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Exploiting Laguerre polynomials and steady-state estimates to facilitate

tuning of PFC

John Anthony Rossiter1, Muhammad Saleheen Aftab1

Abstract— Predictive Functional Control (PFC), a simplified
and low-cost MPC algorithm, has gained considerable attention
for industrial process control in the last two decades. Although
with PFC, controller tuning is relatively simple and more
meaningful than a PID controller, its efficacy turns poorer for
larger prediction horizons–a necessity for over-damped ad non-
minimum phase dynamics. This paper proposes a conceptually
novel tuning mechanism based on a single choice which is: how
much faster or slower than open-loop would you like the closed-
loop to converge? Simulations demonstrate that this is a cheap
and simple way of effective tuning, by suitably over or under
actuating the open-loop control action.

I. INTRODUCTION

The popularity of model predictive control (MPC) is taken

for granted these days but most of the focus in the literature

is on the more expensive products which require reliable

quadratic programming (QP) optimisers for high dimensional

optimisations, or indeed even more challenging non-linear

optimisations [1], [2]. There is relative little attention given

to the other end of the market, that is relatively low cost more

akin to PID. There are still many applications where a cheap

single-input-single-output (SISO) control law is required, but

PID is not as effective as one would like.

A secondary issue which also has gained relatively little

interest in the literature is the one of MPC tuning. While

it is accepted that the input and output horizons do affect

the ultimate tuning, these are not usually considered tuning

knobs in themselves as the default position is to take the

horizons to be as large as the computing available allows [3],

[4]. Consequently the main tuning parameters are the weights

in the performance index, but the relationship between the

weights and properties such as bandwidth and settling time

is not analytical, which means tuning could be considered

as much an art form as systematic, or perhaps something

amenable to an offline tuning optimisation such as with

genetic algorithms [4].

There is one notable exception to the above observations

and that is predictive functional control (PFC) [5], [6]. This

algorithm is built on some sensible concepts that would

appeal to practitioners and thus has found widespread accep-

tance in industry. Nevertheless, recent literature [7]–[9] has

emphasised the theoretical weaknesses in the basic algorithm

and thus has sought to produce modifications which retain

the appeal of the underlying concepts, but give more rigour

and confidence in the final control law. A simple summary

of some of the core conclusions of this work is:
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1) The use of a constant future input in the predictions in

conjunction with a single coincidence point can lead

to significant inconsistencies affecting both reliable

constraint handling and behaviour [7], [12].

2) The definition of the coincidence point makes inconsis-

tent use of target/disturbance information [17] which

often results in additional lag in the responses and thus

the tuning is not as intuitive as desired.

3) For systems with undesirable open-loop dynamics,

some form of pre-conditionning of the predictions is

essential to ensure the PFC implementation is reliable

[13], [14].

This paper is focussed more on the first two points above;

the proposals made could be combined with the 3rd point

fairly easily but we want a simple focus as befits a short

conference paper.

Specifically, this paper explores the role of the input pa-

rameterisation within PFC. Recent work, building on insights

from the mainstream MPC community [15], has encouraged

the use of input prediction parameterisations which converge

to the steady-state asymptotically rather than instantly [16].

It has been shown that these improve constraint handling

significantly, and also tuning [11]. Nevertheless, one core

facet has not yet been explored in the literature and that is

the role of pseudo-open-loop control, that is one whereby we

seek to achieve open-loop dynamics but within a closed-loop

including integral action. The advantage of such an approach

is that the input is automatically fairly passive which in many

scenarios is an advantage.

A second a more significant contribution of this paper

is to propose a different flavour of tuning direction to the

conventional algorithm, that is, rather than using the desired

settling time as the main tuning parameter, instead using

something we will call SPEED-UP. In simple terms this

means, how much faster than open-loop do we want the

closed-loop system to converge. SPEED-UP is a nice tuning

factor because it also has a clear relationship with input

activity. For example, a SPEED-UP of 2 suggests that the

input will over-actuate by roughly double during transients.

Section II will given a brief introduction to classical

PFC and some alternative input parameterisations, including

the open-loop dynamics option. Section III will introduce

the proposed new PFC approach based on SPEED-UP and

then section IV will give some simulation comparisons and

illustrations.



