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Acoustic Screening for Obstructive Sleep Apnea
in Home Environments Based on Deep Neural

Networks
Hector E. Romero, Ning Ma, Guy J. Brown and Elizabeth A. Hill

Abstract— Obstructive sleep apnea (OSA) is a chronic
and prevalent condition with well-established comorbidi-
ties. However, many severe cases remain undiagnosed due
to poor access to polysomnography (PSG), the gold stan-
dard for OSA diagnosis. Accurate home-based methods to
screen for OSA are needed, which can be applied inexpen-
sively to high-risk subjects to identify those that require
PSG to fully assess their condition. A number of methods
that analyse speech or breathing sounds to screen for
OSA have been previously investigated. However, these
methods have constraints that limit their use in home en-
vironments (e.g., they require specialised equipment, are
not robust to background noise, are obtrusive or depend
on tightly controlled conditions). This paper proposes a
novel method to screen for OSA, which analyses sleep
breathing sounds recorded with a smartphone at home.
Audio recordings made over a whole night are divided into
segments, each of which is classified for the presence or
absence of OSA by a deep neural network. The apnea-
hypopnea index estimated from the segments predicted
as containing evidence of OSA is then used to screen for
the condition. Audio recordings made during home sleep
apnea testing from 103 participants for 1 or 2 nights were
used to develop and evaluate the proposed system. When
screening for moderate OSA the acoustics based system
achieved a sensitivity of 0.79 and a specificity of 0.80. The
sensitivity and specificity when screening for severe OSA
were 0.78 and 0.93, respectively. The system is suitable for
implementation on consumer smartphones.

Index Terms— Obstructive sleep apnea, screening,
acoustic analysis, deep learning, smartphone.

I. INTRODUCTION

O
BSTRUCTIVE sleep apnea (OSA) is a chronic and

prevalent condition that results from the reversible col-

lapse of the upper airway during sleep, resulting in a full

cessation (apnea) or significant reduction (hypopnoea) of

airflow [1]. Left untreated, OSA has well-established car-

diovascular [2], cerebrovascular [3], neurocognitive [4], and

metabolic [5] comorbidities [6], [7]. OSA affects approxi-

mately 1 billion people worldwide [8], and its prevalence is

increasing [9], though many individuals remain undiagnosed

due to poor access to appropriate healthcare [10], [11].
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Level I attended polysomnography (PSG) [12] is the

reference-standard test for objective measurement of sleep

and wake, and for diagnosis of a number of sleep disor-

ders, including OSA. Multiple channels of physiological data,

including brain activity (electroencephalography; EEG), eye

movements (electro-oculography; EOG) and muscle activity

(electromyography; EMG), are recorded overnight, allowing

experienced sleep technologists to delineate sleep and wake

stages in line with recognised international guidelines [13].

However, PSG is a resource-heavy procedure with significant

patient burden. The procedure is generally conducted in an

in-patient sleep laboratory setting, requiring expensive spe-

cialist equipment and highly trained staff – usually Registered

Polysomnographic Technologists (RPSGTs) – to set up, mon-

itor and score the study.

Testing can be performed in the home using Home Sleep

Apnea Testing (HSAT). This is a level III study [12], which

records a limited number of channels of cardio-respiratory

data, not usually including EEG/EOG/EMG. Therefore, HSAT

allows assessment of apnoeas, hypopnoeas and oxygen de-

saturations, but does not quantify sleep per se. The reduced

number of sensors (which can be described using the SCOPER

classification [14]) and portability of equipment means that

HSAT can be conducted in the patient’s usual sleeping environ-

ment, without the inconvenience of an attended in-patient stay,

and with a significant cost saving for the sleep service [15].

Severity of OSA is assessed using the apnea-hypopnea index

(AHI), defined as the average number of apneas and hypopneas

per hour of sleep on PSG, or per time in bed on HSAT.

Current international scoring guidelines [13] define an apnea

as a ≥90% reduction in nasal/oral airflow for ≥10 seconds. A

hypopnea is defined as a ≥30% reduction in nasal airflow for

≥10 seconds, and, on PSG, must be associated with either a

≥3% oxygen desaturation and/or EEG arousal. Scoring guide-

lines for HSAT do not include an arousal criterion given the

absence of electrophysiologically-derived sleep staging [13].

As a result of the differing scoring criteria and the use of

time in bed rather than total sleep time as a denominator,

a dilution effect on the AHI between PSG and HSAT is

well-documented, i.e. HSAT systematically underscores the

AHI [16]–[18]. Despite this, current international guidelines

recommend the use of HSAT as an acceptable alternative

to PSG [19] in uncomplicated adult patients with a high

clinical suspicion of moderate-to-severe OSA, and HSAT is

the first line test in many sleep services, particularly in the
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UK and Europe. The generally-accepted standard AHI cut-offs

for classification of OSA severity in adults, based on expert

consensus [20] are shown in Table I.

