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Abstract: 3-D phase unwrapping (PU) methods based on the 2-D linear temporal coherencemodel

have been widely used in time-series interferometric synthetic aperture radar (TS-InSAR) for measur-

ing topography and monitoring subtle deformation. However, the linear temporal coherencemodel

can not characterize the coherence of highly coherent pixels accurately in seasonal deformation areas,

where nonlinear deformation is deterministic and nonnegligible. Especially, for urban areas with

groundwater or thermal dilation seasonal changes or permafrost regions, the nonlinear deformation

is usually associated with periodic temperature changes. In this work, a general multi-component

temporal coherence model, which considers multiple components including the seasonal deformation,

is proposed for 3-D PU of seasonal deformation areas. Moreover, the uncertainty evaluation criterion,

based on Cramér–Rao bound (CRB), is derived for TS-InSAR. The experimental results, obtained by

applying the multi-component temporal coherence model to a data set acquired from January 2012 to

February 2016 over the Beijing Capital International Airport area, confirm the effectiveness of the

proposed method. High phase consistency, accurate corrected digital elevation model (DEM) and

deformation information monitoring with high-density and high-coverage PS pixels are achieved.

Under the same iterations and TS-InSAR procedure, the enhanced performance by the proposed

model is illustrated by comparing with that of linear model in terms of phase consistency of 3-D

phase unwrapping, PSCs selection at each step, and final results evaluation. In summary, the number

of phase-consistency edges after 3-D PU is increased by about 15%, the number of final PS pixels

selected with the same coherence threshold constraint is increased by about 10%, and more PS

pixels provide a low uncertainty in residual topography, mean deformation velocity and seasonal

amplitude estimation.

Keywords: interferometric synthetic aperture radar (InSAR); time-series InSAR (TS-InSAR); seasonal

deformation; multicomponent temporal coherence model; 3-D phase unwrapping (3-D PU);

Cramér–Rao bound (CRB); uncertainty evaluation

1. Introduction

Due to the capability of measuring topography up to sub-meter scale and monitoring
subtle deformation up to mm/year scale, time series interferometric synthetic aperture
radar (TS-InSAR) techniques [1], especially persistent scatterers InSAR (PS-InSAR) [2–7],
have been widely employed in various remote sensing applications, and even for phase
calibration of advanced tomographic SAR imaging [8]. Such deformation and topography
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information can only be extracted from the unwrapped phase (or absolute phase), and thus,
phase unwrapping (PU) is a critical problem in TSInSAR [9].

The PU problem in TS-InSAR is defined on the sparse 3-D grids (2-D in spatial domain
and 1-D in temporal domain) rather than on one regular interferogram [10]. The study on
efficient and accurate sparse 3-D PU methods has been of crucial importance at the advent
of TS-InSAR during the past few decades [11]. 3-D PU methods can be divided into two
categories: phase model or simply model based and non-model-based [12].

The non-model-based methods rely on the Itoh condition or phase continuity [13,14],
that is, the absolute phase difference between any two neighboring pixels is less than π.
They unwrap each set of 2-D grids individually using sparse 2-D PU methods [15,16], or
two-step 3-D PU methods that unwrap firstly in 1-D temporally (temporal PU, TPU) then
in the remaining 2-D spatially (spatial PU, SPU), or jointly unwrap 3-D grids by extending
the 2-D PU methods to the 3-D situation. Costantini et al. extended the minimum cost flow
(MCF) method to sparse 2-D grids and proposed sparse MCF (SMCF) [15], then individually
applied to each 2-D grid for 3-D PU. Hopper resampled the wrapped phase of the sparse
grid into a regular grid by a nearest-neighbour interpolation routine, then applied the
optimisation routines of SNAPHU [17] to each interferogram, and projected the unwrapped
phase into the sparse 3-D grid [16]. Following the strategy, numerous 2-D PU methods based
on the phase-continuity assumption, such as, quality-guided [13], branch cut [18], MCF [19]
and deep learning [20,21] methods, can be applied by replacing SNAPHU with other 2-D
methods. Based on the assumption, Hopper et al. developed a stepwise 3-D PU algorithm
that unwrapped phase firstly in 1-D temporally then iteratively improved the solution in
the other two dimensions; additionally, they extended the 2-D branch-cut method into
the 3-D case and framed 3-D grids PU in terms of an L∞-norm optimization problem [22].
Shanker et al. presented an integer programming formulation which incorporates external
measurements as constraints for 3-D grids PU [23]. Costantini et al. formulated the 3-D PU
in a common framework [24], which includes standard techniques and constraints from
external information if available. Liu et al. established a mathematical constraint within
the closure phases and unwrapped sparse 3-D grids jointly [25]. However, these methods
are sensitive to deformation or atmospheric signal of long time series and sudden changes
of residual topography for low density grid, which results in that the phase continuity
assumption is not valid any more. It seems that the joint 3-D PU methods are theoretically
the most reliable, but the heavy computational load and long time series as well as low
density grid limit their applications [10].

