0.32	0.54	
Present value of costs (PVC)	£19,008,185	£19,008,185	£19,008,185	£19,008,185	£19,008,185	
Present value of benefits (PVB)	£46,837,165	£34,330,965	£39,837,658	£28,195,254	£33,316,365	
Net present value (NPV)	£27,828,980	£15,322,780	£20,829,473	£9,187,069	£14,308,180	
Benefit-to-cost ratio (BCR)	2.46	1.81	2.10	1.48	1.75	

Project benefits and costs by different income elasticity assumptions (£, 2014 prices)

Assumptions:

Project costs £5 million for the each of first 4 years (2014-2017)

■ 100K hours of annual travel time savings in 2018; increase at 2% p.a. from 2018

■ Real GDP growth rates as in UK DfT's Transport Analysis Guidance Databook

■ 60-year appraisal period and discount rates as in the Green Book issued by UK HM Tresurary

5

6 **5 Summary and conclusions**

7 The selection of the income variable in choice models for Value of Time models remains a contentious issue.

8 Even across studies aimed at estimating nationally representative VTTs there is not only a discrepancy in the

9 use of personal- and household-based income measures, but also in the application of before- and after-tax

10 income measures. Such discrepancies have a direct impact on the derived cross-sectional income elasticity

11 and can thereby partly explain the empirical disparity between the cross-sectional and inter-temporal income

1

elasticity. The latter is typically found to take a value around unity, whereas the former is generally found to
be lower. A better understanding of the cross-sectional relationship between income and the VTT is
imperative, because economic theory only provides guidance on the sign (positive) of the cross-sectional
income elasticity, but not its size. Moreover, unless preferences change over time there is no reason to assume
that the cross-sectional and inter-temporal income elasticity should differ in size since lower income groups
will adopt the preferences of higher income groups as income grows (e.g. Börjesson et al. 2012).

7 In Section 1, we argued that part of the empirical discrepancy between the cross-sectional and inter-temporal 8 income elasticity could be caused by confounding of income changes with preference changes over time and 9 by measurement error in the selected income variable. This paper has focused on the latter issue and studied 10 the implications of using alternative income variables on the VTT, its cross-sectional income elasticity and the 11 implications for transport appraisal. By adopting the modelling framework developed from the 2014/15 GB 12 VTT study, we examined nine alternative income variables corresponding to a 3x3 matrix based on two dimensions: variation in the income re-distribution measures (gross-, after-tax, and disposable income) and 13 14 variation in the assumption of within-household budget allocation (household, equivalised household and 15 personal income).

16 In the first dimension, we find that the use of after-tax income rather than gross income yields higher income 17 elasticity of VTT, a finding which is consistent with Fosgerau (2005). We extend this analysis by additionally 18 accounting for social benefits to lower income groups. We demonstrate that the use of the latter disposable 19 income, increases the cross-sectional income elasticity of VTT and further reduces the gap between the cross-20 sectional and inter-temporal income elasticity. This leads to a cross-sectional income elasticity which is not 21 significantly different from the unit value typically assumed for the intertemporal income elasticity. Notably, 22 accounting for measurement error in the income variable, in our case income re-distribution, does not affect 23 the resulting VTT measures.

The observed increase in the cross-sectional income elasticity (relative to the gross income based estimates) is close to the inverse of the residual income progression (RIP). That is, the elasticity of the after-tax income and the disposable income relative to gross income is smaller than unity, and as articulated by Fosgerau (2005) one would expect a higher cross-sectional income elasticity for the VTT with respect to these alternative measures of income. In statistical terms, the progressive nature of the tax system alongside income redistribution reduces the variation in within sample income that can be used to explain the same variation in the VTT. This increases the cross-sectional income elasticity.

In the second dimension, we examine the impacts that assumptions regarding the budget allocation in the 1 2 household have on the income elasticity and the VTT. The use of household income results in a higher cross-3 sectional income elasticity than personal income, which is followed by smaller reduction in income elasticity 4 by using equivalised house income. Overall, household income produces the highest income elasticity amongst 5 the income variables tested. Although this finding is contrary to findings from some Scandinavian studies, 6 which found lower income elasticities by incorporating the household income for VTT estimation. It does, 7 however, not contradict our proposition that changes in the income elasticity can go in either direction. Again, 8 the VTT estimates are unaffected by using any of these 3 income variables.