TABLE I: OSA Severity and AHI

OSA Severity AHI (events/hour)

Normal < 5

Mild 5 – 15

Moderate 15 – 30

Clinically relevant > 25

Severe > 30

PSG and HSAT suffer from a number of disadvantages. In

both cases – but particularly in the case of PSG – patients are

required to sleep with multiple sensors attached to their head

and body, which limit movement and can be uncomfortable.

PSG is known to be particularly susceptible to a ‘first-night

effect’, in which the first night of testing displays more sleep

fragmentation, longer initial sleep latency, less total sleep time,

and more wakefulness when compared to successive nights

[21], [22]. Although OSA presence and severity can differ

substantially from night to night, due to limited diagnostic

resources and the high cost of PSG most laboratory sleep

studies are limited to one night, which might not be represen-

tative of the actual condition of the subject under study [23],

[24]. A further concern is that availability of sleep laboratories

has been adversely affected by demands that the COVID-19

pandemic has placed on respiratory wards, a situation that is

likely to persist for some time [25]. HSAT is better in this

regard, but still requires time and expense to thoroughly clean

equipment between each study. Screening methods for OSA

are therefore needed, which can be deployed in the home

and use inexpensive equipment (such as the patient’s own

smartphone), in order to identify those that require PSG to

fully assess their condition [11], [26].

Here, we focus on methods for OSA screening based on

sound recordings made in the home. OSA displays symptoms

with particular acoustic characteristics, for example, snores,

chokes, loud gasps and absence of breathing. Furthermore,

breathing sounds and speech have similarities: both are time

series signals produced in the vocal tract with a similar

frequency range. Drawing inspiration from speech technology

tools, a number of methods that analyse breathing sounds

or speech in order to screen for OSA have been previously

published. These are summarised in Table II. It is worth

noting that direct performance comparison between these is

not possible, as the methods are not evaluated on the same

kind of data (e.g., tracheal sound recordings vs. ambient sound

recordings). Rule-based approaches have been proposed in

many studies. Such approaches are unlikely to effectively

capture the high variability of breathing sounds during sleep

and to be robust enough in uncontrolled acoustic conditions.

For instance, the performance of a system that detects apneas

by simply looking for silent segments in sleep audio recordings

will degrade in the presence of noise. Al-Mardini et al. [27]

screened for OSA using sound energy, oxygen saturation and

body movement collected with a smartphone and specialised

equipment (a tracheal microphone). Sound sample entropy and

additional non-acoustic data, oxygen saturation, were used

to predict AHI values by Castillo et al. [28] from audio

recordings made with a smartphone attached to the subject’s

chest. Saha et al. [26] estimated AHI values using oxygen

saturation, tracheal sounds and respiratory related movements

recorded with a device placed on the suprasternal notch.

Other studies have implemented systems based on ma-

chine learning techniques. Yadollahi et al. [29] predicted AHI

values with a fuzzy algorithm using tracheal sound energy

and oxygen saturation. Goldshtein et al. [30] developed a

Gaussian mixture model (GMM) classifier using time and

frequency features from speech to screen for OSA. Using

speech might be a limitation, since breathing sounds are not

directly analysed. Logistic regression with acoustic features

and additional non-acoustic data – sleep stage from scored

PSG – were used by Kim et al. [31] to predict the OSA severity

from ambient sound recordings.

Two previous studies are notable for their use of deep learn-

ing. Nakano et al. [32] detected apnea events and predicted

sleep status to compute the AHI using spectrogram images

from tracheal sound recordings as input to convolutional neural

networks (CNNs). Tiron et al. [33] estimated AHI values and

screened for OSA by detecting snoring from ambient sound

recordings with a CNN, and analysing active sonar reflections

recorded with a smartphone.

All of these studies, with the exception of the one by

Castillo et al. [28], used data collected in the controlled

conditions of a sleep clinic. This limits their applicability in

typical sleep environments – a bedroom at home – where

a range of different room acoustics and higher levels of

background noise will be found, which will negatively impact

upon the performance of screening systems.

Detecting OSA events using acoustics is a challenging task,

since they are caused by a collapse of the upper airway that

results in an absence of airflow [28]. Directly detecting such

periods of relative silence is generally not possible in the

presence of non-stationary noise. An alternative to detecting

individual OSA events is to analyse the temporal pattern of

sleep breathing sounds in large analysis windows, as the events

surrounding an apnea or hypopnea typically provide salient

cues that indicate its occurrence (e.g., the recovery breath or

loud gasp after an apnea followed by regular breathing). Here,

we implement this approach within a deep neural network

(DNN) and show that it is an effective strategy for OSA

screening from whole-night sleep audio recordings.

