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a b s t r a c t 

Cardiac MR acquisition with complete coverage from base to apex is required to ensure accurate subse- 

quent analyses, such as volumetric and functional measurements. However, this requirement cannot be 

guaranteed when acquiring images in the presence of motion induced by cardiac muscle contraction and 

respiration. To address this problem, we propose an effective two-stage pipeline for detecting and syn- 

thesising absent slices in both the apical and basal region. The detection model comprises several dense 

blocks containing convolutional long short-term memory (ConvLSTM) layers, to leverage through-plane 

contextual and sequential ordering information of slices in cine MR data and achieve reliable classification 

results. The imputation network is based on a dedicated conditional generative adversarial network (GAN) 

that helps retain key visual cues and fine structural details in the synthesised image slices. The proposed 

network can infer multiple missing slices that are anatomically plausible and lead to improved accuracy 

of subsequent analyses on cardiac MRIs, e.g., ventricle segmentation, cardiac quantification compared to 

those derived from incomplete cardiac MR datasets. For instance, the results obtained when compensat- 

ing for the absence of two basal slices show that the mean differences to the reference of stroke volume 

and ejection fraction are only -1.3 mL and -1.0%, respectively, which are significantly smaller than those 

calculated from the incomplete data (-26.8 mL and -6.7%). The proposed approach can improve the re- 

liability of high-throughput image analysis in large-scale population studies, minimising the need for 

re-scanning patients or discarding incomplete acquisitions. 

© 2022 Published by Elsevier B.V. 
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. Introduction 

Cardiovascular diseases (CVDs) remain the leading cause of 

eaths worldwide. They are responsible for a large proportion of 

remature mortality, e.g., 30.4% and 25.3% death rates for men 

nd women in Europe, before age 65. Cardiac Magnetic Reso- 

ance (CMR) cine imaging is the gold standard in cardiovascular 

edicine, providing key diagnostic information for various clinical 

pplications through morphological and functional left ventricular 

LV) quantification ( Pennell, 2003 ). 

Due to its excellent reproducibility of quantitative measure- 

ents compared with other modalities, CMR cine imaging is a ro- 

ust and attractive technique for large-scale population studies to 
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dentify new cardiovascular biomarkers for improved diagnosis of 

VDs at early stages. Many initiatives have been launched, includ- 

ng the UK Biobank (UKBB) ( Petersen et al., 2013 ), the German Na-

ional Cohort ( Bamberg et al., 2015 ), and the Canadian Alliance for 

ealthy Hearts and Minds (CAHHM) ( Anand et al., 2016 ). 

Cardiac MR acquisition with complete ventricular coverage from 

ase to apex is required to ensure any subsequent analyses are reli- 

ble, such as ventricle segmentation, quantification of cardiac func- 

ional and morphological indices, strain and deformation analysis 

hrough non-rigid registration, cardiac shape modelling and com- 

utational mesh generation for use in mechanical and flow simu- 

ations, etc. The critical point for the acquisition is to find the di- 

ection of the LV long axis defined by the line going through from 

he apex to the centre of the mitral valve, and to acquire the SAX 

tack encompassing both landmarks with slices perpendicular to 

he long-axis. However, due to insufficient radiographer experience 

uring scan acquisition planning, natural cardiac muscle contrac- 

ion, breathing motion, and imperfect triggering, the acquired SAX 

https://doi.org/10.1016/j.media.2022.102354
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2022.102354&domain=pdf
mailto:y.xia@leeds.ac.uk
mailto:a.frangi@leeds.ac.uk
https://doi.org/10.1016/j.media.2022.102354
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Fig. 1. Illustration of incomplete cardiac coverage present in CMR images. The first 

column shows 2 subjects with the incomplete SAX stack overlaid on top of LAX 2- 

chamber view. The rightmost column shows the box plots of absolute differences 

for 4 typical clinical parameters, namely LVEDV, LVESV, LVSV and LVEF, derived be- 

tween incomplete (two slices missing) and complete coverage data. The CMR im- 

ages were reproduced with the permission of UK Biobank. 
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tack may display a certain degree of sub-optimal cardiac cover- 

ge with an insufficient number of slices, as illustrated in Fig. 1 . 

uch clinically acquired data with incomplete ventricular coverage 

ot only hinder visual interpretation, but also pose challenges to 

ownstream analyses. For instance, ventricular volume measure- 

ents, and associated Ejection Fraction (EF) and Stroke Volume 

SV), are important in the management of various CVDs because 

hey are strong predictors of clinical outcomes. However, accurate 

olume and functional measurements cannot be guaranteed if the 

ase and apex of the ventricular chambers are not fully covered 

n short-axis (SAX) image stacks, which poses further challenges to 

uantitative LV characterisation and accurate diagnosis. Incomplete 

overage can also adversely impact 3D cardiac shape reconstruc- 

ion algorithms or non-rigid registration techniques developed for 

ssessing myocardial strain across the cardiac cycle. 

Quality assessment is challenging in large-scale population 

tudies, where CMR images are acquired across different imaging 

entres before core lab analysis. Not only repetitive quality assur- 

nce tasks cannot maintain consistency and reliability for large 

mounts of imaging data, but also large volumes of data may be 

tored without being qualitatively checked by experienced radio- 

raphers before analysis Ferreira et al. (2013) . Consequently, sub- 

ptimal coverage may occur at any time point throughout the car- 

iac cycle, leading to unreliable CMR image data. 

In post-processing, a common strategy to account for insuffi- 

ient cardiac coverage, if identified, is to discard incomplete sam- 

les in the cohort without providing feedback to the acquisition 

eam and correcting/re-acquiring the data ( Klinke et al., 2013 ). 

xcluding incomplete data, however, not only reduces statistical 

ower aggregated over the cohort and causes bias, but is also of 

thical and financial concern as partially acquired subject data re- 

ains unused, and limits the application of post-processing meth- 

ds used to analyse the data. Thus, developing robust and generic 

echniques to compensate for incomplete cardiac coverage in CMRs 

an have a transformative impact on population imaging applica- 

ions by preventing incomplete data from being disregarded when 

nalysing any cohort. 

So far, most previous studies have focused solely on detecting 

ncomplete heart coverage in CMR cine images, without providing 

he means to mitigate this issue. One group of such methods aims 

o identify the absence of the basal and apical slices in the SAX im- 

ge stack using convolutional neural networks (CNN) or generative 

dversarial networks (GANs), to learn a feature representation that 

n turn can be used for accurate classification ( Zhang et al., 2017; 
2 
018b ). Another category of heart coverage estimation is based on 

he automated detection of specific cardiac landmarks (i.e. the apex 

nd the centre of the mitral valve) from the acquired images. For 

nstance, ( Tarroni et al., 2018 ) proposed a decision forest method 

o detect the landmarks on long-axis 2-chamber view images, and 

sed landmark positions to evaluate the space encompassed by the 

cquired SAX stack and to estimate the coverage. 

Although automated learning-based image quality control (QC) 

echniques have been studied, to our knowledge, no data com- 

letion methods have been proposed for incomplete coverage in 

MR images in the literature. Few studies for medical data im- 

utation exist but focus on interpolation only. One strategy is to 

ll in the missing slices by identifying redundant, relevant detail 

n a scan and re-synthesising high-frequency information ( Manjón 

t al., 2010; Plenge et al., 2013 ). However, medical images are 

ften sparsely acquired and hence it is hard to accurately esti- 

ate functional representations without prior knowledge. To ob- 

ain enough fine-scale information to recover the missing data, 

 Dalca et al., 2018 ) proposed a probabilistic generative model that 

aptures repetitive anatomical structure across subjects in clinical 

mage collections and derived an algorithm for filling in the middle 

lices in scans with large through-plane spacing. There also exist 

ethods that attempt to exploit the temporal aspect of dynamic 

MR data, to recover important image features and render a high- 

esolution sequence ( Basty and Grau, 2018; Guo et al., 2020 ). 

On the other hand, various medical image synthesis tasks have 

ignificantly improved using GANs ( Zhuang and Shen, 2016; Han 

t al., 2018; Yang et al., 2018; Sánchez and Vilaplana, 2018 ). GAN- 

ased image translation techniques are closely related to image im- 

utation since they can estimate the missing data by modelling the 

ntrinsic manifold of the image data. One successful application in- 

olves casting the image imputation problem as a cross-domain 

mages-to-image translation task so that a GAN network can es- 

imate the missing data using the other available datasets, for in- 

tance, generating MR images from the other contrast inputs ( Yurt 

t al., 2019; Lee et al., 2019; Dar et al., 2019 ). ( Xia et al., 2020 ) pro-

osed a conditional GAN to learn key features of SAX slices near 

he missing slice, and used them as conditioning variables to infer 

issing slices in the query volumes. However, the work only fo- 

used on interpolation to mitigate the issue of missing intermedi- 

te slices in SAX image stacks, without addressing the problem of 

issing apical and/or basal slices, which in turn requires extrapo- 

ation to ensure complete heart coverage. 

Our goal in this study is to detect and impute (or extrapolate) 

he missing apical and/or basal slices from single SAX stacks, such 

hat the accuracy of standard quantitative analyses conducted sub- 

equently, is retained. There are several challenging aspects to this 

ask: First, large inter-slice spacing (typically ranging from 8 to 

0 mm) and variations in anatomical structures across CMR slices, 

ose a significant challenge to any data imputation and comple- 

ion approaches. Second, there exist cases where multiple slices 

re missing in the cardiac apical and basal area of a single stack. 

ence, image synthesis errors tend to accumulate when imputing 

he outermost slice(s). Finally, cardiac images exhibit a large degree 

f variability due to cardiac and respiratory motion, compared with 

ther anatomical regions such as the brain. 

