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Trust levels and practical key rates in wired and wireless networks
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Continuous variable (CV) quantum key distribution (QKD) provides a powerful setting for secure quantum

communications, thanks to the use of room-temperature off-the-shelf optical devices and the potential to reach

much higher rates than the standard discrete-variable counterpart. In this paper, we provide a general framework

for studying the composable finite-size security of CV-QKD with Gaussian-modulated coherent-state protocols

under various levels of trust for the loss and noise experienced by the parties. Our paper considers both wired

(i.e., fiber-based) and wireless (i.e., free-space) quantum communications. In the latter case, we show that high

key rates are achievable for short-range optical wireless (LiFi) in secure quantum networks with both fixed

and mobile devices. Finally, we extend our investigation to microwave wireless (WiFi) discussing security and

feasibility of CV-QKD for very short-range applications.

DOI: 10.1103/PhysRevResearch.3.043014

I. INTRODUCTION

Quantum key distribution (QKD) [1] enables the genera-

tion of secret keys between two or more authenticated parties

by resorting to the fundamental laws of quantum mechanics.

Its continuous variable (CV) version [2–6] represents a very

profitable setting and opportunity thanks to its more direct

implementation in the current communication infrastructure

and, most importantly, for its potential to approach the ulti-

mate rate limits of quantum communication, as represented

by the repeaterless PLOB bound [7]. From an experimental

point of view, we have been witnessing an increasing number

of realizations closing the gap with the more traditional qubit-

based implementations [8,9].

The most advanced protocols of CV-QKD are the

Gaussian-modulated coherent-state protocols [3–5]. Not only

they are very practical, but also enjoy the most advanced

security proofs, accounting for finite-size effects (i.e., finite

number of signal exchanges) and composability (so that each

step of the protocol has an associated error, which adds

to an overall “epsilon”-security) [1,10]. Very recently, this

level of security has been extended to the free-space setting

[11,12], where we need to consider not only the presence of

diffraction-induced loss [13–15], atmospheric extinction [16]

and background thermal noise [17,18], but also the effect of

fading, as induced by pointing error and turbulence [19–25].

The importance of studying fading and atmospheric effects in

CV-QKD is an active area with increasing efforts put by the

community at large (e.g., see Refs. [26–37] ).

Published by the American Physical Society under the terms of the
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While composable security is typically assessed against

collective or coherent attacks, experiments may involve some

additional (realistic) assumptions that elude this theory. For

instance, these assumptions may concern some level of trusted

noise in the setups (e.g., this is often the case for the elec-

tronic noise of the detector) or some realistic constraint on the

eavesdropper, Eve (e.g., it may be considered to be passive

in line-of-sight free-space implementations). For this reason,

here we present the general theory to cover all these cases.

In fact, we consider various levels of trust for the receiver’s

setup, starting from the traditional scenario where detector’s

loss or noise are untrusted, meaning that Eve may perform

a side-channel attack over the receiver besides attacking the

main channel. Then, we consider the case where detector’s

noise is trusted but not its loss, which corresponds to Eve

collecting leakage from the receiver. Finally, we study the

more trustful scenario where both detector’s loss and noise

are considered to be trusted, so that Eve is excluded from

side-channels to the receiver. We show how these assump-

tions can nontrivially increase the composable key rates of

Gaussian-modulated CV-QKD protocols and tolerate higher

dBs.

In our analysis, we then investigate the free-space setting,

specifically for near-range wireless quantum communications

at optical frequencies (LiFi). This scenario involves the pres-

ence of free-space diffraction and also fading effects, mainly

due to pointing and tracking errors associated with the limited

technology of the transmitter (while we can neglect turbulence

at such distances). We consider communication with both

fixed and mobile devices, assuming realistic parameters for

indoor conditions and relatively-large field-of-views for the

receivers. Security is studied under the various trusted mod-

els for the receiver’s detector and then including additional

assumptions for Eve due to the line-of-sight configuration.

Here too we show that key rates are remarkably increased as

an effect of the realistic assumptions. More interestingly, we
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show that wireless high-rate CV-QKD is indeed feasible with

mobile devices.

Finally, we consider wireless quantum communications

at the microwave frequencies (WiFi) where both loss and

thermal noise are very high. In this scenario, we consider a

potential regime of parameters that enables very short-range

quantum security, e.g., between contact-less devices within

the range of a few centimeters.

The paper is organized as follows. In Sec. II, we provide a

general framework for the composable security of CV-QKD,

which also accounts for levels of trust in the loss and noise of

the communication. In Sec. III, we consider near-range free-

space quantum communications, first at optical frequencies

(with fixed and mobile devices) and then at the microwaves.

Section IV is for conclusions.

II. GENERAL FRAMEWORK FOR COMPOSABLE

SECURITY OF CV-QKD

A. General description

Let us consider a Gaussian-modulated coherent-state pro-

tocol between Alice (transmitter) and Bob (receiver). Alice

prepares a coherent state |α〉 whose amplitude α is modu-

lated according to a complex Gaussian distribution with zero

mean and variance μ − 1. Assuming the notation of Ref. [6],

we may decompose the amplitude as α = (q + ip)/2, where

x = q or p represents the mean value of the generic quadrature

operator x̂ = q̂, p̂ where [q̂, p̂] = 2i. This generic quadrature

can be written as x̂ = x̂0 + x, where x̂0 is the vacuum noise

associated with the bosonic mode and the real variable x is a

random Gaussian displacement with zero mean and variance

σ 2
x = μ − 1. (1)

The coherent state is sent through a thermal-loss channel

controlled by the eavesdropper, with transmissivity ηch and

mean number of thermal photons n̄e. Equivalently, we may

introduce the variance ω = 2n̄e + 1 and the background ther-

mal noise n̄B defined by n̄e = n̄B/(1 − ηch), so n̄B photons

are added to the input signal. Bob’s setup is characterized by

quantum efficiency ηeff and extra noise variance νex = 2n̄ex,

where n̄ex is an equivalent number of thermal photons gen-

erated by the imperfections in his receiver station (due to

electronic noise, phase errors etc.)

From an energetic point of view, the initial mean photons

at the transmitter n̄T are attenuated by an overall factor τ =
ηchηeff, which can be seen as the total effective transmissivity

of the extended channel between Alice and Bob. Thus, the

total mean number of photons that are seen by the receiver’s

detector is given by

n̄R = τ n̄T + n̄, (2)

where n̄ is the total number of thermal photons due to the

various sources of noise, given by

n̄ = ηeffn̄B + n̄ex. (3)

See also Fig. 1 for a schematic of the overall scenario.

Bob’s detection is either a randomly-switched homodyne,

measuring q̂ or p̂ [3], or heterodyne, realizing the joint mea-

surement of q̂ and p̂ [4]. We may treat both cases compactly

with the same formalism. In both protocols, Bob retrieves

FIG. 1. Quantum communication scenario between transmitter

(Alice) and receiver (Bob) separated by a quantum channel with

transmissivity ηch and thermal number n̄e = n̄B/(1 − ηch). Bob’s

setup has quantum efficiency ηeff and extra thermal photons n̄ex. The

mean number of photons at the input (n̄T ) and output (n̄R) follow

Eq. (2), while the input classical variable (x) and the output one

(y) follow Eq. (4). We also describe the various trust levels for the

receiver. In the scenario “Eve (1)”, the eavesdropper is assumed to

attack the external channel only. In the scenario “Eve (2)”, there is

also a passive side-channel attack where the eavesdropper collects

leakage from the receiver’s setup. Finally, in the scenario “Eve (3)”,

we assume that the eavesdropper is also able to perform an active

side-channel attack, so that the noise internal to the setup has to be

considered untrusted.

an outcome y, which corresponds to Alice’s input x. For the

homodyne protocol, there is a single pair (x, y) for each mode

transmitted by Alice while, for the heterodyne protocol, there

are two pairs of variables per mode (but affected by more

noise).

The input-output relation for the total channel from the

classical input x to the output y takes the form

y =
√

τx + z, (4)

where z is a noise variable. The latter is given by

z =
√

ηeff(1 − ηch)x̂e +
√

τ x̂0

+
√

1 − ηeffx̂v + zex + zdet, (5)

where x̂e denotes the quadrature of the thermal mode e, x̂v is

the quadrature associated with setup vacuum mode v (quan-

tum efficiency), zex is a Gaussian variable with var(zex) = 2n̄ex

accounting for the extra noise of the setup, and zdet is an

additional Gaussian variable with var(zdet) = νdet − 1 where

νdet is the quantum duty (“qu-duty”) associated with detection:

νdet = 1 for homodyne and νdet = 2 for heterodyne. See also

Fig. 1. In total the noise variable z has variance

σ 2
z = 2n̄ + νdet. (6)

From the input-output relation of Eq. (4), we may compute

Alice and Bob’s mutual information I (x : y), which takes the

same expression in direct reconciliation (where Bob infers x

from y) and reverse reconciliation (where Alice infers y from

x). In fact, from var(y) = τσ 2
x + σ 2

z and var(y|x) = σ 2
z , we get

I (x : y) =
νdet

2
log2

(
1 +

σ 2
x

χ

)
, (7)
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where

χ :=
σ 2

z

τ
=

2n̄ + νdet

τ
(8)

is the equivalent noise. Clearly I (x : y) can be specified to

Ihom (for homodyne) and Ihet (for heterodyne) by choosing the

corresponding value for νdet.

Note that the equivalent noise can be rewritten as

χ = ξtot +
νdet

τ
, ξtot :=

2n̄

τ
, (9)

where ξtot defines the total excess noise. In turn, the total

excess noise can be decomposed as

ξtot = ξch + ξex, (10)

ξch :=
2(n̄ − n̄ex)

τ
=

2ηeffn̄B

τ
, (11)

ξex :=
2n̄ex

τ
, (12)

where ξch is the excess noise of the external channel, i.e.,

related to the thermal background, while ξex is that associated

with the extra noise in the setup.

Let us make an important remark on notation. The use of

the excess noise ξtot is typical in fiber-based communication

channels, while the use of the equivalent number of thermal

photons n̄ is instead more appropriate for free-space channels.

In general, the two notations are related by the formulas above

and can be used interchangeably. In the following, we choose

to work with n̄, which is particularly convenient from the point

of view of the finite-size estimators. However, for complete-

ness, we also provide the corresponding formulations in terms

of excess noise.