9 Economic theory does not prefer any income measure (and hence elasticity of VTT) for non-business trips. 10 Therefore, the answer to the question regarding the choice of income measure is not obvious. Intuitively, 11 disposable income should be a better representation of a consumer's budget than gross and after-tax income. 12 However, the relationship between perceived travel budget and intra-household dynamics is unclear making the choice of income variable less obvious. We therefore highlight the need for testing different income 13 14 measures to understand their potential impacts on model estimation and welfare measures. The choice of 15 income measure can in these circumstances be made on evaluation of model specifications such as the AIC 16 and BIC statistics.

17 Within sample the choice of income variable may not influence the VTT. However, when additionally sample 18 enumeration is needed over a representative sample to obtain a nationally representative VTT estimate which 19 can be used for appraisal purposes, the choice of income variable requires additional scrutiny due to sampling 20 bias. In the case of the latest VTT study for Great Britain, as used in this paper, the National Travel Survey (NTS) 21 was used for sample enumeration purposes. We find that appraisal VTTs based on personal income are 22 substantially lower than the (official) VTT based on household income. When moving from the stated choice 23 sample to the NTS, VTTs are scaled down considerably to adjust for the shorter and cheaper trips sampled in 24 the NTS data relative to the stated choice data. Field surveys typically struggle to capture short distance trips 25 and these results highlight the impact this can have. More importantly, high income households are under-26 sampled in the stated choice survey, whereas the distribution of personal income is comparable between the 27 two data sources. As a result, the appraisal VTT is adjusted upwards when using household income. We 28 conclude that it is the sampling bias associated with the household income in the stated choice data that 29 causes the disparity in appraisal VTTs and not the selected income variable. It is therefore imperative to ensure 30 that the income distribution is sampled representatively in addition to carefully testing different income 31 variables in the modelling. This may minimise adversarial impacts on appraisal VTTs.

Finally, turning to the inter-temporal income elasticity, there is indeed evidence preferences change over time.
 Increased productivity, due to technological advances and comfort improvements, may reduce the VTT

1 alongside increases in income (ITF, 2019). As such, the observed empirical discrepancy between the cross-2 sectional and inter-temporal VTT is explicable but not desirable. In a worked example we showed how the VTT 3 and the resulting Benefit-Cost ratios are affected – in terms of value for money - when replacing the unit value 4 for the inter-temporal income elasticity with the lower cross-sectional income elasticity. Thus, despite having 5 shown that the selection of the income variable may not be very influential for the base year VTT, the resulting 6 cross-sectional income elasticities may have significant implications for long-term transport investments. 7 Hence, additional empirical and theoretical research, along the lines of Börjesson et al. (2012), is needed on 8 changes in the VTT over time and how this can be decomposed from income changes. As noted by ARUP and 9 Leeds ITS (2017), more frequent repeat stated choice studies are needed to signal structural changes in 10 preferences that differ from gradual changes as a result of growing income. Alternatively, we suggest that 11 additional control variables are required to control for the difference in income measures in the derivation of 12 the inter-temporal income elasticity.

1 Acknowledgments

The first author acknowledges financial support by the Economic and Social Research Council [Grant ES/J500215/1]. The third author acknowledges the financial support by the European Research Council through the consolidator grant 615596-DECISIONS. While the results reported in the paper are based on a study commissioned by the UK Department for Transport, the opinions and any omissions in this paper remain the responsibility of the authors.