II. BACKGROUND ON PFC

This section gives an overview of PFC and some simple

alternative input parameterisations. This is used as the foun-

dation for the proposal of the following section.

A. System definition

For convenience hereafter, and without loss of generality,

take the following nominal transfer function model:

a(z)yk = b(z)uk + dk (1)

so output yk, input uk and dk a disturbance estimate to cater

for uncertainty. We assume that true process is similar, for

example:

ap(z)yp,k = bp(z)uk; dk = yp,k − yk (2)

Note it is assumed that the input to the process and model

are the same. The model used could equally be in state

space form and this assumption makes little difference to

the control law derivations.

B. System prediction

Prediction is well known [4] so details are omitted here

suffice to say one can determine an n-step ahead output

predictions as follows, for suitable H,P,Q.
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and L is a vector of ones.

C. Conventional PFC control law

PFC is based on the premise of matching the output

prediction to a first order response with a given time constant.

Hence, define a target trajectory as:

rk+i = (1− λi)R+ λiyp,k, i = 1, 2, · · · (4)

Note, we ignore details linked to non-zero dead-time exam-

ples for simplicity of notation; these are available in many

of the references.

The PFC law is defined by forcing the prediction of (3)

to match the desired trajectory (4) at a specified point n-

steps ahead, assuming that the future input is constant, that

is, uk = uk+i, ∀i > 0. Hence the PFC law is defined from:

eTn [HLuk+Qy
←k

+P u
←k

+Ldk] = (1−λn)R+λnyp,k (5)

where en is the nth standard basis vector. It is straightforward

to determine uk from (5).

D. Laguerre PFC

It was noted recently [12], [16] that the restriction of the

future input to a constant did not match the expected shape

of the closed-loop input and thus embedded an inconsistency

between predictions and closed-loop, which in turn meant

that the tuning was inevitably inconsistent. A simple im-

provement was to parameterise the future input using a first

order Laguerre function, in essence an exponential decay so

that:
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where ρ is a decay factor to be chosen, η is a degree of

freedom (d.o.f.) and uss is the expected steady-state so that:

{uk+i = uss, ∀i ≥ 0} ⇒ lim
i→∞

E[yk+i] = R (7)

For model (1) we can determine that, in steady-state:

a(1)yss = b(1)uss + dk ⇒ E[uss] =
a(1)R− dk

b(1)
(8)

It is straightforward to combine the updated input predic-

tion of (6) with predictions (3) and trajectory (4) to define

the modified PFC control law as:

eTn [H(Hρη+Luss)+Qy
←k

+P u
←k

+Ldk] = (1−λn)R+λnyp,k
(9)

Hence we solve (9) for η and substitute into (6) to determine

uk.

E. Open-loop dynamics PFC (OL)

A final simple alternative is where one is happy with the

open-loop dynamics and the feedback is simply to ensure

offset free tracking. Such a control law can be achieved with

the simple rule:

uk = E[uss] (10)

where E[uss] is indicated in (8).

Remark 1: It so happens that one can achieve an open-

loop dynamics PFC using control law (9) with ρ = 0. This

observation will prove useful in the following.

Remark 2: It should be emphasised that the open-loop

method avoids use of (4) altogether. This is actually a critical

part of the proposal in this paper as this means we avoid

the inconsistencies highlighted in [10], [17] whereby the

target information is used differently in consequent samples,

leading to unexpected lag in the closed-loop behaviour.

F. Constraints

It is possible to incorporate constraint handling into PFC

in a systematic and computationally simple way, and while

retaining feasibility, as demonstrated in several recent papers

[11], [12].
u ≤ uk ≤ u

∆u ≤ ∆uk ≤ ∆u

y ≤ yk ≤ y

(11)



and ∆uk = uk − uk−1.

However, as these details are not central to the contribution

of this paper they are excluded for clarity and brevity.

III. PROPOSED PFC CONTROL LAW BASED ON

SPEED-UP

The key factor here is transparency of tuning. It is assumed

that the operator can view the open-loop speed of response

and indeed achieve this with the PFC law given in (10), or

indeed equivalently (9) with ρ = 0. Hence it is transparent

and easy for them to define a closed-loop response as being

say, twice as fast, and obviously therefore having input

activity twice as big.