B. Local oscillator and setup noise

Before discussing security aspects, let us discuss the lo-

cal oscillator (LO) and then clarify the main contributions

to the setup noise. In terms of equivalent number of ther-

mal photons, the setup noise can be decomposed as n̄ex =
n̄LO + n̄el + n̄other, where n̄LO is the mean number of thermal

photons associated with the phase errors of the LO, n̄el is

the mean number of thermal photons generated by electronic

noise, and n̄other is any other uncharacterized but independent

source of noise (here neglected). Similarly, we may write a

corresponding decomposition in terms of excess noise ξex =
ξLO + ξel + ξother, which is obtained by using ξ(...) = 2n̄(...)/τ .

1. Phase-locking via TLO or phase-reconstruction via LLO

LO is crucial in CV-QKD since it contains the phase infor-

mation that allows the parties to exploit the two quadratures

of the mode. In other words, Alice’s and Bob’s rotating refer-

ence frames need to be phase-locked so Bob can measure the

incoming state in the same quadrature(s) chosen by Alice. To

achieve this goal there are two techniques, the simplest solu-

tion of the transmitted LO (TLO) [3] and the more challenging

(but more secure) one of the local LO (LLO) [1,38–40].

With the TLO, the LO is generated by the transmitter

and multiplexed in polarization with the signal mode/pulse.

Both of them are sent through the channel and then de-

multiplexed by the receiver before being interfered in the

homodyne/heterodyne setup. With the LLO, bright reference

pulses are regularly interleaved with the signal pulses (time

multiplexing). At the receiver, both the signals and the refer-

ences are measured with an independent local LO. From the

references, Bob is able to track Alice’s rotating frame and,

using this phase information, he suitably rotates the outcomes

obtained from the signals in the phase space.

Note that both TLO and LLO require to employ half of

the total pulses for phase locking or reconstruction. When

we explicitly consider a clock C for the system (pulses per

second), the LLO involves an extra factor 1/2 in front of the

final key rate, unless this is compensated by using both the

polarizations for the signal transmissions (not possible for the

TLO).

2. Contributions to setup noise

From the point of view of the setup noise, we need to

account for phase errors introduced by an imperfect LO. In

TLO this is negligible (n̄TLO ≃ 0), while for the LLO it is

nontrivial. In fact, assume that signal and reference pulses are

generated with an average linewidth lW = (l
signal
W + lLO

W )/2.

Then, for input classical modulation σ 2
x and transmissivity τ ,

we may write [11]

n̄LLO ≃ 
phτ, 
ph := πσ 2
x C−1lW. (13)

This contribution can equivalently be written as excess noise

ξLLO = 2n̄LLO/τ , according to Eq. (12). For a cw laser lW ≃
1.6 KHz, a clock C = 5 MHz and a typical modulation σ 2

x = 9

(i.e., μ = 10) one has ξLLO ≃ 0.018.

While the LLO introduces phase errors, it may actually be

better when we consider the impact of electronic noise. The

latter can be described by a variance νel or an equivalent num-

ber of photons n̄el = νel/2. Its value depends on the frequency

of the light ν, features of the homodyne/heterodyne detector,

such as its noise equivalent power (NEP) and the bandwidth

W , as well as features of the LO, such as its power at detection

Pdet
LO and the duration of its pulses �tLO. In fact, we may write

n̄el =
νdetNEP2W �tLO

2hνPdet
LO

. (14)

In the case of a TLO, one has Pdet
LO = τPLO, where PLO is

the LO initial power at the transmitter. For an LLO, we instead

have Pdet
LO = PLO. Thus, by setting


el :=
νdetNEP2W �tLO

2hνPLO

, (15)

we may write

n̄TLO
el =


el

τ
, n̄LLO

el = 
el, (16)

so the formulas for the total setup noise are

n̄TLO
ex ≃


el

τ
, n̄LLO

ex ≃ 
el + 
phτ. (17)

These formulas are in terms of equivalent number of thermal

photons and they have corresponding expressions in terms of

setup excess noise by using ξex = 2n̄ex/τ .

043014-3
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(a)

(b)

FIG. 2. Setup noise as a function of the total transmissivity τ

expressed in decibels. (a) We plot the equivalent number of thermal

photons n̄ex associated with the setup noise, for the TLO (black lines)

and the LLO (blue lines), considering the homodyne protocol (solid

lines) and the heterodyne protocol (dashed lines). (b) As in (a) but

we plot the setup excess noise ξex. Parameters are chosen as in the

text. See Eq. (17).

Above we can see the different monotonicity of the setup

noise with respect to τ , between TLO and LLO. Assume

λ = 800 nm and W = 100 MHz, so we have signal pulses of

duration �t = 10 ns and LO pulses of duration �tLO = 10 ns.

For this bandwidth, we can assume the good value NEP =
6 pW/

√
Hz. Then, assuming PLO = 100 mW, we get 
el ≃

1.45 × 10−3 for heterodyne detection (νdet = 2). For the LLO

this value remains low, while for the TLO it is rescaled by

1/τ , which means that it may become large at long distances.

See also Fig. 2 for a comparison.

C. Trust levels

Once we have clarified the main sources of noise in the

communication scenario, we can go ahead and identify differ-

ent levels of trust on the basis of different assumptions for the

eavesdropper (Eve). The basic model is to assume that Eve’s

action is restricted to the outside channel. In this strategy, she

inserts her photons in the thermal background and stores all

the photons, which are not collected by the receiver. However,

she is assumed not to monitor or control the receiver’s setup.

This is the scenario where loss and noise are considered to

be trusted in the receiver. See also Eve (1) in Fig. 1. In this

FIG. 3. Eve’s collective attack under the assumption of trusted

noise in the receiver’s setup, i.e., Eve (2) in Fig. 1.

case, Eve’s collective Gaussian attack is represented by a pu-

rification of the environmental beam-splitter of transmissivity

ηch, where the injected n̄(1)
e = n̄B(1 − ηch)−1 thermal photons

are to be considered part of a two-mode squeezed vacuum

(TMSV) state in Eve’s hands [41].

More generally, we can assume that Eve is able to detect

the leakage from setups [42–44]. Here we consider this po-

tential problem for the receiver’s setup, so that the fraction

1 − ηeff of the photons missed by the detection is stored by

Eve and becomes part of her attack. On the other hand, we

may assume that Eve is not able to actively tamper with the

receiver, i.e., she does not control the noise internal to the

setup, which may therefore be considered as trusted (this is

a reasonable assumption, which is often made by experimen-

talists for the electronic noise of the detector). We call this

scenario the trusted-noise model for the receiver. See Eve

(2) in Fig. 1. In this case, the efficiency ηeff becomes part

of Eve’s environmental beam-splitter, which now has total

transmissivity τ = ηchηeff and injects n̄(2)
e = ηeffn̄B(1 − τ )−1

thermal photons.

Finally, there is the worst-case scenario where no im-

perfection in the receiver setup is trusted. In fact, the most

pessimistic assumption is that Eve can also potentially control

the extra photons in the setup n̄ex besides collecting its leak-

age. See also Eve (3) in Fig. 1. In this case, the extra photons

become part of Eve’s environment. In other words, the entire

channel from the transmitter to the final (ideal) detection is

dilated into a single beam-splitter with transmissivity τ =
ηchηeff and injecting n̄(3)

e = n̄(1 − τ )−1 thermal photons.

Clearly the security increases from the completely trusted

receiver [Eve (1)] to the worst-case scenario [Eve (3)]. Sim-

ilarly, the key rate will decrease, because more degrees of

freedom would go under Eve’s control. For this reason, the

worst-case scenario provides a lower bound for all the others.

Also note that the worst-case scenario progressively collapses

in the lower levels if we assume n̄ex = 0 and then ηeff = 1.

Also note that, in general, one may consider hybrid situa-

tions between Eve (2) and Eve (3), where the setup noise

n̄ex is partly trusted (n̄tr
ex) and partly untrusted (n̄unt

ex ). This is

included by writing n̄unt
ex = ηeffn̄

unt
B and increasing the back-

ground n̄B → n̄B + n̄unt
B .

D. Asymptotic key rates

It is convenient to start by studying the security of the

protocol with the intermediate assumption of a trusted-noise

detector as in Fig. 3, where the setup noise is considered to

be trusted, i.e., not coming from Eve’s attack [cf. Eve (2) in

043014-4
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Fig. 1]. Then, we analyze the key rate in the most optimistic

case where also the setup loss is considered to be trusted. Fi-

nally, we compare the formulas with the worst-case scenario,

where all noise is considered to be untrusted [cf. Eve (3) in

Fig. 1]. The latter represents the case analyzed in Ref. [11].

1. Asymptotic key rate with a trusted-noise detector

Consider the trusted-noise detector, which corresponds to

the dilated scenario in Fig. 3. Here the total transmissivity is

τ = ηchηeff and the injected thermal noise is given by n̄(2)
e =

ηeffn̄B(1 − τ )−1. In order to compute the asymptotic secret

key rate in reverse reconciliation, we consider Bob and Eve’s

joint covariance matrix (CM). Let us define the basic block

matrices I := diag(1, 1) and Z := diag(1,−1). Then, the joint

CM is given by

VBEE ′ =
(

bI C

CT VEE ′

)
, (18)

where Eve’s reduced CM VEE ′ and the cross-correlation block

C take the forms

VEE ′ =
(

φI ψZ

ψZ ωI

)
, C = (θI γ Z), (19)

where we have set

ω = 2n̄(2)
e + 1 =

2ηeffn̄B

1 − τ
+ 1 =

τξch

1 − τ
+ 1, (20)

b = τ (μ − 1) + 2n̄ + 1 = τ (μ − 1) + τξtot + 1, (21)

γ =
√

(1 − τ )(ω2 − 1), θ =
√

τ (1 − τ )(ω − μ), (22)

ψ =
√

τ (ω2 − 1), φ = τω + (1 − τ )μ. (23)

In the homodyne protocol, Eve’s conditional CM on Bob’s

outcome y is given by [6,45,46]

Vhom
EE ′|B = VEE ′ − b−1CT

�C, (24)

where � := diag(1, 0). In the heterodyne protocol, we have

instead the following conditional CM [6,45,46]

Vhet
EE ′|B = VEE ′ − (b + 1)−1CT C. (25)

Call {ν±} the symplectic spectrum of Eve’s CM VEE ′ .