In order to reduce the influence resulting from long time series and low density
grid, 3-D PU methods based on the phase model have received many attentions in TS-
InSAR. The model-based methods assume that the unmodeled residual phase is subject
to the Itoh condition. Firstly, the major component of phase gradients (PGs), such as the
differential phase of linear deformation and residual topography, is obtained by maximiz-
ing temporal coherence associated with the phase model [2]. Then, the PG of residual
phase is unwrapped temporally and then spatially based on the phase continuity assump-
tion [12,26,27]. Pepe and Lanari unwrapped the residual PGs with the extended MCF
(EMCF) method in the temporal/baseline plane and then in the azimuth/range plane,
and finally the 3-D absolute phase is obtained by spatial integration [26]. Cuenca and
hooper et al. took advantage of spatially correlated information to improve the TPU [28].
Fornaro et al. modified the extended SMCF approach so that a more complex network
for 3-D PU can be generated and effectively unwrapped [12]. Alternatively, based on
the linear phase model associated with the residual topography and mean deformation
velocity, Kampes et al. translated TPU of wrapped PGs into a MILS problem weighted by
the variance-covariance matrix of the observed phase, and then the phase ambiguities were
solved by the LAMBDA technique [29]. Li et al. improved the TPU of PGs by a feasible and
practical triangle-oriented TPU strategy based on the linear phase model with the spatial
irrotational constraints imposed, and then more reliable unwrapped PGs were obtained
by an L1-norm SPU method with a novel weight function [10]. The model-based methods
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have great potential for large scale measurement of DEM and deformation both spatially
and temporally. However, these methods are mainly for the selected pixels with high
coherence, and the modeled phase is assumed to be 2-D linear. In TS-InSAR, the 3D PU is
dependent on selection of highly coherent pixels. On the one hand, if the accuracy of 3D
PU is poor, the coherence of candidate pixels would not be effectively estimated from the
unwrapped phase, and then the identification accuracy of high-coherence pixels is affected.
On the other hand, if the low-coherence pixels participate in 3D PU with high-coherence
ones, their PU error would inevitably propagate to the latter, although low-coherence pixels
are penalized with low weight. Thus, an accurate 3D PU method for sparse grids must
consider a constrained integral path, which skips the low-coherence pixels and integrates
the phase along the high-coherence pixels [27]. Besides, for seasonal deformation areas,
e.g., urban areas where the groundwater changes seasonally or buildings are affected by
thermal dilation, or permafrost regions with periodic temperature changes, the 2-D linear
model cannot characterize the high-coherence pixels accurately. Then, the coherence of
the pixels with great seasonal deformation is underestimated. Moreover, these pixels are
dropped innocently due to the high-coherence constraints in 3D PU.

In this work, a general multi-component temporal coherence model, including the
2-D linear component and the seasonal deformation, is proposed for 3-D PU of seasonal
deformation areas, such as urban areas where the groundwater changes seasonally or
buildings are affected by thermal dilation, or permafrost regions with periodic temperature
changes. Then, the uncertainty evaluation criterion, based on Cramér–Rao bound (CRB), is
derived for TS-InSAR. We employ the multi-component temporal coherence model and
uncertainty criterion for 3-D PU and to evaluate results. To demonstrate the improvement,
both conventional linear and multi-component temporal coherence models are applied to
PS-InSAR using the same data set, acquired by TerraSAR-X/TanDEM-X over the Beijing
Capital International Airport area. A new DEM significantly more accurate than the re-
ferred one and deformation information monitoring with high-density and high-coverage
PS pixels are achieved. Given the same iterations and TS-InSAR procedure, the enhanced
performance by the proposed model is illustrated by comparing with that of the conven-
tional linear temporal coherence model from aspects of 3-D PU evaluation, PS candidates
(PSCs) selection at each step and the final estimation results. In summary, the number of
final PS pixels selected with the same coherence threshold is increased by about 10%, and
more PS pixels provide low uncertainty in residual topography, mean deformation velocity
and seasonal amplitude estimation; moreover, a competitive computing speed is achieved.

The rest of this paper is organized as follows. In Section 2, a review of the PS-InSAR and
3-D PU based on EMCF is provided, followed by the proposed multi-component temporal
coherence model and uncertainty evaluation criterion for PS-InSAR in Sections 3 and 4,
respectively. The enhanced performance by the proposed model is illustrated by real data
experiments in Section 5. Finally, conclusions are drawn in Section 6.

2. PS-InSAR Based on the Linear Temporal Coherence Model

2.1. PS-InSAR

The interferometric phase is composed of several components associated with the ac-
quisition geometry (platform positions and topography), terrain motion, scattering changes
(due to temporal variations and/or baseline decorrelation), atmospheric screen delay and
orbit errors [2,3]. However, the obtained observations ψx,i of the i-th interferometric phase
at the x-th pixel are wrapped, mathematically,

ψx,i = W{φD,x,i + φS,x,i + φH,x,i + φN,x,i} (1)

where W{·} is the modulo-2π operation, φD,x,i is the deformation phase, φS,x,i is delay
phase resulting from atmospheric phase screen (APS) and orbit, φN,x,i is the thermal noise
phase, and φH,x,i is the residual topography phase after removal of referred topography
phase, expressed as
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φH,x,i=
4πbihǫ

λr sin θ
(2)

where λ, r, θ are SAR wavelength, slant range, incidence angle; bi and hǫ are the i-th
perpendicular baseline and residual topography, respectively. Usually, the dominant
deformation is modeled linearly,

φm
D,x,i =

4πtiv

λ
, (3)

where ti and v are the i-th observed time relative to the master observation and mean defor-
mation velocity in line-of-sight (LOS) direction. Thus, the residual unmodeled deformation,
also called non-linear deformation, can be expressed by

φun−m
D,x,i = φD,x,i − φm

D,x,i. (4)

Then, the coherence model γx of the x-th pixel is defined by

γx =
1

M

M

∑
i=1

exp
{

j
[

ψx,i − φm
x,i − φun−m

D,x,i − φS,x,i

]}

(5)

where φm
x,i = φH,x,i + φm

D,x,i, and M represents the number of interferograms. Coherence
of the PSCs can measure the stability of phase, and thus is usually used for accurate PS
selection [2,3].