In this paper, we propose an automated, learning-based 

ipeline to resolve the problem of sub-optimal heart coverage, that 

s non-negligible in CMR population studies. To the best of our 

nowledge, this is the first study to tackle the problem of auto- 

atic coverage detection and data completion. The main contribu- 

ions of our approach are: 

(1) A cascaded conditional GAN architecture is proposed to ac- 

urately synthesise missing apical and basal slices for CMR images. 

articularly, we consider a challenging multi-slice scenario, where 

ore than one slice may be missing in the apical and basal re- 
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ions. Conditioned on features extracted image slices adjacent to 

he detected missing slice, the designed network is able to impute 

issing slices in an anatomically plausible manner, consistent with 

he acquired image slices. Additionally, we demonstrate that using 

ur approach, the accuracy of subsequent quantitative analyses can 

e improved (relative to using incomplete SAX image stacks). 

(2) As a practical consideration, we introduce an effective de- 

ection strategy for incomplete coverage identification for a given 

MR volume stack. The model employs several dense blocks com- 

rising convolutional long short-term memory (ConvLSTM) layers, 

o leverage the rich discriminative capacity of features learned by 

onsidering the sequential change in cardiac anatomy observed 

cross multiple adjacent slices, and achieve reliable classification 

utcomes. With this detection model, a two-stage data completion 

ipeline can be automatically deployed on large-scale population 

MR imaging studies, such as UKBB. 

(3) We comprehensively assess the proposed method across a 

arge cohort of subjects. We systemically compare the differences 

etween quantitative cardiac measurements calculated from the 

ative CMR images and the imputed ones, showing the accuracy 

nd robustness of the proposed approach in scenarios with multi- 

le missing slices. Following analysis of 37,0 0 0+ UKBB subjects, we 

emonstrate that the pipeline can be used to compensate for the 

ncomplete heart coverage in CMR population imaging. 

The paper is organised as follows. Section 2 introduces the pro- 

osed pipeline, key model components and the learning algorithm. 

ection 2 describes the experiments conducted to validate the pro- 

osed models, and Section 4 presents the results of qualitative and 

uantitative analyses conducted to evaluate model performance. 

he essential characteristics of our model and its relevance in real 

linical scenarios is then discussed in Section 5 , before providing 

oncluding remarks in Section 6 . 

. Method 

In this section, we present an image imputation network that 

eads to full cardiac coverage. The pipeline consists of two stages: 

ncomplete coverage detection and missing slice imputation. For 

he detection, we integrated the ConvLSTM module into a densely 

onnected convolutional network to encode both the global se- 

uential through-plane spatial information and local spatial infor- 

ation of the input image stacks. We present the ConvLSTM and 

he integrated detection model in Section 2.1 and 2.2, respectively. 

o synthesise visually appealing cardiac MR images and facilitate 

ccurate subsequent measurements, we present a GAN-based im- 

utation framework with a dedicated generator and discriminator 

n Section 2.3 -2.5. The generator contains residual blocks, where 

ll normalisation layers are conditioned and modulated with in- 

ut images to ensure that relevant texture details are effectively 

ropagated through the network. A multi-scale discriminator was 

mployed to ensure recovery of both global and local spatial fea- 

ures. We also propose a cascaded architecture stacking on multi- 

le networks to handle cumulative errors when imputing multiple 

lices in Section 2.6 and present the final combined objective in 

ection 2.7 . 

The overall workflow comprises the following steps: First, three 

onsecutive slices (cropped to a cardiac ROI) are extracted at both 

he apex and base and fed to the coverage detection model to 

dentify whether the apical slice and basal slice are present in the 

olume. If not, the generative model takes the full-sized 3-slice 

tack as conditioning input and recursively synthesises a realistic 

MR cine slice at the corresponding position until both the apex 

nd base are detected in the newly imputed volume. The major 

otations used in the paper are summerised in Table 1 . The overall 

orkflow is illustrated in Fig. 2 . 
3 
.1. Convolutional long short-term memory 

Although the success of recurrent Long Short-Term Memory 

LSTM) networks, applied to sequence modelling (such as natu- 

al language processing) and scene labelling ( Sundermeyer et al., 

012; Byeon et al., 2015 ) tasks has been demonstrated, the inputs 

o a standard LSTM network is vectorised and encoded through 

ully connected (FC) layers. This leads to the loss in spatial contex- 

ual information and equivariance to scaling and translation, which 

re essential when dealing with images in visual perception tasks. 

o address this problem, ConvLSTM ( Shi et al., 2015 ) was proposed 

o retain relevant spatial information by replacing the FC layers 

ith convolutional layers. The rationale for employing ConvLSTM 

n this work is to use the convolution and recurrence operations 

n the input-to-state and state-to-state transitions to leverage in- 

lane/through-plane spatial correlation information and sequential 

rdering of slices in SAX cine-MR data, for identification of apical 

nd basal slices. 

Following the work of ( Shi et al., 2015 ), the inputs x z , cell out-

uts c z , hidden states h z , input gate i z , forget gate f z , cell gate

 z , and output gate o z are 3D tensors whose first two dimensions 

re rows and columns. In our case, the third dimension of the in- 

ut tensors indicates the slices along the z-dimension (i.e. along 

he longitudinal axis of the ventricles), instead of temporal acqui- 

itions/data as in ( Shi et al., 2015 ). Let ∗ denote the convolution 

perator, and let ◦ denote the Hadamard product. Then, the key 

quations of the ConvLSTM cell can be formulated as: 

i z = σ ( W i ∗ x z + U i ∗ h z−1 + R i ◦ c z−1 + b i ) 

f z = σ
(
W f ∗ x z + U f ∗ h z−1 + R f ◦ c z−1 + b f 

)
g z = tanh ( W g ∗ x z + U g ∗ h z−1 + b g ) (1) 

 z = σ ( W o ∗ x z + U o ∗ h z−1 + R o ◦ c z−1 + b o ) 

c z = f z ◦ c z−1 + i z ◦ g z 

 z = o z ◦ tanh ( c z ) 

here σ denotes the sigmoid function, W , U and R denote the 

earnable 2D convolutional kernels, and b denotes the bias term. 

The hidden states h 0 , h 1 , · · · h z−1 and the cell states 

 0 , c 1 , · · · c z−1 are updated based on the input x z (a stack of

hree consecutive slices in our case) passing through i z , f z and 

 z gate activations during each step, as illustrated in Fig. 3 . Each 

onvLSTM cell encodes both the global sequential through-plane 

patial information and local spatial information of the input x z . 

ll convolutions have a kernel size 3 × 3 with stride 1 × 1. Zero- 

adding is used to ensure that the output feature maps in each 

ayer have the same spatial dimensions as its inputs. The next 

ubsection presents an effective detection network comprising 

ultiple dense ConvLSTM blocks. 

.2. Detection model with dense ConvLSTM block 

We propose a dense ConvLSTM network for incomplete cover- 

ge classification. We use two independent but identical models 

o tackle apical and basal slice detection separately. The model 

dopts densely connected convolutional networks (DenseNets) 

 Huang et al., 2017 ) and ConvLSTM cells to exploit the spatial con- 

extual information in volumetric data. The architecture is illus- 

rated in Fig. 4 . The input to this network is a stack of three con-

ecutive, cropped SAX slices (139 × 139 × 3) containing the region 

f interest (ROI) at either the apex or the base. The trunk archi- 

ecture consists of three dense blocks with each block containing 

wo ConvLSTM layers, where the original inputs from all preceding 

ayers are concatenated to the output in a feed-forward fashion to 

trengthen feature propagation and encourage feature reuse. Max- 

ooling layers are used between two adjacent blocks to change the 
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Table 1 

Major mathematical notations used in the paper. 

Notations Definition 

x z inputs to the detection model with a slice index z

c z cell outputs from a ConvLSTM cell 

h z hidden states of a ConvLSTM cell 

i z , f z , g z , o z input gate, forget gate, cell gate and and output gate of a ConvLSTM cell 

W , U , R learnable 2D convolutional kernels 

s i i- th scalar value in the detection model output 

t i i- th ground truth label 

n b,w,h,c input feature with indices of batch size b, width w , height h , and channel c

γ ( ·) , β( ·) spatial dimension-dependent scale and shift functions 

μc , σ 2 
c zero mean and unit standard deviation of a given feature batch c

v i i- th input three-slice stack 

w i i- th ground truth slice 

G i ( v i ) i- th generator with i- th input stack 

D j 
k 

k- th discriminator with j- th feature layer 

V j VGG net with j- th feature layer 

λ1 , λ2 weighting of the feature matching loss and perceptual loss 

Fig. 2. The flowchart of the proposed two-stage pipeline that can be automatically applied to large-scale CMR data. 

Fig. 3. The architecture of the ConvLSTM network. The hidden states h 0 , h 1 , · · · h z−1 

and the cell states c 0 , c 1 , · · · c z−1 are updated based on the input (a three-slice stack 

in our case) passing through i z , f z and o z gate activations during each step. The 

model utilises the ConvLSTM cells to exploit the spatial contextual information and 

sequential ordering of slices in SAX cine-MR data. 
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eature map sizes. We then configure one 3D convolutional layer 

ith (kernel size = 1 × 1 × 1 and stride = 1 × 1 × 1) and four

ully-connected layers to extract higher-level features from 2D fea- 

ure maps learned in a recurrent fashion by the ConvLSTM layers, 

nd learn to predict the final classification result. 
ig. 4. Structure of the proposed detection network for slice classification. The trunk cons

he original inputs from all preceding layers are concatenated to the output in a feed-forw

4 
As we formulate the apical and basal slice detection separately 

s two binary classification tasks, we use the binary cross-entropy 

oss for each detection model. Cross-entropy is the loss function 

nder the inference framework of maximum likelihood and calcu- 

ates a score that summarises the average difference between the 

ctual and predicted probability distributions for predicting class: 

CE = − 1 

N 

N ∑ 

i =1 

t i log ( s i ) − ( 1 − t i ) log ( 1 − s i ) , (2) 

here s i is the i- th scalar value in the model output, t i is the cor-

esponding ground truth label and N is the output size. 