Then, call {νhom
± } and {νhet

± } the symplectic spectra of Eve’s

conditional CMs Vhom
EE ′|B and Vhet

EE ′|B, respectively. Then, we

may compute Eve’s Holevo information for both protocols,

as

χhom(E : y) =
∑

k=±

[
H (νk ) − H

(
νhom

k

)]
, (26)

χhet(E : y) =
∑

k=±

[
H (νk ) − H

(
νhet

k

)]
, (27)

where E = EE ′ and H (x) is the entropic function

H (x) :=
x + 1

2
log2

x + 1

2
−

x − 1

2
log2

x − 1

2
. (28)

For a realistic reconciliation efficiency β ∈ [0, 1], account-

ing for the fact that data-processing may not reach the

Shannon limit, we write the asymptotic key rate

R(2)
asy(τ, n̄, n̄B) = βI (x : y)τ,n̄ − χ (E : y)τ,n̄,n̄B

, (29)

where the explicit expressions for the homodyne protocol [3]

and the heterodyne protocol [4] derive from the corresponding

expressions for the mutual information [cf. Eq. (7)] and the

Holevo bound [cf. Eqs. (26) and (27)].

It is clear that, in a practical setting, the parties do not

know all the parameters entering the rate in Eq. (29), so they

need to resort to suitable procedures of parameter estimation.

It is acceptable to assume that Alice controls/knows the sig-

nal modulation μ, while Bob monitors/knows the quantum

efficiency ηeff. The channel parameters τ and n̄ need to be

estimated. In general, the setup noise n̄ex depends on the total

transmissivity τ . For this reason, n̄ex too needs to be estimated

by the parties. The estimates of n̄ and n̄ex then provide the

value of n̄B.

2. Asymptotic key rate with a trusted-loss and trusted-noise

detector

Here we consider the best possible scenario for Alice and

Bob, which is the assumption of Eve (1) in Fig. 1. Not only

the setup noise is trusted but also the loss of the setup into

the external environment is considered to be trusted (i.e., we

assume Eve is not collecting the leakage from the setup). The

asymptotic key rate can be found by a simple modification of

the previous derivation.

From the point of view of Alice and Bob, the mutual

information is clearly the same. For Eve instead, the effective

beam splitter used in her attack has now transmissivity ηch and

input thermal noise n̄(1)
e = n̄B(1 − ηch)−1. It is easy to check

that we need to use the CM in Eq. (19) with the replacements

ω = 2n̄(1)
e + 1 =

2n̄B

1 − ηch

+ 1 =
ηchξch

1 − ηch

+ 1, (30)

γ =
√

ηeff(1 − ηch)(ω2 − 1), (31)

θ =
√

τ (1 − ηch)(ω − μ), (32)

ψ =
√

ηch(ω2 − 1), φ = ηchω + (1 − ηch)μ, (33)

while parameter b is the same as in Eq. (21).

The next steps are as before. One computes the symplectic

spectrum {ν±} of the CM VEE ′ and those, {νhom
± } and {νhet

± }, of

the conditional CMs Vhom
EE ′|B and Vhet

EE ′|B. These eigenvalues are

then replaced in Eqs. (26) and (27). In this way, we get the

corresponding asymptotic key rates R(1)
asy(τ, n̄, n̄B) following

the formula in Eq. (29). Parameters need to be estimated in

the same way as explained in the previous subsection.

3. Asymptotic key rate with untrusted detector

In the worst-case scenario of untrusted noise [cf. Eve (3)

in Fig. 1], the entire channel is dilated into a single beam

splitter with transmissivity τ = ηchηeff, where Eve injects

n̄(3)
e = n̄(1 − τ )−1 thermal photons. Setup noise n̄ex becomes

part of Eve’s attack, so all excess noise is now considered to be

untrusted. From the point of view of the asymptotic key rate, it

is sufficient to replace ηeffn̄B = n̄ − n̄ex → n̄ in the expression

of Eve’s variance ω in Eq. (20), with implicit modifications for

the other elements of the CM. More precisely, it is sufficient
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to set

ω = 2n̄(3)
e + 1 =

2n̄

1 − τ
+ 1 =

τξtot

1 − τ
+ 1. (34)

Alternatively, we can exploit the entanglement-based

representation of the protocol according to which Alice’s

Gaussian-modulated coherent states are realized by hetero-

dyning mode A of a TMSV state [6] with CM

VAA′ =
(

μI
√

μ2 − 1Z√
μ2 − 1Z μI

)
. (35)

After the thermal-loss channel with total transmissivity τ ,

Alice and Bob’s shared Gaussian state ρAB has CM

VAB =
(

μI
√

τ (μ2 − 1)Z√
τ (μ2 − 1)Z bI

)
. (36)

Eve is assumed to hold the purification of ρAB, so the total

state ρABE of Alice, Bob, and Eve is pure. This means that

S(E) = S(AB), where S(Q) denotes the von Neumann en-

tropy computed over the state ρQ of system Q. Then, because

homodyne/heterodyne is a rank-1 measurement (projecting

pure states in pure states), we have that ρAE|y is pure, which

implies the equality of the conditional entropies S(E|y) =
S(A|y). As a result, Eve’s Holevo bound is simply given by

χ (E : y) := S(E) − S(E|y) = S(AB) − S(A|y). (37)

Thus, we may compute χ (E : y) using Alice and Bob’s CM

VAB with symplectic eigenvalues ν ′
±. It is easy to find [11]

χhom(E : y) = H (ν ′
+) + H (ν ′

−) − H

[√
μ2 −

μτ (μ2 − 1)

b

]
,

(38)

χhet(E : y) = H (ν ′
+) + H (ν ′

−) − H

[
μ −

τ (μ2 − 1)

b + 1

]
, (39)

where b is given in Eq. (21).

Using these expressions and the mutual information of Eq.

(7), we write

R(3)
asy(τ, n̄) = βI (x : y)τ,n̄ − χ (E : y)τ,n̄. (40)

Note that the parties only need to estimate the extended-

channel parameters τ and n̄. As we see below these estimators

are built up to some error probability εpe.

E. Parameter estimation

As mentioned in the previous section, Alice and Bob need

to estimate some of the parameters. Even if they control

the values of the input Gaussian modulation μ and they can

calibrate the output quantum efficiency ηeff, they still need

to estimate the various channel’s parameters and the setup

noise n̄ex. The procedure has some differences depending if

we consider a trusted or untrusted model for the receiver. For

a trusted-noise detector [Eve (2)] and a fully-trusted detector

[Eve (1)], Alice and Bob need to estimate τ , n̄, and n̄B (via

n̄ex). For the untrusted detector [Eve (3)], they only need to

estimate τ and n̄, since the two thermal contributions n̄B and

n̄ex are both considered to be untrusted (and therefore merged

into a single parameter).

We therefore consider two basic independent estimators τ̂

and ̂̄n, for τ and n̄. Then, in the trusted scenarios [Eve (1)

and (2)], we also require the use of additional estimators,

which can be derived from the basic ones. To estimate the

parameters, Alice and Bob randomly and jointly choose m

of the N distributed signals, and publicly disclose the corre-

sponding mp := νdetm pairs of values {xi, yi}
mp

i=1. These are m

pairs for the homodyne protocol and 2m pairs for the hetero-

dyne protocol. Under the standard assumption of a collective

(entangling-cloner) Gaussian attack, these pairs are indepen-

dent and identically distributed Gaussian variables, related by

Eq. (4).

From the pairs, they build the estimator T̂ of the square-

root transmissivity T :=
√

τ , i.e.,

T̂ =
∑mp

i=1 xiyi∑mp

i=1 x2
i

, (41)

and the estimator σ̂ 2
z of the noise variance σ 2

z , i.e.,

σ̂ 2
z =

1

mp

mp∑

i=1

(yi − T̂ xi )
2. (42)

From these, we can derive the two basic estimators

τ̂ := T̂ 2, ̂̄n :=
σ̂ 2

z − νdet

2
. (43)

For a confidence parameter w, we then define and compute

the worst-case estimators [47]

τ ′ := τ̂ − w

√
var(τ̂ ) ≃ τ − 2w

√
2τ 2 + τσ 2

z /σ 2
x

mp

, (44)

n̄′ := ̂̄n + w

√
var(̂n̄) ≃ n̄ + w

σ 2
z√

2mp

. (45)

Each of these estimators bounds the corresponding actual

value, τ and n̄, up to an error probability εpe if we take

w =
√

2 erf−1(1 − 2εpe), (46)

or, in case of low values (εpe � 10−17), if we take

w =
√

2 ln(1/εpe). (47)

As a result the total error probability associated with param-

eter estimation is ≃ 2εpe. See Ref. [11] for more technical

details on these derivations, which exploit tools from Ref. [48]

and involves suitable tail bounds [49,50].

For the trusted-detector scenarios, we need to provide the

best-case estimator of n̄ex, which automatically allows us to

derive the worst-case estimator of n̄B. From the analytical

expressions in Eq. (17), we see that we need to account for

the different behavior of n̄ex in terms of the transmissivity τ ,

which requires both the use of a worst-case estimator τ ′ and

that of a best-case estimator τ ′′ := τ̂ + w

√
var(τ̂ ). In other

words, we have

n̄TLO
ex � n̄TLO

ex,bc :=

el

τ ′′ , (48)

n̄LLO
ex � n̄LLO

ex,bc := 
el + 
phτ
′. (49)
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Correspondingly, we have the following worst-case estimator

for the background thermal noise:

n̄B � n̄′
B :=

n̄′ − n̄ex,bc

ηeff

. (50)

We can now compute the values of the asymptotic key rates

affected by parameter estimation. For the various scenarios,

these are given by

R(1,2)
asy (τ, n̄, n̄B) →

n

N
R(1,2)

asy (τ ′, n̄′, n̄′
B), (51)

R(3)
asy(τ, n̄) →

n

N
R(3)

asy(τ ′, n̄′), (52)

where n = N − m is the number of signals left for key gener-

ation (after m are discarded for parameter estimation). These

key rates are correct up to an error ≃ 2εpe.