Figure 1 presents the flowchart of PS-InSAR. Firstly, the PSCs are selected based on am-
plitude dispersion DA < 0.25. Then, the interferometric phase of PSCs grids is unwrapped
temporally and then spatially, and the residual topography and mean deformation velocity
are also obtained. Furthermore, the APS and orbit phase and the unmodeled deformation
and noise phase are separated based on their different temporal and spatial characteris-
tics [6]. Subsequently, the coherence of each PSCs, used for dropping the unstable PSCs,
is estimated by Equation (5). The new iteration begins from 3 to D PU after the PSCs are
updated; otherwise, output the results of corrected DEM and mean deformation velocity as
well as deformation series.

threshold

A A
D D

threshold

x

Figure 1. PSI flowchart.

The improved PS-InSAR (IPSI [7]) relaxes the original PSCs selection condition by
DA < 0.4, and more PS pixels with stable phase and high precision are selected than that of
PS-InSAR. Therefore, the IPSI method is applied in experiment to test the multi-component
temporal coherence model and compare it with the 2-D linear model.

2.2. Linear Temporal Coherence Model for 3D PU

For long term and large scale observations, in 3D PU of PS-InSAR, the absolute PGs
between adjacent pixels instead of the phases of a single pixel are firstly estimated using
TPU methods, and subsequently, the absolute phase gradients are integrated in the space
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domain. Especially, the neighboring pixel pairs are defined as arcs in a network such as the
Delaunay triangulation of the sparse grids.

Since the linear components dominates the major component, and the residual deter-
ministic components φun−m

D,x,i and φS,x,i are spatially correlated [2,3,6], the temporal coherence

model used for the arcs −−→x1x2 PGs TPU can be expressed as

γx2
x1

=

∣

∣

∣

∣

∣

1

M

M

∑
i=1

exp
{

j
[

∇x2
x1

ψx,i −∇x2
x1

φm
x,i

]}

∣

∣

∣

∣

∣

(6)

where ∇x2
x1

is the differential operator of pixels x1 and x2. Then, the differential residual
topography and deformation velocity of pixels x1 and x2, ∇x2

x1
hǫ and ∇x2

x1
v, are estimated

by maximizing the temporal coherence,

{∇x2
x1

∆ĥǫ,∇x2
x1

v̂} = arg max γx2
x1
(∇x2

x1
hǫ,∇x2

x1
v) (7)

Then, the modeled phase ∇x2
x1

φ̂m
x,i are obtained, so do the residual topography and

deformation velocity of each PSC based on the reweighted LS method.
Consequently, the residual deterministic components are unwrapped in 3-D. Firstly,

the residual PGs must be unwrapped temporally [26,27]. The unwrapped PGs can be
expressed as follows:

∇x2
x1

φx,i = ∇x2
x1

χx,i + 2π∇x2
x1

kx,i (8)

with
∇x2

x1
χx,i = ∇x2

x1
φ̂m

x,i + W{∇x2
x1

ψx,i −∇x2
x1

φ̂m
x,i} (9)

where φx,i is the unwrapped value of ϕx,i, and kx,i is the residual unknown integer number
we want to estimate.

The EMCF method for TPU applies the MCF technique to the temporal/baseline grid,
and searches for the solution of the following minimization problem [26]

min
∇

i2
i1
∇

x2
x1

kx,i







∑
−→
i1i2

∣

∣

∣
∇i2

i1
∇x2

x1
kx,i

∣

∣

∣







(10)

subject to the constraints







∇α∇
x2
x1

kx,i +∇β∇
x2
x1

kx,i +∇ξ∇
x2
x1

kx,i = −round

[

∇α∇
x2
x1

χx,i+∇β∇
x2
x1

χx,i+∇ξ∇
x2
x1

χx,i

2π

]

∇i2
i1
∇x2

x1
kx,i ∈ Z

(11)

where
−→
i1i2, α, β and γ denote the effective arc labels of the Delaunay triangulation network

in temporal/baseline plane, α, β and γ make a Delaunay triangulation, ∇i2
i1

denotes the

differential operator of the i1-th and i2-th interferograms, and round[·] represents the
operation of approximation to the nearest integer number.

With the master one ∇x2
x1

kx,m = 0 as starting point for TPU, ∇x2
x1

kx,i for each arc is

obtained by integrating ∇i2
i1
∇x2

x1
kx,i along the Delaunay triangulation network of tempo-

ral/baseline plane. Similar to TPU, the SMCF method [15] is extended for SPU [26]. Then,
the residual of ∇x2

x1
kx,i is obtained. After selecting a high coherent PS as starting point for

SPU, kx,i for each PSC is obtained by integrating ∇x2
x1

kx,i along the Delaunay triangulation
network of temporal/baseline plane.

As shown in Figure 2, 3-D PU based on EMCF includes six steps.

• Delaunay triangulation network in azimuth/range is formed spatially by PSCs.
• temporal coherence of each arcs in azimuth/range plane is calculated based on model.
• The constrained Delaunay triangulation network in time/baseline plane is formed

for TPU.
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• TPU is carried out based on the EMCF method.
• The constrained Delaunay triangulation network in azimuth/range plane is formed

for SPU.
• SPU is carried out based on the SMCF method.

Figure 2. Flowchart of two-step 3D PU based on model.

3. Multi-Component Temporal Coherence Model for TS-InSAR

For long term observations, the seasonal motion is significant since the temperature
varies periodically [29,30], especially for permafrost regions or some urban areas influenced
by groundwater or thermal dilation. By considering seasonal deformation, the modeled
deformation phase can be expressed as [4,29,31]

φm
x,i

=
4πbihǫ

λr sin θ
+

4πtiv

λ
+

4π

λ
{p1 sin(2πti) + p2[cos(2πti)− 1]} (12)

where sin and cos are base functions of seasonal motion, and φm
x,i

is the multi-component

modeled phase, including residual topographic, 2-D linear and seasonal components.
Multiple components, such as residual topography, deformation velocity and seasonal
amplitude, of each pixel are then effectively estimated by time series regression analysis
from the unwrapped phase.

