UNIVERSITY OF LEEDS

This is a repository copy of Impact of igneous intrusion and associated ground deformation on the stratigraphic record.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/184110/
Version: Accepted Version

## Article:

Dobb, EM, Magee, C orcid.org/0000-0001-9836-2365, Jackson, CA-L et al. (2 more authors) (2022) Impact of igneous intrusion and associated ground deformation on the stratigraphic record. Geological Society Special Publication, 525. ISSN 0305-8719
https://doi.org/10.1144/SP525-2021-115
© 2022 The Author(s). Published by The Geological Society of London. All rights reserved. This is an author produced version of an article, published in Geological Society Special Publication. Uploaded in accordance with the publisher's self-archiving policy.

## Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

## Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

# Impact of igneous intrusion and associated ground deformation on the stratigraphic record 

Emilia M. Dobb ${ }^{1}$, Craig Magee ${ }^{2 *}$, Christopher A.-L. Jackson ${ }^{1,3}$, Bailey Lathrop ${ }^{1}$, Jonas Köpping ${ }^{4}$

${ }^{1}$ Basins Research Group (BRG), Department of Earth Science and Engineering, Royal School of Mines, Prince Consort Road, Imperial College London, SW7 2BP, England, UK.
${ }^{2}$ School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK. ${ }^{3}$ present address: Department of Earth and Environmental Sciences, University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK
${ }^{4}$ School of Earth, Atmosphere and Environment, Monash University, Melbourne, 3800, Australia
*Correspondence (c.magee@leeds.ac.uk)


#### Abstract

The geomorphology and sediment systems of volcanic areas can be influenced by uplift (forced folding) related to subsurface migration and accumulation of magma. Seismic geomorphological analysis presents a unique tool to study how surface morphology and subsurface magma dynamics relate, given seismic reflection data can image buried landscapes and underlying intrusions in 3D at resolutions of only a few metres-to-decametres. However, differential compaction of the sedimentary sequence above incompressible igneous intrusions during burial modifies palaeosurface morphology. Here we use 3D seismic reflection data from offshore NW Australia to explore how the stratigraphic record of igneous


intrusion and associated ground deformation can be unravelled. We focus on a forced fold that likely formed in the Early Cretaceous to accommodate intrusion of magma, but which was later amplified by burial-related differential compaction of the host sedimentary sequence. We show how: (1) marine channels and clinoforms may be deflected by syndepositional intrusion-induced forced folds; and (2) differential compaction can locally change clinoforms depth post-deposition, potentially leading to erroneous interpretation of shoreline trajectories. Our results demonstrate seismic geomorphological analysis can help us better understand how magma emplacement translates into ground deformation, and how this shapes the landform of volcanic regions.

## Introduction

The development of volcanic landforms modifies Earth surface processes (e.g., Karlstrom et al. 2018). For example, in addition to the construction of volcanoes through the eruption of lava, subsurface magma emplacement and accumulation can create dome-like relief by uplifting the overlying rock and free surface, producing a forced fold (e.g., van Wyk de Vries et al. 2014; Magee et al. 2017b; Sigmundsson et al. 2018). Most studies of ancient and active forced folds use the relationship between fold and intrusion geometry to unravel the kinematics and dynamics of magma emplacement (e.g., Pollard \& Johnson 1973; Jackson \& Pollard 1990; Hansen \& Cartwright 2006; Reeves et al. 2018); this is critical to volcano monitoring and hazard mitigation, given we can invert intrusion-induced ground deformation to locate and track intruding magma volumes (Galland \& Scheibert 2013; Segall 2013). We also recognise that the production of surface relief through intrusion-induced forced folding can modify sediment dispersal, although few studies have explored this in detail (e.g., Smallwood \& Maresh 2002; Egbeni et al. 2014; Magee et al. 2014; Magee et al. 2017a). Deciphering precisely how changes in geomorphology relate to magma plumbing system
dynamics is also critical to volcanic hazard assessment (e.g., van Wyk de Vries et al. 2014; Karlstrom et al. 2018). Seismic geomorphological analysis potentially provides a powerful tool for exploring the interaction between palaeosurface deformation, sediment systems, and magmatism, but we have to be aware that burial-related differential compaction may modify and obscure the stratigraphic record of these processes (e.g., Magee et al. 2019).

Here, we use 3D seismic reflection and borehole data from the Exmouth Plateau, offshore NW Australia (Fig. 1A), to examine the formation of a forced fold above a laccolith and its influence on the stratigraphic record of the overlying Barrow Group. We use seismicstratigraphic relationships (e.g., onlap, erosional truncation) to determine a likely Early Cretaceous (Berriasian) age for intrusion. We show that marine channels and clinoforms forming part of the Early Cretaceous Barrow Group were locally deflected around and onlap onto the forced fold; these observations build on previous studies demonstrating that intrusion-induced forced folds can control sediment dispersal (e.g., Smallwood \& Maresh 2002; Magee et al. 2014; Magee et al. 2017a). We also show that burial-related differential compaction modified the stratigraphic record of the area post-intrusion, causing clinoform inflection points to appear locally elevated across the forced fold. If not recognised, this change in the elevation of clinoform inflection points, driven by differential compaction, may be misinterpreted as evidence of relative sea-level change. Our results highlight seismic geomorphology is an important tool for understanding interactions between intrusion-induced ground deformation, landscape development, and sediment dispersal in volcanic regions based on study of ancient examples.

## Geological Setting

The Exmouth Plateau is part of the North Carnarvon Basin, offshore NW Australia. The plateau covers $\sim 300,000 \mathrm{~km}^{2}$, occurs at a depth of $0.8-4 \mathrm{~km}$ below the sea surface, and
comprises <10 km thick crystalline basement overlain by an up to 18 km thick sequence of sedimentary rock (Fig. 1) (Willcox \& Exon 1976; Exon et al. 1992; Longley et al. 2002; Stagg et al. 2004; Direen et al. 2008). The North Carnarvon Basin formed through multiple phases of extension between the Late Carboniferous and Early Cretaceous, as Australia and Greater India rifted apart (Exon et al. 1982; Longley et al. 2002; Stagg et al. 2004). Rifting in the Late Triassic-to-Early Jurassic and Late Jurassic-to-Early Cretaceous was accommodated by the formation of normal faults that: (i) offset the dominantly fluvio-deltaic, siliciclastic pre-rift succession of the Triassic and Mungaroo Formation; and (ii) accommodated a thin siliciclastic sequence of Late Triassic and Jurassic shallow marine sandstones and siltstones (e.g., Brigadier Formation and Murat Siltstone) and the deep marine Dingo Claystone (Figs 1B and C) (Willcox \& Exon 1976; Tindale et al. 1998; Stagg et al. 2004; Bilal et al. 2018). During the final phases of rifting, regional uplift and development of the Base Cretaceous unconformity preceded rapid subsidence and the deposition of the northwards prograding Barrow Group (Figs 1B and C) (Reeve et al. 2016; Paumard et al. 2018). Clinoforms within the Barrow Group are $\sim 100-550 \mathrm{~m}$ high and have slopes of $1-9^{\circ}$, indicating they define a long, linear, ramp-like shelf-margin, rather than a discrete delta (e.g., Fig. 1C) (Paumard et al. 2018). The top of the Barrow Group is marked by a regional unconformity, which is capped by the Zeepaard Formation and Birdrong Sandstone (Fig. 1B) (Reeve et al. 2016). Rifting ceased in the Early Cretaceous, associated with the breakup of Australia and Greater India, leading to thermal subsidence and development of a post-rift passive margin (Fig. 1B) (Stagg et al. 2004; Gibbons et al. 2012). This transition to a passive margin was marked by the onset of deposition of the deep marine Muderong Shale, within which a polygonal fault tier subsequently formed (Fig. 1B) (Tindale et al. 1998).

Magmatism in the North Carnarvon Basin occurred periodically throughout the Middle Jurassic-to-Early Cretaceous (Fig. 1B). A seismically high-velocity ( $\sim 6.2-7.4 \mathrm{~km} \mathrm{~s}^{-1}$ )
body within the lower crust of the Exmouth Plateau is interpreted as a large magmatic body, likely of mafic-to-ultramafic composition, emplaced during the Callovian ( $\sim 165 \mathrm{Ma}$; Fig. 1B) (Frey et al. 1998; Rey et al. 2008; Rohrman 2013, 2015). Spatially if perhaps not genetically associated with this high-velocity body are: (i) a radial dyke swarm (the Exmouth Dyke Swarm), which was emplaced at $\sim 148 \mathrm{Ma}$ (Tithonian; Fig. 1B) (Magee \& Jackson 2020); and (ii) a series of sills and sill-complexes, which seismic-stratigraphic dating of intrusioninduced forced folds suggests were emplaced in the Kimmeridgian and Berriasian-toValanginian (Figs 1B and C) (Symonds et al. 1998; Magee et al. 2013a, b; Magee et al. 2017a; Mark et al. 2020; Norcliffe et al. 2021). The final phase of igneous activity coincided with continental break-up and the development of a continent-ocean transition zone outboard of the Exmouth Plateau (Figs 1A and B) (Hopper et al. 1992; Direen et al. 2008; Reeve et al. 2021).

## Dataset and Methods

## Data

We use the Glencoe dataset, which is a zero-phase, time-migrated, 3D seismic reflection survey (Figs 1A and 2). The survey covers an area of $\sim 4042 \mathrm{~km}^{2}$, has a line spacing of 25 m , recorded to a depth of $\sim 8 \mathrm{~s}$ two-way time (TWT), and is displayed with SEG (Society for Exploration Geophysicists) positive polarity; i.e. a downward increase in acoustic impedance correlates with a peak (red-yellow reflection), and a downward decrease in acoustic impedance correlates with a trough (blue reflection). We map the upper and lower contacts of the studied intrusion, as well as one horizon beneath it (the Top Mungaroo Formation), and six horizons above; data from the nearby Chester-1ST1 and Chester-2 boreholes allow us to identify the lithology and age of the sedimentary sequences containing these horizons (Fig. 2). To tie the wells and the seismic reflection data we create a synthetic seismogram using

Chester-1ST1 well-log (density and sonic velocity) and checkshot information from a depth range of $\sim 2.3-4.5 \mathrm{~km}$ TVD (true vertical depth) (Fig. 2C).

