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Abstract—A Bayesian hierarchical model (BHM) is typically
formulated specifying the data model, the parameters model
and the prior distributions. The posterior inference of a
BHM depends both on the model specification and on the
computation algorithm used. The most straightforward way
to test the reliability of a BHM inference is to compare the
posterior distributions with the ground truth value of the
model parameters, when available. However, when dealing with
experimental data, the true value of the underlying parameters
is typically unknown. In these situations, numerical experiments
based on synthetic datasets generated from the model itself
offer a natural approach to check model performance and
posterior estimates. Surprisingly, validation of BHMs with high-
dimensional parameter spaces and non-Gaussian distributions,
is unexplored. In this paper, we show how to test the reliability
of a BHM. We introduce a change in the model assumptions to
allow for prior contamination, and develop a simulation-based
evaluation framework to assess the reliability of the inference
of a given BHM. We illustrate our approach on a specific BHM
used for the analysis of Single-cell Sequencing Data (BASiCS).

Index Terms—Bayesian Hierarchical Model; Single-cell Se-
quencing Data; Parameter calibration; Simulation-based Calibra-
tion

I. INTRODUCTION

Bayesian Hierarchical Models (BHM) take into account

relations between variables [1] by assuming a joint proba-

bility distribution for a set of parameters to be related to

the observation of interest. Lately, BHMs have been used

in biomedical applications and validating the reliability of

BHMs with high-dimensional parameters is a challenging

task, especially when applied to noisy biological data. Single-

cell RNA sequencing (scRNAseq) is a recent technique to

quantify RNA molecules on single-cell level, thus providing

insights to the gene expression profile of each cell [2].

A recent example of BHM applied to scRNAseq data is the

Bayesian Analysis of Single-Cell Sequencing Data (BASiCS)

framework introduced in [3]–[5]. BASiCS aims to provide a

structural method to analyse scRNAseq count data while

separating various latent variables affecting gene expression,

and therefore detecting gene expression heterogeneity in

downstream analysis. In its early release, BASiCS was

introduced as a non-regression model [3], [4], assuming
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independence between the mean and variance factors in

the model. The latest version of BASiCS is presented as a

regression model in [5], considering the confounding effect

between mean and variance [6]. The downstream analysis

in this framework depends on the posterior inference of the

variables in the BHM.

In this paper, we examine the reliability of both the non-

regression BASiCS [4] and the regression BASiCS [5]. Both

BASiCS models propose the posterior median to estimate

relevant variables in the downstream analysis. To validate

this estimation, we work on synthetic datasets generated

from the corresponding prior model. To explore the influence

of prior specification, we also modify the original package

to introduce a continuous range of choices for the prior

distribution of the biological variation variable, testing the

model robustness under perturbed prior models. Finally,

we show how the Simulation-based Calibration method

recently developed in [7] can be adapted here to validate

high-dimensional parameter inferences.

II. BASICS FRAMEWORK

BASiCS [3]–[5] aims to provide a structural method to

analyse scRNAseq count data to detect gene expression

heterogeneity. For a q ×n scRNAseq count matrix, with n

cells, q0 biological genes and q −q0 spike-in genes, BASiCS

assumes the following likelihood model:

Xi j

∣∣µi ,δi ,Φ j ,ν j
i nd
∼





Neg-Binomial

(
δ−1

i
,

Φ j ν j µi

Φ j ν j µi+δ
−1
i

)
,

for i ∈ {1, ..., q0},

Poisson
(
ν jµi

)
,

for i ∈ {q0 +1, ..., q},
(1)

where µi is the expected expression count for gene i across

all cells, δi the biological expression heterogeneity variable

for gene i , Φ j the cell size variable of cell j , and ν j

the technical noise variable for cell j . The priors of µi ,

Φ j and ν j are µi

∣∣σµ
i nd
∼ log-Normal

(
0,σ2

µ

)
, (Φ1, ...,Φn)

∣∣p ∼

nDirichlet(p) and ν j

∣∣θ, s j
i nd
∼ Gamma

(
1
θ , 1

s j θ

)
, with prior on

hyperparameters, θ the global technical noise variable and

s j the cell- j -specific technical noise variable:

θ |aθ,bθ ∼ Gamma(aθ,bθ), s j |as ,bs
i .i .d .
∼ Gamma(as ,bs ).



What differentiates the Non-regression BASiCS [3], [4] model

and the Regression BASiCS model [5] is the prior assigned

to the biological expression heterogeneity variable δi .

a) Non-regression BASiCS model:

Log-normal prior: δi |σδ
i nd
∼ log-Normal

(
0,σ2

δ

)
, (2)

Gamma prior: δi |aδ,bδ
i nd
∼ Gamma(aδ,bδ) , (3)

b) Regression BASiCS model:

δi

∣∣µi ,β,σ2
δ,λi

i nd
∼ log-Normal

(
f (µi ),

σ2
δ

λi

)
, (4)

where f (µi ) is a nonlinear regression of µi . For more details

on BASiCS framework, see the Appendix.