.3. Image-Conditional GANs 

Our data completion model is based on an image-to-image 

ranslation architecture ( Isola et al., 2017 ) that learns a mapping 

rom statistically dependent source images y to target images x . 

uch methods, regarded as a type of image-conditional GAN, can 

e adapted to address image imputation problems since they can 

stimate the missing data by modelling the intrinsic manifold of 

he image data distribution. The generator G and the discrimina- 
ists of three dense blocks with each block containing two ConvLSTM layers, where 

ard fashion. 
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Fig. 5. Structure of the proposed 3D CBN module: the extracted features are first 
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or D are trained simultaneously and adversarially, where G aims 

o generate images that can fool the discriminator D , while D tries 

o classify counterfeit images optimally. To improve network sta- 

ility during training, following the work in Mao et al. (2017) we 

eplaced the negative log-likelihood in the native GAN with a least 

quared loss function. The optimisation of G and D can be formu- 

ated as: 

min 

G 
max 

D 
L cGAN 

= min 

G 
max 

D 

(
−E yx 

[
( D ( y, x ) − 1 ) 

2 
]

− E y 

[
D ( y, G ( y ) ) 

2 
])

. (3) 

It has been shown an effective strategy to integrate the tradi- 

ional pixel-wise loss (e.g., L1 or L2 loss measured between the 

round truth and generated images) into the GAN objective func- 

ion and encourage G to create plausible translations of the source 

mage while boosting image generation performance: 

 L 1 = E yx [ ‖ 

x − G ( y ) ‖ 1 ] . (4) 

However, although impressive results were obtained for synthe- 

ising natural images, the native image-to-image translation mod- 

ls may be unstable and prone to failure for synthesising images 

hat contain fine structural details and rich quantitative informa- 

ion, which is essential for medical images. 

.4. Encoder-Decoder generator and multi-scale discriminator 

Our approach is inspired by recent GAN architectures and re- 

nes several key techniques to output cardiac MR volumes that 

ield anatomically plausible images and accurate clinical parame- 

ers of cardiac function, despite the presence of significant propor- 

ions of missing data. 

The generator is an encoder-decoder model where the input is 

rst passed through a series of layers that down-sample until a 

ottleneck layer, followed by up-sampling and decoding the bot- 

leneck representation to the size of the output image. The en- 

oder aims to extract the underlying feature information of the 

nput images, while the decoder maps the underlying represen- 

ation into the target images with the same size as the input. 

he encoder comprises five 2D convolutional layers (kernel size 

 3 × 3, padding = 1 × 1 and stride = 2 × 2), batch nor- 

alisation and activation ReLu layers. The decoder follows a full 

re-activation residual network architecture (i.e. BatchNorm-ReLu- 

onvolution) ( He et al., 2016 ) that consists of a series of the resid-

al blocks, followed by nearest neighbour up-sampling layers. Each 

esidual block contains two convolutional layers (kernel size = 3 ×
, padding = 1 × 1), where a learned residue of input is added 

o the output to ensure the characteristics of original features are 

etained. 

For the discriminator, instead of using a deeper network that 

ould increase the network capacity and cause overfitting, a multi- 

cale discriminator ( Durugkar et al., 2017; Nguyen et al., 2017; 

ang et al., 2018 ) is adopted to operate on different receptive 

elds, which simultaneously encourages the generator to syn- 

hesise globally coherent images and capture fine structural de- 

ails. Each discriminator uses modules of the form convolution- 

atchNorm-LeakyReLu. 

.5. 3D Conditional batch normalisation 

To ensure visual properties and relevant texture details are ef- 

ectively propagated through the decoder, we employ conditional 

atch normalisation (CBN), which has been adopted in several pre- 

ious studies ( De Vries et al., 2017; Miyato and Koyama, 2018; 

hang et al., 2018a; Chen et al., 2019; Park et al., 2019; Xia et al.,

020 ). CBN employs a new conditioning strategy to incorporate ex- 

ernal conditioning information (such as labels, embedding, masks 
5 
r input noise vectors) into the image generation pathway through 

atch normalisation. It is implemented as a learning-based affine 

ransformation over modulated features with parameters inferred 

rom auxiliary data. In image synthesis, CBN enables an image to 

e translated from one domain into another while consistently 

especting the constraints specified by conditioning data. In this 

ork, we used three adjacent slices (i.e., the network’s own in- 

ut data) as inputs/conditioning information to the CBN module, 

o capture spatial features and fine structural details that are most 

elevant to the missing slices, which contributes significantly to 

ur missing slice imputation task (as demonstrated later on in an 

blation study in Section 4.5 ). Specifically, in each CBN layer, we 

rst normalise the extracted features to zero mean and unit stan- 

ard deviation. Then, the normalised features are modulated/de- 

ormalised using the affine transformation whose scale and shift 

arameters are learned from neighbouring slices using a CNN net- 

ork. Mathematically, in the batch normalisation setting, input 

eature batch n b,w,h,c ∈ R 

B ×W ×H×C ( b ∈ B, w ∈ W, h ∈ H, and c ∈ C

enote the batch size, width, height, and channel of the feature 

ap, respectively) is normalised in a channel-wise manner: 

 

′ 
b,w,h,c, = γw,h,c ( v ) ×

n b,w,h,c − μc 

σc + ε
+ βw,h,c ( v ) , (5) 

ith 

c = 

1 

N 

∑ 

b,w,h 

n b,w,h,c , σ 2 
c = 

1 

N 

∑ 

b,w,h 

(
n b,w,h,c − μc 

)2 
, (6) 

here N = B × W × H, ε is a small number to avoid division by 

ero, v denotes input 3-slice stack, γ ( ·) and β( ·) are spatial 

imension-dependent functions that can be formulated as CNN 

ayers. The modulation parameters of all CBN layers within the 

enerator were learned simultaneously through the GAN training. 

o leverage contextual information contained across slices, we pro- 

ose to use 3D convolutional kernels (kernel size = 3 × 3 × 3, 

adding = 1 × 1 × 1 and stride = 1 × 1 × 1) to learn γ and 

, and seek to the superior performance. The structure of the pro- 

osed CBN is illustrated in Fig. 5 . The input to the CBN is a three-

lice stack of dimensions 256 × 256 × 3, while the feature maps 

o be modulated have different dimensions resulting from the up- 

ampling layers of the decoder. Hence, we downsampled the input 

mage stack to different levels such that the feature-wise scale shift 

arameters can be directly applied to the latter. 

.6. Cascaded generative model for multi-slice imputation 

Rather than simultaneously synthesising two or more slices 

hat is unreliable and increases the estimation error, we address 

he multi-slice imputation problem using a cascaded architecture 

tacking on multiple networks, to generate each new slice in a 

ecursive fashion. As subsequent networks learn to tolerate and 

andle synthesised images as inputs, the network can compen- 

ate for the error accumulation in the generation of multiple miss- 

ng slices. Fig. 6 shows the structure of the proposed architec- 
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Fig. 6. Schematic view of the proposed cascaded architecture. The first network takes a 3-slice stack [ x z , x z+1 , x z+2 ] as conditioning input to synthesise a CMR slice 

G ( x z , x z+1 , x z+2 ) at the adjacent position z + 3 . Then, the initial input is re-stacked by progressively discarding the innermost slice x z−1+ i and appending the newly syn- 

thesised slice ˆ x z+2+ i and construct the new input v i to the subsequent networks. The model aims to generate the i th extended slice using the i th network in the stacked 

architecture, i.e., ˆ x z+2+ i = G i ( v i ) , until both the apex and base are detected by the classification network. 
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1 Quality assessment can be accessed from the UK Biobank Resource under the 

returned data #2541 by application. http://www.ukbiobank.ac.uk/registerapply/ 
ure. Each network in the cascaded model consists of a generator 

nd a multi-scale discriminator (operates at two scale levels). The 

odel aims to generate the i th extended slice using the i th net- 

ork G i in the stacked architecture, i.e., ˆ x z+2+ i = G i ( v i ) , until both 

he apex and base are detected in the imputed volume by the clas- 

ification network. The first generator takes three outermost slices 

 1 = [ x z , x z+1 , x z+2 ] in the original incomplete volumes as input and 

ynthesises a missing slice ˆ x z+3 = G 1 ( v 1 ) at the position z + 3 . The

econd and third generators are trained on the updated three-slice 

tacks with newly synthesised slices inserted. As the cascaded net- 

ork is much bigger than a single network, the training of such a 

etwork is unstable and can encounter over-fitting. To counteract 

his issue, our strategies in practice are: 1) the stacked networks 

re trained one after the other in a sequential manner; 2) the sub- 

equent network is initialised with the weights of the previously 

rained network in the series and then fine-tuned with the new 

ugmented three-slice stacks. By doing so, the training can avoid 

verfitting while retaining the benefit of slice imputation refine- 

ent. 

.7. Optimisation 

We adapt the image-to-image translation framework described 

n Eq. (3) and remove the pixel-wise L1 loss that struggles 

ith capturing high-frequency details. Instead, we employ a fea- 

ure matching loss ( Salimans et al., 2016 ) and a perceptual loss 

 Johnson et al., 2016 ) to optimise the proposed GAN. While the fea-

ure matching loss is based on the discriminator D and matches 

he statistics of feature representations in multiple intermediate 

ayers of D , the perceptual loss measures perceptual differences in 

ontent and style between real and generated images on high-level 

eatures extracted from a pre-trained VGG-16 network V . Thus, 

ur final joint objective for each GAN network (a generator and 

 multi-scale discriminator) in the cascaded model combines the 

dversarial loss, the feature matching loss, and the perceptual loss 

s: 

 F inal = min 

G 

( ( 

max 
D 1 ,D 2 

∑ 

k =1 , 2 

−
(
E v w 

[
( D k ( v i , w i ) − 1 ) 

2 
]

+ E v 
[
D k ( v i , G ( v i ) ) 

2 
])) 

+ λ1 

∑ 

k =1 , 2 

E v w 

F ∑ 

j=1 

1 

N j 

[∥∥D 

j 

k 
( v i , w i ) − D 

j 

k 
( v i , G ( v i ) ) 

∥∥
1 

]

6 
+ λ2 E v w 

P ∑ 

j=1 

1 

M j 

[∥∥V 

j ( w i ) − V 

j ( G ( v i ) ) 
∥∥

1 

]) 

(7) 

here i indicates the i th network, j indicates the j th layer fea- 

ures, N j and F are the number of features in each layer and the 

otal number of layers in D , respectively. M j and P represent the 

umber of features in the layer j and the total number of layers 

n V , respectively. k denotes the index of the discriminator operat- 

ng at two different scales. λ1 and λ2 are used to control the rel- 

tive weighting of the feature matching loss and perceptual loss, 

o the adversarial loss. The conditioned G and D networks can 

e optimised by L F inal to infer the missing slices w 1 = x z+3 , w 2 =
 z+4 and w 3 = x z+5 from the augmented input 3-slice stacks v 1 = 

 

x z , x z+1 , x z+2 ] , v 2 = 

[
x z+1 , x z+2 , ̂  x z+3 

]
and v 3 = 

[
x z+2 , ̂  x z+3 , ̂  x z+4 

]
, re- 

pectively. 

