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Abstract

The significant penetration of renewable power generations (RGs) and the large-scale use of plug-in electric
vehicles (PEVs) have brought tangible impacts in tackling the climate change challenge the mankind has
been facing due to substantive green-house gas and pollutant emissions from fossil-fuel based thermal power
generation plants. However, the uncertainty of RGs has also exerted significant challenges to the grid
operation and control. Therefore, dynamic power system scheduling to accommodate the intermittent RGs
and mass roll-out of PEVs has become extremely important. In this paper, a novel power system rescheduling
strategy is proposed to tackle this problem. Considering the uncertainty of the wind energy, a set of indices
according to different wind power application scenarios is proposed to initiate a rescheduling scheme for
power generations. In addition, a social learning particle swarm optimization algorithm based on real-value
and binary parallel is proposed to schedule the output of generator units and the charging and discharging
of the PEV. The effectiveness of the proposed active rescheduling framework and solving algorithm has been
verified by extensive experiments considering different number of generating units and scenarios, achieving up
to over 5.3% cost reduction. The experimental results have also shown that through expropriate management
of the charging and discharging of PEVs would be significantly alleviate the negative impact on the grid
stability caused by the intermittent wind power generations.

Nomenclature

aj ,bj ,cj Coefficients of fuel cost for unit j

CUTj,t−1 Continuous shutdown state time of unit
j at time t− 1

CUTj,t−1 Continuous startup state time of unit j
at time t− 1

Fj,t Fuel cost of unit j at time t

HPI High proportion index

LPI Low proportion index

MDTj Minimum down time of unit j

MPI Medium proportion index

MUTj Minimum up time of unit j

pLi Learning probability set by the algorithm

PD,t Power demand at time t

Pj,max Maximum power limits of unit j

Pj,min Minimum power limits of unit j

Pj,t Determined power of unit j at time t

PPEV,total Total necessary charging power of PEVs

PPEV,t Demand of PEVs at time t

PPEV C,t,max Maximum charging power of PEVs at
time t

PPEVD,t,max Maximum discharging power of
PEVs at time t

SRt Spinning reserves at time t
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SUC,j Cold-start cost of unit j at time t

SUH,j Hot-start cost of unit j at time t

SUj,t Start-up cost of unit j at time t

Tcold,j Cold-start hour of unit j

TOFFj,t Off-line duration time of unit j

TONj,t On-line duration time of unit j

TPCTn Total economic cost

uj,t Binary status of unit j at time t

xi,j(t) jth dimension of the ith individual in the tth

iteration

PEV Plug-in electric vehicles

RGs Renewable generations

UC Unit commitment

1. Introduction

Many countries worldwide are still heavily reliant on the fossil fuels such as coal and oil as the primary
energy sources to power their economy due to the low cost, high flexibility and wide distribution of these
energy resources, and some countries also rely mainly on thermal power plants for heating and supplying
electricity [1]. Fossil fuel consumptions generate significant greenhouse gas (GHG) emissions [2]. Specifically,
electricity generation and transportation are the two main sectors of GHG emissions [3]. Promoting clean
energy and popularizing the use of PEVs have become important measures to reduce the GHG emissions.
The development of RGs has huge potentials and is expected to meet two-thirds of the world’s energy demand
in the future, adding that the large-scale use of PEVs also greatly reduce the GHG emissions caused by the
internal combustion engine based vehicles. The both sectors therefore become priority choices in the future
decarbonization journey. However, the rapid development of PEV and RGs also bring new challenges to
the power system operation and control. On the one hand, when random renewable energy sources such
as wind energy are integrated into the power system on a large scale, they may bring great challenges to
the dispatching of the power system [4]. On the other hand, the random charging behavior of large-scale
PEV also have a direct impact on the supply and demand balancing of the power grid. Therefore, it is
indispensable to develop new tools to seamless accommodate the RGS and PEVs.