As the seasonal component is deterministic and non-negligible in TS-InSAR, the
conventional linear coherence model cannot accurately estimate the coherence of pixels.
Here we consider introducing the component into the conventional temporal coherence
model for 3D PU of seasonal deformation areas. Firstly, a multi-component coherence
model is defined as

γx =
1

M

M

∑
i=1

exp
{

j
[

ψx,i − φm
x,i

− φun−m
D,x,i

− φS,x,i

]}

(13)

where φun−m
D,x,i

is the new unmodeled or residual deformation, excluding the seasonal com-

ponent, which is included as residual phase in the conventional linear temporal coherence
model [2,3,7]. Then, a new temporal coherence model, named the multi-component tempo-
ral coherence model, can be written by

γx2
x1

=

∣

∣

∣

∣

∣

1

M

M

∑
i=1

exp
{

j
[

∇x2
x1

ψx,i −∇x2
x1

φm
x,i

]}

∣

∣

∣

∣

∣

(14)

which not only includes the linear but also the periodic nonlinear components.
Mathematically, the format of seasonal deformation can be changed as

p1 sin(2πt) + p2[cos(2πt)− 1] = p sin[2π(t − t0)] + q (15)

where q = −p2 = p sin(2πt0) is a constant, p =
√

p2
1 + p2

2 is seasonal amplitude, and

t0 is the initial offset of seasonal motion. Since the seasonal motion is highly correlated
with temperature, we can fit certain offset t0 with time series temperature of the observed
area. Concretely, we can perform exhaustive search over the optimized t0 range from −1
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year to +1 year to maximize the correlation between the monthly average temperature of
the studied area with the seasonal deformation model (Equation (15)). It is worth noting
that if the temperatures change aperiodically and the seasonal motion is highly correlated
with temperature, then the nonlinear deformation model may not be in the trigonometric
form as Equation (15). However, the multi-component temporal coherence model can
still be applied for other well-established models, such as the thermal dilation model [30].
Since q is a time series constant, after substituting Equations (12) and (15) into (14), the
multi-component temporal coherence model can be simplified as

γx2
x1

=

∣

∣

∣

∣

1
M

M

∑
i=1

exp

{

j

{

∇x2
x1

ψx,i −
4π
λ

{

bi∇
x2
x1

hǫ

r sin θ + ti∇
x2
x1

v +∇x2
x1

p · sin[2π(ti − t0)]

}}}∣

∣

∣

∣

(16)

Therefore, the dimension that maximizes the multi-component temporal coherence is
reduced from 4 to D to 3-D as

{∇x2
x1

ĥǫ,∇x2
x1

v̂,∇x2
x1

p̂} = arg max γx2
x1
(∇x2

x1
hǫ,∇x2

x1
v,∇x2

x1
p) (17)

A strategy based on 3-D grid search is used to obtain global solution of the optimization
problem. The search is from a coarse to a fine 3-D grid, that is, the 3-D grid is set coarsely to
obtain a coarse solution, which is then set as central point of fine grid for further improved
solution. In detail, we search ∇x2

x1
hǫ,∇x2

x1
v,∇x2

x1
p first from large ranges [−30 m, 30 m],

[−12 mm/yr, 12 mm/yr] and [−5 mm, 5 mm] with large discrete intervals 1 m, 0.5 mm/yr
and 0.25 mm, respectively. Then, an initial coarse solution ∇x2

x1
hc

ǫ,∇x2
x1

vc,∇x2
x1

pc is obtained.

We set the coarse solution as central point and search for the fine solution ∇x2
x1

ĥǫ,∇x2
x1

v̂,∇x2
x1

p̂
from the small ranges ∇x2

x1
hc

ǫ + [−1 m, 1 m], ∇x2
x1

vc + [−0.5 mm/yr, 0.5 mm/yr] and ∇x2
x1

pc +
[−0.25 mm, 0.25 mm] with small discrete intervals 0.05 m, 0.025 mm/yr and 0.025 mm,
respectively. The computation complexity through this strategy is greatly reduced in
comparison to directly searching for the fine solution from a large range with a small
discrete interval. However, multidimensional search still leads to a large computational
effort. Thus, a fast computing strategy is adopted with Graphics Processing Unit (GPU)
computing for 3-D grid search and central processing unit (CPU) paralleling for multiple
arcs simultaneously.

With the temporal coherence of each arc calculated in (17) as weight, the residual
topography and deformation velocity and seasonal amplitude of each PSC can be estimated
by the reweighted LS method [2]. After substituting the estimations into Equation (12), the
dominant modeled phase is obtained for 3-D PU.

4. CRB for Performance Evaluation

After removal of residual deterministic components φun−m
D,x,i and φS,x,i, which are esti-

mated based on different characteristic behavior in spatial and temporal domains [2,3,6],
the unwrapped interferometric phase can be expressed as

ϕx,i =
4πbihǫ

λr sin θ
+

4πtiv

λ
+

4πp

λ
{sin[2π(ti − t0)] + sin(2πt0)}+ φN,x,i (18)

where ξ = [hǫ, v, p]T is the parameter vector of TS-InSAR to be estimated, and (·)T is
the transpose.

On the assumption that the residual deterministic components are fully removed
and the noise phase is zero-mean circular Gaussian distributed, the data vector ϕ =
[ϕx,1, · · · , ϕx,M]T of Equation (18) has mean values of

µ(ξ) =









4πb1hǫ
λr sin θ +

4πt1v
λ + 4πp

λ {sin[2π(t1 − t0)] + sin(2πt0)}
...