. Experimental setup 

.1. Datasets 

Cardiac MR images from the UKBB were used to train and val- 

date the proposed method. Images were acquired using a clini- 

al wide bore 1.5T MR system (MAGNETOM Aera, Syngo Platform 

D13A, Siemens Healthcare, Erlangen, Germany) equipped with an 

8-channel anterior body surface coil (45 mT/m and 200 T/m/s 

radient system). 2D cine b-SSFP SAX image stacks were acquired 

ith the following acquisition protocol: in-plane spatial resolution 

 . 8 × 1 . 8 mm, slice thickness 8 mm, slice gap 2 mm, image size

98 × 208 . The number of slices in the SAX stack typically ranges 

etween 10 and 12. Each slice was acquired at 50 cardiac phases. 

urther acquisition details can be found in ( Petersen et al., 2015 ). 

For training and testing the proposed coverage detection and 

lice imputation networks, we used visually quality-controlled 

KBB CMR data from a previous study ( Carapella et al., 2016; Pe- 

ersen et al., 2017 ). Quality assessment was carried out by cardiol- 

gists through visual inspection using a three-grade quality score 

ystem (1 = optimal, 2 = sub-optimal, 3 = unreliable) for each as- 

ect of image quality such as image plane orientation, coverage, 

ata consistency and artefacts 1 . We constructed the ground-truth 

ata using 4102 SAX image sequences with complete heart cover- 

ge labelled from a spreadsheet by experienced cardiologists, i.e., 

oth apex and base slices are present. 

http://www.ukbiobank.ac.uk/registerapply/
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Also, we evaluate the generalisation of the proposed method on 

he publicly accessible, Kaggle Second Annual Data Science Bowl 

ADSB) dataset 2 . The ADSB testing dataset contains 200 subjects 

nd was compiled by the National Institutes of Health and Chil- 

ren’s National Medical Center. The slice thickness ranges from 

 mm to 8 mm, and the in-plane spatial resolution varies from 

.61 to 1.75 mm. Each subject contains 30 cardiac phases over the 

eart cycle (scanned from the end-diastolic (ED) phase) and the 

umber of slices in the SAX stack typically ranges between 6 and 

4. 

.2. Network training 

We addressed the detection of the apical and basal slices sep- 

rately. To create a training dataset for the detection models, we 

xtracted the three outermost slices as positive samples for basal 

r apical slice detection. For negative samples, i.e. not containing 

he base/apex, we selected four adjacent three-slice stacks near the 

ositive samples. We constructed the training set from images at 

wo cardiac phases, i.e. ED and end-systolic (ES), with optimal im- 

ge quality. With masks obtained from a 2D CNN-based segmen- 

ation method ( Bai et al., 2018 ), we cropped all the input image

tacks to triplets with the size of 139 × 139 × 3 to extract the 

OI. In total, we have 12,301 slice triplets for the apical slice de- 

ection (5,401 positive samples and 6900 negative samples) and 

3,446 triplets for basal slice detection (6,379 positive samples and 

067 negative samples). All samples were split into three subsets 

ith a ratio of 6:2:2 for the training set, the validation set, and the 

est set, respectively. 

The training of the detection networks was optimised using the 

dam optimiser with the following hyperparameters: a learning 

ate of 1 × 10 −4 , the first and the second momentum of the gradi-

nt estimate 0.9 and 0.999, dropout rate 0.5 after FC layers. Train- 

ble weights were randomly initialised from a truncated normal 

istribution centred on 0. The models converged after 48 epochs 

nd 35 epochs for the apex detection and base detection, respec- 

ively. 

Similarly, we also treated the apical and basal slice imputation 

s two independent problems. We randomly chose 3602 subjects 

or training and validation, and then tested our models on the 

00 subjects. For each of training subjects, three sets of 4 adja- 

ent slices (with one slice shift for each set) from the top and bot- 

om of the ED and ES volumes were extracted to form pairs of in-

ut slice stacks and ground-truth images, resulting in 43,224 slice 

uadruplets (21,612 for each of the apex and base regions). Also 

onsidering there exist natural variations in heart size over differ- 

nt patients, each of the three cascaded generators is not bound 

o a specific spatial location, as we trained each generator with “a 

ide range” of input samples extracted from different spatial posi- 

ions from the same subject. 

The input image stacks were constructed in the direction from 

he middle slice towards the base for the basal slice imputation 

etwork, and from the middle slice towards the apex for the api- 

al slice imputation network. In the training of the second and 

hird generators, we re-stacked the input slices by appending the 

nferred slice from the previous generator and dropping the inner- 

ost slice. 

The cascaded networks were trained one after the other in a 

equential manner. We trained the first network for 50 epochs. 

he subsequent networks were initialised with the weights of the 

reviously trained network and fine-tuned for another 20 epochs. 

ll stacked networks have a common architecture and were op- 

imised using the same objective function shown in Eq. (7) . The 
2 https://www.kaggle.com/c/second- annual- data- science- bowl/ 

p

(

w

7 
raining adopts the Adam optimiser with an initial learning rate of 

 × 10 −4 , for both the generator and discriminator. The decay rates 

f the first and the second momentum of the gradient estimate 

ere set to 0.5 and 0.999, respectively. All the stacks were resized 

o 256 × 256. The relative weighting factors of the feature match- 

ng loss and the perceptual loss to the GAN loss were empirically 

et as λ1 = 10 and λ2 = 10 . 

.3. Evaluation design 

We conducted several experiments to assess the accuracy and 

obustness of the proposed methods. The first experiment was per- 

ormed by evaluating the accuracy of the coverage detection mod- 

ls. To demonstrate the advantages of the proposed method, we 

ompared it to 2D and 3D CNN-based classification models. The 2D 

odel is a state-of-the-art Inception-v3 network ( Szegedy et al., 

016 ) that uses label smoothing and factorising convolutions to 

mprove network efficiency. The 2D model takes a single slice as 

nput and predicts a probability that the slice corresponds to neg- 

tive or positive apical/basal slice. The 3D CNN used employed a 

runk structure similar to the proposed detection network but with 

ll ConvLSTM layers replaced by 3D convolutional layers (kernel 

ize = 3 × 3 × 3, padding = 1 × 1 × 1 and stride = 1 × 1 × 1). We

lso compared a state-of-the-art missing slice detection method 

roposed in Zhang et al. (2018b) . Following the network design in 

hang et al. (2018b) , we incorporated a fisher-discriminative (FD) 

ully connected layer in the competing 3D CNN network, resulting 

n a refined 3D CNN+FD network. We used the same training and 

esting approaches for these models. To quantitatively assess clas- 

ification performance, we used the established metrics, i.e. speci- 

city, sensitivity, accuracy and the area under the curve (AUC) for 

he receiver operating characteristic (ROC). 

In the second experiment group, we validated the proposed im- 

ge imputation networks on 500 subjects from quality-controlled 

KBB CMR data. Three truncation levels were considered by sys- 

ematically removing the 1–3 topmost/bottommost slice(s) from 

ach complete image stack (i.e. with full coverage). The corre- 

ation coefficient (CC) and the peak signal-to-noise ratio (PSNR) 

ere used to measure the image quality of the synthesised CMR 

lices, relative to the original slices. Furthermore, we also quanti- 

ed the statistical differences of standard clinical cardiac measure- 

ents, e.g. the LV end-diastolic volume (LVEDV), LV stroke volume 

LVSV) and LV ejection fraction (LVEF) etc., between the full and 

mputed cardiac image volumes. Measurements of these cardiac in- 

ices were derived from segmentation results using a state-of-the 

rt CNN method ( Bai et al., 2018 ). 

To demonstrate the feasibility and impact of the proposed 

ipeline on analysing large-scale datasets, we retrospectively ap- 

lied the proposed pipeline to 37,396 UKBB subjects. We assessed 

ifferences between cardiac volume and functional indices ex- 

racted from actually acquired and imputed CMR volumes. Bland- 

ltman analyses were used to evaluate the correlation and agree- 

ent between these cardiac clinical measurements. 

. Results 

.1. Detection model evaluation 

To assess the performance of the classification models, we per- 

ormed ROC analysis on the 2460 testing apical images and 2689 

asal images. The results are shown in Fig. 7 . The proposed detec- 

ion network yields better area under the ROC curve (AUC) for both 

he apical and the basal slice detection (94.84% and 95.88%), com- 

ared to the 2D CNN model (92.66% and 92.96%), 3D CNN model 

93.44% and 95.13%) and 3D CNN+FD model (93.59% and 95.75%), 

hich means it has a better measure of separability. 

https://www.kaggle.com/c/second-annual-data-science-bowl/
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Fig. 7. ROC curves between different learning models for apical and basal slice detection. 

Table 2 

Comparison of classification results between the proposed detection model (convLSTM), the 2D CNN model, 3D CNN and 3D CNN+FD 

model. The bold-face font highlights the largest/best value in each measure. 