II. DATA

Data collection from home environments was undertaken, as

no suitable dataset was available from previous studies. Data

collection and storage protocols were subjected to the ethical

review procedures of the University of Sheffield.

A. Home sleep apnea testing and audio recordings

103 participants (67 males and 36 females) were included in

this home-based study. The average age of the participants was
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TABLE II: Parts of related acoustics based OSA screening studies

Task Study Data Reference Performance

OSA screening

Goldshtein et al. [30] Speech PSG
Sensitivity: 0.83 

Specificity: 0.81 

Al-Mardini et al. [27] 
Tracheal sounds 

with a smartphone
PSG

Sensitivity: 1.00 

Specificity: 0.86 

OSA severity 

prediction
Kim et al. [31] Ambient sound at clinic PSG

Sensitivity: 0.88 

Specificity: 0.88 

AHI estimation

Yadollahi et al. [29] Tracheal sounds at clinic PSG
Sensitivity: 0.90 

Specificity: 0.90 

Nakano et al. [32] Tracheal sounds at clinic PSG
Sensitivity: 0.98 

Specificity: 0.76 

Castillo et al. [28] Ambient sound at home HSAT Sensitivity: 0.76 

Saha et al. [26] Tracheal sounds at clinic PSG
Sensitivity: 0.91 

Specificity: 0.89 

OSA screening and 

AHI estimation
Tiron et al. [33] 

Ambient sound with a 

smartphone at clinic 
PSG

Sensitivity: 0.88 

Specificity: 0.80 

45±13 years and the average BMI was 31±7. Each participant

took HSAT for one or two nights while audio was recorded at

the same time. In total 157 nights of recordings were collected

and the average recording duration per night was 7±1.4 hours.

The detailed demographic information is shown in Table III.

TABLE III: Demographics of the participants included in

this study. The percentages of data groups, data ranges, and

averages with standard deviations are also given.

Total Participants 103

Males 67 65%

Females 36 35%

Age (years) 45 ± 13 25 – 71

BMI (kg/m2) 31 ± 7 19 – 48

AHI (events/hour) 25 ± 25 1 – 114

Recording Duration (hours/night) 7.0 ± 1.4 3.0 – 9.8

Total Nights 157

Normal AHI < 5 (nights) 13 8%

Mild 5 ≤ AHI < 15 (nights) 67 43%

Moderate 15 ≤ AHI < 30 (nights) 38 24%

Severe AHI ≥ 30 (nights) 39 25%

HSAT was carried out using a SOMNOmedics SOMNO-

touch RESP [34], which consists of several channels with

attached sensors that record oxygen saturation (SpO2), heart

rate, nasal airflow, respiratory effort, snore (derived from

airflow and sampled at 256 Hz), sleep-wake status, and body

position. Participants were instructed to sleep on their own.

During each HSAT session, audio recordings were made

simultaneously using a smartphone (iOS or Android) placed

next to the bed at head level. Audio recordings were collected

using a purpose-built Sleep Study App, which records sound

with a sampling frequency of 16 kHz and 16 bit resolution,

and sends 2-minute blocks of audio data continuously to a

central server throughout the HSAT session.

HSAT data was annotated for apnea events by a technologist

with the RPSGT qualification certified by the Board of Reg-

istered Polysomnologists (USA, AASM). Audio recordings

were checked for quality. Data was excluded from this study

if the HSAT recordings could not be scored due to corrupted

sensor data (e.g., missing flow channel due to misplaced nasal

cannula), the audio recording was missing, or the data was too

short (less than 4 hours). Data from 17 participants had issues

with HSAT device sensors and could not be synchronised with

the audio data. Data from 8 participants had issues with audio

recordings, which had corruptions or interruptions (caused by

incorrect use of the app and poor placement or orientation

of the device). 5 participants had audio recordings missing

(caused by streaming problems). Furthermore, the first 20 and

the last 2 minutes from the audio recordings of each night were

excluded, as these normally correspond to moments where the

participants were awake. The final OSA corpus consisted of

103 participants, and 157 nights amounting to over 1,094 hours

of data.

We note that the incidence of problems due to audio cor-

ruption or interruption (8) was half that of problems due to the

HSAT equipment. This in part justifies the proposed acoustic-

based method, which minimises the number of sensors used.

In practice, we believe the acoustic-based method would have

even higher usability when users do not have to wear the HSAT

sensors and there is no audio streaming.