III. SIMULATION-BASED EVALUATION OF BHMS

For BHMs applied to biological data, it is rare to have

the ground truth of latent variable values to assess the

recovery of parameters of interest. In this study we simulate

the gene expression count matrix from the prior model

of non-regression and regression BASiCS respectively, and

then we use the synthetic data in the corresponding BASiCS

MCMC to compare the estimated posteriors with the “true”

parameter values used for data generation. For a detailed

description of the prior models, please see the Appendix. Our

experiments are performed in R 4.0.2 [8], code available

at https://github.com/lilythepooh/BASiCS-Reliability.git.

A. Uncertainty of median as a point estimate

In [3]–[5], the posterior medians are proposed as estimates

for δi , µi , ν j , Φ j , s j and θ, for downstream analysis. We

simulate a dataset X(1)∗ of 100 genes, 10 spike-in genes, and

50 cells from non-regression BASiCS model [4], simulating δi

from log-Normal distribution as in Eq. (2). After the required

data-preprocessing procedure of BASiCS, the resulted dataset

of synthetic gene expression has n = 39 cells, q0 = 100

biological genes and q−q0 = 10 spike-in genes. Then we plug

this synthetic dataset into the Monte Carlo Markov Chain

(MCMC) algorithm for non-regression BASiCS (BASiCS

package [4]), with fixed prior-hyperparameter values.

Similarly, we simulate a dataset X(2)∗ of 100 biological

genes, 10 spike-in genes and 50 cells from regression

BASiCS model [5], where δi was simulated from log-Normal

distribution as in Eq. (4). After the data preprocessing

procedure required for BASiCS, we get a synthetic gene

expression count dataset with n = 44 cells, q0 = 98 biological

genes and q − q0 = 10 spike-in genes. Then we plug the

fixed synthetic dataset back into the MCMC algorithm for

regression BASiCS within the BASiCS package [5], with

fixed prior-hyperparameter values. When recovering the

parameter values used for generating datasets X(1)∗ and

X(2)∗, we replicate 100 MCMC respectively, resulting in 100

posterior medians for each parameters µi and δi from each

model, i = 1, . . . , q0. Each of the 100 MCMC was run for

15,000 iterations, 10,000 burns and thinned by 5, resulting

in 100 posterior samples of size 1,000 for both models

respectively.

Fig. 1: True values (δ∗
i

) and posterior estimates (median,

mean, 89% and 50% Highest Density Credible Intervals)

for δi , for biological genes i = 1, . . . , q0 (q0 = 100) and for

one particular replication of the estimation procedure. Non-

regression BASiCS model.

Fig. 2: True values (δ∗
i

) and posterior estimates (median,

mean, 89% and 50% Highest Density Credible Intervals) for

δi , for biological genes i = 1, . . . , q0 (q0 = 98), and for one

particular replication of the estimation procedure. Regression

BASiCS model.

To illustrate the recovery of true parameters in each run,

we calculated the 89% Highest Density Credible Interval

using bayestestR package [9]. We calculated the 89%

Credible Interval rather than the more common 90% or 95%

because according to [9], 89% credible intervals are typically

more stable. Figure 1 shows that from non-regression BASiCS,

among 100 gene-specific biological variation parameters

{δi : i ∈ {1, . . . ,100}}, 11 of the true values do not fall inside

the 89% Highest Density Credible Interval, and 53 of the true

values do not fall inside the 50% Highest Density Credible

Interval. As can be observed, the level of stochasticity in

this BHM means that using the posterior median as a single

estimate of the parameter does not necessarily work well,

since these single estimates may not even properly capture

the relative relationship between two δi ’s for two different

genes. For example, δ80 and δ82 have very similar posterior

median and posterior mean estimates (around 1.25), but the

true value for gene 82 (δ∗82 = 0.561) is much smaller than for

gene 80 (δ∗80 = 1.944), indicating a lower biological variation

factor for gene 82. We note here that our comments above

remain after exploring other 199 runs of the estimation

process, since they are replication runs of the same model

using the same dataset under the same conditions.



Figure 2 shows that from regression BASiCS, among 98

gene-specific biological variation parameters δi , 10 of the

true values do not fall inside the estimated 89% Highest

Density Credible Interval, and 48 of the true values do not

fall inside the 50% Highest Density Credible Interval. We

note that those 10 true values outside of the 89% Highest

Density Credible Intervals are small values between (0,1),

leading to very narrow posterior Highest Density Credible

Intervals. In this case, the posterior median could still act

as a fair single point estimate for them. For most δi , the

variance of the posteriors looks much smaller compared to

Figure 1, but such precision only occurred on the posteriors

of δi with small true values. When simulated from regression

BASiCS model, most biological variation factors δi are small.

Fig. 3: True value VS posterior median of all gene-specific

parameters δi and µi , with 100 replications and fixed dataset.

Left. Results from non-regression BASiCS with log-normal

prior for δi . Right. Results from regression BASiCS.

Figure 3 shows that the posterior medians vary across

different MCMC runs, and some of them are not in the 20%

relative error range of the true values. In regression BASiCS,

the posterior median of µi is closer to the truth, but the

posterior median of δi varies more across different MCMC

runs.