4πbMhǫ
λr sin θ + 4πtMv

λ + 4πp
λ {sin[2π(tM − t0)] + sin(2πt0)}









(19)
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and the common covariance matrix

CNN = σ2
N I (20)

where I is the identity matrix, and σ2
N is the variance of noise phase. Accordingly, the

likelihood function of ϕ is given by

p(ϕ|ξ) =
exp

[

−(ϕ − µ(ξ))T(ϕ − µ(ξ))/(2σ2
N)

]

(2πσ2
N)

M/2
. (21)

The Cramér–Rao bound (CRB) can be employed for evaluating the performance of
unbiased estimators [32–40]. From the Fisher information matrix

J(ξ) = −E

{

∂2 ln p(ϕ|ξ)

∂ξ∂ξT

}

(22)

we can drive the CRB of estimated variables in TS-InSAR. In detail, from the CRB matrix
J(ξ)−1, the elements [J(ξ)−1]1,1 = σ2(hǫ), [J(ξ)−1]2,2 = σ2(v) and [J(ξ)−1]3,3 = σ2(p) are
uncertainties of the residual topography, deformation velocity and seasonal amplitude,
respectively.

With the idealized data statistics described in Equations (18)–(21), the element of
Equation (22) can be simplified as [32,33]

[J(ξ)]pq =
2

σ2
N

[

∂µ(ξ)T

∂ξp

∂µ(ξ)

∂ξq

]

(23)

where p, q = 1, 2, 3. It is worth mentioning that σ2
N can be estimated by variance of the time-

series noise phase vector φN = [φN,x,1, · · · , φN,x,M]T. With the independence assumption
of estimated variables, Equation (23) is easily calculated according to Equation (19).

5. Study Area and Dataset Used

To assess the 3D PU performance based on the proposed model, the Beijing Capital
International Airport site is selected as the study areas, which is marked with red dotted box
in Figure 3. The study area, showing seasonal deformation signals [41], is located at Shunyi
District, northeast of Beijing, China. There are multiple types of scattering characteristics
over the Beijing Capital International Airport site, including complex buildings, runways
and roads, which may present thermal-dilation-induced seasonal deformation. Beijing
Capital International Airport is mainly composed of three terminals (T1, T2, and T3), and
T3 was built in 2008 to cope with the extra traffic brought by the 2008 Olympic visitors. The
roof of the T3 C and T3 E building is in a streamlined shape [42].

The data set covers the Beijing Capital International Airport (Beijing, China) area, and
is composed of 31 acquisitions collected by the TerraSAR-X/Tandem-X sensors between
January 2012 and February 2016, with a ground area of 8.72 km × 7.3 km. The observing
dates and perpendicular baselines and mean monthly temperatures of the 31 passes are
summarized in Table 1. The maximum temporal baseline is about 4 years, and the perpen-
dicular baseline ranges from −182 m to 312 m, and the mean monthly temperatures ranges
from −7 ◦C to 29 ◦C. The TerraSAR-X image acquired on 10 October 2013 was selected as
the master image and the remaining images were jointly co-registered with it. Figure 4
presents the master SAR image (2 m and 1 m for azimuth/range resolution), optical image
from Google Earth and the one arc-second (30 m spatial resolution) SRTM DEM used to
remove the referred topographic phase, respectively. After removing the derived phase
from interferograms, a series of differential interferograms were generated for TS-InSAR.



Remote Sens. 2022, 14, 1080 9 of 21

116°45'57.60" E116°25'29.29" E

4
0

°0
8

'5
6

.4
4

"
 N

3
9

°5
9

'5
7

.9
4

"
 N

116°25'35.93" E 116°46'32.34" E

4
0

°0
9

'1
1

.6
7

"
 N

4
0

°0
5

'2
2

.1
2

"
 N

Ø

N

0                5               10 Km

Figure 3. Shunyi District from Google Earth. The study area is the T3 E building marked with a

red rectangles.

Table 1. Details of the used TerraSAR-X/Tandem-X data set, the date shows in the form of year-

month-day.

Mission Date b⊥ [m]
Temperature

[◦C]
Mission Date b⊥ [m]

Temperature
[◦C]

TSX 22 January 2012 65.9075 −7.4 TSX 13 February 2012 −182.0520 −1.1
TSX 6 March 2012 46.1944 4.8 TSX 28 March 2012 −117.8213 15.7
TSX 11 May 2012 −12.8835 21.3 TSX 20 September 2012 −56.6116 22.1
TSX 23 October 2012 −57.5929 12.2 TSX 4 March 2013 −126.3026 10.1
TDX 20 May 2013 212.0661 21.6 TDX 22 June 2013 311.4166 21.5
TDX 14 July 2013 237.8385 26.5 TDX 16 August 2013 −14.1508 28.8
TDX 18 September 2013 10.8643 21.8 TDX 10 October 2013 0 17.4
TDX 23 November 2013 −136.6908 5.3 TDX 6 January 2014 −100.5203 −0.8
TDX 19 February 2014 107.9300 −0.1 TSX 18 May 2014 −51.2641 23.7
TSX 1 July 2014 −7.9030 28.8 TSX 14 August 2014 −27.5767 23.8
TDX 27 September 2014 −56.1818 20.1 TDX 10 November 2014 86.8367 6.6
TSX 24 December 2014 14.6413 3.1 TDX 6 February 2015 −86.1897 1.7
TSX 16 May 2015 81.5364 21.9 TSX 18 June 2015 13.5677 27.5
TSX 21 July 2015 −70.6676 25.5 TSX 23 August 2015 8.2015 24.2
TSX 25 September 2015 −38.3640 19.8 TDX 2 January 2016 138.1988 0.1
TDX 4 February 2016 271.5442 1.7 - - - -

Since the SRTM DEM was generated by SAR data collected in February 2000 and T3
of Beijing Capital International Airport was built in March 2004 and finished in November
2007, large residual topography exists in the Beijing Capital International Airport area,
which leads to values possibly larger than π for the absolute PGs of neighboring PS.
Accordingly, 3-D PU is an enormous challenge, so is the fine DEM required for estimation.
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(a) (b) (c)

Figure 4. Beijing Capital International Airport. All images shown with azimuth-slant range coordi-

nates. (a) SAR image; (b) optical image (Google Earth); (c) SRTM DEM with SAR amplitude on the

background [m].