No boreholes intersect the intrusion or fold studied here, so we cannot directly constrain their composition or physical properties (e.g., seismic velocity) (Fig. 2A). Due to this lack of borehole data, and because the possible seismic velocity range ( $4.0-7.5 \mathrm{~km} \mathrm{~s}^{-1}$ ) of igneous intrusions is rather large (see Magee et al. 2015 and references therein), we do not depth-convert the seismic reflection data. Instead, we depth-convert measurements in seconds TWT for the intrusion and folded sedimentary sequence using: (i) seismic velocities of $\sim 5.55$ $( \pm 10 \%) \mathrm{km} \mathrm{s}^{-1}$ for the intrusion, which marks the typical range of mafic igneous rocks (Skogly 1998; Planke et al. 2005) similar to the basaltic sill and dyke penetrated in the nearby Rimfire-1 and Chester-1ST1 boreholes (Fig. 2A) (Moig \& Massie 2010; Childs et al. 2013); and (ii) the time-depth relationship for the sedimentary sequence determined from the checkshot data for nearby boreholes (i.e. Briseis-1, Chester-1ST1, Glencoe-1, Nimblefoot-1, and Warrior-1; Fig. 2A), which indicates the Barrow Group and the underlying folded sequence has an interval velocity of $\sim 3.0( \pm 0.5) \mathrm{km} \mathrm{s}^{-1}$ (Supplementary Figure 1;

Supplementary Table 1). These seismic velocity ranges, coupled with measurements of dominant frequency, also allow us to estimate the data resolution. We define the limit of separability ( $\lambda / 4$, where $\lambda$ is the dominant wavelength $)$, i.e. the minimum vertical distance between two boundaries required to produce two distinct reflections, and the limit of visibility ( $\lambda / 30$ ) below which reflections cannot be distinguished from noise (Brown 2011). If the vertical distance between boundaries is less than the limit of separability, but greater than the limit of visibility, the reflections from these boundaries will merge on their return to the surface and cannot be deconvolved, producing a tuned reflection package rather than two distinct reflections (Widess 1973; Brown 2011). The dominant frequency of the data in the study area is $\sim 25 \mathrm{~Hz}$, indicating the limit of separability is $\sim 56( \pm 6) \mathrm{m}$ and the limit of
visibility is $\sim 7( \pm 1) \mathrm{m}$ for the intrusion (Norcliffe et al. 2021). For the Barrow Group and folded sequence, the limits of separability and visibility are $\sim 30( \pm 5) \mathrm{m}$ and $\sim 4( \pm 1) \mathrm{m}$, respectively. The horizontal resolution of the time-migrated seismic reflection data is likely up to $\sim 30( \pm 5) \mathrm{m}$ (i.e. $\lambda / 4)$.

## Results

## Intrusion seismic expression, geometry, and stratigraphic context

The intrusion is elliptical, elongated NE, $\sim 4.5 \mathrm{~km}$ long, and can be sub-divided into two components: (i) a tabular, strata-concordant main body $(3.9 \times 2.5 \mathrm{~km})$ that on average is $\sim 104$ ms TWT thick ( $\sim 260-317 \mathrm{~m}$ assuming a velocity of $\sim 5.55( \pm 10 \%) \mathrm{km} \mathrm{s}^{-1}$ ), but which is locally up to $\sim 202 \mathrm{~ms}$ TWT thick ( $\sim 504-617 \mathrm{~m}$ ); and (ii) encompassing inclined sheets, expressed as tuned reflection packages, which transgress upwards from (up to $\sim 180 \mathrm{~ms}$ TWT or $\sim 225-315 \mathrm{~m}$ high) and dip in towards the main body (Figs 2B, C, and 3). The intrusion occurs within a NE-trending graben and is encased by Late Triassic-to-Jurassic strata (Figs 2B and C). Both the top and base contacts of the intrusion main body are resolved, with the Top Intrusion contact corresponding to a high amplitude, continuous, positive polarity reflection (Figs 2B and C). The Base Intrusion contact corresponds to a moderate-to-high amplitude, negative polarity reflection that broadly coincides with the Top Mungaroo Formation (Figs 2B and C). There is an up to $\sim 57 \mathrm{~ms}$ TWT ( $\sim 71-100 \mathrm{~m}$ ) high, NE-trending ridge along the centre of the main intrusion (Fig. 3C), with the Top Intrusion contact lower on its western side (Fig. 3A); the ridge is not seen on the Base Intrusion contact (Fig. 3B).

## Stratigraphic and structural framework

The Top Mungaroo Formation is expressed as a high amplitude, negative polarity reflection that is offset by planar and arcuate, $\sim$ NE-SW striking normal faults (purple horizon in Fig. 2);
this overall structural framework is mirrored by a prominent unconformity at shallower depths (Fig. 4A), which is expressed as a moderate-to-high amplitude, positive polarity reflection (Figs 2B and C). At Chester-1ST1, this unconformity is underlain by the Pliensbachian Murat Siltstone and overlain by downthrown Berrisian Barrow Group rocks (Fig. 2). However, at Chester-2, closer to the study area, the prominent unconformity is overlain by a thin (<10 m thick) package of Tithonian Dingo Claystone, implying it likely corresponds to the Callovian unconformity (Fig. 2). Unlike the Top Mungaroo Formation, the Callovian unconformity is locally uplifted by up to $\sim 200 \mathrm{~ms}$ TWT ( $\sim 250-350 \mathrm{~m}$ ) directly above the intrusion, relative to its regional trend (blue horizon in Figs 2B and C, Fig. 4A). This uplift of the Callovian unconformity occurs at an abrupt offset, i.e. an annular vertical fault, coincident with the lateral edge of the intrusion (Figs 2B and C, Fig. 4A). Within the uplifted section of the Callovian unconformity, a narrow graben bound by NE-SW striking normal faults with throws of $\lesssim 60 \mathrm{~ms}$ TWT ( $\lesssim 75-105 \mathrm{~m}$ ) is present, along with several minor intra-graben faults (Figs 2B, C, and 4A). These NE-SW striking faults extend down to the ridge expressed along the Top Intrusion contact, and are broadly parallel to but are physically separate from, those outside the area of uplift (Figs 2B, C, and 4A).

Above the Callovian unconformity, Horizon 1 also displays an area of uplift above the intrusion but there is less evidence of faulting across its extent, although its lack of lateral continuity means it can only be locally mapped (green dashed horizon in Figs 2B, C, and 4B). Horizon 1 appears to onlap onto an underlying reflection before reaching the Chester-1ST1 borehole, such that we cannot determine its absolute age (Fig. 2C). However, the reflection Horizon 1 onlaps onto occurs $\sim 40 \mathrm{~ms}$ TWT $(\sim 50-70 \mathrm{~m})$ above the Callovian unconformity, suggesting it is Berriasian in age (Fig. 2C). In contrast to the abrupt uplift of the Callovian unconformity across a sub-vertical, annular fault, Horizon 1 uplift is marked by a gradual folding of strata (Figs 2B and C). The fold is a $\sim 4.8 \times 3.3 \mathrm{~km}$, flat-topped dome with a
monoclinal rim and covers a greater area than the underlying intrusion (Fig. 4B). The current maximum amplitude of the fold is $\sim 120 \mathrm{~ms}$ TWT ( $\sim 150-210 \mathrm{~m}$ ) (Fig. 4B). In places, immediately overlying reflections onlap the folded Horizon 1 (Fig. 2B). The Horizon 1 reflection displays a positive polarity and has an overall moderate amplitude, although there is a NNW-trending, $1-2 \mathrm{~km}$ wide zone where the reflection has a high amplitude (Figs 2B, C, and 4B). This high amplitude zone appears to deviate around the fold (Fig. 3B). Between the Callovian unconformity and Horizon 1 there is a clear thickening of the stratal package (up to $\sim 225 \mathrm{~ms}$ TWT, or $\sim 281-393 \mathrm{~m}$, thick) within the graben hosting the intrusion (Figs 2B, C, and 4C). A zone of marked thinning interrupts this thickening trend and coincides with the area of uplift above the intrusion; here the Callovian unconformity to Horizon 1 strata is $\lesssim 137 \mathrm{~ms}$ TWT ( $\$ 171-239 \mathrm{~m}$ ) thick (Fig. 4C). The NE-SW striking graben within the area of uplift hosts a thicker ( $\sim 34-40 \mathrm{~ms}$ TWT, or 42-70 m, thick) succession of the Callovian unconformity to Horizon 1 strata compared to its flanks (Fig. 4C).

Horizon 2 corresponds to a moderate amplitude, positive polarity reflection that, like Horizon 1, displays little evidence of faulting and a prominent flat-topped fold (green horizon with black outline in Figs 2B and C, Fig. 4D). The fold at Horizon 2 is $\sim 5.0 \times 3.5 \mathrm{~km}$, larger than the fold area expressed at Horizon 1 and that of the intrusion, and its current maximum amplitude is $\sim 150 \mathrm{~ms}$ TWT ( $\sim 191-268 \mathrm{~m}$ ) (Fig. 4D). Between Horizon 1 and Horizon 2 there is a gradual westward thickening of strata regionally (Figs 2B, C, and 4E). Across the fold, the strata bound by Horizon 1 and Horizon 2 locally thins to $\lesssim 50 \mathrm{~ms}$ TWT ( $\lesssim 63-88 \mathrm{~m}$ ), except where it thickens to $\sim 100 \mathrm{~ms}$ TWT ( $\sim 125-175 \mathrm{~m}$ ) into the intra-fold graben expressed along the Callovian unconformity (Figs 2B, C, and 4E). Reflections immediately above Horizon 2 dip gently to the NE and correspond to the toesets of Barrow Group clinoforms (Figs 2B, C, and 4F). These clinoform reflections, including Horizon 3, onlap onto the fold and are absent across the north-western part of the fold (Figs 2B, C, and 4F). Above Horizon

3, younger clinoforms reflections that dip to the NE and cover the fold locally have inflection points that occur at structurally shallower levels than those beyond the fold limit (Figs 2B and C). The supra-intrusion fold is also expressed at the Top Barrow Group (green solid horizon), where it has a maximum amplitude of $\sim 50 \mathrm{~ms}$ TWT ( $\sim 63-88 \mathrm{~m}$ ), up to the Top Muderong Shale (light green horizon), where its maximum amplitude is $\sim 40 \mathrm{~ms}$ TWT ( $\sim 50-70 \mathrm{~m}$ ) (Figs 2B, C, 4G and H). A key observation is that with the exception of the Top Barrow Group, no reflections onlap onto the fold above Horizon 2 (Figs 2B and C); at the Top Barrow, overlying reflections do onlap onto the horizon but do so regionally, not just across the fold (Figs 2B and C). Strata between both Horizon 2 and Top Barrow Group, as well as the Top Barrow Group to Top Muderong Shale, display subtle thinning across the fold, but around its immediate periphery there is a zone of local thickening (Figs 4I and J).