B. Posterior Predictive Check

Following [10], we use Posterior Predictive Check (PPC)

to assess our model fit. For a run in Section A, from each

set of parameters {µi ,ν j ,Φ j ,δi } in 1000 posterior samples,

we simulate a posterior predictive value of biological gene

expression count X (1)
i j

(X (2)
i j

) from Eq. (1), resulted in 1000

posterior predictive X (1)
i j

(X (2)
i j

) to compare with the true

data X (1)∗
i j

(X (2)∗
i j

). Figure 4 and Figure 5 plot the histogram

of posterior predictive X (1)
i j

(X (2)
i j

) and the vertical line of

x = X (1)∗
i j

(x = X (2)∗
i j

) for non-regression BASiCS model and

regression BASiCS model respectively. We can see that the

regression BASiCS model [5] has performed better compared

with the non-regression BASiCS model. [4].

C. Sensitivity to contamination on prior

To assess the sensitivity of the Bayesian Hierarchical model

to prior choices, we introduce a contamination on prior

distribution. In [3], the prior distribution of the gene-specific

biological variation variable δi is a Gamma distribution,

while in [4] the prior distribution of δi is a log-Normal

distribution. Given the expected limited information on δi ,

Fig. 4: histogram: posterior predictive distribution of X (1)
i j

,

simulated from the posteriors of run 1.

red line: input data X (1)∗
i j

.

(a): gene i = 7, cell j = 1. (b): gene i = 10, cell j = 12.

(c): gene i = 38, cell j = 14. (d): gene i = 56, cell j = 33.

Fig. 5: histogram: posterior predictive distribution of X (2)
i j

,

simulated from the posteriors of run 1, regression BASiCS

model.

red line: input data X (2)∗
i j

.

(a): gene i = 1, cell j = 9. (b): gene i = 12, cell j = 2.

(c): gene i = 15, cell j = 11. (d): gene i = 77, cell j = 7.

we propose the following extension of the prior specification

of δi in non-regression BASiCS model:

δi
i nd
∼ (1−ε)·log-Normal

(
0,σ2

δ

)
+ε·Gamma(aδ,bδ) , ε ∈ [0,1],

(5)

where ε is the proportion of the Gamma prior in the prior

mixture. This extends the bipolar choice in the original pack-

age to a continuous range of choice for the prior distribution

of δi . We modified accordingly the non-regression part of

the BASiCS package [4], to explore how different choices of

the prior family affect the posterior inference. We simulated

a synthetic dataset X(1)∗ with ε= 0 in Eq (5), with everything

else follows the original non-regression BASiCS model. Using

the synthetic dataset X(1)∗, we apply our modified MCMC

with fixed prior-hyperparameter values and ε ∈ {0,0.5,1}.

Here ε ∈ {0,0.5,1} is an example to explore how different

mixtures of prior model could affect the posterior result. To

investigate the stochastic variation in the MCMC result, for

each ε ∈ {0,0.5,1} we replicate the MCMC for 200 times.



Fig. 6: Gene-specific estimated posterior distributions for δ1

and µ1 from the synthetic dataset. For δ1, a “true” value ε∗ =

0 was considered to generate the dataset. The “true” values

of δ∗1 and µ∗
1 are represented by vertical lines. During the

estimation process, we consider different prior distributions

for δ1 by varying ε ∈ {0,0.5,1}. 200 replications are considered

for each ε choice.

In Figure 6, we plot the posterior samples for the parame-

ters δ1 and µ1, for any ε ∈ {0,0.5,1}. It is easy to see that the

true parameters δ∗1 and µ∗
1 are successfully recovered within

the posterior ranges. Still, a certain degree of stochasticity

from the MCMC estimation leads to variability in the

posterior samples around those true values. On the other

hand, it seems clear that the estimation of δ1 worsens for

increasing values of ε. This is expected, since the true value

of ε used to simulate the synthetic dataset X(1)∗ was ε∗ = 0.

These results suggest that the recovery of µ1 seems to remain

largely unaffected by changes in ε, which is to be expected

since µ1 is independent from ε. On the other hand, the

selection of the prior distribution for δi (either Gamma,

log-Normal or something in between) can have a noticeable

impact on the corresponding estimates. However, this is not

always the case with δi .

Table I shows the posterior median and the posterior

credible intervals for δi and µi corresponding to several

different genes i ∈ {1,38,39,60} in non-regression BASiCS.

These genes have been chosen accordingly here to illustrate

different behaviours. In Table I, the posteriors of µi are

consistent regardless of the choice of ε. While the posterior

medians of µ1, µ38 and µ39 are relatively close to the true

values, and the confidence intervals typically contain the

true value inside, the true value µ∗
60 does not fall into the

posterior 89% Highest Density Credible Interval, and µ60 is

underestimated in this case.