5

2	Abrantes, P. A. L. & Wardman, M. R. 2011. Meta-analysis of UK values of travel time: An update.
3	Transportation Research Part A: Policy and Practice, 45, 1-17.
4	Accent & Hague Consulting Group 1996. The value of travel time on UK roads - 1994: Final report prepared
5	for Department of Transport.
6	Algers, S., Lindqvist-Dillén, J. & Widlert, S. The National Swedish Value of Time Study. PTRC European
7	Transportation Forum, 1995 Warwick.
8	Anyaegbu, G. 2010. Using the OECD equivalence scale in taxes and benefits analysis. Economic & Labour
9	Market Review, 4, 49-54.
10	Arup & Leeds ITS. 2017. Programme for maintaining a robust valuation of travel time savings: feasibility
11	study - Final Phase 1 reports: List of options [Online]. Available:
12	https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file_
13	/716492/scoping-study-on-updating-values-of-travel-time-savings-phase-1.pdf [Accessed 20
14	February 2020].
15	Arup, Leeds ITS & Accent. 2015. Provision of market research for value of travel time savings and reliability.
16	Phase 2 report to the Department for Transport [Online]. Available:
17	https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file
18	/470231/vtts-phase-2-report-issue-august-2015.pdf [Accessed 5 April 2019].
19	Batley, R., Bates, J., Bliemer, M., Börjesson, M., Bourdon, J., Cabral, M. O., Chintakayala, P. K., Choudhury, C.,
20	Daly, A., Dekker, T., Drivyla, E., Fowkes, T., Hess, S., Heywood, C., Johnson, D., Laird, J., Mackie, P.,
21	Parkin, J., Sanders, S., Sheldon, R., Wardman, M. & Worsley, T. 2019. New appraisal values of travel
22	time saving and reliability in Great Britain. <i>Transportation</i> , 46, 583-621.
23	Ben-Akiva, M., McFadden, D., Train, K., Walker, J., Bhat, C., Bierlaire, M., Bolduc, D., Boersch-Supan, A.,
24	Brownstone, D., Bunch, D.S. and Daly, A., 2002. Hybrid choice models: Progress and challenges.
25	Marketing Letters, 13(3), pp.163-175.
26	Bickel, P., Friedrich, R., Burgess, A., Fagiani, P., Hunt, A., De Jong, G., Laird, J., Lieb, C., Lindberg, G., Mackie,
27	P., Navrud, S., Odgaard, T., Ricci, A., Shires, J. & Tavasszy, L. 2006. HEATCO Developing Harmonised
28	European Approaches for Transport Costing and Project Assessment, Deliverable 5: Proposal for
29	Harmonised Guidelines.
30	Börjesson, M. 2014. Inter-temporal variation in the travel time and travel cost parameters of transport
31	models. <i>Transportation,</i> 41, 377-396.
32	Börjesson, M. & Eliasson, J. 2018. Should values of time be differentiated? Transport Reviews, 1-19.
33	Börjesson, M., Fosgerau, M. & Algers, S. 2012. On the income elasticity of the value of travel time.
34	Transportation Research Part A: Policy and Practice, 46, 368-377.

1	Brownstone, D. & Small, K. A. 2005. Valuing time and reliability: assessing the evidence from road pricing
2	demonstrations. Transportation Research Part A: Policy and Practice, 39, 279-293.
3	Daly, A. & Hess, S. 2020. VTT or VTTS: a note on terminology for value of travel time work. Transportation,
4	forthcoming, 1-6.
5	Daly, A., Tsang, F. & Rohr, C. 2014. The value of small time savings for non-business travel. Journal of
6	Transport Economics and Policy (JTEP), 48, 205-218.
7	De Borger, B. & Fosgerau, M. 2008. The trade-off between money and travel time: A test of the theory of
8	reference-dependent preferences. Journal of urban economics, 64, 101-115.
9	De Jong, G., Kroes, E., Plasmeijer, R., Vermeulen, J., Boon, B. & den Boer, E. 2004. Value of Time and Value of
10	Safety Guidelines for Transport Project - Prepared for the European Investment Bank.
11	Deaton, A. & Muellbauer, J. 1980. Economics and consumer behavior, Cambridge University Press.
12	Department for Transport 2014. National Travel Survey, 2002-2012. 8th Edition. UK Data Service.
13	Department for Transport. 2018. WebTAG: TAG unit A1.1, Cost-Benefit Analysis, May 2018 [Online].
14	Available:
15	https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file
16	/712699/tag-unit-a1.1-cost-benefit-analysis-may-18.pdf [Accessed 20 February 2020].
17	Department for Transport. 2019. WebTAG: TAG unit A1.3, User and provider impacts, May 2019 [Online].
18	Available:
19	https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file
20	/805260/tag-unit-a1-3-user-and-provider-impacts.pdf [Accessed 20 February 2020].
21	Fosgerau, M. Unit Income Elasticity of the Value of Travel Time Savings. European Transport Conference,
22	2005 Strasbourg.
23	Fosgerau, M. & Bierlaire, M. 2009. Discrete choice models with multiplicative error terms. Transportation
24	Research Part B: Methodological, 43, 494-505.
25	Fosgerau, M., Hjorth, K. & Lyk-Jensen, S. V. 2007. The Danish value of time study: Final report. Danish
26	Transport Research Institute.
27	Fowkes, A. 2010. The value of travel time savings. In: Voorde, E. V. D. & Vanelslander, T. (eds.) Applied
28	Transport Economics: A Management and Policy Perspective. Antwerp: de Boeck.
29	Government Statistical Service 2014. GSS/GSR disclosure control guidance for microdata produced from
30	social surveys. Government Statistical Service.
31	Gunn, H. F. 2000. An introduction to the valuation of travel-time savings and losses. <i>In:</i> Hensher, D. A. &
32	Button, K. J. (eds.) Handbook of Transport Modelling. Emerald Group Publishing.
33	Harrison, A. J. 1974. The economics of transport appraisal, Croom Helm, London.
34	Heusher, D.A., 1977. Value of business travel time. Pergamon Press, Oxford.