An important difference between the present study and

previous ones is that the audio recordings were collected in a

real home setting where the proposed OSA screening system

is intended to be used. The proposed system must deal with

several challenges in home environments: varying room acous-

tics (reverberation), complex acoustic environments at home

(e.g., some participants slept with the TV on or a window

open), smartphones with distinct microphone characteristics

(iPhones, different Android brands), and suboptimal recording

procedures (e.g., because the participant placed the smartphone

too far away, or with the microphone facing in the wrong

direction). Therefore, there are significant variabilities in the

audio recordings that are representative of the intended use

case. This is in contrast with several other relevant studies

where acoustic signals were recorded in a controlled quiet

environment (e.g., in a sleep laboratory [26], [27], [29], [31]–
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[33] or using tracheal sound recordings [35]).

B. Synchronisation between HSAT and audio recordings

The scored HSAT data (inhalations, exhalations, desatura-

tions, snores, and apnea-hypopnea events) provides references

for the acoustic recordings. However, because the SOMNO-

touch device clock may not be accurate or tightly synchronised

with the smartphone, the timestamps in the data could not

be used on their own to synchronise the HSAT and audio

recordings. An algorithm for automatic synchronisation was,

therefore, developed.

The proposed synchronisation algorithm uses a 20-minute

segment of the audio recordings after the HSAT recording

started. The snore channel signal from HSAT (sampled at

256 Hz) was correlated with the audio segment (sampled at

16 kHz) as follows:

1) Downsample the audio signal to the HSAT sampling

frequency of 256 Hz;

2) Calculate an approximate initial time difference between

the audio signal and the snore channel using their

timestamps;

3) Use the initial time difference to identify corresponding

20-minute segments from the snore channel and audio

signal;

4) Half-wave rectify the snore and audio segments and

scale them to the range [0,1];

5) Compute the cross-correlation function (C) of the snore

(s) and audio (a) segments as

C(τ) =
N−1∑

n=0

s(n)a(n− τ) (1)

where τ ∈ [0, N) is the time delay and N is the number

of samples in the segment. In this study, N = 307, 200
for a 20-minute segment sampled at 256 Hz;

6) Adjust the initial time difference using the time delay

indicated by the peak of the crosscorrelation function;

7) Add the adjusted time difference to the timestamps of

the HSAT data.

In a small number of cases the audio recordings and the

snore channel from HSAT became desynchronised towards

the end of the night. This is likely caused by the clock in

the HSAT device not having an exact frequency of 256 Hz (a

range of 255.995 Hz – 256.007 Hz was reported by the man-

ufacturer [36]). Resampling the audio recordings at a slightly

lower rate (255.997 Hz) resolved this desynchronisation issue.

III. ACOUSTIC-BASED OSA SCREENING

We propose a deep learning-based automatic method to

screen for OSA, based on the analysis of breathing sounds

during sleep. We hypothesised that the temporal pattern of

respiration can be exploited to robustly screen for OSA

using ambient sound recordings made with readily available

hardware in typical sleep conditions. This was achieved by

predicting the presence or absence of apnea-hypopnea events

in large audio recording segments with a DNN, and using the

percentage of predicted apnea-hypopnea segments in a night

to screen for OSA, and estimate the AHI.

An overview of the proposed system is given in Figure

1. The whole-night sleep audio recordings were divided into

overlapping segments with a 10-s window shift. A long

temporal window (30-s to 40-s) was used in order to effec-

tively capture the temporal pattern of respiration, since an

apnea/hypopnea event typically lasts for 20–30 seconds. The

10-s window shift allowed the system to have a relatively high

temporal resolution to capture an apnea/hypopnea event. Each

audio segment was labeled as either having an apnea/hypopnea

event in it or not according to the scored HSAT data. After

this, a time-frequency representation based on an auditory

model [37] was computed for every segment and provided

as input features to the system. The DNN classified each

segment as either containing OSA events or not. Since adjacent

segments (10-s window shift) could contain the same OSA

event, their labels were grouped together to form the same

OSA event if they were all classified as containing OSA.

Finally, the predicted OSA event number was used to compute

the AHI for the whole night.

A. Acoustic signal processing

Auditory-motivated signal representations have been suc-

cessfully used for speech recognition and sound classifica-

tion [37]. Here, Mel-frequency analysis was used which is

based on human perception experiments. Audio signals were

sampled at 16 kHz. The power-spectrogram was first computed

by applying a short-time Fourier transform (STFT) to a 50 ms

frame with 20 ms frame shift and a Hann window. A bank

of 64 Mel-filters, which have overlapping pass-bands and

are logarithmically spaced in frequency between 70 Hz and

7.5 kHz, was applied to the power-spectrogram. This process

creates Mel-spectrograms, commonly known as Mel-filterbank

features [37]. They have an expanded low-frequency represen-

tation compared to the linear frequency scale of the STFT.