A. Increasing speed of target trajectory compared to open-

loop benchmark

In order to achieve some faster response, then we need

the error convergence of the predicted behaviour of (3) to be

appropriately faster for consistency. Hence, one core concept

is to choose an appropriate coincidence point that will cause

the suitably faster behaviour/convergence.

Begin with a benchmark behaviour that would be achieved

with the open-loop method of (10), so that the predictions

take the form:

yk+n|k = eTn [HLuss +Qy
←k

+ P u
←k

+ Ldk] (12)

The associated n-step ahead prediction error is given as:

ek+n = R− eTn [HLuss +Qy
←k

+ P u
←k

+ Ldk] (13)

Next, chose a coincidence point which has faster conver-

gence, so implicitly the associated error is smaller by a factor

of β, where β is a factor to be determined.

Lemma 1: For β > 1, a relative PFC control law can be

defined as follows. Choose η such that:

R− eTn [HLuss +Qy
←k

+ P u
←k

+ Ldk] =

β[R− eTn [HLuss +HHρη +Qy
←k

+ P u
←k

+ Ldk] (14)

η =
(β − 1)

eTnHHρβ
[R− eTn [HLuss+Qy

←k
+P u

←k
+Ldk] (15)

Then uk = uss + η.

Proof: It is clear from equation (15) that the coincidence

point for the predictions with the Laguerre addition, has an

associated error which is β times smaller than the error using

predictions based on the open-loop approach.

The core point here is that control law (15) gives us

a mechanism for achieving faster behaviour using a PFC

equivalent statement; this control law is analogous to (5)

with the critical exception that now there is now need for

the tuning parameter λ. This difference is fundamental to the

contribution of the paper as tuning is now based on relative

statements rather than absolute ones.

B. Determining a precise PFC law with faster responses

First we establish a common sense observation for faster

closed-loop responses, that is, a faster response requires a

more aggressive input action.

Lemma 2: In simple terms, for zero initial conditions and

a change in the target, a necessary condition for the response

to be θ times faster is if the initial input uk for a step change

in the target to be θ times bigger. This lemma is given without

proof as self evident.

Next, we look at the impact of requiring a smaller asymp-

totic error (as in (15)) on the initial input magnitude. The

argument is that, from linearity, comparing the input activity

with zero initial conditions and zero disturbance is a likely

indicator of the resulting closed-loop poles and this simplifies

the next stage of the analysis.

The initial input, for a change in target R and coincident

point (13) and zero initial conditions, using the open-loop

tuning is given in (10). (In this case the input is a constant

throughout the predictions.)

Lemma 3: The initial input, for a change in target R and

control law (15) is given as follows:

uk = uss + η =
R

g(1)
+

(β − 1)

eTnHHρβ
[R− eTn [HLuss] (16)

This also follows directly from (15).

For convenience hereafter define the following:

hρ = eTnHHρ; h = eTnH; E[uss] =
R

g(1)
(17)

Hence (16) can be simplified to:

uk =
R

g(1)
+

(β − 1)

hρβ
[R− h

R

g(1)
)] (18)

Theorem 1: The initial input from (18) is θ times faster

than (10) if β is chosen as follows:

β =
h− g(1)

(θ − 1)hρ − g(1) + h
(19)

.

Proof: Placing the two inputs (10), (18) side by side and

removing the common factor R, we have:

θ

g(1)
=

[
1

g(1)
+

(β − 1)

hρβ
[1− h

1

g(1)
]

]

(20)

Create a common denominator and match the numerators,

hence:

hρβθ = hρβ + (β − 1)[g(1)− h] (21)

Finally, solving for β gives the result in (19).

Remark 3: The derivation of the value for β was done

with the nominal case and zero initial conditions for simplic-

ity. However, as the final control law is in (15), the implied

poles will be retained for the closed-loop and moreover, there

will be robustness to uncertainty and offset free tracking.
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Fig. 1. Open-loop step response for system (22).

C. Summary of proposed algorithm

This section summarises the core conceptual steps and

algebra needed to implement the algorithm. it is noticed

that the computations are equivalent to a conventional PFC

approach and thus neither more nor less complicated to code

and implement. The core difference is the approach to tuning

where here one adopts relative statements (faster or slower)

rather than specifying desired poles/time constants precisely.