## Discussion

The mapped intrusion is dominated by a tabular main body that is consistently $\sim 261-319 \mathrm{~m}$ thick, except where a NE-trending ridge is developed along the top contact. The main body is encompassed by centrally dipping inclined sheets (Figs 2B, C, and 3). The intrusion is only $\sim 4.5 \mathrm{~km}$ long (Fig. 3A) and thus has a length-to-thickness ratio of $\sim 15$, which suggests it can be defined as either a laccolith or sill (Cruden et al. 2017); given its greater thickness compared to previously identified sills offshore NW Australia (e.g., Magee et al., 2013a, b; Mark et al., 2020), we favour describing the intrusion as a laccolith. Given the spatial restriction of the dome-shaped fold above the laccolith, we consider it a forced fold that formed either (Fig. 5): (i) to make space for the intruding magma volume (Pollard \& Johnson 1973; Hansen \& Cartwright 2006; Jackson et al. 2013); and/or (ii) via later differential compaction as the porosity of the sedimentary strata adjacent to the laccolith gradually reduces during burial, whilst the thickness of the incompressible intrusion remains constant
(Schmiedel et al. 2017; Magee et al. 2019). To determine the possible impact of intrusionrelated deformation on surface morphology and sediment dispersal, we first need to establish how and when the forced fold developed (Smallwood \& Maresh 2002; Magee et al. 2017a).

## Folding mechanisms and timing

Deformation related to the laccolith appears to affect strata situated just above the Top Mungaroo Formation up to the Top Muderong Shale (Figs 2 and 4). In the lowermost section of this sedimentary sequence, below the Callovian unconformity, deformation is related to sub-vertical faults located along the laccolith edge (Figs 2B, C, and 3A). Similar relationships between tabular intrusions, faults, and overburden uplift are recognised in a variety of geological settings, as well as physical and numerical models, where deformation is driven by magma emplacement (de Saint-Blanquat et al. 2006; Magee et al. 2017a; Montanari et al. 2017). In contrast to strata below the Callovian unconformity, which are largely faulted, strata above this unconformity are primarily deformed by folding (Figs 2 and 4). At both Horizon 1 and Horizon 2, we observe overlying reflections onlapping onto the fold (Figs 2B, C, 4 E , and F ), which indicates the surface was locally uplifted and deposition was restricted across its crest; i.e. horizons 1 and 2 mark palaeosurfaces that were contemporaneous to a phase of fold development (Trude et al. 2003). We also note that within the folded strata, between Horizon 1 and the laccolith top, two graben-bounding normal faults and associated minor normal faults are developed (Figs 2B, C, and 4A). Although these normal faults within the fold are typically NE-trending and parallel to many of the large tectonic normal faults in the area, they do not extend beyond the fold limits (Fig. 4A). Similar normal faults have been observed in natural and modelled intrusion-induced forced folds, and occur in response to outer-arc extension generated during the bending of strata above intruding magma (Pollard \& Johnson 1973; Magee et al. 2013b; Montanari et al. 2017). Based on the structure and
seismic-stratigraphic relationships of the forced fold below Horizon 2, and their similarity to intrusion-induced forced folds elsewhere, we suggest space for magma emplacement was, at least partly, generated by overburden uplift (Figs 5A, 6A, and B). Although it is difficult to establish the age of Horizon 1, we know it was deposited after formation of the Callovian unconformity and before progradation of the Barrow Group clinoforms into the study area in the Berriasian (Fig. 2C). Seismic-stratigraphic relationships further suggest Horizon 1 onlaps onto a reflection located $>50 \mathrm{~m}$ above the Callovian unconformity at Chester-2, and thus $>40$ m above the Tithonian strata preserved here (Fig. 2C). We suggest magma emplacement and folding likely began in the Berriasian, when Horizon 1 represented the surface, and involved erosion of strata above the Callovian unconformity across its crest (Fig. 6A) (Trude et al. 2003); we consider that this erosion produced the observed thinning of the Callovian unconformity to Horizon 1 strata across the forced fold (Fig. 4C). With laccolith inflation and continued folding, bending-related stresses likely instigated faulting around the intrusion periphery and fold crest, facilitating uplift and perhaps providing pathways for magma ascent and inclined sheet formation (Fig. 6B) (Pollard \& Johnson 1973; Jackson \& Pollard 1990; Thomson \& Schofield 2008). However, we lack the data resolution to determine whether intrusion and folding (and faulting) occurred continuously up to when the Horizon 2 marked the surface, or if their growth were incremental (Trude et al. 2003; Magee et al., 2017a; Reeves et al. 2018).

Above Horizon 2, the forced fold is subtly expressed at several horizons up to the Top Muderong Shale (Figs 2B, C, and 4). Throughout the Horizon 2 to Top Muderong Shale succession, we only observe onlap onto the fold at the Top Barrow Group, but note this horizon is equivalent to a regional unconformity and onlap of overlying reflections also occurs regionally beyond the fold limits (Figs 2B and C). On thickness maps of Horizon 2 to the Top Barrow Group, as well as the Top Barrow Group to Top Muderong Shale, it is
apparent that the strata thins across the fold and there is a zone of increased thickness encircling but beyond the fold periphery (Figs 4I and J). These thickening patterns and the lack of onlapping reflections local onto the forced fold are consistent with its formation via post-emplacement, differential compaction during burial (Figs 5B and 6C) (Hansen \& Cartwright 2006; Jackson et al. 2013; Schmiedel et al. 2017).

## Influence of intrusion-related ground deformation on the stratigraphic record

Having established that laccolith emplacement induced surface uplift likely in the Early Cretaceous, we now examine its effect on sedimentation patterns. First, the occurrence of onlapping reflections onto the forced fold at horizons 1 and 2 demonstrates intrusion-induced uplift can locally restrict deposition (Figs 2B, C, and 4F). For example, the mapped distribution of Horizon 3 indicates the north-eastwards progradation of Barrow Group clinoforms were locally impeded by relief associated with the forced fold (Fig. 4F) (Reeve et al. 2016; Paumard et al. 2018). There is also a possible channel feature developed along Horizon 1, expressed as a NNW-trending, <2 km wide high amplitude zone, which appears to deviate around the forced fold (Figs 2B, C, and 4B); i.e. the possible channel thins northwards and locally trends NW (as opposed to NNW) where it encounters the southern edge of the forced fold (Fig. 4B). We suggest that as this channel progressed northwards and encountered the seabed relief created by the forced fold, it followed the contours and flowed around the folds western side (Fig. 4B), similar to observations of other fold-channel interactions (e.g., Smallwood \& Maresh, 2002; Magee et al. 2014). Overall, our results, coupled with observations of surface uplift at active volcanoes, demonstrate that ground deformation driven by magma emplacement can instigate abrupt changes in geomorphology and sediment dispersal, which may be modified over years to millions of years as intrusion
(periodically) continues (Smallwood \& Maresh 2002; Egbeni et al. 2014; Magee et al. 2014; Magee et al. 2017a; Reeves et al. 2018).

A key aspect of studying palaeosurface geomorphology with seismic reflection data is determining whether mapped horizons have been modified post-burial. Our work supports previous studies that show differential compaction of strata across an area hosting a solidified igneous intrusion can produce a forced fold, independent of magma emplacement (Hansen \& Cartwright 2006; Jackson et al. 2013; Schmiedel et al. 2017). Importantly, we observe inflection points of the Barrow Group clinoforms to be situated at shallower structural levels within the forced fold compared to beyond its limit (Figs 2B and C). If such differential compaction was not recognised or explicitly accounted for, variations in clinoform trajectory might erroneously be interpreted as evidence for changes in relative sea level; i.e., apparent rising trajectories on the landward side of the forced fold record sea-level rise, whereas falling trajectories on the seaward side record sea-level fall (e.g., Steel et al. 2002). Yet if we account for differential compaction by flattening the Top Barrow Group, we see that there is no local change in clinoform inflection trajectory (Fig. 7). Considering how differential compaction may affect subsurface structures in volcanic areas, where incompressible intrusive or extrusive igneous rocks occur, is critical to properly assessing palaeosurface geomorphology (Clairmont et al. 2021).

## Conclusions

Unravelling how magma emplacement translates into ground deformation can help us evaluate potential volcanic hazards in areas where we cannot directly access the subsurface. As part of our endeavour to improve hazard assessment, we need to better understand how volcanic landforms evolve through time and interact with surface processes. Seismic reflection geomorphology offers an exciting opportunity to study active and ancient volcanic
landforms in 3D. Here we use 3D seismic reflection data from offshore NW Australia to study a laccolith and overlying forced fold. By identifying seismic-stratigraphic onlap onto the forced fold we demonstrate magma emplacement instigated overburden uplift in the Early Cretaceous. Associated ground deformation restricted sediment deposition and deflected a channel within the overlying Barrow Group, a package of deep-water shelf margin clinoforms. With continued deposition and burial of the study area, differential compaction produced a forced fold on top of that generated by magma emplacement; i.e. strata adjacent to the laccolith were able to compact but the intrusion itself was relatively incompressible, limiting subsidence of the overlying sedimentary column. We demonstrate that differential compaction locally modified the relative position of clinoform inflection points, which if not recognised can be misinterpreted as a systems tract variation. Overall, our study serves to highlight the possible benefits and complications of seismic geomorphology in volcanic areas.