As a final remark, notice that the total excess noise ξtot can

be estimated by using τ̂ and ̂̄n via Eq. (9) and therefore worst-

case estimated by using τ ′ and n̄′, i.e.,

ξtot � ξ ′
tot :=

2n̄′

τ ′ . (53)

Similarly, the channel excess noise ξch can be worst-case

estimated by combining Eq. (11) with τ ′ and n̄′
B, i.e.,

ξch � ξ ′
ch :=

2ηeffn̄
′
B

τ ′ . (54)

F. Composable finite-size key rates

After parameter estimation, each block of size N provides

n signals to be processed into a shared key via error correction

and privacy amplification. Given a block, this is successfully

error-corrected with probability pec (or failure probability

FER = 1 − pec known as “frame error rate”). The value of pec

depends on the signal-to-noise ratio, the target reconciliation

efficiency β, and the ε-correctness εcor, the latter bounding

the probability that Alice’s and Bob’s local strings are differ-

ent after error correction and successful verification of their

hashes.

On average npec signals per block are promoted to privacy

amplification. This final step is implemented with an associ-

ated ε-secrecy εsec, the latter bounding the distance between

the final key and an ideal key that is completely uncorrelated

from Eve. In turn, the ε secrecy is technically decomposed as

εsec = εs + εh, where εs is a smoothing parameter and εh is a

hashing parameter.

Overall, the final composable key rate of the protocol takes

the form [11]

R �
npec

N

(
R(k)

pe −
�aep√

n
+




n

)
, (55)

where R(k)
pe depends on the receiver model

R(1,2)
pe = R(1,2)

asy (τ ′, n̄′, n̄′
B), R(3)

pe = R(3)
asy(τ ′, n̄′), (56)

and the extra finite-size terms are equal to

�aep = 4 log2

(
2
√

d + 1
)
√

log2

(
18

p2
ecε

4
s

)
, (57)


 = log2[pec(1 − ε2
s /3)] + 2 log2

√
2εh. (58)

Here the parameter d is the size of Alice’s and Bob’s effective

alphabet after analog-to-digital conversion of their continuous

variables x and y (d = 25 = 32 for a 5-bit discretization). This

rate refers to security against collective Gaussian attacks with

total epsilon security [11]

ε = 2pecεpe + εcor + εsec. (59)

1. Improved pre-factor

Note that the prefactor log2(2
√

d + 1) in the AEP term in

Eq. (57) can be tightened into log2(
√

d + 2). In general, ac-

cording to Theorem 6.4 and Corollary 6.5 of Ref. [51], one can

lower-bound the conditional smooth min-entropy H δ
min(yn|En)

associated with the n-use classical-quantum state ρ⊗n
yE shared

between Bob (classical system y) and Eve (quantum system

E). This is done by using the conditional entropy between the

single-use systems (y and E) up to a penalty, i.e., we may write

[51,52]

H δ
min(yn|En)ρ⊗n � nH (y|E)ρ +

√
n�aep(δ), (60)

where

�aep(δ) = 4(log2 v)

√
− log2(1 −

√
1 − δ2)

≃ 4(log2 v)

√
log2(2/δ2) (61)

v �
√

2−Hmin (y|E) +
√

2Hmax (y|E) + 1, (62)

with v being bounded using min- and max-entropies. Recall

that the min- and max-entropies can be negative in general,

but their absolute values must be � log2 d , with d being the

size of Bob’s alphabet (e.g., this easily follows from Ref. [52,

Lemma 5.2]). This implies the bound v � 2
√

d + 1, which

leads to the prefactor used in Eq. (57). See Ref. [11, Appendix

G] for details on how to connect the key rate with the con-

ditional smooth min-entropy and simplify derivations via the

AEP term.

However, it is worth noting that, for a classical-quantum

state ρyE, the conditional min-entropy is non-negative, i.e.,

Hmin(y|E) � 0. This is a property that can be shown, more

generally, for separable states. In fact, starting from the def-

inition of conditional min-entropy for a generic state ρAB of

two quantum systems A and B [51, Def. 4.1], we can write the

lower bound

Hmin(A|B)ρ � H̃ := sup{λ ∈ R : ρAB � 2−λIA ⊗ ρB}. (63)

For separable ρAB, one may write [52, Lemma 5.2]

ρAB =
∑

k

pkθ
k
A ⊗ ρk

B �
∑

k

pkIA ⊗ ρk
B = IA ⊗ ρB, (64)

which leads to H̃ � 0, since we are left to find the maximum

value of λ such that

ρAB � IA ⊗ ρB, ρAB � 2−λIA ⊗ ρB. (65)

Thus, using Hmin(y|E) � 0 in Eq. (62), we may write v �√
d + 2, which improves Eq. (57) into

�aep = 4 log2(
√

d + 2)

√
log2

(
18

p2
ecε

4
s

)
. (66)
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Note that, for a typical 5-bit digitalization d = 25, we have

log2(
√

d + 2) ≃ 2.94 instead of log2(2
√

d + 1) ≃ 3.6, so the

improvement is limited. In our numerical investigations we

assume the worst-case pre-factor, but keeping in mind that

performances can be slightly improved.

2. Extension to coherent attacks

For the heterodyne protocol, the key rate can be extended

to security against general attacks using tools from Ref. [53].

Let us symmetrize the protocol by applying an identical ran-

dom orthogonal matrix to the classical continuous variables

of the two parties. Then, assume that Alice and Bob jointly

perform met = fetn energy tests on randomly chosen uses

of the channel (for some factor fet < 1). In each test, the

parties measure the local number of photons (which can be

extrapolated from the data) and compute an average over the

met tests. If these averages are greater than a threshold det,

the protocol is aborted. Setting det � n̄T + O(m
−1/2
et ) assures

secure success of the test in typical scenarios (where signals

are attenuated and noise is not too high).

The number of signals for key generation is reduced to

n = N − (m + met ) =
N − m

1 + fet

, (67)

and the procedure needs an additional step of privacy amplifi-

cation compressing the final key by a further amount

�n := 2

⌈
log2

(
Kn + 4

4

)⌉
, (68)

Kn := max

{
1, 2ndet

1 + 2
√

ϑ + 2ϑ

1 − 2
√

ϑ/ fet

}
, (69)

where we have set ϑ := (2n)−1 ln(8/ε).

The composable key rate reads [11]

Rhet
gen �

npec

N

[
R

(k)
pe,het −

�aep√
n

+

 − �n

n

]
, (70)

where R
(k)
pe,het is the rate in Eq. (56) depending on the noise

model for the receiver and suitably specified for the het-

erodyne protocol. Assuming that the original protocol had ε

security against collective Gaussian attacks, the symmetrized

protocol has security ε′ = K4
n ε/50 against general attacks.

Note that this implies a very demanding condition for the ep-

silon parameters, such as εpe. As a matter of fact, εpe should be

so small that the confidence parameter needs to be calculated

according to Eq. (47).

G. Numerical investigations

We may use the previous formulas to plot the compos-

able key rate for the homodyne/heterodyne protocol with

TLO/LLO under each noise model for the receiver, i.e., corre-

sponding to each of the three different assumptions for Eve as

depicted in Fig. 1. Here we numerically investigate the most

interesting case, which is the heterodyne protocol with LLO,

for which we show the performances associated with the three

noise models under collective attacks, and also the worst-case

performance associated with the untrusted-noise model under

general attacks. We adopt the physical parameters listed in

TABLE I. Physical parameters.

Physical parameter Symbol Value

Wavelength λ 800 nm

Detector shot-noise νdet 2 (het)

Detector efficiency ηeff 0.7 (1.55 dB)

Detector bandwidth W 100 MHz

Noise equivalent power NEP 6 pW/
√

Hz

Linewidth lW 1.6 KHz

LO power PLO 100 mW

Clock C 5 MHz

Pulse duration �t,�tLO 10 ns

Setup noise (LLO)
n̄ex

ξex

Eq. (17)

Eq. (12)

Channel noise
n̄B

ξch

1/500

Eq. (11)

Total thermal noise
n̄

ξtot

Eq. (3)

Eq. (9)

Table I and the protocol parameters in Table II. The results

are given in terms of secret key rate versus total loss in the

channel and can be applied to both fiber-based and free-space

quantum communications, as long as for the latter scenario we

can assume a stable channel (i.e., we can exclude or suitably

ignore fading [30]).

The results are shown in Fig. 4 where we are particularly

interested in the high-rate short-range setting. As we can see

from the figure, the rate has a nontrivial improvement as a

result of the stronger assumptions made for the receiver, as

expected. Considering the standard loss-rate of an optical fiber

(0.2 dB/km), we see that one extra dB of tolerance for the

rate corresponds to additional 5 km. Clearly this is achievable

as long as the security assumptions about the receiver are

acceptable by the parties.

III. SECURITY OF NEAR-RANGE FREE-SPACE

QUANTUM COMMUNICATIONS

Let us now discuss the specific setting of free-space

quantum communications, which generally requires some

elaborations of the formulas above in order to account for

TABLE II. Protocol parameters adopted with respect to collec-

tive attacks and general attacks.

Protocol

parameter
Symbol

Collective

attacks

General

attacks

Total pulses N 107 107

PE signals m 0.1 × N 0.1 × N

Energy tests fet 0.2

KG signals n 0.9 × N ≃7.5 × 106

Digitalization d 25 25

Rec. efficiency β 0.95 0.95

EC success prob pec 0.9 0.1

Epsilons εh,s,... 2−33 ≃ 10−10 10−43

Confidence w ≃6.34 ≃14.07

Security ε, ε′ ≃5.6 × 10−10 ≃1.4 × 10−13

Modulation μ 10 10
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FIG. 4. Composable secret key rate (bits/use) versus total loss

(decibels) for the heterodyne protocol with LLO. We plot the rates

against collective attacks assuming a trusted-loss and trusted-noise

receiver (black dotted), a trusted-noise receiver (black dashed), and

an untrusted receiver (solid black). We also show the performance

achievable with the untrusted receiver in the presence of general

attacks (red). The gray line is the total excess noise ξtot in shot noise

units. Finally, the blue lines refer to line-of-sight security (discussed

in Sec. III A) for trusted-loss and trusted-noise receiver (blue dot-

ted), and trusted-noise receiver (blue dashed). Physical and protocol

parameters are chosen as in Tables I and II.

the additional physical processes occurring in this scenario.