Method 

Sensitivity (%) Specificity (%) Accuracy (%) AUC (%) 

Apical Basal Apical Basal Apical Basal Apical Basal 

2D CNN 83.34 87.89 86.68 83.53 85.28 85.60 92.66 92.96 

3D CNN 90.11 82.85 87.17 92.09 88.45 87.76 93.44 95.13 

3D CNN + FD 93.65 91.90 83.57 88.38 88.66 90.03 93.59 95.75 

convLSTM 91.32 92.77 88.47 88.66 89.71 90.59 94.84 95.88 

Table 3 

Summary of the statistical significance using the McNemar’ s test computed be- 

tween the proposed detection model and the competing methods. 

p-value Apex Base 

2D CNN 3D CNN 3D CNN + FD 2D CNN 3D CNN 3D CNN + FD 

conLSTM 0.001 0.002 0.038 0.001 0.001 0.112 
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The results of the binary classification test with the opti- 

al thresholds returned by the G-mean analysis are reported in 

able 2 . For each threshold we calculate the corresponding G-mean 

rom the sensitivity and the specificity. Once computed, we locate 

he index for the largest G-mean score and use this index to deter- 

ine the optimal threshold. For the 2D CNN model (Inception-v3 

 Szegedy et al., 2016 )), the accuracy rates for the apical and basal

etection are 85.28% and 85.60%, respectively. The detection per- 

ormance improves to an accuracy of 88.45% and 87.76% with 3D 

onvolutional kernels, by incorporating inter-slice contextual infor- 

ation into the model. The best accuracy rates are yielded by the 

roposed ConvLSTM model, with 89.71% and 90.59% for the api- 

al slice/basal slice detection. We found that with a Fisher dis- 

riminant regulariser on the CNN features, the 3D CNN+FD model 

howed superior results over the baseline 3D CNN model by im- 

roving the discriminative power of learned features, reflected by 

he better area under the ROC curve (AUC) i.e., 93.59% vs. 93.44% 

nd 95.75% vs. 95.13% for both the apical and the basal slice de- 

ection. The 3D CNN+FD model yields the best sensitivity (93.65%) 

mongst all investigated detection models. However, its AUC values 

re worse than the proposed convLSTM model. This demonstrates 

he effectiveness of using the convolution and recurrence opera- 

ions to leverage in-plane and through-plane spatial correlation in- 

ormation by considering the sequential ordering of slices as a rich 

escriptor of cardiac anatomy. While the ConvLSTM model reaches 

he best specificity rate of 88.47% for apical slice detection, its rate 

or base classification is 88.66%, worse than that of 92.09% from 

he 3D CNN model. Statistical significance is presented in Table 3 

y performing the McNemar’ s test computed between the de- 

ection model and the competing methods. We can see that the 

roposed approach achieves statistically significant improvements 

ver the 2D CNN and 3D CNN models, considering a significance 
8 
evel of p< 0.05. Although the proposed approach also yields statis- 

ically significant over 3D CNN+FD model for apex detection ( p = 

.038), the p-value is larger than the chosen significance level for 

asal slice detection. 

.2. Imputation model evaluation 

A visual comparison of the synthesised slices by the proposed 

mputation network and the ground-truth images for 7 represen- 

ative subjects of the UKBB dataset at the ED phase is depicted in 

ig. 8 (similar results obtained from the ES phase are shown in 

he appendix). From top to bottom, results of three degrees of in- 

omplete coverage were shown. The qualitative examples are ran- 

omly selected on a pool of samples with performances around the 

ean CC generated. Subjects 1–4 represent the cases where one 

lice from either the cardiac apex or base was removed to gen- 

rate sub-optimal coverage volumes, before using our method to 

mpute the missing slice. The proposed method generates anatom- 

cally plausible results in terms of preserving fine structural details 

nd realistic textures by learning about these structures from the 

eighbouring slice features. The inferred slices are visually com- 

arable to the reference CMR ones; see LV blood pool, RV, right 

trium (RA), and aorta in the synthesised slices. Additionally, the 

ethod can maintain high image quality when inferring two con- 

ecutive missing slices, as shown in Subjects 5 and 6 in Fig. 8 .

e observed some differences in the background tissues between 

he second imputed slice (denoted as Ex2) and the corresponding 

round-truth image. This is expected as the second imputed slices 

re further away (20 mm spatial distance) from the seen slices due 

o relatively large through-plane spacing in CMR data. Synthesising 

hree topmost or bottommost slices in the image volumes is more 

hallenging and results in fewer similarities in the background, for 

he third imputed slice (denoted as Ex3) compared with the ref- 

rence. The visual inspection of detailed structures also revealed 

inor degradation in image quality and the presence of texture 

rtefacts. 

We also visually assess the quality of the imputed slices in the 

hrough-plane direction, i.e. the long-axis (LAX) view for 6 subjects 

n Fig. 9 . Each SAX stack is overlaid on top of the LAX 2-chamber

iew images (LAX 2CH) provided. As shown in Fig. 9 , SAX stacks 

issing 1–3 slice(s) (in either the basal or apical direction) result 
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Fig. 8. Qualitative comparison of the ground truth and the synthesised slices for 7 subjects of the UKBB dataset at the ED phase (similar results obtained at the ES phase 

are shown in the appendix). From top to bottom, results of three degrees of incomplete coverage are shown. Ex1, Ex2 and Ex3 represent the first, the second and the third 

extended slice, respectively. The CMR images were reproduced with the permission of UK Biobank. 

Fig. 9. Visual comparison of incomplete coverage stacks and imputed stacks on the LAX view for 6 representative subjects. Each SAX stack is superimposed on top of the 

LAX 2CH view for better visualisation. From left to right, results of three degrees of incomplete coverage are shown. The CMR images were reproduced with the permission 

of UK Biobank. 

9 
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Table 4 

Summary of the CC and PSNR measurements between the ground truth and synthesised images from the proposed imputation approach on 500 subjects at both the ED 

and ES phase. Ex1, Ex2 and Ex3 represent the first, the second and the third extended slice, respectively. 

CC 

One Slice Missing Two Slices Missing Three Slices Missing 

Ex1 Ex1 Ex2 Ex1 Ex2 Ex3 

Apex ED 0.893 ± 0.031 0.894 ± 0.028 0.805 ± 0.052 0.895 ± 0.031 0.809 ± 0.045 0.740 ± 0.063 

ES 0.890 ± 0.032 0.891 ± 0.028 0.803 ± 0.051 0.892 ± 0.032 0.806 ± 0.043 0.737 ± 0.059 

Base ED 0.895 ± 0.035 0.896 ± 0.045 0.819 ± 0.058 0.906 ± 0.032 0.821 ± 0.061 0.761 ± 0.073 

ES 0.901 ± 0.033 0.895 ± 0.041 0.827 ± 0.057 0.897 ± 0.034 0.821 ± 0.058 0.771 ± 0.071 

PSNR 

One Slice Missing Two Slices Missing Three Slices Missing 

Ex1 Ex1 Ex2 Ex1 Ex2 Ex3 

Apex ED 23.83 ± 1.74 23.86 ± 1.76 21.37 ± 1.83 23.99 ± 1.84 21.36 ± 1.63 20.15 ± 1.83 

ES 23.81 ± 1.88 23.79 ± 1.91 21.38 ± 1.95 23.87 ± 1.85 21.34 ± 1.71 20.17 ± 1.97 

Base ED 25.32 ± 1.63 25.09 ± 1.50 22.99 ± 1.52 25.15 ± 1.22 22.75 ± 1.41 21.79 ± 1.57 

ES 25.41 ± 1.59 25.04 ± 1.52 23.02 ± 1.44 24.97 ± 1.31 22.74 ± 1.43 21.81 ± 1.50 

Table 5 

Quantitative assessment of the segmentation accuracy by comparing the automated segmentation results between the reference slices and synthe- 

sised slices on 500 test sets. Ex1, Ex2 and Ex3 represent the first, the second and the third extended slice, respectively. 

Dice Score Hausdorff Dist. [mm] 

Ex1 Ex2 Ex3 Ex1 Ex2 Ex3 

Apex 
ED 0.904 ± 0.071 0.823 ± 0.096 0.697 ± 0.111 4.248 ± 2.329 5.365 ± 2.191 5.787 ± 2.529 

ES 0.847 ± 0.089 0.741 ± 0.105 0.668 ± 0.103 4.435 ± 2.059 5.655 ± 2.296 6.818 ± 2.557 

Base 
ED 0.923 ± 0.050 0.895 ± 0.062 0.838 ± 0.092 4.708 ± 1.268 6.428 ±2.725 9.036 ± 4.767 

ES 0.862 ± 0.073 0.816 ± 0.071 0.801 ± 0.077 5.807 ± 2.551 7.818 ± 2.895 8.391 ± 3.248 
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n incomplete LV coverage, whereas the proposed method compen- 

ates for this by accurately synthesising the missing apical or basal 

lices, in a manner consistent with the original data acquired. 

Mean and standard deviation of image quality measurements 

n 500 subjects at both the ED and ES phase are presented in 

able 4 . Focusing on results of the ED phase first, the slice im- 

utation method yields the best results when one slice is missing 

rom the stack, which is reflected by the computed CC of 0.893 

0.031 and 0.895 ± 0.035 for the apex and base region, respec- 

ively. These metrics values decrease to 0.740 ± 0.063 and 0.761 ±
.073 when generating the third missing slices. While we observed 

hat high image quality is retained, the lower CC and PSNR values 

re mainly caused by the dissimilarity in the background between 

he imputed and acquired images. Consistent with the visual in- 

pection, we found that the model can synthesise better images in 

he basal direction than those in the apical direction, due to large 

ariation in the appearance of the apex slices. This is convenient 

or cardiac quantification as the absence of the basal slices has a 

arger impact on volume calculation. Overall, there are no signif- 

cant differences in the quality of synthesised slices between the 

D and ES phase. 