As one of the most important tasks in power system, the unit commitment (UC) aims to schedule
fossil fuel based power plants. It is considered as an NP hard problem due to its complexity, binary
switching effect and constraint [5, 6]. When solving low-dimensional and less-constrained UC problems,
traditional mathematical methods have been widely adopted such as dynamic programming methods [7],
mixed integer programming methods [8, 9], integer programming methods [10], branch and bound methods
[11], and Lagrange relaxation methods [12, 13]. These methods are easy to implement and have been
incorporated in related solvers for solving low-dimensional UC problems. However, these methods are often
difficult to solve high-dimensional and multi-constrained UC problems. Compared with the traditional
mathematical methods, meta-heuristic algorithms (MAs) are compatible to achieve better results in solving
optimization problems because of its flexible coding method and preferential optimization process. Moreover,
the superiority of MA in search efficiency and flexibility of problem modeling have been widely verified
[14]. Conventional MA algorithms include simulated annealing algorithm (SA) [15], genetic algorithm (GA)
[16], differential evolution algorithm (DE) [17, 18], ant colony optimization algorithm (ACO) [19], particle
swarm algorithm (PSO) [20], social learning particle swarm algorithm (SLPSO) [21], firefly algorithm [22],
reinforcement learning [23] and so on. In addition, due to that the switch state of the unit is a binary
variable, improved optimization algorithms based on binary coding or mixed binary and real number coding
schemes have also used to solve the UC problem, such as binary differential evolution (DBDE) [24], binary
competitive group optimization algorithm (BCSO) [25], binary gravitational search algorithm (BGSA) [26],
binary grey wolf optimiser (BGWO) [27], mixed binary-continuous particle swarm optimization [28] and
etc. Though MA methods are shown to have better capability than traditional mathematical methods in
solving UC problems, large-scale and multi-dimensional optimization problems may cause MAs falling into
the local optimum. In light of this, it is necessary to develop and improve the MA methods to solve the UC
problems when the complexity the power system is rapidly increasing.
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Wind energy is one of the most important renewable energy sources and a major substitute for traditional
energy sources such as coal and petrol. However, due to the high degree of unpredictability and variability of
the wind power, once largely integrated into the grid, wind power may cause significant challenges to system
operators [29] from safety, reliability and operating efficiency perspectives [30], which further deteriorate
the complex power system scheduling problem. Quan et al. [31] proposed a comprehensive computing
framework for integration and quantification of distributed power systems to reduce the negative impact of
wind energy and other intermittent renewable energy on the power system. Lin et al. [32] constructed a
data-adaptive robust unit commitment model under high wind power penetration to obtain the economic
unit scheduling plans. Diuana et al. [33] analyzed the influence of wind power penetration on the operating
costs, electricity prices and GHG emissions of the power system in southern Brazil, and established relevant
economic dispatch models. Mohasha et al. [34] built a stochastic robust UC model and analyzed the
influence of uncertainty RGs on UC problems. Jin et al. [35] proposed an economic emission dispatch
model that considered the carbon prices and uncertainty of wind power, and quantified the potential scale
of wind energy with carbon prices to explore a balanced power dispatch strategy with the integration of
the wind power. However, the weather-dependent nature of wind power makes wind forecasting a highly
demanding and complex process [36]. Cobos et al. [37] proposed a multistage robust UC method with
non-fixed resources, which was used to solve the wind energy uncertainty problem in the power generation
plans. How to effectively eliminate the negative impact of wind energy on power system dispatch is still a
problem that needs to be solved urgently.

With the rapid increase of the scale of RGs and PEV, it is also necessary to consider the impact of
their access to the power system when solving the UC problems. The uncertainty of RGs [38, 39, 40] and
the random charging behavior of PEV [41, 42, 43] also may bring challenges to the safety, stability and
economy of the power system. Therefore, the traditional day-ahead scheduling method of power system has
been difficult to meet the demand. On this basis, to reschedule the system under featured circumstances
become a crucial solution. The concept of rescheduling comes from the scheduling theory and rescheduling
methods have been widely adopted in many engineering fields such as manufacturing [44, 45, 46, 47] and
transportation industry [48, 49, 50]. Carlos et al. [44] proposed a rescheduling mechanism that satisfied
distributed constraints and contract network protocols to improve the adaptability of production systems
to unpredictable order requirements. Zhang et al. [45] applied a rescheduling decision model based on
fuzzy neural network of semiconductor manufacturing system (SMS) to adapt to its high dynamics and
unpredictability. Xu et al. [46] proposed a rescheduling mechanism for mid-term maintenance of equipment
to enable the equipments to pro-actively perform maintenance tasks in advance to prevent failures. Luo et
al. [47] proposed a rescheduling scheme which allowed rejection to adapt to the possible problem of delayed
arrival of work tasks. In order to improve the operation efficiency of railway transportation, Estelle et al.
[48] proposed a train rescheduling method for dense railway systems. Li et al. [49] designed an integrated
rescheduling model of production and delivery to deal with the unexpected situation that may occur in the
process of cargo transportation. Kuppusamy et al. [50] designed a new train timetable rescheduling model
to reduce the impact of accidents on subway operation efficiency. Taking into account the randomness of
truck arrival time, Mohammad et al. [51] set up a rescheduling optimization mechanism for the terminal,
which effectively improved the efficiency of unloading and loading at the terminal. Zhan et al. [52] propose a
high-speed railway rescheduling framework based on dynamic programming algorithm, which improves the
efficiency of high-speed railway operation management. Wang et al. [53] considered the security constraints
of the power grid and proposed a rescheduling framework based on migration reinforcement learning to
optimize the real-time active and reactive power of the power grid. In this paper, the rescheduling mechanism
for wind energy uncertainty is applied to power system scheduling.

Inspired by the aforementioned rescheduling strategies, this paper introduces a novel active rescheduling
strategy for power system scheduling, where the integrations of RGs and PEV are considered, so as to
reduce the adverse effects of these uncertain factors. Unlike the rolling horizon scheduling of power systems,
in the strategy design, different thresholds are designed according to the scale of installed wind power
capacity to launch the rescheduling. The power system will be rescheduled only if the difference between
the actual wind energy and the predicted wind energy used for day-ahead scheduling is larger than the set
threshold. The scheduling problem is formulated as the UC problem where a binary and real value parallel
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optimization framework to schedule the output of units and the charging and discharging management of
PEVs simultaneously, and a highly efficient MA e.g. social learning particle swarm optimization is adopted.
The negative influence of wind power and PEVs on the power system are therefore minimized through the
combination of the day-ahead scheduling and intra-day scheduling, at the same time, it also avoids the
influence of frequent rescheduling on the security and stable operation of the power system. The main
contributions of this paper are as follows:

• A novel active rescheduling model is formulated for the first time for power systems, taking into account
of the uncertainties of real-time wind power and intelligent charging and discharging of PEVs.