In the following we discuss one potential extra simplification

and realistic assumption for security, and then we treat the

issues related to near-range wireless communications at vari-

ous frequencies and with different types of receivers (fixed or

mobile).

A. Line-of-sight security

The line-of-sight (LoS) security is a strong but yet real-

istic assumption for free-space quantum communications in

the near range (say within 100 meters or so). The idea is

that transmitter and receiver can “see” each other, so it is

unlikely that Eve is able to tamper with the middle channel.

A realistic attack is here to collect photons, which are lost in

the environment; in other words it is a passive attack, which

can be interpreted as the action of a pure-loss channel, i.e., a

beam-splitter with no injection of thermal photons (which are

the active entangled probes employed in the usual entangling-

cloner attack).

Within the LoS assumption, there are additional degrees

of reality for Eve’s attack. The most realistic scenario is Eve

using a relatively-small device, which only collects a fraction

of the photons that are leaked into the environment. The worst-

case picture, which can be used as a bound for the key is to

assume Eve collecting all the leaked photons. In this case, the

performance will strictly depend on how much the receiver

is able to intercept of the incoming beam, which is in turn

related to the geometric features of the beam itself (colli-

mated, focused, or spherical beam). In any case, any thermal

noise which is present in the environment is considered to be

trusted.

TABLE III. Security types and trust levels (detector models). The

security assumptions become stronger from top to bottom.

Channel noise Security type Detector model

Untrusted

Standard security

(Active Eve

controlling the

environment)

• Untrusted

[Eve (3)]

• Noise-trusted

[Eve (2)]

• Noise-loss-trusted

[Eve (1)]

Trusted

LoS security

(Passive Eve.

No control of

the environment)

• Noise-trusted

[Eve (2)]

• Noise-loss-trusted

[Eve (1)]

In the studies below, we consider both LoS security (Eve

passive on the channel) and standard security (Eve active on

the channel). Under LoS security, thermal noise is considered

to be trusted, which means that the relevant models for the

detector are those with trusted noise [Eve (2)] and trusted

noise and loss [Eve (1)]. The attack can be represented as in

Fig. 1 but where Eve does not control environmental modes,

represented by mode e for Eve (1) and modes e, v for Eve

(2). With the trusted-noise detector, we also allow Eve to col-

lect leakage from Bob’s setup; with the trusted-noise-and-loss

detector, this additional side-channel is excluded. Depending

on the cases, we adopt one assumption or the other. See

Table III for a summary of the security types and trust levels

(associated detector models). These definitions are meant to

be in addition to the classification into individual, collective

and coherent/general attacks.

The secret key rates under LoS security are derived by

excluding Eve from the control of the environmental noise.

This means that her CM is reduced from the form in Eq. (19)

to just the block φI. Thus, we have to consider the simpler

joint CM for Bob and Eve

VBE =
(

bI θI

θI φI

)
, (71)

leading to the conditional CMs

Vhom
E |B =

(
φ − θ2

b
0

0 φ

)
, Vhet

E |B =
(

φ −
θ2

b + 1

)
I. (72)

Therefore, Eve’s Holevo bound to be used in the key rates is

simply given by

χhom
LoS (E : y) = H (φ) − H[

√
φ(φ − θ2/b)], (73)

χhet
LoS(E : y) = H (φ) − H

(
φ −

θ2

b + 1

)
, (74)

where the explicit expressions for θ and φ depend on the

detector noise model, while b is given in Eq. (21).

Using these expressions, we may then write the asymptotic

key rate with LoS security for the two detector models (k =
1, 2). Recalling that the mutual information is expressed as in

Eq. (7), the LoS key rate is given by

R
(k)
asy,LoS(τ, n̄, n̄B) = βI (x : y)τ,n̄ − χLoS(E : y)τ,n̄,n̄B

, (75)
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taking specific expressions for the homodyne protocol

[R
(k)
asy,LoS,hom] and the heterodyne protocol [R

(k)
asy,LoS,het]. After

parameter estimation, the modified key rate will be ex-

pressed in terms of the worst-case estimators as R
(k)
pe,LoS =

R
(k)
asy,LoS(τ ′, n̄′, n̄′

B). Finally, the composable finite-size LoS key

rate takes the expression in Eq. (55) proviso we make the

replacement R(k)
pe −→ R

(k)
pe,LoS. Improvement in performance is

shown in Fig. 4.

B. Optical wireless with fixed devices

Let us consider a free-space optical link between transmit-

ter and receiver. Assume that this is mediated by a Gaussian

TEM00 beam with initial spot-size w0 and phase-front radius

of curvature R0 [13–15]. This beam has a single well-defined

polarization (scalar approximation) and carrier frequency ν =
c/λ, with λ being the wavelength and c the speed of light

(so angular frequency is ω = 2πc/λ, and wavenumber is k =
ω/c = 2π/λ). The pulse duration �t and frequency band-

width �ν satisfy the time-bandwidth product for Gaussian

pulses, i.e., �t�ν � 0.44. In particular, we may assume

�t�ν ≃ 1. Under the paraxial wave approximation, we as-

sume free-space propagation along the z direction with no

limiting apertures in the transverse plane, neglecting diffrac-

tion effects at the transmitter (e.g., by assuming a suitable

aperture for the transmitter with radius � 2w0 [14]).

By introducing the Rayleigh range

zR :=
πw

2
0

λ
, (76)

which identifies near- and far-field, we may write the follow-

ing expression for the diffraction-limited spot size of the beam

at generic distance z [14,15]

w
2
z = w

2
0

[(
1 −

z

R0

)2

+
( z

zR

)2]
. (77)

In particular, for a collimated beam (R0 = ∞), we get

w
2
z = w

2
0[1 + (z/zR)2], (78)

while for a focused beam (R0 = z), we have

w
2
z = w

2
0 (z/zR)2 =

(
λz

πw0

)2

. (79)

We see that, in the far field z ≫ zR, the expressions in

Eqs. (78) and (79) tend to coincide.

Consider then a receiver with a sharped-edged circular

aperture with radius aR. The total power impinging on this

aperture is given by

P(z, aR) =
πw

2
0

2
ηd, ηd := 1 − e−2a2

R/w2
z , (80)

where parameter ηd is the non-unit transmissivity of the chan-

nel due to the free-space diffraction and the finite size of the

receiver. Note that, for far field and a receiver’s size compara-

ble with the transmitter’s (so aR ≃ w0), we have wz ≫ aR and

therefore the approximation

ηd ≃ ηfar
d := 2a2

R/w2
z ≪ 1. (81)

For a collimated or focused beam, this becomes

ηfar
d ≃ 2

(πw0aR

λz

)2

. (82)

The overall transmissivity of the system can be written as

τ = ηchηeff, where ηch = ηdηatm is the total transmissivity of

the external channel, which generally includes the effect of

atmospheric extinction ηatm. Since the latter effect is negligi-

ble at short distances (ηatm ≃ 1), we may just write ηch ≃ ηd.

By contrast, the other term ηeff is the total quantum efficiency

of the receiver and its contribution is typically non-negligible,

e.g., ηeff ≃ 0.7. Because the devices are assumed to be fixed,

there is no fading, meaning that the total transmissivity can be

assumed to be constant and equal to τ .

The quantum communication scenario can be described

as in Fig. 1, where ηch is essentially given by free-space

diffraction and the thermal background n̄B needs to be care-

fully evaluated from the sky brightness (see below). Then, we

can certainly assume standard security with the trust levels

k = 0, 1, 2 according to which Eve’s interaction is described

by different effective beam-splitters with different amounts of

input thermal noise n̄(k)
e (see Sec. II C). Similarly, we may

investigate LoS security where thermal noise is assumed to

be trusted.

Sky brightness B
sky

λ is measured in W m−2 nm−1sr−1 and

its value typically varies from ≃ 1.5 × 10−6 (clear night) to

≃ 1.5 × 10−1 (cloudy day) [17,18], if one assumes that the

receiver field of view is shielded from direct exposition to

bright sources (e.g., the sun). Let us assume a receiver with

aperture aR and angular field of view �fov (in steradians).

Assume the receiver has a detector with bandwidth W and

spectral filter �λ. Then, the mean number of background

thermal photons per mode collected by the receiver is equal

to

n̄B =
πλŴR

hc
B

sky

λ , ŴR := �λW −1�fova2
R. (83)

In this formula, we can estimate �
1/2

fov ≃ 2 arctan[lD/(2 fD)]

from the linear size of the sensor of the detector lD and the fo-

cal length fD of the receiver. For lD = 2 mm and fD = 20 cm,

we find �fov ≃ 10−4 sr. Note that the latter value of the field of

view is relatively-large compared with typical values consid-

ered in long-range setting, including satellite communications

(where �fov ≃ 10−10sr).

The effective value of the spectral filter �λ can be very

narrow in setups that are based on homodyne/heterodyne de-

tection. The reason is because the required mode-matching of

the signal with the LO pulse provides a natural interferometric

process, which effectively reduces the filter potentially down

to the time-product bandwidth. For instance, for an LO pulse

of �tLO = 10 ns, we may assume a bandwidth �ν = 50 MHz,

which is � 0.44/�tLO. Thus, interferometry at the homodyne

setup imposes an effective filter of �λ = λ2�ν/c ≃ 0.1pm

around λ = 800nm.

Finally, if we take the detector bandwidth W = 100 MHz

and we assume a small area for the receiver’s aperture, i.e.,

aR = 1 cm (so as to be compatible with the typical sizes

of near-range devices), then we compute n̄B ≃ 0.019 pho-

tons per mode during a cloudy day. This is a non-trivial

amount of noise that leads to a clear discrepancy between
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TABLE IV. Physical parameters for optical wireless

Physical parameter Symbol Value

Altitude h 30 m

Beam curvature R0 ∞ (collimated)

Wavelength λ 800 nm

Beam spot size w0 1 mm

Receiver aperture aR 1 cm

Receiver field of view �fov 10−4 sr

Homodyne filter �λ 0.1 pm

Detector shot-noise νdet 2 (het)

Detector efficiency ηeff 0.7 (1.55 dB)

Detector bandwidth W 100 MHz

Noise equivalent power NEP 6 pW/
√

Hz

Linewidth lW 1.6 KHz

LO power PLO 10 mW

Clock C 5 MHz

Pulse duration �t, �tLO 10 ns

Setup noise with LLO n̄ex Eq. (17)

Channel noise n̄B 0.019 [Eq. (83)]

Total thermal noise n̄ Eq. (3)

Atmospheric extinction ηatm ≃ 1 (negligible)

the performance in standard security (where channel’s noise

is considered to be untrusted) and LoS security (where this

noise is assumed to be trusted). Let us also remark here that

LoS security is a realistic assumption for receivers with a

small field of view, so the noise collected from free space is

limited and unlikely to come from an active Eve hidden in the

environment.