To assess the anatomical plausibility of synthesised images, we 

lso computed the segmentation results based on the synthesised 

mages and compared them with those derived from the ground 

ruth images. Fig. 10 shows the automated segmentation of the 

V on the synthesised slices, illustrating retained accuracy of seg- 

entation results for those synthesised slices with the proposed 

ethod. Note that, the automatic segmentation model was trained 

n the real cardiac cine MR images but still can yield good seg- 

entation results from the synthesised slices, demonstrating the 

ynthesised slices are anatomically plausible and realistic. Table 5 

ummarises the quantitative assessment of the LV segmentation 

ccuracy by comparing the automated segmented results between 

he reference and synthesised slices on 500 test sets. The Dice 

core and Hausdorff distance were used as the metrics. All val- 

es are shown as mean ± standard deviation. It is observed that 

n general the Dice scores of the segmentation results for the apex 
10 
re inferior to those of the base. This is because considerable vari- 

bility in the shape of the LV near the apex in anisotropic 2D 

ine images, which leads to the difficulty in ensuring highly ac- 

urate and precise automatic segmentation of the LV in this re- 

ion. We also found the degradation in segmentation accuracy 

hen synthesising more slices, as expected. Next, we computed 

he clinical indices to evaluate the impact of these segmentation 

rrors. 

To assess the impact of the proposed imputation model, we 

ompared the clinical cardiac volumetric and functional parame- 

ers derived from full, incomplete, and imputed image stacks. In to- 

al, there were 9 cardiac indices investigated, including the LV end- 

iastolic volume (LVEDV), end-systolic volume (LVESV), LV stroke 

olume (LVSV), LV ejection fraction (LVEF), LV myocardial mass 

LVM), RV end-diastolic volume (RVEDV) and end-systolic volume 

RVESV), RV stroke volume (RVSV) and RV ejection fraction (RVEF) 

omputed from 500 subjects. 

The mean and standard deviation of those measurements, cate- 

orised by the three sub-optimal coverage levels, are presented in 

able 6 , 7 and 8 , along with an analysis of the mean absolute dif-

erences between the incomplete, imputed CMR images, and ref- 

rence, as shown in Fig. 11 . As expected, the largest impact on 

eart coverage is caused by the absence of basal slices. For in- 

tance, missing one slice, two slices and three slices reduces the 

VEDV by an average of 11.8 mL, 32.7 mL and 54.7 mL, respec- 

ively, indicating the progressive under-estimation of the clinical 

arameter. As a result, these differences cause a dramatic decrease 

n the computed functional parameters such as LVSV and LVEV, ac- 

ordingly. The proposed method can compensate for the insuffi- 

ient coverage and yields a good agreement on all clinical indices 

ith the reference, e.g. with the mean differences of only -0.7 mL, 

.1 mL and 2.6 mL in LVEDV for one to three missing slice scenar- 

os, respectively. Statistical significance of the results was verified 

y performing the Student’s t -test between the derived cardiac in- 

ices from different methods. In Table 8 , the p-values for the RVEF 

nd RVSV for the base are lower than 0.05, when comparing the 

roposed method to the reference value, as missing three basal 
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Fig. 10. Examples of the segmentation results of the LV to illustrate the accuracy of the automated segmentation on the synthesised slices with the proposed method. The 

CMR images were reproduced with the permission of UK Biobank. 

Table 6 

Mean and standard deviation of the clinical cardiac indices computed from 500 UKBB subjects, between the complete, incomplete, and compensated 

images. Here, one slice in either the apical or basal region is missing. 

Complete 

Apex Base 

Incomplete Compensated Incomplete Compensated 

Parameters Mean ± Std. Mean ± Std. p-value Mean ± Std. p-value Mean ± Std. p-value Mean ± Std. p-value 

LVEDV (mL) 143.6 ± 34.5 140.4 ± 34.2 0.29 143.6 ± 34.6 0.99 131.8 ± 34.6 < 0.001 144.3 ± 35.0 0.72 

LVESV (mL) 59.9 ± 21.2 59.1 ± 20.8 0.66 59.9 ± 21.3 0.97 59.2 ± 21.5 0.51 60.2 ± 21.3 0.87 

LVSV (mL) 83.6 ± 18.9 81.2 ± 18.8 0.14 83.5 ± 18.9 0.96 72.7 ± 17.8 < 0.001 84.1 ± 19.2 0.61 

LVEF (%) 58.8 ± 6.69 58.4 ± 6.71 0.47 58.7 ± 6.71 0.95 55.6 ± 7.09 < 0.001 58.9 ± 6.79 0.80 

LVM (g) 83.6 ± 20.8 80.6 ± 20.3 0.11 83.6 ± 20.8 0.96 78.0 ± 20.3 0.002 84.0 ± 20.9 0.77 

RVEDV (mL) 152.4 ± 36.8 149.6 ± 36.1 0.39 152.2 ± 36.8 0.95 144.3 ± 37.5 0.01 153.4 ± 36.9 0.76 

RVESV (mL) 66.7 ± 22.3 66.1 ± 21.9 0.73 66.7 ± 22.4 0.99 66.3 ± 22.4 0.85 66.8 ± 22.3 0.98 

RVSV (mL) 85.7 ± 19.2 83.5 ± 18.9 0.21 85.5 ± 19.2 0.93 78.1 ± 20.2 < 0.001 86.6 ± 19.6 0.58 

RVEF (%) 56.8 ± 6.53 56.4 ± 6.61 0.50 56.7 ± 6.58 0.95 54.4 ± 7.07 < 0.001 56.9 ± 6.67 0.73 
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lices is a challenging case. Also, the third imputed slices are fur- 

her away (30 mm spatial distance) from the seen slices due to the 

elatively large through-plane spacing in CMR data, but still have 

 significant impact on volume calculation (occupying a relatively 

arge area). Although the p-values for the RVEF and RVSV indices 

re lower than 0.05, the proposed method still effectively reduces 

he relative error from 58.5% to 5.6% for RVEF and 30.2% to % 2.99%

or RVSV. The analysis of the mean absolute differences between 

ifferent measurements (cf. Fig. 11 ) also highlights the robustness 

f the cascaded model and demonstrates the reliability and accu- 

acy of imputed images even in the presence of multiple missing 

lices. 
11 
We also evaluated the regional myocardial wall thickness, 

hich is often used as a biomarker for quantifying regional dys- 

unction. We analysed the mean differences of myocardial wall 

hickness between the imputed and complete image stacks at both 

he cardiac ED and ES phase. Fig. 12 shows the analysis results 

n the bulls-eye plot based on the AHA 17-segment model. It can 

e seen that the imputation method yields relatively small differ- 

nces, with respect to the wall thickness derived from the com- 

lete data, for both the apical (segments 13–17) and basal region 

segments 1–6). The biggest difference is observed for the api- 

al slices at the ES phase when three slices are missing. This is 

ecause, due to considerable variability in the shape of the my- 
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Fig. 11. Box plots of the absolute differences between the incomplete images (denoted as TR), compensated images (denoted as EX) and the complete images, across different 

incomplete coverage levels. 

Fig. 12. Bulls-eye plots of the differences in regional wall thickness analysis (AHA 17-segment model) between the synthesised images and the reference. Results are shown 

at both the ED and ES phase across different incomplete coverage levels. 

12 
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Table 7 

Mean and standard deviation of the clinical cardiac indices computed from 500 UKBB subjects, between the complete, incomplete, and compensated 

images. Here, two consecutive slices in either the apical or basal region are missing. 

Complete 

Apex Base 

Incomplete Compensated Incomplete Compensated 

Parameters Mean ± Std. Mean ± Std. p-value Mean ± Std. p-value Mean ± Std. p-value Mean ± Std. p-value 

LVEDV (mL) 143.6 ± 34.5 132.1 ± 33.5 0.001 143.1 ± 34.7 0.87 110.9 ± 34.4 < 0.001 143.5 ± 34.2 0.99 

LVESV (mL) 59.9 ± 21.2 55.9 ± 19.8 0.03 59.5 ± 21.0 0.81 54.1 ± 21.2 0.002 61.2 ± 21.2 0.48 

LVSV (mL) 83.6 ± 18.9 76.2 ± 18.7 < 0.001 83.6 ± 19.3 0.98 56.8 ± 14.3 < 0.001 82.3 ± 19.2 0.45 

LVEF (%) 58.8 ± 6.69 58.1 ± 6.80 0.28 58.9 ± 6.63 0.83 52.1 ± 6.88 < 0.001 57.8 ± 6.85 0.10 

LVM (g) 83.6 ± 20.8 74.7 ± 19.6 < 0.001 83.4 ± 20.8 0.95 66.4 ± 19.1 < 0.001 83.4 ± 20.9 0.94 

RVEDV (mL) 152.4 ± 36.8 142.6 ± 34.8 0.002 151.5 ± 36.9 0.78 121.1 ± 37.7 < 0.001 152.3 ± 37.1 0.98 

RVESV (mL) 66.7 ± 22.3 62.9 ± 21.0 0.05 66.5 ± 22.4 0.90 63.7 ± 22.6 0.13 67.2 ± 22.3 0.80 

RVSV (mL) 85.7 ± 19.2 79.6 ± 18.4 < 0.001 85.0 ± 19.5 0.70 57.4 ± 20.8 < 0.001 85.1 ± 21.0 0.75 

RVEF (%) 56.8 ± 6.53 56.3 ± 6.67 0.45 56.7 ± 6.71 0.84 47.2 ± 9.18 < 0.001 56.2 ± 7.45 0.38 

Table 8 

Mean and standard deviation of the clinical cardiac indices computed from 500 UKBB subjects, between the complete, incomplete, and compensated 

images. Here, three consecutive slices in either the apical or basal region are missing. 