1 Hensher, D. A. 2011. Valuation of travel time savings. In: De Palma, A., Lindsey, R. & Quinet, E. (eds.) A 2 handbook of transport economics. Edward Elgar Publishing. 3 Hensher, D. A. & Goodwin, P. 2004. Using values of travel time savings for toll roads: avoiding some common 4 errors. Transport Policy, 11, 171-181. 5 Hess, S. 2006. Estimation of the Swiss valuation of travel time savings. Arbeitsbericht Verkehrs-und 6 Raumplanung, 381. 7 Hess, S., Daly, A., Dekker, T., Cabral, M. O. & Batley, R. 2017. A framework for capturing heterogeneity, 8 heteroskedasticity, non-linearity, reference dependence and design artefacts in value of time 9 research. Transportation Research Part B: Methodological, 96, 126-149. 10 HM Treasury. 2014. Tax and tax credit rates and thresholds for 2015-16 [Online]. Available: https://www.gov.uk/government/publications/tax-and-tax-credit-rates-and-thresholds-for-2015-11 12 16/tax-and-tax-credit-rates-and-thresholds-for-2015-16 [Accessed 5 April 2019]. 13 Hood, A. & Keiller, A. N. 2016. A survey of the UK benefit system: IFS Briefing Note BN13 [Online]. Institute 14 for Fiscal Studies. Available: <u>https://www.ifs.org.uk/bns/bn13.pdf</u> [Accessed 5 April 2019]. 15 Howell, D., Lowthian, E., Bulman, J. & Davey, J. 2015. Family spending 2015: a report on the Living Costs and Food Survey 2014 [Online]. Office for National Statistics. Available: 16 17 https://www.ons.gov.uk/peoplepopulationandcommunity/personalandhouseholdfinances/incomea ndwealth/compendium/familyspending/2015 [Accessed 5 April 2019]. 18 19 Jakobsson, U., 1976. On the measurement of the degree of progression. Journal of public economics, 5(1-2), 20 pp.161-168. 21 Laird, J., Bates, J. J. & Mackie, P. 2013. Peer review of proposals for updated values of travel time savings. In: 22 Transport, D. F. (ed.). 23 Lepanjuuri, K., Cornick, P., Byron, C., Templeton, I. & Hurn, J. 2017. National Travel Survey 2016. Technical 24 Report Prepared for the Department for Transport [Online]. NatCen. Available: 25 https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file /632910/nts-technical-report-2016.pdf [Accessed 5 April 2019]. 26 27 Mackie, P. J., Wardman, M., Fowkes, A. S., Whelan, G., Nellthorp, J. & Bates, J. 2003. Values of Travel Time 28 Savings in the UK – Report to the Department for Transport. Institute for Transport Studies, 29 University of Leeds in association with John Bates Services. 30 Mouter, N. 2016. Value of Travel Time: To Differentiate or Not to Differentiate? Transportation Research 31 Record, 2597, 82-89. 32 Musgrave, R.A. and Thin, T., 1948. Income tax progression, 1929-48. Journal of political Economy, 56(6), 33 pp.498-514.

- MVA Consultancy, ITS Leeds & TSU Oxford 1987. Value of travel time savings. *Policy Journals, Newbury, Berks*.
- Office for National Statistics. 2015. A guide to sources of data on earnings and income [Online]. Office for
 National Statistics, UK. Available:
- 5 <u>https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/earningsandworkinghours/m</u>
 6 <u>ethodologies/aguidetosourcesofdataonearningsandincome</u> [Accessed 5 April 2019].
- Ramjerdi, F., Flügel, S., Samstad, H. & Killi, M. 2010. Value of time, safety and environment in passenger
 transport Time. Institute of Transport Economics, Oslo, Norway.
- 9 Ramjerdi, F., Rand, L., Sætermo, I.-A. F. & Sælensminde, K. 1997. The Norwegian Value of Time Study Part I.
 10 Institute of Transport Economics, Oslo, Norway.
- Sartori, D., Catalano, G., Genco, M., Pancotti, C., Sirtori, E., Vignetti, S. & Bo, C. 2014. Guide to Cost-Benefit
 Analysis of Investment Projects. Economic appraisal tool for Cohesion Policy 2014-2020.
- 13 Small, K. A. 2012. Valuation of travel time. *Economics of transportation*, 1, 2-14.
- Varela, J. M. L., Börjesson, M. & Daly, A. Estimating Values of Time on National Travel Survey data. hEART
 2018 7th Symposium of the European Association for Research in Transportation 2018 Athens,
- 16 Greece.
- Wardman, M. 2001. Inter-temporal variations in the value of time. Working Paper. Institute of Transport
 Studies, University of Leeds, Leeds, UK.
- Wardman, M., Batley, R., Laird, J., Mackie, P. & Bates, J. 2015. How should business travel time savings be
 valued? *Economics of transportation*, 4, 200-214.
- 21 Wardman, M., Chintakayala, V. P. K. & de Jong, G. 2016. Values of travel time in Europe: Review and meta-
- 22 analysis. *Transportation Research Part A: Policy and Practice*, 94, 93-111.