## Acknowledgements

This study formed represents work conducted by ED during their MSci undergraduate project. The seismic and well data are open access and can be found through Geoscience Australia (www.ga.gov.au/nopims) to whom we are grateful. We also acknowledge Schlumberger for providing Petrel seismic interpretation software. We thank two reviewers for their constructive comments, and Elodie Lebas for editorial handling.

## Figure captions

Figure 1: (A) Offshore NW Australia map showing key tectonic and basin elements (modified from Norcliffe et al. 2021). $\mathrm{NCB}=$ North Carnarvon Basin, $\mathrm{SCB}=$ South Carnarvon Basin, ExSB $=$ Exmouth Sub-basin, $\mathrm{BSB}=$ Barrow Sub-basin, $\mathrm{DSB}=$ Dampier

Sub-basin, $\mathrm{PS}=$ Peedamullah Shelf, WP = Wallaby Plateau, CAP = Cuvier Abyssal Plain, GAP = Gascoyne Abyssal Plain, AAP = Argo Abyssal Plain, CRFZ Cape Range Fracture Zone. Elevation data from the 2009 Australian Bathymetry and Topography grid (Geoscience Australia). (B) Stratigraphic column for the Exmouth Plateau highlighting important tectonic and magmatic events (based on Hocking et al. 1987; Hocking 1992; Tindale et al. 1998; Longley et al. 2002; Magee \& Jackson 2020). (C) Uninterpreted and interpreted 2D seismic line across the Exmouth Plateau and Exmouth Sub-basin (taken from Norcliffe et al. 2021). See (A) for location.

Figure 2: (A) Time-structure map of the Top Mungaroo Formation across the Glencoe 3D survey. See location in Fig. 1A. Boreholes shown are $1=$ Chester-1ST1; $2=$ Warrior-1; $3=$ Nimblefoot-1; $4=$ Rimfire-1; $5=$ Glencoe-1; $6=$ Briseis-1; $7=$ Chester-2. $(\mathrm{B}$ and C$)$ Uninterpreted and interpreted seismic sections showing the structural and stratigraphic framework of the studied intrusion and fold. In (C) we show the synthetic well-tie between the seismic section and Chester-1ST1, which we created by using well-log (density = RHOB (blue); sonic velocity $=$ DT (black)) and checkshot data to produce a sonic calibration and time-depth relationship. A Ricker wavelet of 25 Hz was used to create the synthetic seismogram. TVD is true vertical depth (km) and TWT is two-way time (seconds). See (A) for locations.

Figure 3: Time-structure maps of the Top (A) and Base (B) Intrusion reflections, and (C) the vertical thickness map of the intrusion where both the top and base reflections have been distinguished in the data. The yellow dashed line outlines the main body of the intrusion.Dark gray corresponds to areas beyond the intrusion limits.

Figure 4: Time-structure and thickness maps (in ms TWT) for the interpreted horizons. For Horizon 1 (B), we also show an RMS (root-mean square) amplitude map to highlight the presence of a possible channel.

Figure 5: Schematics showing the two end-member processes for forming forced folds above intrusions: (A) syn-emplacement uplift to generate space for the intruding magma; and (B) post-emplacement differential compaction that occurs during burial of the sedimentary sequence (modified from Magee et al. 2014).

Figure 6: Schematics showing our interpretation of laccolith emplacement and forced folding. (A) Intrusion emplacement and inflation in the first stage are spatially accommodated by overburden uplift, but erosion of the contemporaneous surface (i.e. Horizon 1) across the fold removes material. (B) In the second stage, after deposition of sediment onlapping onto the fold at Horizon 1, continued or renewed magma emplacement and laccolith inflation drive further uplift. (C) The final phase of fold development occurs after magma emplacement ceases, whereby the sedimentary column adjacent to the laccolith compacts more than that above the intrusion (i.e. differential compaction).

Figure 7: Uninterpreted (A) and interpreted (B) seismic section shown in Figure 2B, but here we have flattened the data on the Top Barrow Group horizon to show the likely original clinoforms geometry. See Figure 2A for line location.

## References

Bilal, A., McClay, K. \& Scarselli, N. 2018. Fault-scarp degradation in the central Exmouth Plateau, North West Shelf, Australia. Geological Society, London, Special Publications, 476, SP476. 411.

Brown, A.R. 2011. Interpretation of three-dimensional seismic data. 6th ed. AAPG and SEG, Oklahoma, USA, 665 p.

Childs, K., Banfield, J., Jakymec, M. \& Jones, A. 2013. Well Completion Report: Chester-1 \& Chester-1 ST1 interpretative data. Hess, 353 p.

Clairmont, R., Kolawole, F., Omale, A.P. \& Bedle, H. 2021. Controls of pre-existing structures on clinoform architecture and the associated progradational system elements. Basin Research, 33, 875-902.

Cruden, A., McCaffrey, K. \& Bunger, A. 2017. Geometric scaling of tabular igneous intrusions: Implications for emplacement and growth. In: Breitkreuz C., Rocchi S. (eds) Physical Geology of Shallow Magmatic Systems, Advances in Volcanology, Springer, Cham, 11-38.
de Saint-Blanquat, M., Habert, G., Horsman, E., Morgan, S.S., Tikoff, B., Launeau, P. \& Gleizes, G. 2006. Mechanisms and duration of non-tectonically assisted magma emplacement in the upper crust: the Black Mesa pluton, Henry Mountains, Utah. Tectonophysics, 428, 131.

Direen, N.G., Stagg, H.M.J., Symonds, P.A. \& Colwell, J.B. 2008. Architecture of volcanic rifted margins: new insights from the Exmouth - Gascoyne margin, Western Australia. Australian Journal of Earth Sciences, 55, 341-363.

Egbeni, S., McClay, K., Jian-kui Fu, J. \& Bruce, D. 2014. Influence of igneous sills on Paleocene turbidite deposition in the Faroe-Shetland Basin: a case study in Flett and Muckle sub-basin and its implication for hydrocarbon exploration. Geological Society, London, Special Publications, 397, 33-57.

Exon, N., Von Rad, U. \& Von Stackelberg, U. 1982. The geological development of the passive margins of the Exmouth Plateau off northwest Australia. Marine Geology, 47, 131152.

Exon, N., Haq, B. \& Von Rad, U. 1992. Exmouth Plateau revisited: scientific drilling and geological framework. Proceedings of the Ocean Drilling Program, Scientific Results, 3-20.

Frey, Ø., Planke, S., Symonds, P.A. \& Heeremans, M. 1998. Deep crustal structure and rheology of the Gascoyne volcanic margin, western Australia. Marine Geophysical Researches, 20, 293-311.

Galland, O. \& Scheibert, J. 2013. Analytical model of surface uplift above axisymmetric flatlying magma intrusions: Implications for sill emplacement and geodesy. Journal of Volcanology and Geothermal Research, 253, 114-130.

Gibbons, A.D., Barckhausen, U., den Bogaard, P., Hoernle, K., Werner, R., Whittaker, J.M. \& Müller, R.D. 2012. Constraining the Jurassic extent of Greater India: Tectonic evolution of the West Australian margin. Geochemistry, Geophysics, Geosystems, 13, Q05W13.

Hansen, D.M. \& Cartwright, J. 2006. The three-dimensional geometry and growth of forced folds above saucer-shaped igneous sills. Journal of Structural Geology, 28, 1520-1535.

Hocking, R. 1992. Jurassic deposition in the southern and central North West Shelf. Western Australia: Geological Survey Western Australia Record, Record 1992/7, 108 p.

Hocking, R.M., Moors, H.T. \& Van de Graaff, W.E. 1987. Geology of the carnarvon basin, Western Australia. State Print. Division.

Hopper, J.R., Mutter, J.C., Larson, R.L. \& Mutter, C.Z. 1992. Magmatism and rift margin evolution: Evidence from northwest Australia. Geology, 20, 853-857.

Jackson, C.A.-L., Schofield, N. \& Golenkov, B. 2013. Geometry and controls on the development of igneous sill-related forced folds: A 2-D seismic reflection case study from offshore southern Australia. Geological Society of America Bulletin, 125, 1874-1890.

Jackson, M.D. \& Pollard, D.D. 1990. Flexure and faulting of sedimentary host rocks during growth of igneous domes, Henry Mountains, Utah. Journal of Structural Geology, 12, 185206.

Karlstrom, L., Richardson, P.W., O'Hara, D. \& Ebmeier, S.K. 2018. Magmatic landscape construction. Journal of Geophysical Research: Earth Surface, 123, 1710-1730.

Longley, I., Buessenschuett, C., Clydsdale, L., Cubitt, C., Davis, R., Johnson, M., Marshall, N., Murray, A., et al. 2002. The North West Shelf of Australia-a Woodside perspective. The sedimentary basins of Western Australia, 3, 27-88.

Magee, C. \& Jackson, C.-L. 2020. Seismic reflection data reveal the 3D structure of the newly discovered Exmouth Dyke Swarm, offshore NW Australia. Solid Earth, 11, 576-606.

Magee, C., Jackson, C.A.-L. \& Schofield, N. 2013a. The influence of normal fault geometry on igneous sill emplacement and morphology. Geology, 41, 407-410.

Magee, C., Briggs, F. \& Jackson, C.A.-L. 2013b. Lithological controls on igneous intrusioninduced ground deformation. Journal of the Geological Society, 170, 853-856.

Magee, C., Jackson, C.L. \& Schofield, N. 2014. Diachronous sub-volcanic intrusion along deep-water margins: insights from the Irish Rockall Basin. Basin Research, 26, 85-105.

Magee, C., Maharaj, S.M., Wrona, T. \& Jackson, C.A.-L. 2015. Controls on the expression of igneous intrusions in seismic reflection data. Geosphere, 11, 1024-1041.