δ1 δ38 δ39 δ60ε
Median 89% CI Median 89% CI Median 89% CI Median 89% CI

0 0.64 [0.16,1.32] 1.84 [0.71,3.70] 0.73 [0.11,1.46] 2.33 [0.97,3.90]

0.5 0.48 [0.00,1.14] 1.87 [0.63,3.41] 0.56 [0.00,1.42] 2.30 [0.87,3.88]

1 0.35 [0.01,0.96] 1.90 [0.73,3.66] 0.40 [0.00,1.39] 2.40 [0.92,3.96]

Truth δ∗1 = 0.56 δ∗38 = 0.45 δ∗39 = 0.50 δ∗60 = 3.29

µ1 µ38 µ39 µ60ε
Median 89% CI Median 89% CI Median 89% CI Median 89% CI

0 0.39 [0.20,0.56] 0.43 [0.20,0.68] 0.21 [0.11,0.36] 0.69 [0.32,1.08]

0.5 0.38 [0.22,0.55] 0.42 [0.18,0.66] 0.20 [0.09,0.32] 0.67 [0.33,1.07]

1 0.38 [0.23,0.56] 0.43 [0.19,0.72] 0.21 [0.11,0.32] 0.69 [0.33,1.13]

Truth µ∗1 = 0.30 µ∗38 = 0.32 µ∗39 = 0.18 µ60∗= 1.30

TABLE I: Posterior medians and 89% Highest Density

Credible Intervals of δi and µi , i ∈ {1,38,39,60}, for different

choices of ε ∈ {0,0.5,1}. The “true” values µ∗
i

and δ∗
i

for each

gene used to generate the dataset are also reported.
In Table I it can be observed how the posteriors of δ1 and

δ39 are more sensitive to the choice of ε, while the posteriors

of δ38 and δ60 are more robust against this choice. On the

other hand, although the true values δ∗1 , δ∗39 and δ∗60 fall

inside the posterior 89% Highest Density Credible Interval,

the posterior median as a single estimate is relatively far

away from the true value. Even when considering the log-

Normal prior (ε = 0, the value used for generating the

dataset), δ39 is still overestimated, and δ60 is underestimated.

Moreover, in cases like δ38, the MCMC recovery of δ38 is

consistently wrong, regardless of the choice of ε, i.e. the prior

distribution. In particular, not only the posterior median is

far from the true value δ∗38, but also δ∗38 does not fall inside

the posterior 89% Highest Density Credible Interval. To

understand the reason behind this, we look at the simulated

gene expression count of gene 1 and gene 38. In the dataset

X(1)∗, the gene expression count of gene 1 X (1)∗
1 j

has 29 zero

values out of 39. The 10 non-zero X (1)∗
1 j

range in {1,2,3,4}.

While in dataset X(1)∗, the gene expression counts of gene 38

across cells, {X (1)∗
38, j

: j = 1, . . . ,39}, contain 32 zero values out

of 39. The 7 non-zero values range within the set {1,2,3,6}.

Therefore, in synthetic dataset X(1)∗, there is more variation

across cells for the gene expression count of gene 38 X (1)∗
38, j

across cells compared to gene 1. Thus, the estimation process

would naturally conclude that gene 38 has a higher value

of δ38, hence the consistent overestimation of δ38.

D. Simulation-Based Calibration Adapted for BHM with

High-dimensional Parameters

Simulation-based Calibration (SBC) is a general procedure

proposed in [7] for validating inferences from Bayesian

algorithms capable of generating posterior samples. Consider

a joint distribution over measurements x and parameters

ζ, with specified likelihood π(x |ζ) and prior distribution

π(ζ), so that π(x ,ζ) = π(x |ζ) ·π(ζ). Bayes’ Theorem yields

that for a set of observations x̃ , the posterior distribution

π(ζ|x̃) ∝π(x̃ ,ζ). Denote the corresponding parameter space

of ζ as Z . Suppose we simulate a ground truth ζ̃ ∈Z from

the prior ζ̃∼ π(ζ), and then generate some data from the

corresponding data generating process x̃ ∼π
(
x |ζ̃

)
. It is clear

that, by integrating the exact posteriors over the Bayesian

joint distribution, one gets the prior distribution

π(ζ) =

∫
π (ζ|x̃)π

(
x̃ |ζ̃

)
π

(
ζ̃
)

dx̃dζ̃. (6)

Eq. (6) is called the self-consistency condition in [7].

Consider drawing a sequence of samples from the posterior

distribution π(ζ|x̃) ∝ π(x̃ |ζ)π(ζ): {ζ(1), . . . ,ζ(L)} ∼ π(ζ|x̃).

Condition (6) implies that ζ̃ and {ζ(1), . . . ,ζ(L)} will be

distributed according to the same distribution. Based on

this, [7] defined the rank statistic

r
(
g (ζ(1)) , . . . , g (ζ(L)) , g

(
ζ̃
))
=

L∑

l=1

1{ζ(l ) s.t . g (ζ(l ))<g
(
ζ̃)

)}(ζ(l )),

(7)

which can be defined for any one-dimensional random

variable g : Z 7→R, and where for a set A, 1A(a) = 1 if a ∈ A,

and is equal to 0 otherwise. [7] showed that given an i.i.d.



sample {ζ(1), . . . ,ζ(L)} from the posterior and a function g :

Z 7→R, the rank statistic in Eq. (7) follows a discrete uniform

distribution on {0,1, . . . ,L}. Based on the uniformity of the

rank statistic, they introduced Simulation-based Calibration

as a way of exploiting this result to validate the inference

process in practice, by checking that the resulting rank

statistic is uniformly distributed (see Algorithm 1 in [7]).