• Indices for assessing different application scenarios of wind energy uncertainty are designed, based on
which the power system are rescheduled.

• The effectiveness of the proposed rescheduling framework assisted with the social learning particle
swarm optimization method was verified by extensive experiments considering different uncertainty
scenarios. The influence of wind energy and PEV on the power grid is analyzed in detail, and the
effect of charging and discharging of PEVs on mitigating the negative influence of wind energy on the
power system is thoroughly evaluated.

The remainder of this paper is organized as follows. Section 2 introduces the UC problem formulation
considering wind energy and PEVs, and the active rescheduling method is presented in detail; Section 3
details the proposal of the social learning particle swarm optimization framework. Section 4 presents the
experimental results and corresponding analysis. Section 5 concludes the paper.

Table 1: Unit commitment benchmark data settings

Unit1 Unit2 Unit3 Unit4 Unit5 Unit6 Unit7 Unit8 Unit9 Unit10

Pmax(MW) 455 455 130 130 162 80 85 55 55 55

Pmin(MW) 150 150 20 20 25 20 25 10 10 10

a($ /h) 1000 970 700 680 450 370 480 660 665 670

b($ /MWh) 16.19 17.26 16.6 16.5 19.7 22.26 27.74 25.92 27.27 27.79

c($ /MWh2) 0.00048 0.00031 0.002 0.00211 0.00398 0.00712 0.00079 0.00413 0.00222 0.00173

MUT(h) 8 8 5 5 6 3 3 1 1 1

MDT(h) 8 8 5 5 6 3 3 1 1 1

SUH($) 4500 5000 550 560 900 170 260 30 30 30

SUC($) 9000 10000 1100 1120 1800 340 520 60 60 60

Tcold(h) 5 5 4 4 4 2 2 0 0 0

Initial Status(h) 1 1 0 0 0 0 0 0 0 0

2. Problem formulation

The generator units considered in this paper are traditional thermal generator units. The fossil fuel
cost of the units operating for one day is usually defined as the objective function of the UC problems.
Due to the physical constraints of the unit itself and the safety requirements, the unit must meet necessary
constraints. These constraints usually include power demand constraints, spinning reserve constraints and
upper and lower limits of generating capacity of each unit etc. In addition, since PEVs and wind energy
are also considered in this paper, their own constraints and their impacts on the conventional power system
constraints should also be considered. This section mainly introduces the objective function and major
constraints.
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2.1. Objective function

The fossil fuel cost consumed by the thermal generating unit for 24 hours is taken as the objective
function, and the interaction between the hourly costs is not considered. Without considering power loss,
the objective function of UC problem can be defined as:

Cost = min

T
∑

t=1

n
∑

j=1

[Fj(Pj,t)sj,t + SUj,t(1− sj,t−1)sj,t] (1)

In (1), cost represents the total generation cost of the unit, which can be divided into the fossil fuel cost
consumed during the operation of the unit and the start-up cost of the unit. Pj,t is the amount of electricity
generated by the jth unit at hour t. Fj(Pj,t) is a function of the cost of the fossil fuels consumed while the
units are operating. The fuel cost function can be expressed as follows:

Fj,t(Pj,t) = aj + bjPj,t + cjP
2
j,t (2)

where aj , bj and cj are the fuel cost coefficients of the jth unit.
The start-up cost of the unit is expressed by SUj,t(1−uj,t−1)sj,t in the objective function. sj,t represents

the current state of the unit, and the on-off state is represented by 1 and 0 respectively. If the unit was in
the shutdown state at the previous time interval and the current state is in the power-on state, then the
start-up cost needs to be counted. In other cases, the start-up cost is 0. According to the time that the unit
is in shutdown state before restarting, the start-up cost of the unit can be divided into hot start-up cost
and cold start-up cost, which can be shown as follows:

SUj,t =

{

SUH,j , if MDTj ≤ CDTj,t ≤ MDTj + Tcold,j

SUC,j , if CDTj,t > MDTj + Tcold,j

(3)

Due to the physical conditions of the unit itself, the unit can not be started immediately after shutdown.
MDTj represents the minimum downtime of the unit, Tcold,j represents the threshold of cold start time,
and CDTj,t is the continuous shutdown time of the unit. If the shutdown time of the unit is greater than
the minimum downtime and less than the sum of the minimum downtime and the cold start threshold time,
the unit is defined as the hot start mode, which can be represented by SUH,j . If the shutdown time of the
unit is greater than the sum of the minimum shutdown time and the cold start threshold time, it is defined
as the cold start mode, which is denoted by SUC,j .

2.2. Constraints

This paper mainly introduces several constraints of the UC problem considering the influence of wind
energy and PEVs, as well as their own constraints.