For our numerical study we consider the physical param-

eters listed in Table IV; these are compatible with indoor

and near-range optical wireless communications with small

devices (e.g., laptops). This means that, for the transmitter,

we consider limited power (e.g., 10 mW), and a small spot

size (w0 = 1 mm). Similarly, for the receiver, we consider

a limited aperture (aR = 1 cm), non-unit quantum efficiency

(ηeff = 0.7), and a realistic field of view �fov ≃ 10−4sr as

discussed above.

Assuming the physical parameters in Table IV and the pro-

tocols parameters in Table II, we show the various achievable

performances of the free-space diffraction-limited heterodyne

protocol with LLO in Fig. 5. As we can see from the figure,

we have drastically different rates depending on the type of

security and trust level. It is clear that the highest rates (and

distances) are obtained with LoS security (blue lines in the

figure). With standard security, the range is restricted to about

50 meters (black lines in the figure) and about 30 meters in

the worst-case scenario of an untrusted detector and general

attacks (red line in the figure). The possibility to enforce

weaker security assumptions leads to non-trivial advantages

in terms of rate and distance.

Also note the stability of the rates at short distances

(<30 m) where their values remain approximately constant.

This is due to the fact that, for the specific regime of param-

eters considered, the beam broadening induced by free-space

diffraction within that range [see Eq. (78) with w0 = 1 mm

and z < 30 m] is still limited with respect to the radius of the

receiver’s aperture (aR = 1 cm). Thus, the transmissivity ηd

FIG. 5. Optical-wireless QKD with fixed devices. We plot the

composable secret key rate (bits/use) versus free-space distance (me-

ters) for the heterodyne protocol with LLO. In particular, we show

the rates against collective attacks assuming a trusted-loss-and-noise

receiver (black dotted), a trusted-noise receiver (black dashed), and

an untrusted receiver (solid black). We also show the performance

achievable with the untrusted receiver versus general attacks (red).

The blue lines refer to line-of-sight security (discussed in Sec. III A)

for trusted-loss-and-noise receiver (blue dotted), and trusted-noise

receiver (blue dashed). Physical parameters are chosen as in Ta-

ble IV, while protocol parameters are in Table II.

in Eq. (80) remains sufficiently close to 1, before starting to

decay after about 30 m.

C. Optical wireless with mobile devices

1. Pointing and tracking error

In the presence of free-space optical connections with

portable devices, one can use a suitable tracking mechanism

so the transmitter (such as a fixed router/hot spot) points at

the mobile receiver in real time with some small pointing

error. In general, the receiver too may have a mechanism

of adaptive optics aimed at maintaining the beam alignment

by rotating the field of view in direction of the transmit-

ter. We therefore need to introduce a pointing error at the

transmitter σ̃P, which introduces a Gaussian wandering of

the beam centroid over the receiver’s aperture with variance

σ 2
P ≃ (σ̃Pz)2 for distance z. We assume an accessible value

σ̃P ≃ 1.745 × 10−3 radiant, which is about 1/10 of a de-

gree (this is orders-of-magnitude worse than the performance

achievable in satellite-based pointing and tracking).

Let us call r the instantaneous deflection of the beam cen-

troid from the center of the receiver’s aperture. The wandering

can be described by the Weibull distribution

PWB(r) =
r

σ 2
P

exp

(
−

r2

2σ 2
P

)
. (84)

For each value of the deflection r, there is an associated in-

stantaneous transmissivity τ = τ (r), which can be computed

as follows:

τ (r) = e
− 4r2

w
2
z Q0

(
2r2

w
2
z

,
4raR

w
2
z

)
, (85)

where Q0(x, y) is an incomplete Weber integral [54].
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Alternatively, we may use the approximation

τ (r) ≃ η exp
[
−

( r

r0

)γ ]
, (86)

where

η := τ (0) = ηch(z)ηeff ≃ ηd(z)ηeff (87)

is the maximum transmissivity at distance z (corresponding

to a beam that is perfectly-aligned), while γ and r0 are the

following shape and scale (positive) parameters

γ =
4ηfar

d �1

(
ηfar

d

)

1 − �0

(
ηfar

d

)
[

ln
2ηd

1 − �0

(
ηfar

d

)
]−1

, (88)

r0 = aR

[
ln

2ηd

1 − �0

(
ηfar

d

)
]− 1

γ

, (89)

where �n(x) := e−2xIn(2x) and In is a modified Bessel func-

tion of the first kind with order n [19, Eq. (D2)].

By suitably combining Eqs. (84) and (86), one can derive

the fading statistics, i.e., the probability distribution Pfad asso-

ciated with the instantaneous transmissivity τ , which is given

by

Pfad(τ ) =
r2

0

γ σ 2
P τ

(
ln

η

τ

) 2
γ
−1

exp

[
−

r2
0

2σ 2
P

(
ln

η

τ

) 2
γ

]
. (90)

2. Maximum wireless range

Besides the beam wandering (and associated fading) due

to pointing and tracking error, there is also the further issue

that a mobile receiver generally has a variable distance from

the transmitter, so the transmissivity of the free-space link has

an additional degree of variability. The latter effect has a very

slow dynamics with respect to typical clocks, meaning that

a block of reasonable size is distributed while the position

of the receiver is substantially unchanged. For example, for

a detector bandwidth W = 100 MHz, we may use a clock of

C = W/3 ≃ 33 MHz. In this case, a block of 107 points will

be distributed in 1/3 of a second. For an indoor network,

assuming an average walking speed of ≃ 1.5 m/s, this cor-

responds to a ≃50 cm free-space displacement of the receiver.

In the worst-case scenario where this displacement increases

the distance from the transmitter, we may assume that the dis-

tribution of the whole block occurs at the maximum distance.

In general, we may compute a lower bound by assuming

that the entire quantum communication (i.e., the communi-

cation of all the blocks) occurs with the mobile device at

the maximum distance from the transmitter. In other words,

we can fix a maximum range zmax for the local network and

assume this value as worst-case scenario. Since the parties

control the parameters of the channel and know the instan-

taneous distance, they could process their data in a way that it

appears to be completely distributed at zmax (data distributed

at z < zmax can be attenuated and suitably thermalized in post

processing).

To be more precise the lower bound should be computed

by minimizing the transmissivity and maximizing the thermal

noise over the distance z � zmax, so that data is processed via

a more lossy and noisy channel. While the minimization of

the transmissivity occurs at z = zmax, the maximization of the

thermal noise may occur at different values of z, depending

on the type of LO. In particular, this value is z = zmax for the

TLO and z = 0 for the LLO. The issue is therefore resolved

for the LLO if we keep the mobile device at z = zmax while

bounding the LLO noise with the value for z = 0.

Such an approach is not optimal but robust and applicable

to outdoor wireless networks with faster-moving devices (with

a speed limited by the ratio between zmax and the total commu-

nication time). It is worth mentioning that, a better but more

complicated strategy relies on slicing the trajectory of the

moving device into sectors, with each sector being associated

with the communication of a single block and the final rate

being given by the average rate over the sectors. This is par-

ticularly useful in satellite quantum communications where a

trajectory is well defined (for instance, see the technique of or-

bital slicing in Ref. [12]). However, for stochastic trajectories

on the ground, the analytical treatment is not immediate.

3. Pilot modes and de-fading

Besides the use of bright pointing/tracking modes and

bright LLO-reference modes, it is also important to use

relatively-bright pilot modes that are specifically employed

for the real-time estimation of the instantaneous transmis-

sivity τ , whose fluctuation is generally due to both pointing

error and distance variability (for mobile devices). These mPL

pilots are randomly interleaved with NS := N − mPL signal

modes, where N are the total pulses. The pilots allow the

parties to: (i) identify an overall interval for the transmissivity

� = [τmin, τmax] in which NS p� signals are post-selected with

probability p�; (ii) introduce a lattice in � with step δτ , so

that each signal is associated with a corresponding narrow bin

of transmissivities �k := [τk, τk+1], with τk := τmin + (k −
1)δτ for k = 1, . . . , M and M = (τmax − τmin )/δτ [55].

Each bin �k is selected with probability pk and, therefore,

populated by NS pk signals. There are corresponding νdetNS pk

pairs of points {xi, yi} satisfying the input-output relation of

Eq. (4), which here reads

y(k) ≃
√

τkx + z(k), (91)

where z(k) is a Gaussian noise variable with variance

σ 2
k = 2n̄k + νdet, n̄k := ηeffn̄B + n̄ex(τk ). (92)

Bob can map these points into the first bin �1 of the interval

via the de-fading map

y(k) → ỹ(k) =
√

τmin

τk

y(k) +
√

1 −
τmin

τk

ξadd, (93)

where ξadd is Gaussian noise with variance νdet.

By repeating this procedure for all the bins, Bob create the

new variable

ỹ =
√

τminx + z̃, (94)

where z̃ is non-Gaussian noise with variance

σ 2
z̃ = 2n̄∗ + νdet, n̄∗ :=

τmin

p�

∑

k

pk

τk

n̄k . (95)

This new variable is now associated with a single (worst-case)

transmissivity τmin, thus effectively removing the fading pro-

cess from the distributed data, i.e., from their νdetNS p� pairs

of correlated points.

043014-12



COMPOSABLE SECURITY FOR CONTINUOUS VARIABLE … PHYSICAL REVIEW RESEARCH 3, 043014 (2021)

Exploiting the optimality of Gaussian attacks, the parties

assume that z̃ is Gaussian (overestimating Eve’s perfor-

mance). In this way, the final input-output relation in Eq. (94)

reduces to considering a simpler thermal-loss Gaussian chan-

nel with transmissivity τmin and thermal number n̄∗. See

Ref. [11] for more details.