To eliminate the potential bias from the autocorrelation

structure in the Monte Carlo Markov Chain (MCMC), [7]

propose that for MCMC methods, one can add a step for

assessing Effective Sample Size Ne f f [g ] with respect to

the measurement of interest g (ζ). If Ne f f [g ] > L then the

autocorrelation is negligible, otherwise the MCMC needs

to be rerun for an appropriate length of iterations (see

Algorithm 2 in [7]).

BASiCS is implemented via MCMC , therefore it can be

assessed with the Effective Sample Size assessment. Notably,

in complex real data models like BASiCS, we have multiple

measurements of interest g1(ζ), . . . , gM (ζ). Therefore, similar

to [7], we assess the minimal Effective Sample Size with

respect to all the measurements of interest, that is, if:

min
m=1,...,M

{
Ne f f

[
gm

]}
> L (8)

To implement this approach for the BHM in Section II,

we define g as the projection function to each individual

parameter in the parameter vector ζ. This is similar to

the identity function g proposed in [11] for models with a

single parameter, where the diagnosis consists of checking

if the rank statistic for the parameter mirrors a uniform

distribution. However, in BHMs like BASiCS, the approach

can be adapted for the high-dimensional parameter space

[7] ζ=
(
δ1, . . . ,δq0 ,µ1, . . . ,µq0 ,ν1, . . . ,νn ,φ1, . . . ,φn , s1, . . . , sn ,θ

)
.

We define gδi
(ζ) = δi , gµi

(ζ) = µi , gν j
(ζ) = ν j , gΦ j

(ζ) =

Φ j ,gs j
(ζ) = s j ,gθ(ζ) = θ in Eq (6), and we assess if:

min
i , j

{
Ne f f [δi ], Ne f f [µi ], Ne f f [ν j ],

Ne f f [Φ j ], Ne f f [s j ], Ne f f [θ]
}
> L.

This leads to Algorithm 1, which we implement and apply

to the BASiCS non-regression model. In order to check the

deviation of rank statistics from Uniform({0,1, . . . ,L}), we

plot the empirical cumulative density function (ECDF) and

the expected CDF behaviour of Uniform({0,1, . . . ,L}).

As Algorithm 1 demonstrated, in k = 1, . . . ,K runs, all the

parameters δ̃(k)
i

, µ̃(k)
i

, ν̃(k)
j

, Φ̃
(k)
j

,s̃(k)
j

, �θ(k) are re-simulated

from the corresponding i .i .d . prior distribution for all i =

1, . . . , q0, j = 1, . . . ,n. Therefore, the rank statistic of each δi is

equivalent to each other, the same applies to µi ,ν j ,Φ j , s j ,θ.

Without losing generality, in Figure 7, we plot the ECDF of

δ1, s1,θ,Φ1,ν1,µ1. From Figure 7, one can observe that the

behaviour of the rank statistics for most of the parameters

are close to the uniform distribution. On the other hand, the

rank statistics for θ are far from the uniform distribution,

suggesting that θ is likely to be underestimated in this model.

Algorithm 1: SBC for BASiCS: individual parameters

Require: Data generating model π(Xi j |δi ,µi ,ν j ,Φ j , s j ,θ),

prior distribution π(δi ),π(µi ),π(ν j ),π(Φ j ),π(s j ),π(θ), the

number of rank statistic K , , the number of MCMC

iterations L′, the resulted posterior MCMC chain length

Nsample , the number of posterior sample used for

calculating each rank statistic L ≈
Nsample

10
.

Initialise

while k in (1 : K ) do

Draw prior sample for i=1,. . . ,q,;

j=1,. . . ,n:

δ̃(k)
i

∼π(δi ), µ̃(k)
i

∼π(µi ), ν̃(k)
j

∼π(ν j ), Φ̃(k)
j

∼π(Φ j ),

s̃(k)
j

∼π(s j ), θ̃(k) ∼π(θ);

Draw a simulated dataset, for i = 1, . . . , q, j = 1, . . . ,n :

X̃ (k)
i j

∼π
(

Xi j |δ̃
(k)
i

, µ̃(k)
i

, ν̃(k)
j

,Φ̃(k)
j

, s̃(k)
j

, θ̃(k)
)
;

Run the corresponding MCMC algorithm with Input

dataset X̃(k) =

(
X̃ (k)

i j

)
in BASiCS package for L′

iterations to generate the correlated posterior sample

chain of length Nsample from

π(δ(k)
i

,µ(k)
i

,ν(k)
j

,Φ(k)
j

, s(k)
j

,θ(k)| ˜y (k)):(
δ(k)

i
(t ),µ(k)

i
(t ),ν(k)

j
(t ),Φ(k)

j
(t ), s(k)

j
(t ),θ(k)(t )

)
for

t = 1, . . . , Nsample , , i = 1, . . . , q, j = 1, . . . ,n;

Call R function LaplacesDemon::ESS [12] to

compute the effective sample size for each parameter,

N (k)
e f f

[δi ], N (k)
e f f

[µi ], N (k)
e f f

[ν j ], N (k)
e f f

[Φ j ], N (k)
e f f

[s j ],

N (k)
e f f

[θ], for i = 1, . . . , q, , j = 1, . . . ,n.