Magee, C., Jackson, C.A.-L., Hardman, J.P. \& Reeve, M.T. 2017a. Decoding sill emplacement and forced fold growth in the Exmouth Sub-basin, offshore northwest Australia: Implications for hydrocarbon exploration. Interpretation, 5, SK11-SK22.

Magee, C., Bastow, I.D., de Vries, B.v.W., Jackson, C.A.-L., Hetherington, R., Hagos, M. \& Hoggett, M. 2017b. Structure and dynamics of surface uplift induced by incremental sill emplacement. Geology, 45, 431-434.

Magee, C., Hoggett, M., Jackson, C.A.-L. \& Jones, S.M. 2019. Burial-Related Compaction Modifies Intrusion-Induced Forced Folds: Implications for Reconciling Roof Uplift Mechanisms Using Seismic Reflection Data. Frontiers in Earth Science, 7, 37.

Mark, N., Holford, S.P., Schofield, N., Eide, C.H., Pugliese, S., Watson, D. \& Muirhead, D. 2020. Structural and lithological controls on the architecture of igneous intrusions: examples from the NW Australian Shelf. Petroleum Geoscience, 26, 50-69.

Moig, N \& Massie, S. 2010. Well Completion Report, Rimfire-1, Interpretative data. Hess Exploration Australia Pty Limited, 62 p.

Montanari, D., Bonini, M., Corti, G., Agostini, A., Del Ventisette, C.J.J.o.V. \& Research, G. 2017. Forced folding above shallow magma intrusions: Insights on supercritical fluid flow from analogue modelling. 345, 67-80.

Norcliffe, J., Magee, C., Jackson, C., Kopping, J. \& Lathrop, B. 2021. Fault inversion contributes to ground deformation above inflating igneous sills. Volcanica, 4, 1-21.

Paumard, V., Bourget, J., Payenberg, T., Ainsworth, R.B., George, A.D., Lang, S., Posamentier, H.W. \& Peyrot, D. 2018. Controls on shelf-margin architecture and sediment partitioning during a syn-rift to post-rift transition: Insights from the Barrow Group (Northern Carnarvon Basin, North West Shelf, Australia). Earth-Science Reviews, 177, 643-677.

Planke, S., Rasmussen, T., Rey, S.S. \& Myklebust, R. 2005. Seismic characteristics and distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Møre basins. In: Doré, A.G. (ed) Petroleum Geology: North-West Europe and Global Perspectives - Proceddings of the 6th Petroleum Geology Conference. Geological Society, London, 833844.

Pollard, D.D. \& Johnson, A.M. 1973. Mechanics of growth of some laccolithic intrusions in the Henry Mountains, Utah, II: bending and failure of overburden layers and sill formation. Tectonophysics, 18, 311-354.

Reeve, M.T., Jackson, C.A.L., Bell, R.E., Magee, C. \& Bastow, I.D. 2016. The stratigraphic record of prebreakup geodynamics: Evidence from the Barrow Delta, offshore Northwest Australia. Tectonics, 35, 1935-1968.

Reeve, M.T., Magee, C., Bastow, I.D., McDermott, C., Jackson, C.A.-L., Bell, R.E. \& Prytulak, J. 2021. Nature of the Cuvier Abyssal Plain crust, offshore NW Australia. Journal of the Geological Society, 178, jgs2020-172.

Reeves, J., Magee, C. \& Jackson, C.A.L. 2018. Unravelling intrusion-induced forced fold kinematics and ground deformation using 3D seismic reflection data. Volcanica, 1, 1-17.

Rey, S.S., Planke, S., Symonds, P.A. \& Faleide, J.I. 2008. Seismic volcanostratigraphy of the Gascoyne margin, Western Australia. Journal of Volcanology and Geothermal Research, 172, 112-131.

Rohrman, M. 2013. Intrusive large igneous provinces below sedimentary basins: An example from the Exmouth Plateau (NW Australia). Journal of Geophysical Research: Solid Earth, 118, 4477-4487.

Rohrman, M. 2015. Delineating the Exmouth mantle plume (NW Australia) from denudation and magmatic addition estimates. Lithosphere, L445. 441.

Schmiedel, T., Kjoberg, S., Planke, S., Magee, C., Galland, O., Schofield, N., Jackson, C.A.L. \& Jerram, D.A. 2017. Mechanisms of overburden deformation associated with the emplacement of the Tulipan sill, mid-Norwegian margin. Interpretation, 5, SK23-SK38.

Segall, P. 2013. Volcano deformation and eruption forecasting. In: Pyle, D. M., Mather, T. A. \& Biggs, J. (eds) Remote Sensing of Volcanoes and Volcanic Processes:
Integrating Observation and Modelling. Geological Society, London, Special Publications, 380, 85-106.

Sigmundsson, F., Parks, M., Pedersen, R., Jónsdóttir, K., Ófeigsson, B.G., Grapenthin, R., Dumont, S., Einarsson, P., et al. 2018. Magma movements in volcanic plumbing systems and their associated ground deformation and seismic patterns. In: Burchardt, S. (ed) Volcanic and igneous plumbing systems. Elsevier, 285-322.

Skogly, O. 1998. Seismic characterization and emplacement of intrusives in the Vøring Basin. M.Sc. Thesis, University of Oslo.

Smallwood, J.R. \& Maresh, J. 2002. The properties, morphology and distribution of igneous sills: modelling, borehole data and 3D seismic from the Faroe-Shetland area. In: Jolley, D.W. \& Bell, B.R. (eds) The North Atlantic Igneous Province: Stratigraphy, tectonic, Volcanic and Magmatic Processes. Geological Society, London, Special Publications, 197, 271-306.

Stagg, H., Alcock, M., Bernardel, G., Moore, A., Symonds, P. \& Exon, N. 2004. Geological framework of the outer Exmouth Plateau and adjacent ocean basins. Geoscience Australia, 169 p..

Steel, R., Olsen, T., Armentrout, J. \& Rosen, N. 2002. Clinoforms, clinoform trajectories and deepwater sands. Sequence-stratigraphic models for exploration and production: Evolving methodology, emerging models and application histories: Gulf Coast Section SEPM 22nd Research Conference, Houston, Texas, 367-381.

Symonds, P.A., Planke, S., Frey, O. \& Skogseid, J. 1998. Volcanic evolution of the Western Australian Continental Margin and its implications for basin development. The Sedimentary Basins of Western Australia 2: Proc. of Petroleum Society Australia Symposium, Perth, WA, 33-53.

Thomson, K. \& Schofield, N. 2008. Lithological and structural controls on the emplacement and morphology of sills in sedimentary basins. In: Thomson, K. \& Petford, N. (eds) Structure and Emplacement of High-Level Magmatic Systems. Geological Society, London, Special Publications, 302, 31-44.

Tindale, K., Newell, N., Keall, J. \& Smith, N. 1998. Structural evolution and charge history of the Exmouth Sub-basin, northern Carnarvon Basin, Western Australia. The Sedimentary

Basins of Western Australia 2: Proc. of Petroleum Society Australia Symposium, Perth, WA, 473-490.

Trude, J., Cartwright, J., Davies, R.J. \& Smallwood, J.R. 2003. New technique for dating igneous sills. Geology, 31, 4.
van Wyk de Vries, B., Márquez, A., Herrera, R., Bruña, J.G., Llanes, P. \& Delcamp, A. 2014.
Craters of elevation revisited: forced-folds, bulging and uplift of volcanoes. Bulletin of Volcanology, 76, 1-20.

Widess, M. 1973. How thin is a thin bed? Geophysics, 38, 1176-1180.
Willcox, J. \& Exon, N.J. 1976. The regional geology of the Exmouth Plateau. The APPEA Journal, 16, 1-11.

Figure 1


Key to (A)
...... Tectonic element boundary
_ Seaward limit of unambiguous
= continental crust
$\triangle \triangle$ Continent-ocean transition zone $\triangle$ (COTZ) (Symonds et al., 1998)
Continent-ocean transition zone
(Reeve et al., 2021)

- Fracture zones IIIIIDyke swarm $\square \begin{aligned} & \text { Sill-complexes (modified from } \\ & \text { Symonds et al., 1998) }\end{aligned}$

Key to (B)

| Sandstone | mu Unconformity |
| :---: | :---: |
| Siltstone | Terrestrial |
| Sst/Siltston | Fluviodeltaic |
| = Claystone | Shallow Marine (Clastic) |
| Sst/Claystone | Marine |
| Eroded | (Clastic) |
| Moho/lower cru | t magma intrusion |
| ऍSills IIIIIDyke | warm |



Key to (C)
$\square$ Triassic $\square J$ Jurassic $\qquad$ Early Cretaceous (Barrow Group) Post-breakup
Early Cretaceous (Zeepaard Formation (Fmn), Birdrong Sandstone (Sst))


Figure 2


Figure 3


Figure 4
(A) NCallovian unconformity timestructure map

(D)Horizon 2 timestructure map

(H) Horizon 2 - Top Barrow

Group thickness

(I) Top Muderong Shale timestructure map

(B) Horizon 1 timestructure map

(E) Horizon 1 - Horizon 2 thickness


Horizon 1 RMS amplitude
map
(F) Horizon 3 timestructure map

(C)Callovian - Horizon 1 thickness

(G)Top Barrow Group timestructure map

(J) Top Barrow Group - Top

Muderong Shale thickness

Figure 5



Figure 7



Supplementary Figure 1: Time-depth data for the five wells used in the study. Fitting a fourh-order polynomial trend-line through the cumulative data, and extrapolating it downwards, allows us to define seismic velocities at any depth.