1) Verify that the open-loop behaviour is broadly accept-

able so can be used as a valid benchmark.

2) Determine the desired speed-up factor θ, that is how

much faster than open-loop behaviour do you want the

closed-loop to be?

3) Solve for the parameter β using equation (19).

4) Determine the PFC law using equation (15).

Remark 4: Constraint handling can be handled in a con-

ventional PFC manner using a simple for loop as discussed

in the references. It is reiterated that recursive feasibility is

automatic in the nominal case, although of course guarantees

in the presence of uncertainty require computational com-

plexity, expense and approaches which exceed the remit of

PFC.

IV. NUMERICAL COMPARISONS

This section will demonstrate the efficacy of the proposed

PFC approach as an alternative way to tune closed-loop

behaviour. It needs to be re-emphasised that the method is

based on the assumption that the open-loop dynamics are

essentially satisfactory so this method may not be appropriate

for systems with significant under-damping or open-loop

instability.
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Fig. 2. Closed-loop responses for system (22) with various θ.

A. Example 1

Take the 2nd order, slightly over-damped system, with a

non-minimum phase zero:

y(z) =
−0.04z−1 + 0.1z−2

1− 1.4z−1 + 0.45z−2
(22)

It should be remarked that the presence of the non-minimum

phase zero makes a conventional PFC difficult to tune

effectively and very difficult to achieve faster than open-loop

behaviour!

The coincidence horizon is taken to be 15 in lieu of the

slow pole at 0.9. The open-loop response is given in figure

1. The closed-loop responses for different choices of θ are

shown in figure 2. It is clear that the required speed up

has been achieved accurately and thus the proposed tuning

parameter of θ is intuitive and easy to use.

Remark 5: The tuning parameter θ can also be used to

achieve performance slower than open-loop, for example

where there is a particular desire for the input to be slowly

varying. This is illustrated in figure 3.

B. Example 2

Take a 3rd order, system, again with a non-minimum phase

zero:

y(z) =
0.1z−1 − 0.4z−2

1− 1.85z−1 + 1.035z−2 − 0.171z−3
(23)

It should be remarked that the presence of the non-minimum

phase zero makes a conventional PFC difficult to tune

effectively and very difficult to achieve faster than open-loop

behaviour!
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Fig. 4. Open-loop step response for system (23).

The coincidence horizon is taken to be 30 in lieu of the

very slow pole at 0.95. The open-loop response is given in

figure 4. The closed-loop responses for different choices of

θ are shown in figure 5. Once again it is evident that the

required speed up has been achieved accurately and thus the

proposed tuning parameter of θ is intuitive and easy to use.

C. Disturbance rejection

For completeness, this section illustrates that the benefits

are retained by the loop and thus apply, for example during

disturbance rejection. Figure 6 shows the disturbance rejec-

tion with system (23); it is clear that the SPEED-UP has
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Fig. 5. Closed-loop responses for system (23) with various θ.

been retained.

V. CONCLUSIONS AND FUTURE WORK

This paper has proposed a totally different conceptually

approach to PFC algorithms, that is where tuning is based

on relative rather than absolute statements. The advantage

of using relative statements is that it is possible to enable

an intuitive tuning parameter, here denoted as SPEED-UP:

how much faster, or slower, than open-loop do you want to

be? It is also noticeable that the proposed approach moves

away form the traditional control law definition around (4)

and thus avoids issues linked to inconsistent use of the target

information [17].

As compared to traditional PFC approaches and indeed

the many modifications proposed in the recent literature, the

tuning parameter here seems to behave far more consistently

so that the user achieves the desired behaviour; this is evident

from figures 2-5 where the initial input over or under actuates

to the required degree. It should be emphasised however, that

this approach is not effective with under-damped systems.

A core conceptual point within this paper is that it builds

on work [16] which used a Laguerre formulation for the

input parameterisation. This is essential as it means that

the predicted input moves smoothly from its initial over-

actuation to the required steady-state thus giving consistency

between predictions and closed-loop behaviour, something

that conventional PFC cannot give.
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