Complete 

Apex Base 

Incomplete Compensated Incomplete Compensated 

Parameters Mean ± Std. Mean ± Std. p-value Mean ± Std. p-value Mean ± Std. p-value Mean ± Std. p-value 

LVEDV (mL) 143.6 ± 34.5 118.9 ± 32.3 < 0.001 141.7 ± 34.9 0.54 88.9 ± 28.6 < 0.001 141.0 ± 34.4 0.41 

LVESV (mL) 59.9 ± 21.2 49.6 ± 18.5 < 0.001 58.3 ± 20.6 0.37 43.5 ± 18.8 < 0.001 59.6 ± 21.8 0.88 

LVSV (mL) 83.6 ± 18.9 69.2 ± 18.3 < 0.001 83.4 ± 19.8 0.90 45.4 ± 12.7 < 0.001 81.4 ± 18.6 0.17 

LVEF (%) 58.8 ± 6.69 58.2 ± 7.32 0.32 59.3 ± 6.68 0.37 52.2 ± 7.20 < 0.001 58.3 ± 7.21 0.45 

LVM (g) 83.6 ± 20.8 66.7 ± 18.6 < 0.001 82.5 ± 20.4 0.57 53.1 ± 16.9 < 0.001 81.3 ± 20.2 0.16 

RVEDV (mL) 152.4 ± 36.8 131.6 ± 33.5 < 0.001 149.8 ± 36.3 0.42 90.2 ± 33.7 < 0.001 147.5 ± 36.7 0.14 

RVESV (mL) 66.7 ± 22.3 56.8 ± 19.9 < 0.001 66.4 ± 22.1 0.89 54.8 ± 22.8 < 0.001 66.5 ± 22.7 0.93 

RVSV (mL) 85.7 ± 19.2 74.7 ± 17.9 < 0.001 83.4 ± 19.2 0.17 35.5 ± 15.4 < 0.001 80.9 ± 22.3 0.01 

RVEF (%) 56.8 ± 6.53 57.4 ± 7.02 0.02 56.1 ± 6.82 0.27 39.6 ± 9.78 < 0.001 55.1 ± 8.91 0.02 

Fig. 13. Results obtained by analysing 37,396 UKBB datasets with the proposed automatic pipeline. There were 2236 subjects classified as a sub-optimal coverage in terms 

of missing at least one slice in either the basal or apical direction. 

o

t

i

i

4

U

c

o

c

a  

c

f

a

s

e

s

Table 9 

Mean and standard deviation of the cardiac clinical indices computed from 

2236 UKBB subjects, between the incomplete and compensated volumes. 

Note that the mean values of these clinical parameters are relatively larger 

than the reference mean values, as the ventricles with larger size tend to 

be insufficiently covered during the acquisition in real-world scenario. 

Incomplete Compensated 

Parameters Mean ± Std. Mean ± Std. MAE p-value 

LVEDV (mL) 152.5 ± 37.9 158.7 ± 37.6 6.15 < 0.001 

LVSV (mL) 87.8 ± 21.9 93.5 ± 21.5 5.65 < 0.001 

LVEF (%) 58.0 ± 7.17 59.2 ± 7.04 1.40 < 0.001 

LVM (g) 90.2 ± 24.6 94.0 ± 24.6 3.83 < 0.001 

RVEDV (mL) 161.2 ± 40.5 166.9 ± 40.2 5.73 < 0.001 

RVSV (mL) 89.0 ± 22.3 93.7 ± 22.1 4.79 < 0.001 

RVEF (%) 55.9 ± 7.29 56.7 ± 6.97 1.07 < 0.001 

t

L

m

a

cardium near the apex, automatic wall thickness assessment in 

he apical region can be error prone due to the difficulty in ensur- 

ng highly accurate and precise segmentation of the myocardium 

n this region, using anisotropic cine-CMR image stacks. 

.3. Large-Scale dataset analysis 

By retrospectively applying the proposed pipeline to 37,396 

KBB subjects, we detected in total 2236 cases as a sub-optimal 

overage in terms of missing at least one slice in either the basal 

r apical direction (i.e. ∼5.9% of incomplete coverage rate), and 

ompensated for those insufficient coverage volumes. The results 

re shown in Fig. 13 , from which we can see that 1298 subject

ases are missing basal slices (1,062 cases for one slice and 236 

or two slices), and 1856 are missing apical slices (1,419 for one 

nd 437 for two slices), while 918 cases are missing both in the 

ame volume. The mean and standard deviation of clinical param- 

ters are presented in Table 9 and the Bland-Altman analysis is 

hown in Fig. 14 . Statistically significant differences were found be- 
13 
ween the original images and compensated ones regarding LVEDV, 

VSV, LVEF, LVM, RVEDV, RVSV and RVEF (p < 0.001). Note that the 

ean values of the clinical parameters (from these 2236 subjects) 

re overall larger than the reference mean values in Table 6 , even 
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Fig. 14. Bland-Altman analyses for the LVEDV, LVSV, LVEF, LVM, RVEDV and RVSV measurements using the acquired cine CMR images (incomplete) and the imputed cine 

CMR images (complete). Statistically significant differences were found regarding those clinical parameters (p < 0.001). 
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or the incomplete coverage data, as the ventricles with larger size 

end to be insufficiently covered during the acquisition in real- 

orld scenario. The Bland-Altman analysis revealed that the mean 

ifference with 95% confidence interval (CI) between the original 

cquired and compensated images are -6.15 mL (95% CI, -22.87 mL 

o 10.58 mL) for LVEDV; -3.83 g (95% CI, -11.87 g to 4.2 g) for LVM;

nd -5.73 mL (95% CI, -21.22 mL to 9.77 mL) for RVEDV (cf. Fig. 14 ).

ote that the distributions lie towards the negative side of the axis 

s we systematically synthesised more slices to the image stacks to 

ompensate for the under-estimation, thereby, increasing the vol- 

me of the ventricles. These statistical analyses emphasise the sta- 

istical differences between the cardiac indices calculated from the 

ncomplete CMR images and the compensated ones in UKBB and 

ighlight the potential of the data completion pipeline for large- 

cale CMR population studies. 

.4. Cross-Database evaluation (ADSB dataset) 

We also evaluated the proposed generative model on the pub- 

icly accessible ADSB dataset. After excluding several cases with 

tacks of only four or less slices, 191 subjects of original volume 

mages were used as the reference and we manually removed two 

lices from the top and bottom to simulate incomplete data. Quali- 

ative results of two subjects at the ED phase are shown in Fig. 15 ,

here all the results were obtained by the generative models pre- 

rained on the UKBB data. From these results, we can observe that 

he performance of the proposed method drops slightly relative to 

hat of the UKBB data, in terms of anatomical plausibility and tex- 

ure artefacts. This is expected as the ADSB dataset differs in ap- 

earance compared with the UKBB data. Fig. 16 shows the analysis 

f the absolute errors between the incomplete, imputed CMR im- 

ges and reference in the ADSB dataset for the computed cardiac 

ndices, when two slices either at the apical or basal region are 

issing. We can see that errors are dramatically reduced in the 

olume calculation by employing the proposed method, despite the 
14 
igh inter-subject variability of ADSB images. This demonstrates 

he generalisation ability and robustness of the proposed approach. 

.5. Ablation study 

This section presents the ablation study results to support the 

rchitectural design. First, we systematically analysed the effec- 

iveness and the contribution of each component in the proposed 

ethod. The comparison was conducted on three variants that cor- 

espond to replacing the CBN with standard batch normalisation, 

sing a single discriminator and removing feature matching loss in 

urn, namely, w/o CBN, w/o CBN + MD and w/o CBN + MD + FM.

or fair comparison, we retrained these variant networks using the 

ame hyperparameters as the proposed method. Results from each 

f these network configurations are then compared with the pro- 

osed model. 

Fig. 17 illustrates a visual comparison of the images generated 

n this ablation study, when the first slice is missing. The pro- 

osed method with all the components integrated produces re- 

ults not only most visually comparable to that of the reference, 

ut also perceptually appealing and anatomically plausible. Quan- 

itative results in Table 10 confirm this observation and indicate 

hat the CBN and multi-scale discriminator yield better results than 

he conventional batch normalisation and a single discriminator. 

emoving or replacing them results in a significant drop in per- 

ormance for both the apical and basal slice synthesis (e.g., a CC 

f 0 . 892 ± 0 . 031 to 0 . 855 ± 0 . 038 for the apex and 0 . 898 ± 0 . 034

o 0 . 864 ± 0 . 04 for the base). We can see that the feature match-

ng loss term further boosts the quality of the images synthesised, 

hich is reflected by an average improvement of 0.836 to 0.855 

nd 21.13 dB to 22.52 dB for the CC and PSNR for the apex, and

.848 to 0.864 and 22.22 dB to 23.13 dB for the CC and PSNR for

he base, respectively. The progressively increasing Fréchet incep- 

ion distance (FID) values also demonstrate the degradation of im- 

ge quality. Statistical significance test with the Wilcoxon signed 
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Fig. 15. Qualitative comparison of the ground truth and the synthesised slices for 2 subjects of the ADSB dataset using the pre-trained models on the UKBB dataset. Ex1 

and Ex2 represent the first, the second extended slice, respectively. 

Fig. 16. Box plots of the absolute differences between the incomplete images (denoted as TR), compensated images (denoted as EX) and the complete images for the ADSB 

dataset. 

Fig. 17. An overview on results of the ablation study. Comparison of three variants that correspond to replacing the CBN with standard batch normalisation, using a single 

discriminator and removing feature matching loss in turn, namely, w/o CBN, w/o CBN + MD and w/o CBN + MD + FM, respectively. The CMR images were reproduced with 

the permission of UK Biobank. 
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ank test shows the computed p -value < 0.05 in terms of CC and

SNR metrics, suggesting that the proposed method achieves sta- 

istically significant improvements over its counterparts. 

Also, to demonstrate the contribution of the cascaded structure, 

e compared it with another two imputation strategies: 1) Using 

 single generator that learns to recursively generate the next slice 

ased on three consecutive slices at end of the image stack (de- 

oted as “single (3 to 1)”) and 2) a single generator that learns to 
15 
roduce three consecutive slices simultaneously (denoted as “sin- 

le (3 to 3)”). Qualitative and quantitative results are presented in 

ig. 18 and Table 11 , respectively. In Fig. 18 , we show an example

f the third imputed slice from different methods compared with 

he ground truth slice. We can see that simultaneously synthesis- 

ng three consecutive slices is more challenging, leading to severe 

egradation in image quality. Using one generator that learns to in- 

er the next slice recursively yields improvements but suffers from 
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Table 10 

Summary of the ablation study results evaluated on the generated images when the first slice is missing. Comparison of three 

variants that correspond to replacing the CBN with standard batch normalisation, using a single discriminator and removing feature 

matching loss in turn, namely, w/o CBN, w/o CBN + MD and w/o CBN + MD + FM, respectively. The symbol “∗” indicates the statistical 

significance ( p -value < 0.05) compared with the proposed method. 