| 2.222 | 1.111 | 1816.3 | 2.878 | 1.439 | 2575.0 |  | 2.225 | 1.113 | 1859.4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.236 | 1.118 | 1831.5 | 2.916 | 1.458 | 2635.0 |  | 2.237 | 1.118 | 1874.5 |
| 2.252 | 1.126 | 1846.6 | 2.934 | 1.467 | 2665.0 |  | 2.247 | 1.124 | 1889.2 |
| 2.268 | 1.134 | 1861.6 | 2.950 | 1.475 | 2695.0 |  | 2.259 | 1.130 | 1904.3 |
| 2.283 | 1.142 | 1876.7 | 2.964 | 1.482 | 2725.0 |  | 2.271 | 1.136 | 1919.4 |
| 2.301 | 1.150 | 1891.8 | 2.979 | 1.490 | 2755.0 |  | 2.284 | 1.142 | 1934.5 |
| 2.316 | 1.158 | 1907.0 | 2.994 | 1.497 | 2785.0 |  | 2.298 | 1.149 | 1949.1 |
| 2.334 | 1.167 | 1922.1 | 3.007 | 1.504 | 2815.0 |  | 2.295 | 1.147 | 1949.2 |
| 2.351 | 1.176 | 1937.2 | 3.022 | 1.511 | 2845.0 |  | 2.312 | 1.156 | 1964.3 |
| 2.367 | 1.184 | 1952.3 | 3.037 | 1.519 | 2875.0 |  | 2.309 | 1.154 | 1964.3 |
| 2.382 | 1.191 | 1967.5 | 3.052 | 1.526 | 2905.0 |  | 2.325 | 1.163 | 1979.4 |
| 2.396 | 1.198 | 1982.5 | 3.067 | 1.534 | 2935.0 |  | 2.322 | 1.161 | 1979.4 |
| 2.409 | 1.205 | 1997.6 | 3.083 | 1.542 | 2965.0 |  | 2.338 | 1.169 | 1994.5 |
| 2.422 | 1.211 | 2012.8 | 3.099 | 1.550 | 2995.0 |  | 2.334 | 1.167 | 1994.5 |
| 2.437 | 1.219 | 2027.9 | 3.115 | 1.557 | 3025.0 |  | 2.349 | 1.175 | 2009.1 |
| 2.451 | 1.226 | 2043.1 | 3.130 | 1.565 | 3055.0 |  | 2.363 | 1.181 | 2024.3 |
| 2.466 | 1.233 | 2058.2 | 3.146 | 1.573 | 3085.0 |  | 2.377 | 1.188 | 2039.4 |
| 2.481 | 1.240 | 2073.4 | 3.161 | 1.581 | 3115.0 |  | 2.390 | 1.195 | 2054.5 |
| 2.495 | 1.247 | 2088.5 | 3.177 | 1.589 | 3145.0 |  | 2.403 | 1.201 | 2069.2 |
| 2.508 | 1.254 | 2103.6 | 3.193 | 1.597 | 3175.0 |  | 2.417 | 1.209 | 2084.3 |
| 2.524 | 1.262 | 2118.7 | 3.209 | 1.604 | 3205.0 |  | 2.432 | 1.216 | 2099.4 |
| 2.538 | 1.269 | 2133.9 | 3.224 | 1.612 | 3235.0 |  | 2.446 | 1.223 | 2114.5 |
| 2.551 | 1.276 | 2149.0 | 3.240 | 1.620 | 3265.0 |  | 2.460 | 1.230 | 2129.1 |
| 2.565 | 1.283 | 2164.2 | 3.256 | 1.628 | 3295.0 |  | 2.474 | 1.237 | 2144.3 |
| 2.580 | 1.290 | 2179.3 | 3.272 | 1.636 | 3325.0 |  | 2.489 | 1.244 | 2159.4 |
| 2.595 | 1.297 | 2194.4 | 3.288 | 1.644 | 3355.0 |  | 2.503 | 1.251 | 2174.5 |
| 2.609 | 1.305 | 2209.5 | 3.306 | 1.653 | 3385.0 |  | 2.516 | 1.258 | 2189.1 |
| 2.623 | 1.311 | 2224.6 | 3.324 | 1.662 | 3415.0 |  | 2.530 | 1.265 | 2204.3 |
| 2.635 | 1.317 | 2239.7 | 3.342 | 1.671 | 3445.0 |  | 2.543 | 1.271 | 2219.4 |
| 2.646 | 1.323 | 2254.8 | 3.359 | 1.679 | 3475.0 |  | 2.556 | 1.278 | 2234.5 |
| 2.657 | 1.329 | 2269.9 | 3.375 | 1.687 | 3505.0 |  | 2.569 | 1.284 | 2249.1 |
| 2.668 | 1.334 | 2285.0 | 3.390 | 1.695 | 3535.0 |  | 2.582 | 1.291 | 2264.3 |
| 2.680 | 1.340 | 2300.1 | 3.405 | 1.702 | 3565.0 |  | 2.596 | 1.298 | 2279.4 |
| 2.692 | 1.346 | 2315.2 | 3.422 | 1.711 | 3595.0 |  | 2.609 | 1.305 | 2294.5 |
|  |  |  | 3.439 | 1.719 | 3625.0 |  | 2.622 | 1.311 | 2309.1 |
|  |  |  | 3.455 | 1.728 | 3655.0 |  | 2.635 | 1.317 | 2324.3 |
|  |  |  | 3.471 | 1.736 | 3685.0 |  | 2.648 | 1.324 | 2339.4 |
|  |  |  | 3.488 | 1.744 | 3715.0 |  | 2.661 | 1.330 | 2354.5 |
|  |  |  | 3.505 | 1.753 | 3745.0 |  | 2.673 | 1.337 | 2369.2 |
|  |  |  | 3.522 | 1.761 | 3775.0 |  | 2.686 | 1.343 | 2384.3 |
|  |  |  | 3.539 | 1.769 | 3805.0 |  | 2.699 | 1.350 | 2399.4 |
|  |  |  | 3.555 | 1.778 | 3835.0 |  | 2.712 | 1.356 | 2414.5 |
|  |  |  | 3.571 | 1.786 | 3865.0 |  | 2.725 | 1.362 | 2429.2 |
|  |  |  | 3.587 | 1.793 | 3895.0 |  | 2.738 | 1.369 | 2444.3 |
|  |  |  | 3.602 | 1.801 | 3925.0 |  | 2.750 | 1.375 | 2459.4 |
|  |  |  | 3.618 | 1.809 | 3955.0 |  | 2.763 | 1.381 | 2474.5 |
|  |  |  | 3.634 | 1.817 | 3985.0 |  | 2.775 | 1.388 | 2489.1 |
|  |  |  | 3.650 | 1.825 | 4015.0 |  | 2.788 | 1.394 | 2504.3 |
|  |  |  | 3.666 | 1.833 | 4045.0 |  | 2.801 | 1.401 | 2519.4 |



|  |  | 3.230 | 1.615 | 3209.1 |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 3.239 | 1.619 | 3224.2 |
|  |  | 3.245 | 1.622 | 3239.3 |
|  |  | 3.252 | 1.626 | 3254.5 |
|  |  | 3.259 | 1.629 | 3269.1 |
|  |  | 3.266 | 1.633 | 3284.3 |
|  |  | 3.273 | 1.637 | 3299.4 |
|  |  | 3.280 | 1.640 | 3314.5 |
|  |  | 3.287 | 1.643 | 3329.1 |
|  |  | 3.294 | 1.647 | 3344.2 |
|  |  | 3.302 | 1.651 | 3359.4 |
|  |  | 3.308 | 1.654 | 3374.5 |
|  |  | 3.315 | 1.658 | 3389.1 |
|  |  | 3.324 | 1.662 | 3404.3 |
|  |  | 3.330 | 1.665 | 3419.4 |
|  |  | 3.337 | 1.669 | 3434.5 |
|  |  | 3.344 | 1.672 | 3449.1 |
|  |  | 3.351 | 1.676 | 3464.3 |
|  |  | 3.359 | 1.679 | 3479.4 |
|  |  | 3.365 | 1.683 | 3494.5 |
|  |  | 3.372 | 1.686 | 3509.1 |
|  |  | 3.378 | 1.689 | 3524.3 |
|  |  | 3.386 | 1.693 | 3539.4 |
|  |  | 3.394 | 1.697 | 3554.5 |
|  |  | 3.402 | 1.701 | 3569.2 |
|  |  | 3.410 | 1.705 | 3584.3 |
|  |  | 3.417 | 1.708 | 3599.4 |
|  |  | 3.425 | 1.712 | 3614.5 |
|  |  | 3.432 | 1.716 | 3629.1 |
|  |  | 3.440 | 1.720 | 3644.3 |
|  |  | 3.447 | 1.724 | 3659.4 |
|  |  | 3.454 | 1.727 | 3674.5 |
|  |  | 3.462 | 1.731 | 3689.1 |
|  |  | 3.470 | 1.735 | 3704.2 |
|  |  | 3.478 | 1.739 | 3719.3 |
|  |  | 3.487 | 1.744 | 3734.4 |
|  |  | 3.497 | 1.748 | 3749.1 |
|  |  | 3.504 | 1.752 | 3764.2 |
|  |  | 3.512 | 1.756 | 3779.4 |
|  |  | 3.519 | 1.759 | 3794.5 |
|  |  | 3.526 | 1.763 | 3809.1 |
|  |  | 3.533 | 1.767 | 3824.2 |
|  |  | 3.540 | 1.770 | 3839.3 |
|  |  | 3.546 | 1.773 | 3854.5 |
|  |  | 3.552 | 1.776 | 3869.1 |
|  |  | 3.559 | 1.779 | 3884.2 |
|  |  | 3.565 | 1.782 | 3899.3 |
|  |  | 3.571 | 1.786 | 3914.5 |
|  |  | 3.578 | 1.789 | 3929.1 |