The filterbank features were then divided into overlapping

segments with a 10-s shift window. In this study segment

windows in the range of 30-s to 40-s were considered which

correspond to 1,500 to 2,000 frames in each segment, respec-

tively. The two-dimensional (64×1,500 to 64×2,000) features

were finally normalized to have zero mean and unit variance,

and used as the input to the DNN. The Mel-filterbank feature

representations of various breathing events are illustrated in

Fig. 2.

mel 

filterbank

segment with 

apnoea-hypopnea 

events?

FOR EACH AUDIO SEGMENT IN A SLEEP AUDIO RECORDING

audio


segment
DNN

OSA?
AHI 


computation

Fig. 1: Schematic diagram of the proposed system to screen

for OSA.
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Fig. 2: Mel-filterbank features for 60-second audio segments from the corpus. (a) Healthy breathing. Periodic low energy

events are observed throughout the segment. (b) Snoring. Periodic high energy events are observed throughout the segment.

(c) Apnea. The apnea corresponds to a region of very low energy (silence) marked by the orange patch at the top of the figure,

followed by a gasping noise. (d) Hypopnea. Low energy events corresponding to shallow breathing are seen, in the region

marked by the orange patch.
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Fig. 3: Proposed CNN architecture for OSA screening.

B. Deep neural network

The DNN architecture is a convolutional neural net-

work [38]. It consists of three convolutional layers with a

kernel size of 3×3 and 16, 32, and 64 filters. A 4×3 max-

pooling layer is applied to the output of each convolutional

layer, as well as a batch normalization layer. The ‘relu’ acti-

vation function was used for convolutional layers. A dropout

rate of 0.3 was used to help regularize the CNN. The output

of the convolutional layer was flattened and passed to a fully

connected layer with 512 ‘relu’ activation units. Finally, the

classification is carried out by a fully connected layer having

one ‘sigmoid’ activation unit with a binary output: ‘segment

with apnea-hypopnea events’ or ‘segment with no apnea-

hypopnea events’. This is illustrated in Fig. 3. The network

was trained with a learning rate of 0.001, and a batch size of

128. Binary cross-entropy was used as the loss function with

the ‘Adam’ optimizer. Convergence was commonly reached

within 50 epochs. The system was developed using Tensor-

Flow [39], and the hyperparameters were selected heuristically

based on previous sound classification experiments. Different

number of filters, number of convolutional layers, and kernel

sizes were considered while trying to keep the network small

so it would properly generalise, and be sufficient compact for

deployment on a smartphone.

C. AHI estimation

The DNN does not directly detect individual ap-

nea/hypopnea events. To estimate the AHI for a whole night,

the system first groups adjacent segments that are predicted

to contain an apnea/hypopnea event into a single event. This

is based on the observation that an OSA event tends to last

around 30 seconds, and thus if two adjacent segments with

10-s shift are both predicted to contain an OSA event, it

is likely that they belong to the same event. The number

of apnea/hypopnea events is then counted over the whole-

night recordings and AHI is computed by dividing the number

of events by the duration of the recording. As noted in the

introduction, the use of recording time rather than total sleep

time as a denominator has a diluting effect on the predicted

AHI, which is also a known limitation of HSAT [16]–[18].

IV. EXPERIMENTS

Experiments were conducted on the OSA corpus using

10-fold cross-validation. The 103 participants were randomly

divided into 10 folds; 10 participants per fold, except the last

fold which had 13 participants. For each cross-validation run,

data from the participants of the fold (10 or 13 participants)

was used as the evaluation dataset, and the data from the

remaining 9 folds (90 or 93 participants) was split into training

and validation datasets based on a 9:1 ratio. Cross-validation

was performed across all 10 folds, ensuring that evaluation

data was not used for training the system. Note that since

participants recorded one or two nights, each fold included

different numbers of nights depending on the data available.

Cross-validation was performed across participants rather than

recording nights to increase generalizability to unseen patients.

A. Evaluation framework

The system estimated the AHI for each night and was

evaluated using different AHI cut-off points; 5, 10, 15, 20,

25 and 30 events/hour. The number of nights below and

above each AHI cut-off point is displayed in Table IV. The

generally accepted AHI cutoff thresholds (5, 15, and 30) [19]

are highlighted in bold.

Sensitivity, specificity, receiver operating characteristic

(ROC) curve, and area under the ROC curve (AUC) were

reported for the different system configurations, as these reflect

the diagnostic or screening capability of a test. Bland-Altman

plots [40] were generated to evaluate the performance on the

AHI estimation task.
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B. OSA screening systems

1) Acoustic-based system: The proposed acoustic-based

system employed Mel-filterbank features as described in Sec-

tion III. To assess the importance of context in the OSA

screening task, we experimented with different segment win-

dow sizes: 30-s and 40-s. The same 10-s segment shift was

used in both experiments.