2.2.1. Power balance constraints

Considering the wind power and PEVs are integrated into the power grid, the generation of conventional
units plus wind power should be equal to the traditional load plus the load required by PEVs. It is worth
noting that in order to reduce the impact of the uncertainty of PEV charging on the power grid, the
management of the charging and discharging of PEVs are taken into account. Therefore, two modes for
PEVs are considered. One is grid-to-vehicle (G2V) where the load of PEVs is a positive real number. The
other is vehicle-to-grid (V2G), which was introduced in [54], and the load of PEV is a negative real number.
The formula for the power balance constraint is therefore given as follows:

n
∑

j=1

Pj,tsj,t + Pwind,t = PD,t + PPEV,t (4)

In (4),
∑n

j=1 Pj,tsj,t represents the power generation of all units at hour t, and Pwind,t represents the
wind energy connected to the grid at hour t. PD,t and PPEV,t represent the traditional load and the load
demand of PEVs at hour t respectively.
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2.2.2. Upper and lower limits of generating capacity

Generation units all have their physical limits, and these are often defined as the upper and lower limits
of the generating capacity of the unit as shown below:

sj,tPj,min ≤ Pj,t ≤ sj,tPj,max (5)

where Pj,min and Pj,max are the lower limit and upper limits of the production capacity of the jth unit
respectively.

Since the proposed model takes into account not only the conventional unit but also the wind energy,
the upper and lower limits of wind energy also need to be considered, which can be shown in Formula (6):

0 ≤ Pwind,t ≤ Pwind,max (6)

The wind power generation completely depends on the external environment and the size of installed
capacity, so the upper limit of the wind power generation is the installed capacity of wind power generation,
which is represented by Pwind,max. When the wind is too low, or even there is no wind, the wind energy
can be ignored, denoted by 0.

2.2.3. Minimum up/down-time limits

The physical limitations of a generation unit itself determines that it is impossible for the unit to
immediately change the state of starting up and shutting down, and there are minimum up/down-time
limits for these units which can be defined below:

uj,t =











1, if 1 ≤ CUTj,t−1 < MUTj

0, if 1 ≤ CDTj,t−1 < MDTj

0 or 1, otherwise

(7)

where CUTj,t−1 and CDTj,t−1 respectively indicate the time when the unit is in continuous startup state
and continuous shutdown state. MUTj and MDTj indicate the minimum time that the unit is on and off,
respectively. As long as the unit is in the continuous start-up state for less than the set minimum up-time,
the unit must remain in the start-up state, and vice versa.

2.2.4. Spinning reserve constraints

In order to meet the demand of unexpected load, the power plant usually needs to reserve a certain
amount of power, which is important to ensure the safety and stable operation of the power system. This
can be formulated below,

PD,t + PPEV,t + SRt ≤

n
∑

j=1

Pj,maxsj,t + Pwind,t (8)

SRt = m× PD,t. (9)

that is, the generating capacity of the unit and wind power should be approximately equal to or slightly
greater than the sum of all load requirements and the spinning reserves. Spinning reserve is represented by
SRt, and relationship is shown by Formula (9). Based on the suggestions from [55] and the spinning reserve
is set as 0.1 times the traditional load in this paper.
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Figure 1: The learning mechanism of SLPSO.

2.2.5. Constrains of PEVs

Since PEVs are considered in this paper, their constraints need to be considered. Relevant constraints
include charging and discharging capacity limits and power demand constraints of PEVs, which can be
represented by formula (10) and (11) respectively,

PPEVD,t,max ≤ PPEV,t ≤ PPEV C,t,max (10)

T
∑

t=1

PPEV,t = PPEV,total (11)

as shown in formula (10), PPEVD,t,max represents the maximum discharge capacity of all PEVs when
discharging, and PPEV C,t,max represents the maximum charge capacity of all PEVs when charging. Formula
(11) represents the total amount of electricity required to maintain the normal operation of PEVs in one
day, and PPEV,total represents the total amount of charging demand of all PEVs in one day.

2.3. Active rescheduling indices considering wind energy uncertainty

The active rescheduling is defined as the scheme that the power system actively reschedule the unit
commitment and corresponding plans given certain predefined circumstances during the intra-day scheduling
time horizon. These circumstances are defined by indices related to the deviation scale of RGs such as wind
energy from their expected generations.

The nature of wind energy dictates that it is difficult to be accurately predicted, and when the gap be-
tween actual wind power generation and predicted generation is sufficiently enough, if the power generations
still follow the day-ahead dispatching schedule, it may imposes challenges to the power system operation
and control, even affect the security and reliability.

To address above problems, this paper proposes to adopt a method combining day-ahead dispatching and
intra-day rescheduling to address the negative impact of wind energy uncertainty. In this new scheme, when
the large gap between the actual wind energy and the predicted value is sufficiently large, the power system
will actively reschedule the output of generation units to adapt to the generation uncertainties introduced
by wind energy and reduce the cost of power generation. This scheme is different from intra-day dynamic
economic dispatch which schedule power outputs of generating units at fixed intervals within a day, e.g.
every hour or even shorter interval. This is due to the fact that frequent rescheduling of the power system is
computationally expensive and unnecessary, and in the worst scenario, it may even affect the reliability of
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Figure 2: The proposed optimal framework.
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the power system as frequent adjustment of the set-points of power systems may cause instability issues. To
address this issue, this paper first defines several indices and thresholds for different application scenarios of
wind energy. Only when the difference between the actual wind power generation and the predicted value
exceeds certain thresholds, the rescheduling scheme is triggered otherwise the output of the unit still follow
the previous dispatching schedule. This paper designs three indices elaborated below:

1) Fixed threshold for high proportion index (HPI) scenario: For areas where wind energy accounts for
a relatively large proportion of the regional power generation, the power system will be rescheduled as long
as the difference between the actual wind energy and predicted wind energy in a certain hour exceeds a
given threshold. This paper stipulates that if the actual wind energy in a certain hour exceeds 30% of the
predicted wind energy, the power system outputs will be rescheduled, which can be defined as follows:

RDHPI =

{

1, if (winda,t − windp,t)/windp,t ≥ 30%

0, otherwise
(12)

2) Average error for medium proportion index (MPI) scenario: For areas with large wind fluctuations,
while wind power generation accounts for a relatively modest proportion of the overall generation capacity.
Although a relatively modest amount of wind power may have not a substantial impact on power system
dispatching even if the gap between actual wind power generation and predicted value is large, however
frequent fluctuations of this gap still affects the power system operation and control. In this case, if the
average error between the actual wind power and the predicted value exceeds a specified threshold, the
power system generation profile will be rescheduled. In this scenario, this paper proposes that the average
error between the actual wind energy and the predicted value should be calculated every 8 hours. If the
average error exceeds 30% in 8 hours, rescheduling is considered necessary. This is formulated below:

RDMPI =

{

1, if
∑

8

t=1
(winda,t−windp,t)/windp,t

8 ≥ 30%

0, otherwise
(13)

3) Frequency for low proportion index (LPI) scenario: For areas where wind energy accounts for a
relatively small proportion of the regional power generation profile. Due to the relatively small proportion
of wind energy, even if the wind energy occasionally exceeds the given threshold, it does not have a significant
impact on the entire power system operation. In this regard, there is no need to reschedule the power system
dispatch. Therefore, only when the difference between the actual wind power and the predicted one exceeds
a specified number of times of a given threshold, the active rescheduling is triggered. In this scenario, the
index is initially set to 0. If the actual wind power in an hour exceeds 30% of the predicted wind power, the
index is increased by 1. Then if the index reaches 8, the power system will be rescheduled, which can be
formulated below:

RDLPI =

{

1, if times((winda,t − windp,t)/windp,t ≥ 30%) ≥ 8

0, otherwise
(14)

RDHPI , RDMPI and RDLPI represent the decision of rescheduling under the scenarios of high, medium
and low wind energy proportions respectively. Specific threshold values and related calculation methods are
shown in Table 2, where winda,t represents the actual wind energy at tth hour, and windp,t represents the
predicted wind energy at tth hour. In this paper, if the installed capacity of wind energy accounts for more
than 20% of the total power generation capacity of traditional units, it is defined as high proportion, 10%
to 20% is defined as medium proportion, and less than 10% is defined as low proportion.

The parameters of the generation units used in this study was set according to [56], which are listed in
Table 1.
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3. Methodology

This section details the optimization framework proposed in this paper. Subsection 3.1 proposes the
parallel SLPSO framework. Subsection 2.3 further elaborates on the rescheduling indices proposed for wind
energy uncertainty.

3.1. Parallel social learning particle swarm optimization framework

The traditional PSO algorithm aims to find the optimal solution by allowing the particles to continuously
approach the best position of the individual itself and the best position of all individuals [20]. The PSO
has the features of easy implementation and fewer parameters to be adjusted, it has been widely used in
solving various optimization problems [57]. However, it has also been shown that the conventional PSO often
falls into the local optimal solution when it encounters the high-dimensional and large-scale optimization
problems, and cannot achieve the desired resuls.

Table 2: Indices considering wind energy uncertainty.

Index Application Scenario Computation method Threshold

Fixed Value Wind Energy ≥ 20% (winda,t − windp,t)/windp,t 30%

Average Error 10% ≤ Wind Energy ≤ 20%
∑

8

t=1
(winda,t−windp,t)/windp,t

8 30%

Frequency Wind Energy ≤ 10% times((winda,t − windp,t)/windp,t ≥ 30%) 8

The SLPSO improves the learning mechanism of traditional PSO. In each iteration, the individuals in
the population are sorted according to their fitness values calculated by the fitness function, and individuals
are only allowed to randomly learn from other individuals that are better than themselves. Such learning
mechanism not only increases the diversity of the population when solving large-scale optimization problems
and improves the ability of the algorithm to find the optimal solution, but also accelerates the convergence
speed of the algorithm. Experiments have showed that SLPSO has good performance when facing high
dimensional and large-scale problems [58]. Since the intelligent scheduling of large-scale electric vehicles is
considered in this paper, the algorithm framework is designed based on SLPSO. According to the proposed
problem model, this paper proposed a binary and real-value parallel optimization algorithm framework based
on SLPSO. Binary SLPSO (BSLPSO) is used to optimize the on-off state of the unit, and real-value SLPSO
is used to manage the charging and discharging of PEVs. The rest of this section specifically elaborates the
SLPSO and BSLPSO.