Apex Base 

Metrics CC PSNR FID CC PSNR FID 

Proposed 0 . 892 ± 0 . 031 23 . 82 ± 1 . 81 23 . 55 0 . 898 ± 0 . 034 25 . 37 ± 1 . 61 20 . 59 

w/o CBN 

∗ 0 . 863 ± 0 . 04 22 . 84 ± 1 . 96 29.11 0 . 868 ± 0 . 041 23 . 24 ± 1 . 53 28.19 

w/o CBN + MD 

∗ 0 . 855 ± 0 . 038 22 . 52 ± 1 . 55 34.19 0 . 864 ± 0 . 04 23 . 13 ± 1 . 53 29.71 

w/o CBN + MD+FM 

∗ 0 . 836 ± 0 . 039 21 . 13 ± 1 . 38 43.42 0 . 848 ± 0 . 041 22 . 22 ± 1 . 41 31.34 

Fig. 18. Qualitative comparison of the proposed cascaded model with two native imputation strategies on the third imputed slice. The CMR images were reproduced with 

the permission of UK Biobank. 

Table 11 

Summary of the CC, PSNR and FID measurements between the ground truth and synthesised images from the three imputation ap- 

proaches on 500 subjects. The symbol “∗” indicates the statistical significance ( p -value < 0.05) compared with the cascaded method. 

Apex Base 

Metrics CC PSNR FID CC PSNR FID 

Cascaded (3 to 1) 0 . 738 ± 0 . 061 20 . 16 ± 1 . 91 38 . 27 0 . 767 ± 0 . 071 21 . 80 ± 1 . 53 31 . 58 

Single (3 to 1) ∗ 0 . 707 ± 0 . 058 19 . 33 ± 1 . 46 49.67 0 . 715 ± 0 . 070 20 . 56 ± 1 . 41 40.73 

Single (3 to 3) ∗ 0 . 681 ± 0 . 055 18 . 71 ± 1 . 52 98.87 0 . 703 ± 0 . 073 20 . 13 ± 1 . 49 79.53 
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he errors accumulated during imputation of the first and second 

lices. In contrast, the proposed cascaded model learns to accom- 

odate for such errors in the synthesised images, enabling their 

ffective use as input stacks to the subsequent generators. This is 

ecause, in the recursive single generator scenario, the model is 

rained with image stacks comprising only “real slices”, to learn 

o synthesise the missing slice. Consequently, when multiple slices 

re missing, the trained generator is used to recursively synthe- 

ise the missing slices (during inference). However, as in this sce- 

ario, the generator is never trained with synthesised slices as part 

f the input image stack, the recursive synthesis is less effective. 

he cascaded model proposed in this study retrains the generator 

ith image stacks that include one or more synthesised slices and 

hus is designed exactly for this purpose. The proposed method 

ields the most comparable results to the ground truth image in 

erms of visual quality, similarity and plausible textures. Besides 

isual inspection, the CC, PSNR and FID values computed over 500 

est sets in Table 11 also demonstrated the improvement of the 

ascaded method over the other imputation strategies. The com- 

uted p-value < 0.05 shows that the proposed cascaded structure 
16 
ields statistically significant improvements in performance over 

ts counterparts. 

. Discussions 

The development of automatic and generic approaches to com- 

ensate for incomplete cardiac coverage in CMR images, can have a 

ransformative impact on high-throughput image analysis of pop- 

lation studies by avoiding the inclusion of thousands of sub- 

ptimal CMR images in quantitative analyses and preventing the 

xclusion of identified incomplete data from such analyses. Viola- 

ion of either may reduce statistical power and introduce bias ag- 

regated over a given cohort. In this work, we proposed an effi- 

ient and robust two-stage pipeline to address this problem, i.e. 

utomatic detection of apical and basal slices, followed by slice 

ynthesis for the missing position. The detection network adopted 

onvLSTM networks to leverage the inter-slice spatial contextual 

nformation in volumetric data. Experimental results demonstrated 

he effectiveness and efficiency of the proposed model and its su- 

erior performance over the 2D and 3D convolutional networks. As 
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pposed to the methods reported in ( Tarroni et al., 2018 ), the pro-

osed model uses only the SAX stack and thus does not depend 

n the availability of CMR data from LAX views. This is useful in a 

ractical setting as it does not preclude the use of the workflow in 

cenarios where the LAX views are absent. 

In practice, we prefer high sensitivity than specificity during 

lice detection since the extra synthesised slices above basal slice 

r below apical slice, if any, will have a negligible effect on car- 

iac volume calculation as they are returned to zeros by man- 

al/automatic segmentation methods. During image acquisition, 

ufficient margin is also left above and below the LV cavity in SAX 

mage stacks, according to the established guidelines for cardiac 

R image acquisition ( Schulz-Menger et al., 2013 ). 

For apical and basal slice synthesis, we developed a conditional 

AN that encourages visual properties and fine details are effec- 

ively propagated through the image generation pathway. We also 

esigned a cascaded network to address multi-slice imputation. 

xperimental results showed that the proposed approach not only 

ields visually comparable slices to the acquired data with a full 

overage, but also retains the accuracy of anatomical and func- 

ional cardiac parameters of clinical interest. For instance, three 

issing basal slices has the most severe impact on volume cal- 

ulation in the current investigation. The mean differences to the 

eference of LVEDV, LVM, RVEDV are -2.6 mL, -2.3 g and -4.9 mL, 

espectively, which are thus considerably smaller than those ob- 

ained from the incomplete image stacks (-54.7 mL, -30.5 g and 

62.2 mL), indicative of the anatomical validity of the imputed im- 

ge volumes. 

Although we only focused on scenarios where up to three con- 

ecutive slices are missing in SAX stacks in this study, the model 

an be extended to synthesise more absent slices by choosing ad- 

itional three-slice blocks towards the mid-cavity region in the 

raining samples. The sensitivity and robustness of the model to 

arger portions of missing data are yet to be assessed and could 

e the focus of future work. We also observed that the quality of 

ynthesised basal slices is better than that achieved for the api- 

al slices, due to large variations in appearance of the apical slices. 

his is preferred for cardiac quantification as the absence of the 

asal slices has a significant impact on volume calculation. 

As an attempt, we also investigated a variant of the proposed 

mputation method by incorporating three LAX images (i.e., 2CH, 

CH and 4CH views) as an additional input to the network to im- 

ute the missing SAX slices. We found no obvious differences be- 

ween the two approaches in terms of the quantitative metrics (CC, 

SNR and FID) evaluated. 

Future work would involve the following aspects. First, in this 

ork we proposed to synthesise a SAX slice by learning relevant 

eatures from three neighbouring slices. The number of slices used 

as selected through a pilot study. We found that fewer than 3 

lices will limit the ability to accurately model the intrinsic mani- 

old of the image data, whereas more than 3 slices will also be less 

ffective and increase the errors due to 1) overfitting caused by in- 

reased complexity and nonlinearity of the model and 2) raised 

nfluence by the presence of slice misalignment resulting from 

atient motion. Further incorporating motion compensation algo- 

ithms or physical constraints and shape priors into the generative 

odel may improve the results and will be the subject of future 

ork. Second, as CMR cine images typically cover the full cardiac 

ycle, it may be beneficial to exploit the temporal aspect of the dy- 

amic CMR data and leverage redundant information from differ- 

nt cardiac phases to boost the slice detection and imputation per- 

ormance further. Third, the UKBB dataset used in the experiments 

nvolves general population subjects, i.e., it contains both healthy 

nd diseased patients with a prevalence approximating that of the 

eneral population. Hence, future studies should assess in more 

etail the generalisability and performance of the proposed gen- 
17 
rative network on CMR images across pathologies more specifi- 

ally. Hence, future studies should assess in more detail the gen- 

ralisability and performance of the proposed generative network 

n CMR images across pathologies more specifically. Last, after the 

roposed heart completion an automatic quality control step can 

e applied to assess whether the synthesised CMR slices are re- 

listic, in order to facilitate clinical translation of the proposed 

pproach. Automatic quality control may be approach in several 

ays, for example – (i) slice-wise quantification of cardiac mor- 

hological indices (such as myocardial thickness, blood pool area 

tc.) could be used to identify whether there is a smooth transition 

n the synthesised slice from the adjacent slices. Large changes in 

hese values in the synthesised slices might be indicative of incor- 

ect synthesis (when considering healthy populations); (ii) an inde- 

endent classification network could be trained using the synthe- 

ised slices for training. Training such a network, however, would 

equire grading of the synthesised slices a priori based on quality, 

y experienced cardiologists/cardiac imaging experts. 

. Conclusion 

In this work, we proposed an effective two-stage pipeline for 

etecting and synthesising missing slices in cardiac apex and base, 

o address incomplete heart coverage, which hinders accurate mea- 

urement of cardiac volume and functional assessment. The detec- 

ion model employed several dense blocks consisting of ConvLSTM 

ayers, to leverage 3D contextual feature and exploit the sequen- 

ial ordering of SAX slices, and achieve reliable classification out- 

omes. The imputation network incorporated visual properties and 

ne details into the image generation and thus can infer slices that 

re anatomically plausible and comparable to the acquired com- 

lete data. Extensive experimental results demonstrated that the 

roposed approach is robust and reliable. Notably, the accuracy of 

ubsequent quantification can be improved for CMR datasets with 

ub-optimal coverage, without the need for re-scanning the patient 

r completely discarding such a data. 
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ppendix 

A visual comparison of the synthesised slices by the proposed 

mputation networks and the ground-truth images for 7 subjects 

f the UKBB dataset at the ES phase is depicted in Fig. 19 . 
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Fig. 19. Qualitative comparison of the ground truth and the synthesised slices for 7 subjects of the UKBB dataset at the ES phase. From top to bottom, results of three 

degrees of incomplete coverage are shown. Ex1, Ex2 and Ex3 represent the first, the second and the third extended slice, respectively. The CMR images were reproduced 

with the permission of UK Biobank. 
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