1 Appendix A Additional notes on income transformations

2 From gross income to after-tax income

The conversion from gross income to after-tax household income is straightforward as the amount of tax deduction depends largely on the income level. Income is, however, taxed at the personal level and not at the household level in the UK. Hence, we rely on a regression analysis on data from the *Living Cost and Food Survey* (LCFS) to establish conversion factors for each household income band between gross and after-tax income. LCFS is the primary data source in the UK for assessment of the effects of tax and benefits on household income (ONS, 2015, p.26). A simple linear regression model was developed to regress the after-tax household income on the gross household income over 5,130 income profiles in the 2014 LFCS.

$$AfterTaxInc_{h} = \sum_{i=1}^{8} (\beta_{i} * GrossInc_{h} * (GrossIncCat_{h} == i)) + C + \epsilon_{h}$$
 (Model A1)

The weekly gross income, *GrossInc*_h represents the total gross earnings for household h before deduction of 10 11 any payments of direct taxes and receipt of any cash benefits. The gross income term interacts with an 12 indicator which is equal to 1 when the observation belongs to income group i ($h \in i$, with i = 1, ..., 8), and 0 13 otherwise. Weekly after-tax income, AfterTaxInch, represents the remaining income after taking into 14 account income taxes, National Insurance (NI) and local taxes (e.g. council taxes). In this specification, β_i is the 15 parameter estimated for income group i, C is the intercept and ϵ_h is the error term for household h. In the 16 conversion of income in the SC data, the transformation function (i.e., β_i and C) is applied to 853 car 17 commuters and 864 other non-business car drivers who have reported their income levels in the UK VTT 18 sample. The results from the regression model and the income transformation in the SC data are summarised 19 in the left part of **Table A.1**. The transformed income shows that the average tax burden rises with income, 20 which is expected due to the progressive nature of the income tax in the UK.

Similar procedure is set out to transform the gross personal income to after-tax personal income. Instead of applying the official income tax rates to gross personal income as in Fosgerau (2005), and Börjesson et al. (2012), we apply the linear regression to establish the transformation function for personal income (Model A2). This allows us to derive realistic representation of the combined tax deductions applied to taxpayers, which includes different types of direct taxes including income tax, council tax and Employees' National Insurance (NI). The specification of the regression model to regress the after-tax personal income on the gross personal income for person *p* as follows:

$$AfterTaxInc_p = \sum_{i=1}^{8} \left(\beta_i * GrossInc_p * \left(GrossIncCat_p == i \right) \right) + C + \epsilon_p$$
 (Model A2)

All parameter estimates in Model A2 are significant at the 95% level of confidence, as shown in the right part of **Table A.1**. Average personal tax burden is estimated to increase from 4% for individuals who earn less than

- 1 £10K to 31% for the highest income group. Both R-squared values for Models A1 and A2 are very high at 0.98,
- 2 which is not surprising for a society with progressive tax rates that closely link to income level.

			Model A	1				Model	A2		
	Af	ter-tax house	ehold inco	me (<i>AfterT</i>	axInc _h)	Afte	r-tax perso	onal inco	ome (<i>AfterTaxInc_p</i>)		
Income		Regressior	ı	Implied av	erage tax	F	Regressior	1	Implied average tax		
group	(LCFS data		I	burc	len		(LCFS data	l	buro	den	
i		n=5,310)		(UK VTT SO	C data)**		n=5,310)		(UK VTT S	C data)**	
		Г.et	t stat	Commute	Other NB		-ct	t stat	Commute	Other NE	
		Est	<i>t</i> -stat	(n=853)	(n=864)		Est	<i>t</i> -stat	(n=845)	(n=851)	
	С	11.2617	4.18			С	1.7991	2.84			
1 <£10K	β_1	0.9047	35.12	2%	2%	β_1	0.9375	127.38	4%	4%	
2 £10K-£20K	β_2	0.8956	80.67	7%	7%	β_2	0.8724	281.75	12%	12%	
3 £20K-£30K	βз	0.8631	124.17	11%	11%	β_3	0.8245	381.14	17%	17%	
4 £30K-£40K	β_4	0.8434	164.33	14%	14%	β_4	0.7995	414.63	20%	20%	
5 £40K-£50K	β_5	0.8307	193.11	16%	16%	β_5	0.7823	420.10	22%	22%	
6 £50K-£75K	eta_6	0.8072	281.31	18%	18%	eta_6	0.7578	455.51	24%	24%	
7 £75K-£100K	β_7	0.7685	316.11	22%	22%	β_7	0.718*	-	28%	28%	
8 >£100K	β_8	0.735*	-	26%	26%	β_8	0.686*	-	31%	31%	
	R-squa	ared: 0.9758				R-squar	ed: 0.9810	5			