The location update formula in SLPSO is given below:

xi,j(t+ 1) =

{

xi,j(t) + ∆xi,j(t+ 1), if pi(t) ≤ pLi
xi,j(t), otherwise

(15)

pLi = (1−
i− 1

m
)αlog(⌈

n
m

⌉) (16)

xi,j(t) represents the j
th dimension of the ith individual in the tth iteration. ∆xi,j(t+1) is the update degree

of the individual calculated by the above-mentioned learning mechanism during this location update. pi(t)
is a random number between 0 and 1, and pLi is a learning probability set by the algorithm. The calculation
of learning probability is shown in Formula (16), where n is the problem dimension, and m is the size of
the population. It is evident that the learning probability will increase with the increase of the problem
dimensions and population size, which can improve the robustness of the algorithm for problems of different
dimensions and scales. α is the only parameter which needs to be set in SLPSO algorithm, which was set
as 0.5 in this paper.
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The learning mechanism of SLPSO can be reflected by Formulas (17), (18) and (19):

∆xi,j(t+ 1) = r1(t)∆xi,j(t) + r2(t)Ii,j(t) + φr3(t)Ci,j(t) (17)











Ii,j(t) = xk,j(t)− xi,j(t)

Cj,t = xj(t)− xi,j(t)

xj(t) =
∑

m
i=1

xi,j

m

(18)

φ = 0.01×
n

m
(19)

r1(t)∆xi,j(t) is defined as inertial behavior, so that the individual can continue to update the current position
according to the update degree of the previous iteration. r2(t)Ii,j(t) is defined as an imitative behavior,
which makes the individuals randomly learn from other better individuals. φr3(t)Ci,j(t) is defined as social
influence behavior, which makes the individual approach the average value of all individuals in a particular
dimension. r1(t), r2(t) and r3(t) are all random numbers between 0 and 1. φ is related to the population
size and dimension, and its calculation method is shown in (19). As shown in (18), xk,j(t) represents the
jth dimension of the kth individual randomly selected from the better individuals in this iteration. xj(t)
represents the average value of the jth dimension of all the individuals in this iteration. Inertial behavior,
imitation behavior and social influence together constitute the complete learning mechanism of SLPSO. The
specific learning mechanism is illustrated in Figure 1. This mechanism can not only increase the ability of
exploitation, as well as the ability of exploration of the algorithm.

3.2. Binary conversion of SLPSO

The proposed algorithm needs a binary conversion function to convert each parameter of the individual
to 0 or 1 after each position update. Popular binary conversion formulas are shown in Table 3:

Table 3: Five commonly used binary conversion formulas.

Name Binary Function

BSLPSO-I Pri,j = |erf(
√
π
2 v)|

BSLPSO-II Pri,j = |tanh(v)|

BSLPSO-III Pri,j = | v√
1+v2

|

BSLPSO-IV Pri,j = | 2πarctan(
√
π
2 v)|

BSLPSO-V Pri,j = 2 ∗ | 1
1+e−xi,j

− 0.5|

By applying these five binary conversion methods to SLPSO, five binary SLPSO methods (BSLPSOs) can
be obtained. These five methods are applied to the UC problem considering the charging and discharging of
PEVs, and the convergence trajectories are shown in Figure 3. It is evident based on Figure 3 that the fifth
binary conversion function has a better performance and helps SLPSO to find a better solution, therefore
in the following the fifth binary conversion function is chosen in the following experimental studies. The
specific conversion mechanism are given below:

Pri,j = 2 ∗ |
1

1 + e−xi,j
− 0.5| (20)

xi,j =

{

1, if rand < Pri,j

0, otherwise
(21)
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Figure 3: Convergence of the five SLPSOs applied to the UC problem considering the PEV scenario.

In (21), rand is a random number between 0 and 1, which is used to compare with the result calculated
by the V-shaped function. This paper uses this mechanism to binarize SLPSO.

The framework proposed in this paper is summarized in Figure 2.

Table 4: Economic costs comparison between BSLPSO and BPSOs ($/day).

Units

Methods
BSLPSO BPSO NBPSO BLPSO BCSO

10 539209.44 539569.18 539521.64 539602.56 539409.37

20 1099295.45 1108919.50 1111070.11 1107274.25 1099923.53

40 2220799.62 2252222.21 2271009.21 2273259.39 2220976.38

60 3342015.99 3399381.82 3449616.23 3439590.71 3342437.06

80 4465156.98 4548909.21 4629706.37 4633942.06 4465172.92

100 5587136.37 5699940.75 5810070.62 5813829.19 5587154.89

4. Experimental study and result analysis

In this section, three different cases are examined on Matlab R2020a to verify 1) the performance of the
proposed algorithm; 2) the effectiveness of the proposed method in dealing with wind energy uncertainty
scenarios; and 3) the management of PEV charging and discharging to fill the valley and reduce the peak
of the load as well as to reduce the impact of wind energy uncertainty on the power grid.
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Figure 4: Comparison of BSLPSO and BPSOs on 10-unit benchmark with three wind energy application scenarios.

4.1. Case 1: The performance of BSLPSO in solving the UC problems considering wind energy integration

In this case, the forecast data of a typical spring day of a 85MW on-shore wind farm in Northern Ireland
power system was selected [14], and the wind energy data was used in the UC problem. In order to verify
the performance of the proposed optimization algorithm, the BSLPSO was applied to the aforementioned
problem, and its performance was compared with the four PSO variants, including BPSO, BLPSO, NBPSO
[59] and BCSO [25]. The comparison results are shown in Table 4. According to Table 4, BSLPSO always
had a slight edge over BCSO. In addition, BSLPSO delivered a consistent performance and was always able
to find the best results in solving problems with different numbers of generation units, and the advantages
BSLPSO over the other three algorithms are getting more distinctive as the number of units increases. When
there are only ten units, the minimum difference between the results of BSLPSO and the other algorithms is
about 200 $/day, but when the number of units reaches 100, the maximum difference has reached 226, 291
$/day. It is worth mentioning that in the UC problem, the number of units determines the dimension of the
UC problem. When there are only 10 units and only the economic cost of the units in 24 hours is considered,
the dimension of the problem is 10× 24 = 240, and when the number of units reaches 100, the dimension of
the problem reaches to 2400. Table 4 has clearly demonstrated the performance of BSLPSO in solving UC
problems, especially the high-dimensional UC problems.