6. Experimental Results and Discussion

In order to investigate the performance of the multi-component temporal coherence
model for 3-D PU in TS-InSAR, IPSI experiment based on the EMCF framework involving
real data is performed and results based on linear and multi-component temporal coherence
models are compared in terms of PU evaluation, PS selection and estimated residual
topography, deformation velocity and seasonal amplitude. All experiments are conducted
on an Intel Xeon Silver 4110 CPU with 64-GB RAM and NVIDIA Quadro P2200 GPU
with 5-GB RAM. The original PSCs with DA < 0.32 are selected in the IPSI with two
reasons. First, the arcs with high temporal coherence in the whole image are usually not
connected for large areas under the condition DA < 0.4. As shown in Figure 5, only the
local PSCs surrounding the start point for spatial PU, connected with white arcs, are with
temporal coherence above 0.6. Second, under the condition DA < 0.4, more PSCs would be
selected, but more time consuming in temporal coherence calculation. Moreover, we set
the maximum number of iterations as 4, allowing convergence to some extent for obtaining
reliable results for IPSI. Additionally, the temporal coherence threshold is set as 0.65, 0.7,
0.75 and 0.75 in four iterations, respectively, to optimize the spatial path for SPU.

(a) (b)

Figure 5. IPSI network. All images shown with azimuth-slant range coordinates. Red points represent

the PSCs, blue and white arcs represent the Delaunay triangulation network of PSCs before and after

constraint that temporal coherence is above 0.6, and the green pentagram represents the starting

point for SPU. (a) The whole study area; (b) T3 E area.

The initial offset of seasonal motion parameters in the proposed model is estimated by
modeling the fitting curve of temperature listed in Table 1, as shown in Figure 6a. The blue
asterisk represents the monthly average temperature of Beijing, in the years of 2012–2016.
Thus, the initial offset t0 = −0.4830yr is obtained by fitting the temperatures with seasonal
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deformation model (Equation (15)). After removing long arcs exceeding the threshold, the
constrained Delaunay triangulation network of time/baseline plane for TPU is formed as
shown in Figure 6b.
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Figure 6. SAR data representation. (a) Seasonal motion parameter fitting curves, the “−” before

numbers in the picture is a minus sign; (b) the constrained Delaunay triangulation network in

time/baseline plane for the TPU.

6.1. PU Comparison

First of all, we investigate the performance of the multi-component temporal coherence
model from the conflict and effective edge number of 3D PU. The conflict and effective
edges, used for effectively evaluating the 3D PU performance for real data [10,24,43], are
defined as the edges whose unwrapped PGs’ absolute values are greater and not than π,
respectively. The 3D PU results based on linear and multi-component temporal coherence
models are listed in Table 2, which presents the phase-consistency edges Ne and ratio
rc of the conflict edges over all arcs at four iterations in all interferograms. It is clearly
shown from Table 2, that the statistical ratio rc based on both models are low for the high
temporal coherence edges, and the ratio decreases as the temporal coherence intervals
and iteration increase; while the number of phase-consistency edges Ne is on the opposite.
Moreover, more phase-consistency edges with higher temporal coherence are obtained
based on the multi-component model than those based on the linear model at the fourth
iteration. Although rc of the multi-component model is 0.3% less than that of the linear
model, Ne of former is 14.7% greater than the latter at the final iteration. On the whole, the
3D PU performance of the multi-component model is superior to that of the linear model.

Table 2. The phase-consistency edges Ne and ratio rc of conflict edges over all arcs at four iterations

for all interferograms.

Models Coherence Interval
1 2 3 4

Ne rc Ne rc Ne rc Ne rc

[0.625, 0.675] 602,314 1.26% - - - - - -
[0.675, 0.725] 1,459,361 1.06% 810,080 0.65% - - - -
[0.725, 0.775] 1,922,238 0.78% 2,002,474 0.56% 1,067,701 0.39% 1,082,625 0.38%

Linear [0.775, 0.825] 2,593,991 0.48% 2,676,274 0.36% 2,659,772 0.28% 2,714,661 0.27%
[0.825, 0.875] 3,544,916 0.26% 3,605,751 0.20% 3,577,255 0.16% 3,624,002 0.15%
[0.875, 0.925] 5,089,339 0.14% 5,077,723 0.10% 5,001,463 0.08% 5,018,307 0.08%
[0.925, 1] 17,334,868 0.03% 16,933,986 0.02% 16,529,203 0.01% 16,416,832 0.01%

total 32,547,027 4.02% 31,106,288 1.89% 28,835,394 0.92% 28,856,427 0.89%
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Table 2. Cont.