3 Table A.1 – Regression results - After-tax income

* Interpolated due to top-coding of LCFS data (GSS, 2014, p.22)

**Average tax burden =1-After-tax Income / Gross Income

4

5 From gross income to disposable income

6 Another set of regression models is estimated to transform the gross income to disposable income. In contrast 7 to the after-tax income model (Models A1 and A2), where only the gross income is used as a regressor, the 8 eligibility to social benefits depends also on socio-demographics. The linear regression models developed to 9 relate the disposable income to the gross household income is specified as follows:

 $DispoInc_h = \sum_{i=1}^{8} ((\alpha_i + \gamma_i Kid_h + \theta_i Old_h) * GrossInc_h * (GrossIncCat_h == i)) + C + \epsilon_h$ (Model D1)

10 where Kid_h represent the number of children within household h; Old_h refer to the number of seniors (65+) within household h; α_i , γ_i and θ_i are the parameters estimated for income group i; C is the intercept and ϵ_h 11 12 or ϵ_p refer to the error term for household h and person p, respectively. The regression results for disposable income are shown in the left part of **Table A.2.** By applying the transformation function (with α_i , γ_i , θ_i and C) 13 14 on the SC data, it is shown that households which earn less than £20K are estimated to receive net gain in 15 salary due to the receipt of social benefits. Households from the lowest income group are estimated to receive 16 112% additional income (£8.4K approx.) on top of their gross income from cash benefits on average while the 17 top earning households are anticipated to pay 25% of income for tax deduction on average.