To examine all the three wind energy application scenarios defined in the previous section, based on data
from off-shore wind farms in Ireland, the hourly wind power data are first scaled up by the factor of 1.6, so
that the peak value of wind power generation can account for about 10% of the total output of traditional
units, and this allows the examination of the medium proportion of wind power scenario. These wind energy
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generation profile of the medium proportion, can be further scaled up by a factor of 2 to obtain the high
proportion scenario, or scaled down by a factor of 0.5 to obtain the low proportion scenario. These three
wind power scenarios are incorporated in the 10-unit benchmark UC problem, and the optimization problem
was then solved by the BSLPSO and the three aforementioned PSO variants. The resultant convergence
trajectories of the 10-unit benchmark UC problem under the three wind power generation scenarios are
illustrated in Figure 4. In Figure 4, the trajectory in red are the solutions of the BSLPSO, it is clear that
the BSLPSO can find better results than the other three algorithms in all three scenarios, and all have the
fastest convergence rate, which confirm the performance of BSLPSO in solving UC problems in different wind
generation scenarios. In summary, the BSLPSO can not only solve the UC problem of different dimensions
satisfactorily, but also well adapt to the UC problems in different wind power generation scenarios.

Table 5: Wind energy experimental data under three scenarios.

Application scenario Day-ahead predicted data True wind power data New predicted data

Low proportions scenario 0.8 × windspring rand × windp (0.7 ≤ rand ≤ 1.6) 1.3 × windp

Medium proportions scenario 1.6 × windspring rand × windp (1.2 ≤ rand ≤ 1.6) 1.3 × windp

High proportions scenario 3.2 × windspring rand × windp (1.1 ≤ rand ≤ 1.5) 1.3 × windp

Figure 5: Simulation results of 10-unit benchmark UC problem with PEV in three wind energy application scenarios.
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4.2. Case 2: Benefits of appropriate management of PEV charging and discharging on power system inte-
grated with wind energy

Due to the uncertainty of wind energy, for a power system with higher proportion of wind power gener-
ation capacity, low load demand may bring severe challenges to the balancing of the power grid. Therefore,
to intelligently manage the charging and discharging of PEV to fill the valley and to shave the peak of the
grid load is vital to improve the stability of the power system and to mitigate the negative impact of wind
energy uncertainty on the power grid.

According to [3], the average daily mileage of a PEV is about 32.88 miles, so a scenario is set with a total
of 150,000 PEVs, and the average daily charge demand of PEV is 7.427kWh, then the total daily power
demand of all PEVs is about 1.114GWh. This paper sets the battery capacity of PEVs as 30kWh, the state
of charge (SOC) during charging or discharging as 50%, the number of PEV charging and discharging per
hour as 20% of the total PEVs, and the charging efficiency as 85%. Thus, the maximum power for PEV
charging and discharging per hour will be 153MW and −153MW respectively.

Under the three wind power generation scenarios, the PEV charging and discharging results after
rescheduling obtained by the proposed optimization algorithm are listed in Table 6. In Table 6, the data
highlighted in purple indicate the discharge power, and data highlighted in green are discharging power. It is
evident that PEVs are managed to charge during the load valley period while discharge during the load peak
period. In addition, as shown in Table 6, during the load valley period from 1th to 8th hour, the wind may
provide an excessive amount of electricity, which will bring challenges to the supply and demand balancing.
By charging the PEV as a load during this time period, the energy provided by the wind can be consumed,
thereby improving the stability of the power system. It is also evident from Figure 5 that wind energy
cannot help with peak-shaving and valley-filling of the grid load, while the peak-shaving and valley-filling of
the power grid can be achieved through intelligent charging and discharging of PEV is added PEVs. This
confirms that intelligent charging and discharging of PEVs can play an important role in maintaining the
balance between supply and demand of the power grid and alleviating the negative impact of wind energy
uncertainty on the power system.

4.3. Case 3: Comprehensive UC problems with integration of wind energy and PEVs before and after
rescheduling

This case study presents a comparative analysis of unit output, grid load and economic cost before and
after rescheduling, and the benefits of rescheduling on the economy and reliability of the power system are
investigated in detail. The comparison of different UC problems under the three scenarios are shown in
Figure 6.

In the experiments only one new wind energy forecast is conducted, and the difference between the
new predicted wind power generation data and the real wind generation data is below the threshold, which
implies that the system only needs to be rescheduled once. The experimental data used in the three wind
energy scenarios can be found in Table 5, where windspring represents the wind power data of the typical
spring day of on-shore power plants in Northern Ireland as mentioned in Case 1, windp represents the
day-ahead forecast data of the wind power. rand is a random number. The wind energy data of the three
scenarios are shown in Figure 6a.