N (k)
e f f

= min{N (k)
e f f

[δi ], N (k)
e f f

[µi ], N (k)
e f f

[ν j ], N (k)
e f f

[Φ j ],

N (k)
e f f

[s j ], N (k)
e f f

[θ]}
(9)

if N (k)
e f f

< L then

rerun the MCMC for L′·L

N (k)
e f f

iterations.

else

For each i = 1, . . . , q0, j = 1, . . . ,n, thin the posterior

MCMC chain to L samples{(
δ(k)

i
(tl ),µ(k)

i
(tl ),ν(k)

j
(tl ),Φ(k)

j
(tl ), s(k)

j
(tl ),θ(k)(tl )

)}L

l=1
,

and truncate any leftover sample from the k-th

run after(
δ(k)

i
(tL),µ(k)

i
(tL),ν(k)

j
(tL),Φ(k)

j
(tL), s(k)

j
(tL),θ(k)(tL)

)
.

end if

Compute rank statistic for i = 1, . . . , q , j = 1, . . . ,n:

r (k)[δi ] = r
({
δ(k)

i
(t1), . . . ,δ(k)

i
(tL)

}
, δ̃(k)

i

)
(10)

=

L∑

l=1

1{
tl :δ(k)

i
(tl )<δ̃(k)

i

}
(
δ(k)

i
(tl )

)
. (11)

Similarly, calculate r (k)[µi ], r (k)[ν j ], r (k)[Φ j ], r (k)[s j ],

r (k)[θ].

end while

Plot the histogram of rank statistic r (k)
i j

. for k = 1, . . . ,K .

Check the uniformity of the histogram of r (k)
i j

. for

k = 1, . . . ,K .



This illustrates the applicability of the techniques in [7] for

diagnosing the estimation of parameters in a BHM such as

that in Figure 9.

Fig. 7: SBC results of non-regression BASiCS [4]. For the

model parameters s j , δi , θ, Φ j , ν j and µi , the ECDF of

the calculated rank statistic (dark blue) and 500 uniform

samples (light blue) are plotted. Without loosing generality,

here i = 1, j = 1.

We also perform the Simulation-based Calibration proce-

dure described in Algorithm 1 on regression BASiCS model,

adapted from [7]. Similar to the arguments in the last

paragraph, without losing generality, in Figure 8 we plot

the ECDF for the calculated rank statistics and the uniform

distribution for δ1, s1 and θ. In terms of the Simulation-

based Calibration results, the behaviours observed for the

regression BASiCS model in Figure 8 are similar to those

observed for the non-regression BASiCS model in Figure

7. In particular, the rank statistics for most parameters in

Figure 8 are close to a uniform distribution. The low ranks of

s j are seen slightly more often in the computed ranks than

we would expect from a uniform distribution, and the rank

statistic of θ is far from the range of the uniform distribution.

Thus, this suggests that θ tends to be underestimated in the

regression BASiCS model.

Fig. 8: SBC results of regression BASiCS [5]. For the model

parameters s j , δi and θ, Φ j , ν j , µi , the ECDF of the

calculated rank statistic (dark blue) and 500 uniform samples

(light blue) are plotted. Without loosing generality, here i = 1,

j = 1.

IV. CONCLUSION

In summary, we have demonstrated how to exploit a

simulation-based calibration approach to evaluate a BHM

and its implementation. Our analysis shows that regression-

BASiCS achieves some improvement over non-regression

BASiCS on the posterior estimation accuracy in terms of

the length of 89% credible interval and posterior predictive

distribution. The Simulation-based Calibration method re-

turns similar results for the two models. This is because

the Simulation-based Calibration approach implemented

here relies on checking if the true value of the parameter

used to generate the corresponding synthetic dataset falls

inside the posterior credible interval estimated under the

assumed model [7]. In terms of the posterior credible interval

coverage, these SBC results in Section III.D are consistent

with the previous analysis about credible intervals in Section

III.A. On the other hand, SBC results in Section III.D reveal

issues with the posterior inference for some parameters,

especially θ, which could affect the downstream analysis

when implementing these models with real data. Considering

that the prior distribution of θ is the same in both the

regression BASiCS and the non-regression BASiCS, some

improvements on this part of the model could be made

in the future. We note that, in our BASiCS example, the

point estimate section suggests a reliability issue with the

posterior estimate of δi . Therefore, in future work on BHM,

more point estimate options need to be explored. Since

ground truth is typically unknown in BHM, we would like

to emphasise that the simulation based reliability analysis

is important in validating BHM and its implementation.
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APPENDIX

A. The Non-regression BASiCS Model

BASiCS [3]–[5] aims to provide a structural method to

analyse scRNAseq count data to detect highly variable

genes (HVGs) and lowly variable genes (LVGs). HVGs are

expressed differently across cells because they specialise in

certain functions of certain cells. On the opposite, LVGs are

expressed on a stable level across cells, as they participate

in general cellular activities.