2) SpO2-based system: To provide a benchmark for the

performance of the proposed acoustic-based approach, a sys-

tem using blood oxygen saturation (SpO2) was developed

and evaluated. Oxygen saturation data from pulse oximetry

alone can be used for screening for sleep apnea [41]. Here,

the temporal changes of SpO2 from the corresponding HSAT

channel, measured as SpO2 deltas, were used as input to a

separate DNN that had a similar architecture to the one used

by the acoustic-based system. Deltas (∆) were computed as

∆x(n) =

∑
T

t=1
t (x(n+ t)− x(n− t))

2
∑

T

t=1
t2

(2)

where x is the SpO2 data, and T is the window size. Here,

T = 51 samples for a 199 ms window. These delta features

approximate the first derivative of the SpO2 signal, and provide

information on its temporal dynamics.

3) Sample entropy-based system: The sample entropy ap-

proach proposed by Castillo et al. [28] is a state-of-the-art

acoustic-based system for OSA screening which was im-

plemented to provide a baseline for comparison. Castillo et

al. also employed audio signals recorded with a smartphone

during HSAT. However, they attached the smartphone to the

participant’s chest; in this study the smartphone was placed on

a bed-side table. The sample entropy approach is a rule-based

method that detects apnea/hypopnea events by extracting audio

recording segments close to desaturations. Silent regions are

found within those segments with a duration of >6 seconds

using sample entropy. The AHI is directly calculated from

the number of silent regions and the duration of the audio

recording. We note that Castillo et al.’s approach is not purely

based on acoustics, since it requires oxygen saturation data to

identify desaturated segments.

V. RESULTS AND DISCUSSION

Table IV lists the sensitivity, specificity and AUC of various

OSA screening systems at different AHI cut-off points. The

generally accepted AHI cut-off points (5, 15, and 30) are

highlighted in bold, but for completeness the results for all

cut-off points between 5 and 30 in steps of 5 are given. At

each cut-off point, the number of nights in each class group

is also shown.

The SpO2-based system provides a benchmark performance

for the corpus used in this study. Using SpO2 data from

HSAT, the system achieved an AUC of 0.88 at the AHI cut-

off point of 15 (moderate OSA). At this threshold the two

classes (below and above AHI 15) were fairly balanced, and

the SpO2-based system achieved similar sensitivity (0.81) and

specificity (0.78). At the AHI cut-off point of 30 (severe OSA),

all the metrics improved compared to those at the cut-off

point of 15, with more improvement in sensitivity (0.91, 12%

absolute improvement) than in specificity (0.82, 4% absolute

improvement). The AUC increased to 0.93. This suggests that

the SpO2 data provided more reliable information for detecting

severe OSA cases, with a higher proportion of true positives

being identified. It is also noted that there were significantly

fewer nights in the severe OSA class (39 nights) than those

in the non-severe OSA class (118 nights), but the SpO2-based

system performed well in both sensitivity and specificity.

Compared to the SpO2-based benchmark, the proposed

acoustic-based OSA screening system performed well across

different AHI cut-off thresholds. The best performing acoustic-

based system was the one using 30-s long segments. In

general, the performance of acoustic-based systems increased

when a higher AHI cut-off was used, achieving an AUC of

0.92 at the AHI cut-off of 30, just slightly below the SpO2

AUC of 0.93. The main contribution of the improvement was

the specificity. In most cases, the specificity of the acoustic-

based system was higher than that of the SpO2-based system,

especially when the AHI cut-off was higher than 15. Although

the SpO2-based system had high sensitivity, it also produced

more false positives than the acoustic-based system. It is

possible that the SpO2-based system gives a false positive

result for patients who have desaturations that are unrelated to

sleep apnea: more HSAT sensors (such as nasal flow) would

be needed to exclude these cases. The acoustic-based system

was able to exploit breathing sounds in this case to achieve

a higher specificity. Its sensitivity (0.78 at the AHI cut-off

point of 30) was lower than the SpO2 system (0.93), which

reflects the challenge of using ambient sound recordings at

home for the OSA screening task. It is likely that in some

cases the audio was too quiet (patient facing away from the

smartphone) or too noisy (TV on, traffic noise), causing the

acoustic-based system to fail to detect sleep apnea events.

The AUC is not reported for the sample entropy-based

system because it directly estimates the AHI. The use of

acoustic and desaturation data by the sample entropy-based

system resulted in an improved specificity in comparison to

the system using acoustic data only, as the number of false

positives was reduced by labelling segments with high oxygen

saturation as non-apnea [28]. However, this strategy of using

desaturation information also caused low sensitivity, since the

number of true positives could also be reduced. The system

failed to identify around half of the true positives at most of

the AHI cut-off points. It is possible that some of the apnea

segments, especially at the start of an apnea/hypopnea event,

may not be accompanied by a desaturation in blood oxygen as

apnea/hypopnea could have a delayed effect on desaturation.