When there is a large gap between the actual wind energy and the predicted wind energy, it is necessary
to arrange the rescheduling of the power system. If the actual wind energy is far less than the predicted
wind energy, it is unacceptable to continue to use the day-ahead dispatching plan. However, if the actual
wind energy is much greater than the predicted value, the electric energy provided by the power grid will
be greater than the demand, which will bring challenges to the security and economy of the power system.
This paper mainly considers the situation where the actual wind energy is greater than its predictions.

Figure 6b shows a comparison of the grid load before and after rescheduling, the grid load here is the
traditional load plus PEV load and minus the wind power. It can be evident that the grid load after
rescheduling is lower than before rescheduling in most periods, this is due to the integration of wind energy
and intelligent management of charging and discharging of PEVs after rescheduling. This confirms again that
rescheduling is helpful to reduce the load of the power grid. In addition, rescheduling also helps to reduce
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Table 6: New forecast data of wind energy and PEV charging and discharging after rescheduling.

Hour

High

Proportion

Wind (MW)

Medium

Proportion

Wind (MW)

Low

Proportion

Wind (MW)

High Proportion

PEV Load (MW)

Medium Proportion

PEV Load (MW)

Low Proportion

PEV Load (MW)

Traditional

Load

(MW)

1 305.93 152.96 76.48 153 153 153 700

2 324.19 162.09 81.04 153 153 153 750

3 324.60 162.30 81.15 153 153 153 850

4 317.99 158.99 79.50 153 153 153 950

5 325.19 162.59 81.30 153 153 153 1000

6 331.30 165.65 82.83 153 153 152.85 1100

7 325.35 162.68 81.34 153 127.51 120.09 1150

8 258.92 129.46 64.73 35.10 127.96 55.83 1200

9 208.42 104.21 52.10 66.65 -89.33 -23.24 1300

10 281.59 140.79 70.40 -19.26 -37.12 -45.39 1400

11 326.73 163.36 81.68 -122.12 -153 -153 1450

12 242.49 121.24 60.62 -132.15 -153 -153 1500

13 163.07 81.54 40.77 -152.33 -105.95 -152.59 1400

14 63.56 31.78 15.89 -107.75 -118.83 -143.28 1300

15 14.98 7.49 3.74 -85.26 -42.37 11.09 1200

16 0.46 0.23 0.11 38.79 153 152.86 1050

17 0.87 0.44 0.22 153 152.88 152.99 1000

18 20.51 10.25 5.13 79.41 133.24 126.04 1100

19 25.04 12.52 6.26 49.67 -57.48 45.82 1200

20 31.49 15.74 7.87 -139.63 -152.12 -152.68 1400

21 61.40 30.70 15.35 -37.78 -42.69 -62.39 1300

22 73.09 36.54 18.27 110.87 147.52 111.23 1100

23 170.60 85.30 42.65 153 153 153 900

24 95.14 47.57 23.78 153 153 153 800

the generation cost of the power system, as shown from the changes in the outputs of some conventional
thermal generation units before and after rescheduling as illustrated in Figure 6c. The outputs of units
are directly related to the load of the power grid. Therefore, when the actual wind energy is greater than
its predictions made in the previous day, the output of some units after rescheduling will be less than the
output of units during the day-ahead dispatching, which is clearly reflected in the output changes of several
thermal units as shown in Figure 6c. Table 7 shows the comparison of the economic costs consumed by the
unit operating for one day before and after rescheduling in the three scenarios. It is shown in the table that
the economic cost after rescheduling is often lower than before rescheduling, and the economic improvement
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Table 7: Comparison of the economic costs of a day before and after rescheduling in different scenarios ($/day).

Wind energy application scenario Cost of day-ahead scheduling Cost of rescheduling Difference

Low proportions scenario 594208.31 585564.15 1.4%

Medium proportions scenario 566856.68 553229.87 2.4%

High proportions scenario 532534.56 504184.86 5.3%

after rescheduling will increase as the proportion of wind energy increases. Therefore, rescheduling of the
power system is helpful to relieve the load pressure of the power grid and reduce the cost of power generation.

Figure 6: Comparison of three problems in three scenarios.

5. Conclusion

Integrating RGs and PEVs has been a hot topic in the power system operation. In this paper, a power
system optimization framework considering wind energy uncertainty has been proposed. This framework
uses a group of new MA approaches to realize the intelligent PEV charging and discharging, and addresses
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the optimal scheduling of power generating units. In this framework, the predicted wind energy is compared
with the actual wind energy in real time, and different application scenarios of wind energy are considered. As
long as the difference between the actual wind energy and the predicted wind energy exceeds the threshold,
the power system will be actively rescheduled according to the new forecast wind power, so as to reduce the
negative effects of the wind power uncertainty on the electric power system.

In order to verify the effectiveness of the proposed method, three case studies have been conducted.
The experimental results confirm the effectiveness of the proposed method in solving the power system
scheduling problems with uncertain renewable energy sources, achieving up to over 5.3% cost reduction.
The mass roll-out of PEVs and significant penetration of wind energy will play an increasingly important
role in the future energy system and the decarbonization journey worldwide. Actively rescheduling the
power system can significantly improve the economic performance and provide a buffer scheme for the relief
of the uncertainty of RGs. The potentials of PEVs can also be leveraged through proper scheduling. In
addition, the future work will consider the use of wind energy prediction algorithms to further increase the
accuracy of predicting wind energy, and further refine the indicators and thresholds of wind energy in order
to be closer to actual application scenarios.
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