For a receiver at some fixed distance z and only subject

to pointing error, we can assume τmax = η [cf. Eq. (87)]

and τmin = fthη for some threshold factor fth < 1. Then,

the probabilities p� = p(τmin, τmax) and pk = p(τk, τk+1) are

computed from the formula

p(τ1, τ2) :=
∫ τ2

τ1

dτ Pfad(τ ), (96)

where Pfad(τ ) is given in Eq. (90).

In general, for a mobile receiver at variable distance z,

Alice and Bob compute the post-selection interval � and

the lattice {�k} directly from data, together with the corre-

sponding values of p� and pk . As mentioned in the previous

subsection, the performance in this general scenario can be

lower-bounded by the extreme case where the receiver is

assumed to be fixed at the maximum distance zmax from the

transmitter (while maximizing thermal noise over z, whose

maximum is at zmax for a TLO and at z = 0 for an LLO).

In this worst-case scenario, we may exploit the formula in

Eq. (96) for the fading probability (suitably computed at zmax)

and derive an analytical lower bound for the secret key rate.

4. Estimators and key rate

Let us assume the worst-case scenario of a receiver at the

maximum range zmax from the transmitter, so the maximum

transmissivity is τmax = η(zmax) and the minimum transmis-

sivity is τmin = fthη(zmax) for some threshold value fth. These

border values define a post-selection interval �, which is

sliced into a lattice of M narrow bins {�k}. The instantaneous

transmissivity τ will fluctuate according to the distribution

in Eq. (90) with associated pointing error σ 2
zmax

≃ (σPzmax)2

for an empirical value σP at the transmitter (e.g., 1/10 of a

degree). As a result of the fluctuation, a value of the transmis-

sivity τ is post-selected with probability p� and populates bin

�k with probability pk , according to the integral in Eq. (96).

For the worst-case scenario, let us also assume that the

thermal noise is maximized over z � zmax (and the fading

process). Thus, for any bin �k , we consider the following

bound on the associated thermal noise:

n̄k � n̄wc = ηeffn̄B + n̄ex,wc, (97)

where the maximum setup noise n̄ex,wc depends on the type of

LO and is given by

n̄TLO
ex,wc ≃ 
el/τmin, n̄LLO

ex,wc ≃ 
el + πσ 2
x C−1lW. (98)

Note that the first expression in Eq. (98) above is computed on

τmin = τmin(zmax) while the second one is computed for τ = 1

(maximum value at z = 0). By replacing Eq. (97) in Eq. (95),

we get the bound

n̄∗ � n̄wc. (99)

As already explained, the construction of the lattice is

possible thanks to the random pilots. In total, during the

quantum communication, the parties exchange N quantum

pulses, whose mPL are pilots and NS = N − mPL are signals.

Using the pilots, the parties post-select a fraction NS p� of

the signals, with a smaller fraction NS pk allocated to the

generic bin �k . After de-fading, the parties are connected by

an effective thermal-loss channel with transmissivity τmin =
τmin(zmax) and thermal number n̄wc.

The parties sacrifice a portion mp� of the post-selected

signals NS p� for parameter estimation (PE), so np� signals

are left for key generation, where n = NS − m (this value

is further reduced for security extended to general coher-

ent attacks). Overall the parties use m� := νdetmp� pairs

of data points for PE following the procedure described in

Sec. II E with effective transmissivity τmin = τmin(zmax) and

σ 2
wc = 2n̄wc + νdet. This leads to the following bounds for the

worst-case estimators [11]:

τLB = τmin − 2w

√
2τ 2

min + τminσ 2
wc

/
σ 2

x

m�

, (100)

n̄UB = n̄wc + w

σ 2
wc√

2m�

, (101)

where σ 2
x is the input modulation and w is the confidence

parameter [cf. Eqs. (46) and (47)].

As we can see from the two estimators above, the relevant

information is the minimum transmissivity τmin of the post-

selection interval, the maximum thermal noise n̄wc over the

range (and fading process), and the number of post-selected

points m�. The formulas hold for a generic fading statistics,

i.e., not necessarily given by Eq. (96), as long as we can

evaluate m�. Also note that, assuming Eq. (96) and fixing a

threshold transmissivity τmin, the value of m� decreases by

increasing z. In other words, the fact that a worst-case device

at the maximum range provides a lower bound for a mobile

device is also due to the decreased statistics for PE.

In order to compute the key rates for the trusted models, we

also need to bound the worst-case estimator of the background

thermal noise n̄B. This is possible by writing

n̄UB
B =

n̄UB − n̄ex,bc

ηeff

, (102)

where the best-case value n̄ex,bc needs to be optimized over

the entire range z � zmax and the fading process. We therefore

extend Eqs. (48) and (49) to the following expressions:

n̄TLO
ex,bc := 
el, n̄LLO

ex,bc := 
el + 
phτmin. (103)

We now have all the elements to write the composable

finite-size key rate, which extends Eq. (55) of Sec. II F to the

following expression:

R �
np� pec

N

(
R(k)

pe −
�aep√
np�

+



np�

)
, (104)

where n = N − (m + mPL) and R(k)
pe depends on the receiver

model (k = 1, 2, 3). The latter takes the following expressions

in terms of the new estimators:

R(1,2)
pe = R(1,2)

asy

(
τLB, n̄UB, n̄UB

B

)
, (105)

R(3)
pe = R(3)

asy(τLB, n̄UB). (106)
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Alternatively, we may write Eq. (104) assuming LoS security,

which means to replace R(k)
pe with the key rate

R
(k)
pe,LoS = R

(k)
asy,LoS

(
τLB, n̄UB, n̄UB

B

)
. (107)

The composable key rate in Eq. (104) is ε secure against

collective Gaussian attacks [cf Eq. (59)].

For the heterodyne protocol, we extend the composable key

rate of Eq. (70) to the following expression:

Rhet
gen �

np� pec

N

(
R

(k)
pe,het −

�aep√
np�

+

 − �np�

np�

)
, (108)

where n must account for the mPL pilots besides the met energy

tests, i.e.,

n = N − (m + mPL + met) =
N − (m + mPL)

1 + fet

, (109)

and R
(k)
pe,het is given by Eqs. (105) and (106) for the case

of the heterodyne protocol. This rate has epsilon security

ε′ = K4
np�

ε/50 against general attacks, with ε being the initial

security versus collective attacks (see Sec. II F).

We perform a numerical investigation assuming the het-

erodyne protocol with LLO. This is now implemented in a

post-selection fashion in a way to remove the (non-Gaussian)

effect of fading from the distributed data (see above). We con-

sider the protocol parameters in Table II but where we include

the pilots mPL = 0.05 × N , so the key generation signals are

reduced to n ≃ 7.08 × 106, and a threshold parameter fth =
0.8 for post-selection. We then assume the physical parame-

ters in Table IV, but taking a higher clock value C = 33 MHz

and also including the transmitter’s pointing error σ̃P, equal

to 1/10 of degree. In this regime of parameters, we study the

composable key rates that are achievable under the various

security and trust assumptions, considering a mobile device,

which can move up to a maximum distance zmax from the

transmitter (range of the wireless network).

The rates are plotted in Fig. 6. Note that the values in the

range of 10−2 − 1 bit/use correspond to a high-rate range

of 0.33 − 33 Mbits/sec at the considered clock. This means

that quantum-encrypted wireless communication at about

1 Mbit/sec are possible within distances of a few meters.

Another important consideration is that these rates are actually

lower bounds, since they are computed with the device at the

maximum distance and bounding the noise. This is also the

reason why the key rate of Eq. (108) does not appear for this

specific choice of parameters.

D. Short-range microwave wireless

Let us consider wireless quantum communications at the

microwave frequencies, in particular at 1 GHz. We show the

potential feasibility for short-range quantum-safe WiFi (e.g.,

for contact-less cards) within the general setting of compos-

able finite-size security. First of all we need to remark two

important differences with respect to the optical case: pres-

ence of higher loss and higher noise.

From the point of view of increased loss, the crucial dif-

ference is the geometry of the beam. For indoor wireless

applications, microwave antennas are small and, for this rea-

son, cannot offer beam directionality. The emitted beam is

FIG. 6. Optical-wireless QKD with mobile devices. We plot

the composable secret key rate (bits/use) versus the maximum

free-space distance zmax of the receiver-device from the transmitter

(meters). This is for a pilot-guided post-selected heterodyne protocol

with an LLO. We show the rates against collective attacks assuming

a trusted-loss-and-noise receiver (black dotted), a trusted-noise re-

ceiver (black dashed), and an untrusted receiver (solid black). The

blue lines refer to line-of-sight security for trusted-loss-and-noise

receiver (blue dotted), and trusted-noise receiver (blue dashed). Phys-

ical parameters are chosen as discussed in the main text.

either isotropic (spherical wave) or have some limited direc-

tionality, usually quantified by the gain g. This means that, at

some distance z, the intensity of the beam will be confined in

an area equal to 4πz2/g. It is clear that we have a strong sup-

pression of the signal, since a receiver with aperture’s radius

aR is going to collect just a fraction ηch ≃ min{ga2
R/(4πz2), 1}

of the emitted photons. Here the minimum accounts for the

case where the receiver is close to the antenna, so the angle of

emission is subtended by the receiver’s aperture, which hap-

pens at the distance zbest =
√

g/πaR/2. In our investigation,

we assume the numerical value g = 10.

As mentioned above another important difference with re-

spect to the optical case is the amount of thermal background

noise, which affects microwaves for both signal preparation

and detection [60–65]. If we assume setups working at room

temperature, this thermal noise is dominant with respect to the

other sources of noise. Both the preparation noise at the mi-

crowave modulators and the electronic noise in the amplifiers

of the microwave homodyne detectors are relevant [66]; we set

them to be equal to the thermal background computed using

the formula of the black-body radiation. On the other hand,

phase-errors associated with the LO are negligible since the

LO is slow at the microwave and can easily be reconstructed.

Let us quantify the amount of thermal noise and identify

a suitable set of parameters able to mitigate the problem.

For a receiver with spectral filter �λ, detector bandwidth W ,

aperture aR, and field of view �fov, we can consider the photon

collection parameter ŴR in Eq. (83). Assume that signal and

LO pulses are time-bandwidth limited, so that �t�ν ≃ 1.