A typical scRNA dataset can be represented by a matrix,

X =
(
Xi j

)
i∈{1,...,q}, j∈{1,...,n}

where non-negative integers Xi j ∈

{0,1,2, . . . } represent the mRNA count of gene i in cell j at

the time of the experiment, for q genes and n cells. Here

we consider q0 biological genes, which naturally exist within

the cells, and q−q0 spike-in genes [13], which are artificially

added during the experiment to help quantify the technical

noise.

The expected count of gene i ’s expression in cell j could

be affected by several factors. BASiCS [3]–[5] provides a

hierarchical statistical model for these gene expression

counts, mainly based on Assumptions 1-5 below. A schematic

representation of this hierarchical model is given in Figure

9.

a) Assumption 1: The expression count for biological

gene i ∈ {1, ..., q0} in cell j ∈ {1, ...,n} can be modelled as

Xi j

∣∣µi ,Φ j ,ν j ,ρi j
i nd
∼ Poisson(µiΦ jν jρi j ). (12)

On the other hand, the expression count for spike-in gene

i ∈ {q0 +1, ..., q} in cell j ∈ {1, ...,n} is modelled as

Xi j

∣∣µi ,ν j
i nd
∼ Poisson(µiν j ). (13)

Here, an underlying assumption is that the unexplained

technical noise only depends on cell-specific characteristics.

For a given cell j , this noise would affect the expression

counts of all genes i = 1, ..., q in the same manner.

Fig. 9: A schematic representation of the non-regression

BASiCS model in terms of a directed acyclic graph. The two

choices for the prior distribution for δi , log-Normal and

Gamma distributions, are depicted. In the graph, we have

biological genes i ∈ {1, . . . , q0}, spike-in genes i ′ ∈ {q0+1, . . . , q}

and cells j , j ′ ∈ {1, . . . ,n}.

b) Assumption 2: The biological random effect for

gene i ∈ {1, . . . , q0} in cell j ∈ {1, . . . ,n} follows a Gamma

distribution which depends on the gene but not on the

cell,

ρi j |δi
i nd
∼ Gamma

(
1

δi
,

1

δi

)
. (14)

Both the shape and the rate of the Gamma distribution are

assumed to be the same, δ−1
i

, so that E(ρi j ) = 1, Var(ρi j ) =

δi . The biological variation factor for biological gene i ∈

{1, . . . , q0} across all cells, δi , has two possible options for

prior [3], [4]:

Log-normal prior: δi |σδ
i nd
∼ log-Normal

(
0,σ2

δ

)
, (15)

Gamma prior: δi |aδ,bδ
i nd
∼ Gamma(aδ,bδ) ,(16)

with the corresponding standard deviation, shape and rate

parameters σδ, aδ,bδ > 0.

c) Assumption 3: The expected expression count of

biological gene i ∈ {1, . . . , q0}, µi , follows a log-Normal

distribution,

µi

∣∣σµ
i nd
∼ log-Normal

(
0,σ2

µ

)
, with σµ > 0. (17)

d) Assumption 4: The cell size variables follow a scaled

Dirichlet distribution,

(Φ1, ...,Φn)
∣∣p ∼ nDirichlet(p), (18)

where p =
(
p1, ..., pn

)
is the concentration parameter,

with p1, . . . , pn > 0. The Dirichlet prior also restricts that

n
(∑n

j=1
Φ j

)−1
= 1.

e) Assumption 5: The technical variation factor ν j , for

cell j ∈ {1, . . . ,n}, follows a Gamma distribution

ν j

∣∣θ, s j
i nd
∼ Gamma

(
1

θ
,

1

s jθ

)
, (19)

with shape parameter 1
θ > 0 and rate parameter 1

s j θ
> 0, so

that E(ν j ) = s j , Var(ν j ) = s2
j
θ. The general technical noise



factor across all cells, θ, and the technical noise related to

specific cell j ∈ {1, . . . ,n}, are modelled as

θ |aθ ,bθ ∼ Gamma(aθ ,bθ), (20)

s j |as ,bs
i .i .d .
∼ Gamma(as ,bs ), (21)

with shape and rate parameters aθ,bθ, as ,bs > 0.

1) Identifiability of the Non-regression BASiCS: Consider-

ing the distributions given by Eqs. (12) and (14), We apply

the Poisson-Gamma mixture result in [14]. In particular, after

integrating out ρi j for i = 1, . . . , q0, we get the likelihood of

the gene expression count of biological genes and spiked-in

genes:

Xi j

∣∣µi ,δi ,Φ j ,ν j
i nd
∼





Neg-Binomial

(
δ−1

i
,

Φ j ν j µi

Φ j ν j µi+δ
−1
i

)
,

for i ∈ {1, ..., q0},

Poisson
(
ν jµi

)
,

for i ∈ {q0 +1, ..., q},
(22)

for j ∈ {1, . . . ,n}. The resulting model in Eq. (22) for biological

genes is not identifiable, in the sense that it is to be

expected that parameters µi , ν j and Φ j cannot be separately

estimated from gene expression data for biological genes,

since they appear multiplied as µiν jΦ j in the expression

above. However, spike-in genes facilitate identifiability.