|  |
| ---: |

e
e
e
e
|
I
।
|


|  |  |  |
| :--- | :--- | :--- |
| 2.222 | 1.111 | 1816.3 |
| 2.236 | 1.118 | 1831.5 |
| 2.252 | 1.126 | 1846.6 |
| 2.268 | 1.134 | 1861.6 |
| 2.283 | 1.142 | 1876.7 |
| 2.301 | 1.150 | 1891.8 |
| 2.316 | 1.158 | 1907.0 |
| 2.334 | 1.167 | 1922.1 |
| 2.351 | 1.176 | 1937.2 |
| 2.367 | 1.184 | 1952.3 |
| 2.382 | 1.191 | 1967.5 |
| 2.396 | 1.198 | 1982.5 |
| 2.409 | 1.205 | 1997.6 |
| 2.422 | 1.211 | 2012.8 |
| 2.437 | 1.219 | 2027.9 |
| 2.451 | 1.226 | 2043.1 |
| 2.466 | 1.233 | 2058.2 |
| 2.481 | 1.240 | 2073.4 |
| 2.495 | 1.247 | 2088.5 |
| 2.508 | 1.254 | 2103.6 |
| 2.524 | 1.262 | 2118.7 |
| 2.538 | 1.269 | 2133.9 |
| 2.551 | 1.276 | 2149.0 |
| 2.565 | 1.283 | 2164.2 |
| 2.580 | 1.290 | 2179.3 |
| 2.595 | 1.297 | 2194.4 |
| 2.609 | 1.305 | 2209.5 |
| 2.623 | 1.311 | 2224.6 |
| 2.635 | 1.317 | 2239.7 |
| 2.646 | 1.323 | 2254.8 |
| 2.657 | 1.329 | 2269.9 |
| 2.668 | 1.334 | 2285.0 |
| 2.680 | 1.340 | 2300.1 |
| 2.692 | 1.346 | 2315.2 |
| 1.595 | 0.797 | 1225.0 |
| 1.630 | 0.815 | 1255.0 |
| 1.667 | 0.834 | 1285.0 |
| 1.700 | 0.850 | 1315.0 |
| 1.735 | 0.868 | 1345.0 |
| 1.767 | 0.883 | 1375.0 |
| 1.798 | 0.899 | 1405.0 |
| 1.824 | 0.912 | 1435.0 |
| 1.851 | 0.925 | 1465.0 |
| 1.881 | 0.940 | 1495.0 |
| 1.913 | 0.957 | 1525.0 |
| 1.941 | 0.971 | 1555.0 |
| 1.972 | 0.986 | 1585.0 |
| 1.999 | 0.999 | 1615.0 |
| 2.027 | 1.014 | 1645.0 |
|  |  |  |


|  |  |  |
| :--- | :--- | :--- |
| 2.055 | 1.028 | 1675.0 |
| 2.083 | 1.042 | 1705.0 |
| 2.110 | 1.055 | 1735.0 |
| 2.139 | 1.070 | 1765.0 |
| 2.167 | 1.084 | 1795.0 |
| 2.196 | 1.098 | 1825.0 |
| 2.224 | 1.112 | 1855.0 |
| 2.253 | 1.126 | 1885.0 |
| 2.285 | 1.142 | 1915.0 |
| 2.315 | 1.158 | 1945.0 |
| 2.345 | 1.173 | 1975.0 |
| 2.375 | 1.188 | 2005.0 |
| 2.406 | 1.203 | 2035.0 |
| 2.435 | 1.218 | 2065.0 |
| 2.464 | 1.232 | 2095.0 |
| 2.491 | 1.246 | 2125.0 |
| 2.517 | 1.258 | 2155.0 |
| 2.542 | 1.271 | 2185.0 |
| 2.570 | 1.285 | 2215.0 |
| 2.598 | 1.299 | 2245.0 |
| 2.676 | 1.338 | 2335.0 |
| 2.703 | 1.352 | 2365.0 |
| 2.730 | 1.365 | 2395.0 |
| 2.756 | 1.378 | 2425.0 |
| 2.782 | 1.391 | 2455.0 |
| 2.807 | 1.403 | 2485.0 |
| 2.832 | 1.416 | 2515.0 |
| 2.856 | 1.428 | 2545.0 |
| 2.878 | 1.439 | 2575.0 |
| 2.916 | 1.458 | 2635.0 |
| 2.934 | 1.467 | 2665.0 |
| 2.950 | 1.475 | 2695.0 |
| 2.964 | 1.482 | 2725.0 |
| 2.979 | 1.490 | 2755.0 |
| 2.994 | 1.497 | 2785.0 |
| 3.007 | 1.504 | 2815.0 |
| 3.022 | 1.511 | 2845.0 |
| 3.037 | 1.519 | 2875.0 |
| 3.052 | 1.526 | 2905.0 |
| 3.067 | 1.534 | 2935.0 |
| 3.083 | 1.542 | 2965.0 |
| 3.099 | 1.550 | 2995.0 |
| 3.115 | 1.557 | 3025.0 |
| 3.130 | 1.565 | 3055.0 |
| 3.146 | 1.573 | 3085.0 |
| 3.161 | 1.581 | 3115.0 |
| 3.177 | 1.589 | 3145.0 |
| 3.193 | 1.597 | 3175.0 |
| 3.209 | 1.604 | 3205.0 |
|  |  |  |


|  |  |  |
| :--- | :--- | :--- |
| 3.224 | 1.612 | 3235.0 |
| 3.240 | 1.620 | 3265.0 |
| 3.256 | 1.628 | 3295.0 |
| 3.272 | 1.636 | 3325.0 |
| 3.288 | 1.644 | 3355.0 |
| 3.306 | 1.653 | 3385.0 |
| 3.324 | 1.662 | 3415.0 |
| 3.342 | 1.671 | 3445.0 |
| 3.359 | 1.679 | 3475.0 |
| 3.375 | 1.687 | 3505.0 |
| 3.390 | 1.695 | 3535.0 |
| 3.405 | 1.702 | 3565.0 |
| 3.422 | 1.711 | 3595.0 |
| 3.439 | 1.719 | 3625.0 |
| 3.455 | 1.728 | 3655.0 |
| 3.471 | 1.736 | 3685.0 |
| 3.488 | 1.744 | 3715.0 |
| 3.505 | 1.753 | 3745.0 |
| 3.522 | 1.761 | 3775.0 |
| 3.539 | 1.769 | 3805.0 |
| 3.555 | 1.778 | 3835.0 |
| 3.571 | 1.786 | 3865.0 |
| 3.587 | 1.793 | 3895.0 |
| 3.602 | 1.801 | 3925.0 |
| 3.618 | 1.809 | 3955.0 |
| 3.634 | 1.817 | 3985.0 |
| 3.650 | 1.825 | 4015.0 |
| 3.666 | 1.833 | 4045.0 |
| 3.682 | 1.841 | 4075.0 |
| 3.697 | 1.848 | 4105.0 |
| 3.711 | 1.856 | 4135.0 |
| 3.727 | 1.863 | 4165.0 |
| 3.742 | 1.871 | 4195.0 |
| 3.757 | 1.878 | 4225.0 |
| 3.772 | 1.886 | 4255.0 |
| 3.787 | 1.894 | 4285.0 |
| 3.803 | 1.901 | 4315.0 |
| 3.818 | 1.909 | 4345.0 |
| 3.833 | 1.917 | 4375.0 |
| 3.848 | 1.924 | 4405.0 |
| 3.864 | 1.932 | 4435.0 |
| 3.878 | 1.939 | 4465.0 |
| 3.893 | 1.946 | 4495.0 |
| 3.907 | 1.954 | 4525.0 |
| 3.921 | 1.961 | 4555.0 |
| 3.935 | 1.968 | 4585.0 |
| 3.949 | 1.975 | 4615.0 |
| 3.962 | 1.981 | 4645.0 |
| 3.976 | 1.988 | 4675.0 |
|  |  |  |
|  |  |  |


|  |  |  |
| :--- | :--- | :--- |
| 3.988 | 1.994 | 4705.0 |
| 4.002 | 2.001 | 4735.0 |
| 4.015 | 2.008 | 4765.0 |
| 4.029 | 2.014 | 4795.0 |
| 4.043 | 2.021 | 4825.0 |
| 4.056 | 2.028 | 4855.0 |
| 4.069 | 2.034 | 4885.0 |
| 4.080 | 2.040 | 4915.0 |
| 4.090 | 2.045 | 4945.0 |
| 4.103 | 2.051 | 4975.0 |
| 4.116 | 2.058 | 5005.0 |
| 1.500 | 0.750 | 1150.2 |
| 2.035 | 1.018 | 1749.0 |
| 2.172 | 1.086 | 1798.3 |
| 2.272 | 1.136 | 1939.5 |
| 2.616 | 1.308 | 2149.5 |
| 2.684 | 1.342 | 2405.5 |
| 2.900 | 1.450 | 2585.0 |
| 3.004 | 1.502 | 2721.5 |
| 3.024 | 1.512 | 2721.5 |
| 3.056 | 1.528 | 2756.8 |
| 3.129 | 1.565 | 2868.5 |
| 3.363 | 1.682 | 3201.0 |
| 3.400 | 1.700 | 3410.0 |
| 1.582 | 0.791 | 1214.5 |
| 1.602 | 0.801 | 1229.1 |
| 1.621 | 0.810 | 1244.3 |
| 1.639 | 0.819 | 1259.4 |
| 1.657 | 0.828 | 1274.5 |
| 1.674 | 0.837 | 1289.2 |
| 1.691 | 0.845 | 1304.3 |
| 1.707 | 0.854 | 1319.4 |
| 1.723 | 0.861 | 1334.5 |
| 1.737 | 0.868 | 1349.2 |
| 1.753 | 0.876 | 1364.3 |
| 1.768 | 0.884 | 1379.4 |
| 1.784 | 0.892 | 1394.5 |
| 1.800 | 0.900 | 1409.2 |
| 1.817 | 0.908 | 1424.3 |
| 1.832 | 0.916 | 1439.4 |
| 1.847 | 0.923 | 1454.5 |
| 1.861 | 0.931 | 1469.0 |
| 1.877 | 0.938 | 1484.1 |
| 1.891 | 0.946 | 1499.2 |
| 1.905 | 0.953 | 1514.4 |
| 1.919 | 0.960 | 1529.1 |
| 1.935 | 0.967 | 1544.3 |
| 1.949 | 0.975 | 1559.4 |
| 1.964 | 0.982 | 1574.5 |
|  |  |  |