1 Table A.2 – Regression results – Disposable income

					odel D1					el D2	
					hold income (D	oispoInc _h)	Di		•	l income (D	
	Income		Regressi		Implied average	e tax burden		Regress		Implied av	•
	group		(LCFS da		(UK VTT SC			(LCFS d		bure	
	i		n=5,31()	(00,0113)			n=5,31	0)	(UK VTT S	-
			Est	<i>t</i> -stat	Commute	Other NB		Est	<i>t</i> -stat	Commute	Other NB
					(n=850)	(n=861)				(n=842)	(n=849)
		С	255.10	57.99			С	132.50	79.45		
1	<£10K	α_1	-0.2511	-4.15	-112%	-93%	α_1	0.2057	8.28	-79%	-82%
2	£10K-£20K	α_2	0.1538	6.89	-23%	-20%	α_2	0.4781	50.40	1%	-1%
3	£20K-£30K	α3	0.3755	27.91	2%	1%	α3	0.5643	83.30	16%	13%
4	£30K-£40K	α_4	0.4883	50.01	11%	12%	α_4	0.6105	116.04	19%	18%
5	£40K-£50K	α_5	0.5525	67.40	13%	14%	α_5	0.6317	125.09	21%	20%
6	£50K-£75K	α_6	0.6010	114.86	18%	18%	α_6	0.6409	142.16	25%	24%
7	£75K-£100K	α_7	0.6293	155.86	22%	22%	α_7	0.636*	-	29%	29%
8	>£100K	α_8	0.645*	-	25%	25%	α_8	0.629*	-	32%	32%
-											
	on disposable inc	come as	s per the n	umber o	of children with		h (<i>K</i>	id _h)			
	on disposable inc <£10K		5 per the n 0.6761	umber o 20.31	f children with		h (<i>K</i> γ1	id _h) 0.3025	19.05		
fect	-	γ_1	0.6761	20.31	f children with		γ_1	0.3025	19.05 9.15		
fect of 1	<£10K	γ1 γ2	-		f children with		γ1 γ2	-			
fect of 1 2	<£10K £10K-£20K	γ1 γ2 γ3	0.6761 0.3087	20.31 22.56	f children with		γ1 γ2 γ3	0.3025 0.0694	9.15		
fect o 1 2 3	<£10K £10K-£20K £20K-£30K	Υ1 Υ2 Υ3 Υ4	0.6761 0.3087 0.1170	20.31 22.56 13.13	f children with		γ1 γ2 γ3 γ4	0.3025 0.0694	9.15		
fect of 1 2 3 4	<£10K £10K-£20K £20K-£30K £30K-£40K	γ1 γ2 γ3	0.6761 0.3087 0.1170 0.0444	20.31 22.56 13.13 6.69	f children with		γ1 γ2 γ3	0.3025 0.0694	9.15		
fect o 1 2 3 4 5 6	<£10K £10K-£20K £20K-£30K £30K-£40K £40K-£50K £50K-£75K	Υ1 Υ2 Υ3 Υ4 Υ5 Υ6	0.6761 0.3087 0.1170 0.0444 0.0239 0.0071	20.31 22.56 13.13 6.69 3.90 2.22		in household	γ1 γ2 γ3 γ4 γ5 γ6	0.3025 0.0694 0.0145 - - -	9.15		
fect o 1 2 3 4 5 6	<£10K £10K-£20K £20K-£30K £30K-£40K £40K-£50K	Υ1 Υ2 Υ3 Υ4 Υ5 Υ6	0.6761 0.3087 0.1170 0.0444 0.0239 0.0071	20.31 22.56 13.13 6.69 3.90 2.22		in household	γ1 γ2 γ3 γ4 γ5 γ6	0.3025 0.0694 0.0145 - - -	9.15		
fect of 1 2 3 4 5 6	<f10k f10K-f20K f20K-f30K f30K-f40K f40K-f50K f50K-f75K</f10k 	γ_1 γ_2 γ_3 γ_4 γ_5 γ_6 come as θ_1	0.6761 0.3087 0.1170 0.0444 0.0239 0.0071	20.31 22.56 13.13 6.69 3.90 2.22		in household	$\begin{array}{c} \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \gamma_4 \\ \gamma_5 \\ \gamma_6 \end{array}$	0.3025 0.0694 0.0145 - - -	9.15 2.57 - - -		
fect of 1 2 3 4 5 6 fect of 1	<pre><£10K £10K-£20K £20K-£30K £30K-£40K £40K-£50K £50K-£75K on disposable inc <£10K</pre>	$\begin{array}{c} \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \gamma_4 \\ \gamma_5 \\ \gamma_6 \end{array}$ come as $\begin{array}{c} \theta_1 \\ \theta_2 \end{array}$	0.6761 0.3087 0.1170 0.0444 0.0239 0.0071 s per the r 0.1112	20.31 22.56 13.13 6.69 3.90 2.22 number c 1.91		in household	$\begin{array}{c} \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \gamma_4 \\ \gamma_5 \\ \gamma_6 \end{array}$ holc θ_1	0.3025 0.0694 0.0145 - - - - (<i>Old_h</i>) 0.4399	9.15 2.57 - - 20.87 20.88		
fect of 1 2 3 4 5 6 fect of 1 2	<pre><£10K £10K-£20K £20K-£30K £30K-£40K £40K-£50K £50K-£75K on disposable inc <£10K £10K-£20K</pre>	$\begin{array}{c} \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \gamma_4 \\ \gamma_5 \\ \gamma_6 \end{array}$ come as $\begin{array}{c} \theta_1 \\ \theta_2 \\ \theta_3 \end{array}$	0.6761 0.3087 0.1170 0.0444 0.0239 0.0071 s per the r 0.1112 0.0737	20.31 22.56 13.13 6.69 3.90 2.22 number c 1.91 4.85		in household	$\begin{array}{c} \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \gamma_4 \\ \gamma_5 \\ \gamma_6 \end{array}$ holc $\begin{array}{c} \theta_1 \\ \theta_2 \end{array}$	0.3025 0.0694 0.0145 - - - (<i>Old_h</i>) 0.4399 0.2031	9.15 2.57 - - 20.87		
fect of 1 2 3 4 5 6 fect of 1 2 3	<pre><£10K £10K-£20K £20K-£30K £30K-£40K £40K-£50K £50K-£75K on disposable inc <£10K £10K-£20K £20K-£30K</pre>	$\begin{array}{c} \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \gamma_4 \\ \gamma_5 \\ \gamma_6 \end{array}$ come as $\begin{array}{c} \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \end{array}$	0.6761 0.3087 0.1170 0.0444 0.0239 0.0071 s per the r 0.1112 0.0737 0.0413	20.31 22.56 13.13 6.69 3.90 2.22 number c 1.91 4.85 4.62 5.03		in household	$\begin{array}{c} \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \gamma_4 \\ \gamma_5 \\ \gamma_6 \end{array}$ holc $\begin{array}{c} \theta_1 \\ \theta_2 \\ \theta_3 \end{array}$	0.3025 0.0694 0.0145 - - - (<i>Old_h</i>) 0.4399 0.2031 0.1442	9.15 2.57 - - 20.87 20.88 16.54 12.01		
fect of 1 2 3 4 5 6 fect of 1 2 3 4	<f10k f10K-f20K f20K-f30K f30K-f40K f40K-f50K f50K-f75K on disposable inc <f10k f10K-f20K f20K-f30K f30K-f40K</f10k </f10k 	$\begin{array}{c} \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \gamma_4 \\ \gamma_5 \\ \gamma_6 \end{array}$ come as $\begin{array}{c} \theta_1 \\ \theta_2 \\ \theta_3 \end{array}$	0.6761 0.3087 0.1170 0.0444 0.0239 0.0071 s per the r 0.1112 0.0737 0.0413 0.0396	20.31 22.56 13.13 6.69 3.90 2.22 number c 1.91 4.85 4.62		in household	$\begin{array}{c} \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \gamma_4 \\ \gamma_5 \\ \gamma_6 \end{array}$ holc $\begin{array}{c} \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \end{array}$	0.3025 0.0694 0.0145 - - - - - - - - - - - - - - - - - - -	9.15 2.57 - - 20.87 20.88 16.54		