For spiked-in genes, i ∈ {q0 +1, . . . , q}, the expected count

µi is known, since the number of spiked-in molecules

added to each cell is recorded. Therefore, using the spiked-

in information across the cells j ∈ {1, . . . ,n}, the posterior

distribution of ν j can be inferred from Xi j ∼ Poisson
(
ν jµi

)
,

i ∈ {q0 +1, . . . , q}, j ∈ {1, . . . ,n}. In particular,

p
(
ν j |Xi j ,µi

)
∝

q∏

i=q0+1

p(Xi j |ν j ,µi )p(ν j )

=

(
1
θ

) 1
s j θ

∏q

i=q0+1
µ

Xi j

i

Xi j !Γ
(

1
θ

) ν

[∑q

i=q0+1
Xi j +

1
θ
−1

]

j
e
−

(
µi+

1
s j θ

)
ν j

,

where µi and Xi j are known for i ∈ {q0+1, . . . , q}, j ∈ {1, . . . ,n}.

Since ν j for j ∈ {1, . . . ,n} are inferred from spiked-in infor-

mation, the remaining identifiability conflict is between

Φ j , j ∈ {1, . . . ,n}, and the expected counts µi , i ∈ {1, . . . , q0}.

However, the restriction n
(∑n

j=1
Φ j

)−1
= 1 in the Dirichlet

distribution ensures the identifiability of Φ j , j ∈ {1, . . . ,n}

and µi , i ∈ {1, . . . , q0}. We note that this restriction imposes

an arbitrary scale to Φ j , but it does not affect the relative

differences between the µi ’s nor the δi ’s.

B. The Regression BASiCS Model

According to [6], a strong relationship is typically observed

between the variability (δi in BASiCS [5]) and mean (µi

in BASiCS [5]) estimates. In this case, the interpretation

of results from the non-regression BASiCS model can be

hindered. As authors in [5] argued, an intuitive approach

would be to only compare variability δi of those genes with

equal mean expression µi , but this is sub-optimal, especially

when used between groups of cells, as there are a large

number of genes expressed differently between populations.

One such example is provided by [5], where reactive genes

that change in mean expression upon changing conditions

are excluded from the expression heterogeneity assessment

by this intuitive solution. An alternative solution is to directly

adjust variability measures to remove the confounding effect

between mean and variability. For example, [15] computed

the empirical distance between the squared coefficient of

variation (CV2) of each gene to the rolling median CV2

across genes with similar expression levels. In line with this

approach, authors in [5] introduce the joint prior distribution

for the expected expression count of gene i , µi , and the

gene-specific hyper-parameter δi :

µi

∣∣σµ
i nd
∼ log-Normal

(
0,σ2

µ

)
, (23)

δi

∣∣µi ,β,σ2
δ,λi

i nd
∼ log-Normal

(
f (µi ),

σ2
δ

λi

)
, (24)

for i ∈ {1, . . . , q0}. The latter is equivalent to consider the

non-linear regression model

log(δi ) = f (µi )+ωi , i ∈ {1, ..., q0}, (25)

where ωi

∣∣σ2
δ

,λi
i nd
∼ Normal

(
0,σ2

δ
λ−1

i

)
is a latent gene-

specific residual over-dispersion parameter, capturing depar-

tures from the overall trend across all genes expressed at a

given mean expression µi . The regression BASiCS considers

f (µi ) =α0 +α1 log
(
µi

)
+

L∑

l=1

βl gl

(
log

(
µi

))
, i ∈ {1, . . . , q0}

(26)

where α0,α1,β1, ...,βL are regression coefficients and

g1(·), ..., gL(·) represent a set of Gaussian Radial Basis Func-

tion (GRBF) kernels. These can be defined as

gl

(
log

(
µi

))
= exp

{
−

1

2

(
log

(
µi

)
−mi

hl

)2 }
, l ∈ {1, . . . ,L}

(27)

where ml , l ∈ {1, . . . ,L}, are location hyperparameters and hl ,

l ∈ {1, . . . ,L}, are scale hyperparameters. Therefore, on top

of Assumptions 1-5, one adds Assumption 6 for regression

BASiCS [5], leading to the HBM given by Eqs. (18)-(30).

a) Assumption 6: A priori, ml (l ∈ {1, ...,L}), hl

(l ∈ {1, ...,L}) and σ2
δ

are fixed. The priors for β =(
α0,α1,β1, . . . ,βL

)
in Eq. (16) and its hyperparameters are

proposed as below:

β|σ2 i nd
∼ Normal

(
0,σ2I

)
(28)

σ2 i nd
∼ Inv-Gamma(aσ,bσ) (29)

λi |η
i nd
∼ Gamma

(η
2

,
η

2

)
, i ∈ {1, . . . , q0}. (30)
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