|  |  |  |
| :--- | :--- | :--- |
| 1.978 | 0.989 | 1589.2 |
| 1.993 | 0.997 | 1604.3 |
| 2.009 | 1.004 | 1619.4 |
| 2.024 | 1.012 | 1634.5 |
| 2.039 | 1.019 | 1649.1 |
| 2.053 | 1.027 | 1664.3 |
| 2.069 | 1.034 | 1679.4 |
| 2.083 | 1.042 | 1694.5 |
| 2.099 | 1.049 | 1709.2 |
| 2.114 | 1.057 | 1724.3 |
| 2.127 | 1.064 | 1739.4 |
| 2.140 | 1.070 | 1754.5 |
| 2.152 | 1.076 | 1769.2 |
| 2.165 | 1.082 | 1784.3 |
| 2.177 | 1.089 | 1799.4 |
| 2.189 | 1.095 | 1814.5 |
| 2.202 | 1.101 | 1829.2 |
| 2.214 | 1.107 | 1844.3 |
| 2.225 | 1.113 | 1859.4 |
| 2.237 | 1.118 | 1874.5 |
| 2.247 | 1.124 | 1889.2 |
| 2.259 | 1.130 | 1904.3 |
| 2.271 | 1.136 | 1919.4 |
| 2.284 | 1.142 | 1934.5 |
| 2.298 | 1.149 | 1949.1 |
| 2.295 | 1.147 | 1949.2 |
| 2.312 | 1.156 | 1964.3 |
| 2.309 | 1.154 | 1964.3 |
| 2.325 | 1.163 | 1979.4 |
| 2.322 | 1.161 | 1979.4 |
| 2.338 | 1.169 | 1994.5 |
| 2.334 | 1.167 | 1994.5 |
| 2.349 | 1.175 | 2009.1 |
| 2.363 | 1.181 | 2024.3 |
| 2.377 | 1.188 | 2039.4 |
| 2.390 | 1.195 | 2054.5 |
| 2.403 | 1.201 | 2069.2 |
| 2.417 | 1.209 | 2084.3 |
| 2.432 | 1.216 | 2099.4 |
| 2.446 | 1.223 | 2114.5 |
| 2.460 | 1.230 | 2129.1 |
| 2.474 | 1.237 | 2144.3 |
| 2.489 | 1.244 | 2159.4 |
| 2.503 | 1.251 | 2174.5 |
| 2.516 | 1.258 | 2189.1 |
| 2.530 | 1.265 | 2204.3 |
| 2.543 | 1.271 | 2219.4 |
| 2.556 | 1.278 | 2234.5 |
| 2.569 | 1.284 | 2249.1 |
|  |  |  |


|  |  |  |
| :--- | :--- | :--- |
| 2.582 | 1.291 | 2264.3 |
| 2.596 | 1.298 | 2279.4 |
| 2.609 | 1.305 | 2294.5 |
| 2.622 | 1.311 | 2309.1 |
| 2.635 | 1.317 | 2324.3 |
| 2.648 | 1.324 | 2339.4 |
| 2.661 | 1.330 | 2354.5 |
| 2.673 | 1.337 | 2369.2 |
| 2.686 | 1.343 | 2384.3 |
| 2.699 | 1.350 | 2399.4 |
| 2.712 | 1.356 | 2414.5 |
| 2.725 | 1.362 | 2429.2 |
| 2.738 | 1.369 | 2444.3 |
| 2.750 | 1.375 | 2459.4 |
| 2.763 | 1.381 | 2474.5 |
| 2.775 | 1.388 | 2489.1 |
| 2.788 | 1.394 | 2504.3 |
| 2.801 | 1.401 | 2519.4 |
| 2.814 | 1.407 | 2534.5 |
| 2.826 | 1.413 | 2549.2 |
| 2.838 | 1.419 | 2564.3 |
| 2.851 | 1.425 | 2579.4 |
| 2.863 | 1.431 | 2594.5 |
| 2.873 | 1.436 | 2609.1 |
| 2.875 | 1.438 | 2609.2 |
| 2.885 | 1.442 | 2624.2 |
| 2.887 | 1.443 | 2624.3 |
| 2.896 | 1.448 | 2639.4 |
| 2.898 | 1.449 | 2639.4 |
| 2.908 | 1.454 | 2654.5 |
| 2.910 | 1.455 | 2654.5 |
| 2.921 | 1.460 | 2669.1 |
| 2.930 | 1.465 | 2684.3 |
| 2.940 | 1.470 | 2699.4 |
| 2.950 | 1.475 | 2714.5 |
| 2.957 | 1.479 | 2729.1 |
| 2.965 | 1.482 | 2744.3 |
| 2.973 | 1.486 | 2759.4 |
| 2.981 | 1.490 | 2774.5 |
| 2.988 | 1.494 | 2789.1 |
| 2.998 | 1.499 | 2804.3 |
| 3.007 | 1.503 | 2819.4 |
| 3.017 | 1.509 | 2834.5 |
| 3.025 | 1.512 | 2849.2 |
| 3.034 | 1.517 | 2864.3 |
| 3.044 | 1.522 | 2879.4 |
| 3.053 | 1.527 | 2894.5 |
| 3.061 | 1.531 | 2909.2 |
| 3.071 | 1.535 | 2924.3 |
|  |  |  |


|  |  |  |
| :--- | :--- | :--- |
| 3.081 | 1.540 | 2939.4 |
| 3.088 | 1.544 | 2954.5 |
| 3.097 | 1.548 | 2969.1 |
| 3.107 | 1.553 | 2984.2 |
| 3.117 | 1.559 | 2999.3 |
| 3.125 | 1.562 | 3014.5 |
| 3.134 | 1.567 | 3029.1 |
| 3.142 | 1.571 | 3044.2 |
| 3.151 | 1.575 | 3059.4 |
| 3.159 | 1.580 | 3074.5 |
| 3.167 | 1.583 | 3089.1 |
| 3.176 | 1.588 | 3104.2 |
| 3.184 | 1.592 | 3119.3 |
| 3.192 | 1.596 | 3134.5 |
| 3.201 | 1.600 | 3149.1 |
| 3.209 | 1.604 | 3164.2 |
| 3.216 | 1.608 | 3179.3 |
| 3.223 | 1.612 | 3194.5 |
| 3.230 | 1.615 | 3209.1 |
| 3.239 | 1.619 | 3224.2 |
| 3.245 | 1.622 | 3239.3 |
| 3.252 | 1.626 | 3254.5 |
| 3.259 | 1.629 | 3269.1 |
| 3.266 | 1.633 | 3284.3 |
| 3.273 | 1.637 | 3299.4 |
| 3.280 | 1.640 | 3314.5 |
| 3.287 | 1.643 | 3329.1 |
| 3.294 | 1.647 | 3344.2 |
| 3.302 | 1.651 | 3359.4 |
| 3.308 | 1.654 | 3374.5 |
| 3.315 | 1.658 | 3389.1 |
| 3.324 | 1.662 | 3404.3 |
| 3.330 | 1.665 | 3419.4 |
| 3.337 | 1.669 | 3434.5 |
| 3.344 | 1.672 | 3449.1 |
| 3.351 | 1.676 | 3464.3 |
| 3.359 | 1.679 | 3479.4 |
| 3.365 | 1.683 | 3494.5 |
| 3.372 | 1.686 | 3509.1 |
| 3.378 | 1.689 | 3524.3 |
| 3.386 | 1.693 | 3539.4 |
| 3.394 | 1.697 | 3554.5 |
| 3.402 | 1.701 | 3569.2 |
| 3.410 | 1.705 | 3584.3 |
| 3.417 | 1.708 | 3599.4 |
| 3.425 | 1.712 | 3614.5 |
| 3.432 | 1.716 | 3629.1 |
| 3.440 | 1.720 | 3644.3 |
| 3.447 | 1.724 | 3659.4 |
|  |  |  |


|  |  |  |
| :--- | :--- | :--- |
| 3.454 | 1.727 | 3674.5 |
| 3.462 | 1.731 | 3689.1 |
| 3.470 | 1.735 | 3704.2 |
| 3.478 | 1.739 | 3719.3 |
| 3.487 | 1.744 | 3734.4 |
| 3.497 | 1.748 | 3749.1 |
| 3.504 | 1.752 | 3764.2 |
| 3.512 | 1.756 | 3779.4 |
| 3.519 | 1.759 | 3794.5 |
| 3.526 | 1.763 | 3809.1 |
| 3.533 | 1.767 | 3824.2 |
| 3.540 | 1.770 | 3839.3 |
| 3.546 | 1.773 | 3854.5 |
| 3.552 | 1.776 | 3869.1 |
| 3.559 | 1.779 | 3884.2 |
| 3.565 | 1.782 | 3899.3 |
| 3.571 | 1.786 | 3914.5 |
| 3.578 | 1.789 | 3929.1 |
| 3.584 | 1.792 | 3944.2 |
| 3.591 | 1.796 | 3959.4 |
| 3.598 | 1.799 | 3974.5 |
| 3.605 | 1.803 | 3989.1 |
| 3.612 | 1.806 | 4004.2 |
| 3.619 | 1.809 | 4019.4 |
| 3.625 | 1.812 | 4034.5 |
| 3.630 | 1.815 | 4049.1 |
| 3.638 | 1.819 | 4064.3 |
| 3.644 | 1.822 | 4079.4 |
| 3.650 | 1.825 | 4094.5 |
| 3.657 | 1.829 | 4109.1 |
| 3.664 | 1.832 | 4124.2 |
| 3.670 | 1.835 | 4139.3 |
| 3.676 | 1.838 | 4154.5 |
| 3.682 | 1.841 | 4169.1 |
| 3.689 | 1.845 | 4184.3 |
| 3.695 | 1.848 | 4199.4 |
| 3.702 | 1.851 | 4214.5 |
| 3.708 | 1.854 | 4229.1 |
| 3.716 | 1.858 | 4244.2 |
| 3.722 | 1.861 | 4259.4 |
| 3.729 | 1.865 | 4274.5 |
| 3.736 | 1.868 | 4289.2 |
| 3.743 | 1.871 | 4304.3 |
| 3.749 | 1.875 | 4319.4 |
| 3.756 | 1.878 | 4334.6 |
| 1.500 | 0.750 | 1172.1 |
| 1.860 | 0.930 | 1429.2 |
| 2.510 | 1.255 | 1959.6 |
| 2.660 | 1.330 | 2356.5 |
|  |  |  |

$3.230 \quad 1.615$