* - Interpolated due to top-coding of LCFS data (GSS, 2014, p.22)

** - Disposable income vs. original income; (+): tax burden; (-): net benefits received

2

3 A similar model specification is set out for transforming the gross personal income to the disposable personal

4 income:

$$DispoInc_{p} = \sum_{i=1}^{8} \left((\alpha_{i} + \gamma_{i}Kid_{h} + \theta_{i}Old_{h}) * GrossInc_{p} * (GrossIncCat_{p} == i) \right) + C + \epsilon_{p}$$
 (Model D2)

5 As shown in the right part of Table A.2, the *R*-squared value of 0.84 indicates that the regression model

6 provides a lower fit by using personal income to predict amounts of social benefits, compared to the use of

7 household income (with an adjusted R-squared value of 0.92). This finding is reasonable since eligibility of

8 many types of social benefits including the housing benefits and child benefits, are dependent on household

9 income rather than personal income

1 Appendix B Model estimation and sample enumeration

2 A continuous interaction between income and the base VTT is specified in the 2014/15 UK VTT behavioural

3 framework to directly estimate a constant cross-sectional elasticity of VTT with respect to changes in

4 income, given by the following functional form:

$$f(inc, VTT) = \theta_0 \left(\frac{inc}{inc_{ref}}\right)^{\lambda_{inc}}$$
(B-1)

5 where f(inc, VTT) is the income elasticity formulation associated with the base underlying VTT, θ_0 , as part 6 of a range of interactions of VTT with different covariates (Hess et al., 2017, Table 2). Observed income and 7 reference income are represented as *inc* and *inc_{ref}*, respectively; λ_{inc} refers to the cross-sectional income 8 elasticity of VTT. Income is divided by a reference income of £40K to ensure that the base VTT corresponds to 9 the respondent with an annual income of £40K. This specification is retained across all income measurement 10 approaches for a fair comparison of the income elasticity estimates. The selection of the reference income 11 does not affect the model fit or estimation of the income elasticity. For each of the 9 income measurement 12 approaches, the designated income measurement for modelling, either collected by the 2014/15 UK VTT survey or generated by the income transformation, replaces the income variable *inc* in Equation B-1. 13 14 Valuations of time for each respondent are averaged across the SC data to generate an average SC-based VTT 15 value across sample.

16 Sample enumeration

17 The Implementation Tool that make use of the sample enumeration approach is retained in our analysis to 18 compute the mean VTT across the NTS sample and the different confidence measures across different 19 segments. This process involved calculation of the appropriate valuations (of time, reliability, etc.) for each 20 NTS trip in the sample while acknowledging the relevant covariates, and the weighted averages over the 21 sample to derive a nationally representative value. The NTS trips are weighted by both the expansion factor 22 provided with the NTS data and also the trip distance. This implies that the VTT generated by the 23 Implementation Tool is at an average kilometre basis. This process can be generalised as follows (see Hess et 24 al., 2017, Equation 36):

$$\overline{VTT} = \frac{\sum_{i} w_{i} l_{i} E(VTT_{i})}{\sum_{i} w_{i} l_{i}}$$
(B-2)

where w_i represents the expansion factor provided in the NTS data for trip *i*; l_i represents a trip distance for the NTS trip *i* for distance weighting, and $E(VTT_i)$ is the valuation formula from the behavioural model, which is as function of covariates, including the income elasticity of VTT.