There were also differences in acoustic data collection between

the study of Castillo et al. [28] and ours. Their rule-based

silence detection method using sample entropy requires quiet

breathing sounds to be recorded by a microphone close to the

patient’s chest. Here, audio recordings were collected using a

smartphone placed on a bedside table. It is therefore likely that

some breathing sounds were not audible in the recordings used

in this study, causing the sample entropy method to misclassify

them as silence.

This highlights a challenge in comparing our work to

other state-of-the-art studies, since audio recordings used in
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TABLE IV: OSA screening results using different AHI cut-off points. Generally accepted thresholds are listed in bold.

AHI cut-off points c 5 10 15 20 25 30

AHI < c | AHI ≥ c (157 nights) 13 | 144 51 | 106 80 | 77 92 | 65 107 | 50 118 | 39

SpO2-based

Sensitivity 0.75 0.76 0.81 0.86 0.85 0.93

Specificity 0.82 0.67 0.78 0.82 0.78 0.82

AUC 0.89 0.82 0.88 0.91 0.93 0.93

Acoustic-based

30-s segment

Sensitivity 0.86 0.79 0.79 0.79 0.79 0.78

Specificity 0.59 0.74 0.80 0.91 0.90 0.93

AUC 0.73 0.79 0.84 0.90 0.91 0.92

Acoustic-based

40-s segment

Sensitivity 0.87 0.73 0.77 0.79 0.77 0.73

Specificity 0.71 0.70 0.80 0.86 0.86 0.95

AUC 0.75 0.77 0.81 0.87 0.90 0.91

Sample entropy

+ desaturations

Sensitivity 0.51 0.39 0.40 0.39 0.48 0.52

Specificity 1.00 1.00 1.00 1.00 1.00 1.00

previous studies were collected differently: e.g. using differ-

ent types of microphones (high quality microphones [32],

PSG-microphones [31], smartphone microphones [27], [28],

[42]) and at different recording locations (tracheal sound

recording [27], [29], [32], ceiling mount [31], chest [28],

bed-side [42]). As the comparison with Castillo et al. [28]

shows, the techniques employed often depend on assumptions

made for the audio collection. Failing to meet the assumption

could lead to degraded performance. Broadly, our approach

compares favourably to previous approaches because it makes

few assumptions about the audio recordings and our machine

learning approach tends to be more robust than rule-based

methods in an acoustically complex home environment.

Fig. 4 shows the average ROC curves of the SpO2 based

system and the acoustic-based system using Mel-filterbank

features with 30-s segments, at different AHI cut-off points

considered for screening. A ROC curve is not shown for the

sample entropy baseline because it directly computes the AHI.

The grey area corresponds to the standard deviation, and the

dashed line indicates random performance. All ROC curves

were clearly above the random guess, which confirms that

the network architecture and feature representations allowed

the network to effectively learn from the data. Comparing the

two average ROC curves, it can be seen that the SpO2-based

system yielded slightly better diagnostic capability than the

acoustic-based system, and had a smaller standard deviation

across different AHI cut-off points. Nonetheless the proposed

acoustic-based OSA screening system exhibited a performance

comparable to the SpO2 benchmark.

Fig. 5 presents the reference AHI (solid line) for each night

in the dataset computed from the reference HSAT scoring.

The AHI estimated by the benchmark SpO2-based system is

shown as a dashed line with stars, and the AHI predicted

by the acoustic-based system is shown as the dotted line

with triangles. Both the benchmark SpO2 predictions and the

acoustic-based predictions show underestimations and over-

estimations across different nights, but overall it can be seen

that the predictions matched the reference AHI patterns. These

observations are consistent with the quantitative screening

results previously discussed.

Fig. 6 plots the Bland-Altman analysis of the AHI estima-

tion task using SpO2 deltas, Mel-filterbank features, and sam-

ple entropy plus desaturations. The mean difference between

the estimated and reference AHI is shown as a solid line, and

the agreement limits (i.e., ±1.96 times the standard deviation)

are shown as dashed lines. 94% of the nights were within

the agreement limits when using SpO2 deltas, 95% when

using Mel-filterbank features, and 93% when using sample

entropy plus desaturations. Most of the nights outside the

agreement limits are above 30 events/h (i.e., severe OSA), for

which the screening systems tend to underestimate the AHI.

Similar behaviour has been reported by related studies [32],

[33], [43]. This is likely caused by the use of a large analysis

window, since for participants with very high AHIs (e.g., 115

events/h), multiple apnea-hypopnea events could be present in

a 30-second segment. However, any AHI above 30 events/h is

considered severe.