For instance �t = 10 ns and �ν = 100 MHz for a carrier

frequency of ν = 1GHz (10% bandwidth). Corresponding

carrier wavelength is λ = c/ν ≃ 30cm. Using �λ = �νλ2/c

and setting W ≃ �ν (detector resolving the pulses), we may
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write

ŴR ≃
λ2

c
�fova2

R. (110)

For receiver aperture aR = 5 cm and sufficiently-narrow field

of view �
1/2

fov = 1 degree (so �fov ≃ 3 × 10−4 sr), we compute

ŴR ≃ 2.28 × 10−16 in units of s m3 sr. Note that realizing such

a narrow field of view with a small indoor receiver can be

challenging in practice.

The photon collection parameter must be combined

with the thermal background photons in units of photons

s−1 m−3 sr−1, quantified by the black-body formula

n̄body =
2c

λ4

[
exp

(
hc

λkBT

)
− 1

]−1

, (111)

where kB is Boltzmann’s constant and T ≃ 290 K is the tem-

perature. Therefore we get

n̄th = ŴRn̄body ≃ 0.1 photons. (112)

Note that the figure is acceptably low thanks to the filtering

effect of ŴR, which accounts for the spatiotemporal profile of

the LO pulses, together with the other features of the receiver

(aperture, field of view).

Thermal noise is affecting both preparation and detection

with constant floor level. This means that n̄th mean photons are

seen by the detector no matter if signal photons are present or

not. In other words, the detector experiences a constant noise

variance equal to

σ 2
z = 2n̄th + νdet, (113)

where νdet is the usual quantum duty (which is = 1 for homo-

dyne and = 2 for heterodyne).

Assume that the total transmissivity is τ = ηchηeff, where

ηch is channel’s transmissivity and ηeff ≃ 0.8 is receiver’s

efficiency. Also assume that the transmitter (Alice), modulates

thermal states with classical variance σ 2
x = 2n̄T , where n̄T is

equivalent mean number of signal photons. Then, the total

mean number of photons at the receiver’s detector is given

by

n̄R = τ n̄T + n̄th. (114)

Basically, this is equivalent to Eqs. (2) and (3), by setting

n̄B = n̄th and n̄ex = (1 − ηeff)n̄th. As we can see, for τ = 1, we

get n̄T + n̄th meaning that the prepared states are thermal; for

τ < 1, signal photons are lost (n̄T → τ n̄T ), while the depleted

thermal background photons are compensated at the receiver

re-entering the detection system, so we have the constant noise

level n̄th.

1. Fully-untrusted scenario

In the worst-case scenario, the noise associated with prepa-

ration, channel and detector is all untrusted. In this case,

Eq. (114) corresponds to the action of a beam splitter with

transmissivity τ combining a signal mode with mean pho-

tons n̄T and an environmental mode with mean photons

n̄e = n̄th/(1 − τ ). The idea is that Alice would attempt to

create randomly-displaced coherent states, but Eve readily

thermalizes them by adding malicious thermal photons. These

photons add up to those later introduced by the channel, so

that we globally have the insertion of n̄e mean photons as

above. This leads to a collective Gaussian attack where Eve

has the purification of the untrusted thermal noise associated

with each stage of the communication.

Alice’s and Bob’s classical variables, x and y, are related

by Eq. (4) but where the noise variable z has now variance σ 2
z

as in Eq. (113), which corresponds to Eq. (6) up to replacing

n̄ → n̄th. Alice and Bob’s mutual information I (x : y) is there-

fore given by Eq. (7) computed with modulation σ 2
x = 2n̄T

and equivalent noise

χ =
2n̄th + νdet

τ
= ξtot +

νdet

τ
, (115)

where ξtot := 2n̄th/τ is the total excess noise. Numerically, we

choose the modulation σ 2
x = 20.

As already said, in the fully-untrusted scenario, all thermal

noise coming from preparation, channel and receiver’s setup is

considered to be untrusted. This is equivalent to the treatment

of Sec. II D 3, proviso we make the replacement n̄ → n̄th in

Eq. (34) and then in Eqs. (21), (22), and (23). The revised

parameters can then be used in the global CM in Eqs. (18)

and (19).

Then, the asymptotic key rate against collective Gaussian

attacks is given by R(3)
asy(τ, n̄th) according to Eq. (40), where

we now use

τ = ηeff min
{
ga2

R/(4πz2), 1
}
, (116)

and n̄th as given by Eq. (112). We may then assume the

reconciliation parameter β = 0.98.

To account for finite-size effects, we first include param-

eter estimation. This means that the parties need to sacrifice

m of the N pulses, so n pulses survive for key generation.

Numerically, we take N = 5 × 107 and m = 0.1 × N . Thus,

they construct the worst-case estimators for the overall trans-

missivity τ and thermal noise n̄th following Eqs. (44) and (45).

These estimators can be here approximated as follows:

τ ′ ≃ τ − 2w

√
2τ 2 + τ (2n̄th + νdet)/σ 2

x

νdetm
, (117)

n̄′
th ≃ n̄th + w

2n̄th + νdet√
2νdetm

, (118)

where w is the confidence parameter associated with εpe,

and computed according to Eq. (46) for collective Gaussian

attacks (see Sec. II E for more details). Assuming a tolerable

error probability of εpe = 2−33, we have w ≃ 6.34 confidence

intervals.

The composable key rate takes the form in Eq. (55) where

we now use R(3)
pe = R(3)

asy(τ ′, n̄′
th) computed from Eqs. (117) and

(118), together with the usual finite-size terms in Eqs. (57)

and (58). Numerically, we can assume pec = 0.9 for the prob-

ability of success of EC, d = 25 for the digitalization of the

continuous variables, and the value 2−33 for all the epsilon pa-

rameters, so we have epsilon security ε ≃ 5.6 × 10−10 against

collective Gaussian attacks according to Eq. (59).

To study the performance, let us consider the heterodyne

protocol (νdet = 2). Then, we assume a device stably kept

at some distance z from the transmitter within the emission

angle of the transmitter and with an aligned field of view. For

the parameters considered here, we find that a positive key
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rate is obtained for z � 4.48 cm, which is fully compatible

for contactless card applications. In particular, for any z �

zbest ≃ 4.46 cm we compute a key rate of R � 10−2 bits/use,

corresponding to �50 kbit/sec with a system clock at 5 MHz.

Note that, according to the thermal version of the PLOB

bound [7], the maximum key rate cannot overcome the upper

limit

R �

{
− log2

[
(1 − τ )τ

n̄th
1−τ

]
− h

(
n̄th

1−τ

)
, for n̄th � τ,

0, for n̄th � τ,
(119)

where h(x) := H (2x + 1). This means that the no rate is pos-

sible above the threshold n̄th = τ . Using Eqs. (112) and (116)

with our regime of parameters, we find that the maximum

possible range is about 12.47 cm, i.e., about three times the

distance achievable with the considered heterodyne protocol

under composable security.

2. LoS security for microwaves

Better performances can be obtained if we relax security

requirements by relying on the LoS geometry. In particular,

one may assume that the thermal noise is trusted, so that Eve

is passively limited to eavesdrop the photons leaking from the

channel and the setup. In this case, Eq. (114) corresponds to

the action of a beam splitter with transmissivity τ combining a

signal mode with mean photons n̄T + n̄th (signal photons plus

trusted preparation noise) and a genuine environmental mode

with mean photons n̄th [67]. Eve collects the fraction 1 − τ of

photons leaked into the environment, but she does not control

any noise, i.e., she does not have its purification.

Alice and Bob’s mutual information I (x : y) is the same

as above for the fully-untrusted case but Eve’s Holevo infor-

mation χLoS(E : y) is now rather different. The latter can be

computed as in Sec. III A and, in particular, from the CM in

Eq. (71), where we insert the following parameters:

b = 2n̄R + 1, (120)

θ = −
√

τ (1 − τ )σ 2
x , (121)

φ = (1 − τ )σ 2
x + 2n̄th + 1. (122)

In this way we can compute the asymptotic key rate

Rasy,LoS(τ, n̄th) = βI (x : y) − χLoS(E : y). (123)

The incorporation of finite-size effects requires that we

under-estimate the thermal noise experienced by Eve, while

we overestimate that seen by the parties. Thus, besides the

worst-case estimators τ ′ and n̄′
th in Eqs. (117) and (118), we

also compute the best-case estimator

n̄′′
th ≃ n̄th − w

2n̄th + νdet√
2νdetm

. (124)

Thus, we compute the rate

Rpe,LoS = βI (x : y)τ ′,n̄′
th

− χLoS(E : y)τ ′,n̄′′
th
, (125)

which is replaced into Eq. (55) to provide the composable key

rate associated with LoS security.

Assuming the heterodyne protocol with the same param-

eters as in the fully-untrusted case, we find an improvement,

as expected. As shown in Fig. 7, the range of security is now

FIG. 7. Microwave wireless QKD (at 1 GHz) using the hetero-

dyne protocol under LoS security. We plot the composable secret

key rate (bits/use) versus free-space distance z between transmitter

and receiver (centimeters). Parameters are chosen as discussed in the

main text.

larger, even though the effective application is still restricted

to centimeters from the transmitter. Note that this performance

is based on the LoS assumption, so it is not confined by the

PLOB bound.

IV. CONCLUSIONS

In this paper, we have developed a general framework

for the composable finite-size security analysis of Gaussian-

modulated coherent-state protocols, which are the most

powerful protocols of CV-QKD. We have investigated the

secret key rates that are achievable assuming various levels of

trust for the receiver’s setup, from the worst-case assumption

of a fully-untrusted detector to the case where detector’s loss

and noise are considered to be trusted. In the specific case

of free-space quantum communication, we have also investi-

gated the additional assumption of passive eavesdropping on

the communication channel due to the line-of-sight geometry.

We have shown how the realistic assumptions on the setups

can have nontrivial effects in terms of increasing the compos-

able key rate and tolerating higher loss (therefore increasing

distance). More interestingly, we have also demonstrated the

feasibility of high-rate CV-QKD with wireless mobile de-

vices, assuming realistic parameters and near-range distances,

e.g., as typical of indoor networks. Besides the optical fre-

quencies, we have also analyzed the microwave wavelengths,

considering possible parameters able to mitigate the loss and

noise affecting this challenging setting. In this way, we have

discussed potential microwave-based applications for very

short-range (cm-range) quantum-safe communications.
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