Models Coherence Interval
1 2 3 4

Ne rc Ne rc Ne rc Ne rc

[0.625, 0.675] 499,764 1.85% - - - - - -
[0.675, 0.725] 1,294,712 1.57% 731,014 0.96% - - - -
[0.725, 0.775] 1,811,273 1.06% 1,892,186 0.79% 1,033,261 0.51% 1,052,948 0.50%

Multi- [0.775, 0.825] 2,620,577 0.66% 2,714,047 0.49% 2,725,390 0.38% 2,785,141 0.37%
component [0.825, 0.875] 3,807,893 0.35% 3,904,280 0.26% 3,910,974 0.21% 3,985,081 0.20%

[0.875, 0.925] 5,730,787 0.17% 5,795,875 0.13% 5,786,819 0.10% 5,838,369 0.10%
[0.925, 1] 19,709,061 0.04% 19,593,356 0.03% 19,457,610 0.02% 19,442,348 0.02%

total 35,474,067 5.69% 34,630,758 2.65% 32,914,054 1.22% 33,103,887 1.19%

Secondly, the number of PSC arcs of the Delaunay triangulation network in az-
imuth/range plane before and after high temporal coherence constraint for the linear
model and multicomponent model is compared in Figure 7. The same constraints, with
temporal coherence greater than 0.65, 0.7, 0.75 and 0.75, respectively, for four iterations,
are applied to optimize the path of SPU in both cases. It is observed that more PSCs
arcs with low temporal coherence are removed for the case of linear model than that for
multicomponent model. In addition, it can be seen from Figure 8 that the PU coverage
based on multi-component temporal coherence model is better than that based on linear
model, especially for the low-density PS area marked by yellow frame, which demonstrates
that the multi-component model approximates the observed sample better than the linear
model. In fact, the 2-D linear model is the special case of 3-D multicomponent model when
estimated seasonal amplitude is zero, which indicates the generality of the multicomponent
model.

Thirdly, the elapsed time of the 3D PU critical process is shown in Figure 9. The blue
and brown bars represent the elapsed time in temporal coherence calculation and TPU +
SPU, respectively. It is observed that under the same PSCs in the first iteration, although
one additional dimension of variables and more PSC arcs need calculation, slightly inferior,
66.5 min, elapsed in the temporal coherence calculation procedure by the multi-component
case, compared with 65 min for the linear case. It indicates the competitiveness of the
multi-component model in elapsed time compared with the linear model.
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Figure 7. Number of PSC arcs of the Delaunay triangulation network in azimuth/range plane before

and after high temporal coherence constraint for linear model (a) and multicomponent model (b),

respectively. The blue bars stand for the number of PSC arcs, while the brown bars stand for their

selected ones with constraint.
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(a) (b)

Figure 8. The constrained Delaunay triangulation network in azimuth/range plane of PSCs at the

final iteration for linear (a) and multicomponent (b) model. Red points represent the PSCs, blue and

white arcs represent the Delaunay triangulation network of PSCs before and after high temporal

coherence constraint.
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Figure 9. Temporal coherence calculation (TCC) and PU elapsed time in each iteration; (a,b) list the

elapsed time for linear and multi-component models, respectively.

6.2. PSCs Comparison

The number of PSCs with the coherence constraint based on both models is compared
in Figure 10, where the blue bar represents the original number of PSCs, e.g., the original
PSCs selected by DA < 0.32 for the first iteration and γx > 0.6 and γx > 0.7 and γx > 0.75
for the second, third and fourth iterations, while the brown bar represents the number after
Delaunay triangulation network optimization. It is observed that from the first iteration, the
same number of original PSCs, with 424,448, is obtained in both linear and multi-component
cases. Moreover, it can be seen from the second bar to the fourth bar that more PSCs are
retained in the multi-component case than in the linear case with the same selection principle.
The final number of PS selected based on the multi-component model is 35,270 more than
that based on the linear model, an increase by about 10%. It demonstrates that there are
more pixels with high temporal coherence in the multi-component case.
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Figure 10. PSCs Number before and after coherence threshold selection in each iteration. (a,b) list the

number of PSCs for linear and multi-component models, respectively.

Secondly, according to the estimated time-series noise phase, the coherence and stan-
dard deviation (Std) of phase noise are calculated. As shown in Figure 11, the the same
trend is observed from their histograms, that is, the coherence and Std of phase noise get
better stepwise during four iterations, which indicates availability of the IPSI results based
on both linear and multi-component models. Especially, the coherence and Std of phase
noise based on the multi-component model is better than those based on the linear model.
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Figure 11. The histograms of coherence and standard deviation of phase noise during four iterations.

(a,b) are the histograms of coherence and standard deviation of phase noise based on the linear model,

respectively, while (c,d) are based on the multi-component model.

6.3. Results Comparsion

The corrected DEM, deformation velocity and seasonal amplitude are shown in
Figure 12, from which it can be seen that the new DEMs are significantly more accu-
rate than the referred SRTM DEM (Figure 4c), in particular for the area of Terminal 3.
The trend of corrected DEM is consistent with the TanDEM DEM of the Beijing Capital
International Airport area. The consistent trend also applies to the deformation velocity by
comparing with referred deformation velocity obtained by the StaMPS method from June
2003 to November 2013 [44]. The observed time overlapped about 2 years with the data
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set we used. However, there is some difference due to the difference of spatial resolution,
especially for the DEM. Furthermore, more detail is presented by the estimated deformation
velocities in both cases than the results obtained by the StaMPS method. Moreover, the
same trend of topography, deformation velocity and seasonal amplitude can be observed
from Figure 12 in both cases. From Figure 12c,f, we can find that most PS pixels have
small seasonal displacement, which may be caused by seasonal change of underground
water [41], and some buildings with thermal dilation [30,45,46].
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Figure 12. IPSI final results. All results shown in azimuth-slant range coordination. The “−” before

numbers in the picture is a minus sign. (a,d) are the corrected DEM [m] based on the linear and

multi-component model, respectively, after adding residual topography back to the coarse DEM.

(b,e) are deformation velocity [mm/yr] based on the linear and multi-component model, respectively.

(c,f) are seasonal amplitude [mm] based on the linear and multi-component model, respectively.