The proposed acoustic-based system to screen for OSA

relies only on breathing sounds recorded unobtrusively at

home with a smartphone. This might improve accessibility

to sleep-disordered breathing (SDB) diagnosis by allowing

a screening service at home and better use of limited PSG

resources (for example, reserving PSG to confirm diagnosis in

complex cases). Also, as the screening system is inexpensive

and easy to use, it can be used for long-term monitoring

to investigate inter-night variability, assess OSA progression,

evaluate treatment effectiveness and adherence.

Although the experiments reported here were performed on

a computer, the proposed DNN was also deployed on smart-

phones to investigate the feasibility of on-device processing.

9.6 hours of data were classified in approximately 313 seconds

on an Apple iPhone 6, in 100 seconds on an Apple iPhone 7

Plus, in 6 seconds on an Apple iPhone XS, and in 4 seconds on

an Apple iPhone SE (2020) thanks to the small network size

(about 6 million parameters), and hardware acceleration for

machine learning in newer devices. This demonstrates that the

whole screening system (i.e., audio recording, classification,

results reporting, etc.) can be run in real-time on a modern

smartphone. On-device machine learning [44] preserves user

privacy, as the data strictly remains on the user’s device. This

might also contribute to reducing the psychological effects of

being under observation during a sleep test [22].
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(b) Acoustic-based system (30-s Mel-filterbank)

Fig. 4: Average ROC curves across different AHI cut-off points
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Fig. 5: AHI estimation for each night in the dataset using Mel-filterbank features. The reference AHI is calculated from the

manually scored HSAT data.
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(b) Acoustic-based (30-s Mel-filterbank)
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(c) Sample entropy and desaturation-based

Fig. 6: Bland-Altman plots for estimated AHI

VI. CONCLUSION

Screening for OSA based on ambient sound recordings

made in a home environment is a challenging task. Two main

problems have to be addressed: (1) OSA events are usually

quiet or even silent, and (2) lack of physiological data. This

paper has described a solution to these problems by using

deep learning to exploit the temporal pattern within a long

context window (30-s) of breathing sounds. The proposed

solution allows a person to be screened for OSA at home

using breathing sounds recorded with a smartphone. In this

study, 103 participants (157 nights) were tested using HSAT

while audio recordings were collected using a smartphone.

The manually-scored HSAT data was used as reference for the

AHI predictions made by the proposed acoustic-based system.
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The results showed that 78% (sensitivity) of the participants

with severe OSA and 93% (specificity) of the participants

without severe OSA were correctly identified by the acoustic-

based system. An AUC of 0.92 was achieved and 95% of the

estimated AHIs were within the agreement limits in a Bland-

Altman plot. This was compared to a benchmark system based

on SpO2, which achieved a sensitivity of 0.93, a specificity

of 0.82, and an AUC of 0.93. These results demonstrate the

potential of the proposed screening system, and highlight the

capability of smartphone-based approaches in healthcare.

This study has some limitations. First, the applicability

of the proposed screening system to the general population

remains to be investigated, since a limited amount of data ob-

tained from 103 participants was used for training and testing.

Second, data was collected in a country (UK) in which air

conditioning is not routinely used. Therefore, the robustness

of the screening system to this kind of background noise at

home was not evaluated. Furthermore, the data was collected

from participants sleeping on their own, and interference from

a bed partner was not tested. Third, sleep stages/status were

not considered here, as no EEG was used. As a result, the

total recording time rather than total sleep time was used

as a denominator for computing AHI, which is likely to

systematically underscore the AHI [16]–[18].

In a world adapting to the lasting effects of the COVID-19

pandemic, there is a growing demand for novel contactless

methods to screen for OSA [33], [45]. Practically, the pan-

demic is putting clinical respiratory services under pressure,

meaning that investigations of OSA are not being prioritised.

There is also considerable overlap between the risk factors

for OSA and COVID-19 (e.g., age, male, asthma, diabetes,

excess weight and hypertension). Although there is currently

no evidence identifying OSA as an independent risk factor

for COVID-19, it is possible that OSA exacerbates respiratory

complications due to COVID-19 [46]. The wide availability of

a low-cost screening tool, as proposed here, could therefore

play an important role in determining the course of treatment

after COVID-19 infection.

In the future, robustness to noise from a bed partner will

be investigated, building upon our previous work on snore

analysis [47] and snorer diarisation [48]. A possible approach

would be to extend this work to detect other breathing events

in addition to snores, for example breaths, and analyse the

temporal pattern of each subject’s breathing. This would most

likely require collecting audio recordings with a smartphone

while both the subject under study and their bed partner

undergo HSAT, in order to have a reference for the breathing

events of both.
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