Then, we investigate the results of common PS pixels in both cases. 353,845 common
PS pixels, accounting for 99.6% PS pixels in linear case, are plotted in Figure 13a. Their
joint distributions of topography, deformation velocity and seasonal amplitude between
both models are shown in Figure 13b–d, respectively. Given the results for common PS
pixels, the evaluation result including bias, RMSE and R2, based on the multi-component
model are listed in Table 3. It indicates the results for common PS pixels based on both
models are close. The local statistics of cumulative deformation time series of one arbitrary
local common pixel, located in subsidence area, are shown in Figure 13e,f, respectively. It
is observed that the cumulative deformation time series based on both models are close.
In fact, the RMSE of the cumulative deformation time series with respect to the modeled
cumulative deformation is 2.99 mm. It demonstrates the effectiveness of the results based
on the multi-component model.
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Figure 13. Comparisons of the common PS pixels’ results based on both model. (a) is for the common

PS pixels selected. (b–d) are joint distribution of common PS pixels’ topography, deformation velocity

and seasonal amplitude between both models. (e,f) represent statistics of the local 49 PS points’

cumulative deformation time series in case of linear and multi-component models for the PS pixels

marked out by white circle in (a), and the blue dotted line stands for the mean modeled cumulative

deformation [mm].

Table 3. Evaluation results of the multi-component temporal coherence model.

Indicators Topography Deformation Velocity Seasonal Amplitude

MAE 2.22 m 0.78 mm/yr 0.67 mm

RMSE 2.44 m 0.89 mm/yr 0.82 mm

R2 0.955 0.995 0.856

Certainly, there is some difference due to the more PS results in multi-component
case. Figure 14a shows the extra 36,607 pixels of the multi-component case. An arbitrary
pixel, marked with green cross in Figure 14a, is chosen to confirm effectiveness of extra
seasonal amplitude estimated in the multi-component case. As shown in Figure 14b,c, the
distribution of residual deformation after subtracting the linear component is highly related
to that of air temperature. The correlation coefficient is 0.9 by fitting the scatter diagram
of temperature and residual deformation, which indicates the effectiveness of the multi-
component model used for retrieving seasonal deformation. The results of local region
for both cases, marked with yellow frame in Figure 14a, are magnified for comparison. In
Figure 15, the red line above shows the local results based on linear model, while the below
one shows the other case. It can be seen that the local results based on the multi-component
model covers the objects better than the linear model. It is obvious that the lounge bridges
of the T3 C building are clearly reconstructed by PS points. Quantitatively, the former
covers 20,063 pixels, which is 13.3% more than the latter.
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Figure 14. Analysis of extra PS pixels the multi-component case more than the linear case. The

“−” before numbers in the picture is a minus sign. (a) The extra PS pixels the multi-component

case more than the linear case. (b) The distributions of residual deformation subtracting the linear

component and air temperature. (c) Scatter plot and regression analysis of residual deformation and

air temperature.
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Figure 15. Local results comparison for both models. The results above and below the red line

based on linear and multi-component models, respectively. All images shown in azimuth-slant

range coordination. (a) The corrected DEM [m]. (b) The LOS deformation velocity [mm/yr]. (c) The

seasonal amplitude [mm].

Last but not least, as shown in Figure 16, the two models are compared in terms of
uncertainties of residual topography, deformation velocity and seasonal amplitude. It is
observed from their histograms that the uncertainties of residual topography, deformation
velocity and seasonal amplitude in the multi-component case are better than those in the
linear case. In detail, PS pixels with 0.5 m, 0.2 mm/yr and 0.2 mm estimation uncertainty
in residual topography, deformation velocity and seasonal amplitude, respectively, account
for 90.0%, 96.5% and 72.2% in the multi-component case, while they are, respectively,
85.1%, 94.8% and 61.5% in the linear case. As shown in the bottom row of Figure 16
for the uncertainties based on the multi-component model minus those based on the
linear model, the result based on the multi-component model is better. In fact, when
the coherence is above 0.65, the worst uncertainties from the multi-component model in
residual topography, deformation velocity and seasonal amplitude estimation are 2.15 m,
0.59 mm/yr and 0.99 mm, respectively.
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Figure 16. Uncertainties evaluation of the results based on linear (top row) and multi-component

(second row) models and their histograms (third row) and differential results of common pixels (last

row). (a–f) represent the uncertainties of residual topography [m], deformation velocity [mm/yr] and

seasonal amplitude [mm], respectively. (g–i) are the histograms of residual topography, deformation

velocity and seasonal amplitude based on both models. (j–l) are the uncertainties based on the

multi-component model minus those based on the linear model in terms of residual topography,

deformation velocity and seasonal amplitude.The first, second and third columns represent the

uncertainty of residual topography [m], deformation velocity [mm/yr] and seasonal amplitude [mm],

respectively.
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7. Conclusions

In this work, a multi-component temporal coherence model, which considers more
components than the conventional linear model, has been developed for 3-D PU in TS-
InSAR of seasonal deformation areas, and an uncertainty evaluation bound is derived
for measuring the accuracy of residual topography, deformation velocity and seasonal
amplitude. The multi-component temporal coherence model is applied to the IPSI, and
its performance is demonstrated using a set of TSX/TDX data. In terms of PU evaluation,
PS selection and final estimation results, the performance based on the multi-component
model is better than the linear model given the same number of iterations and procedure.
Compared with the 2-D linear model, it is found that the number of PS pixels selected with
the same coherence threshold is increased by about 10%, 14.7% more arcs of PS pixels with
high temporal coherence are used for 3D PU, and more PS pixels are of low uncertainty in
residual topography, deformation velocity and seasonal amplitude estimation. Moreover, a
competitive computing speed is obtained based on the multi-component model.
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