

This is a repository copy of Statin use and MRI subchondral bone marrow lesion worsening in generalized osteoarthritis: longitudinal analysis from Osteoarthritis Initiative data.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/184039/</u>

Version: Accepted Version

Article:

Mohajer, B, Guermazi, A, Conaghan, PG orcid.org/0000-0002-3478-5665 et al. (8 more authors) (2022) Statin use and MRI subchondral bone marrow lesion worsening in generalized osteoarthritis: longitudinal analysis from Osteoarthritis Initiative data. European Radiology, 32 (6). pp. 3944-3953. ISSN 0938-7994

https://doi.org/10.1007/s00330-021-08471-y

© 2022, The Author(s), under exclusive licence to European Society of Radiology. This is an author produced version of an article published in European Radiology. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Statin Use and MRI Subchondral Bone Marrow Lesion Worsening in Generalized Osteoarthritis: Longitudinal Analysis from Osteoarthritis Initiative Data

Article type: Original research

Abstract

Objectives. To determine the association between statin therapy and knee MRI-detected
 subchondral bone marrow lesion (BML) longitudinal worsening in patients with Heberden's nodes
 (HNs) as the hallmark of generalized osteoarthritis (OA) phenotype.

4 *Methods.* All participants gave informed consent, and IRB approved HIPAA-compliant protocol. 5 We assessed worsening in BMLs volume and number of affected subregions in the Osteoarthritis 6 Initiative (OAI) participants with HNs at baseline clinical examination (HN⁺), using the semi-7 quantitative MRI Osteoarthritis Knee Scores at baseline and 24-month. Participants were classified 8 according to baseline BML involvement as "no/minimal" (≤2/14 knee subregions affected and 9 maximum BML score≤1) or "moderate/severe." Statin users and non-users were selected using 10 1:1 propensity-score (PS) matching for OA and cardiovascular disease (CVD)-related potential 11 confounding variables. We assessed the association between statin use and increasing BML score 12 and affected subregions using adjusted mixed-effect regression models.

Results. The PS-matched HN⁺ participants (63% female, aged 63.5±8.5-year-old) with no/minimal and moderate/severe BML cohorts consisted of 332 (166:166, statin users: non-users) and 380 (190:190) knees, respectively. In the HN⁺ participants with no/minimal BML, statin use was associated with lower odds of both BML score worsening (odds ratio, 95% confidence interval:0.62, 0.39–0.98) and increased number of affected subregions (0.54, 0.33–0.88). There

18	was no such association in HN ⁻ participants or those HN ⁺ participants with baseline												
19	moderate/severe BML.												
20	Conclusion. In patients with CVD indications for statin therapy and generalized OA phenotype												
21	(HN ⁺), statin use may be protective against the OA-related subchondral bone damage only in the												
22	subgroup of participants with no/minimal baseline BML.												
23	Keywords: Magnetic Resonance Imaging, Bone Marrow, Hydroxymethylglutaryl-CoA												
24	Reductase Inhibitors, Osteoarthritis, Knee, Propensity Score												
25													
26	Key points:												
27	• Statin use may reduce the risk of subchondral bone damage in specific osteoarthritis												
28	patients with a generalized phenotype, minimal subchondral bone damage, and												
29	cardiovascular statin indications.												
30	Abbreviations and Acronyms:												
31	1) BML: Bone marrow lesion												
32	2) CVD: Cardiovascular disease												
33	3) DMOAD: Disease-modifying osteoarthritis drug												
34	4) HN: Heberden's node												
35	5) MIF: Medication inventory form												
36	6) MOAKS: MRI Osteoarthritis Knee Score												
37	7) OA: Osteoarthritis												
38	8) OAI: Osteoarthritis Initiative												
39	9) PS: Propensity-score												
40	10) SMAS: Statin-associated muscle symptoms												

41 11) SMD: Standardized mean difference

43 Introduction:

44 Knee osteoarthritis (OA) is the most common debilitating disease of the peripheral joints. 45 Despite its high prevalence, to date, no disease-modifying OA drug (DMOAD) has been approved 46 for use in clinical practice.[1] There have been investigations on the potential DMOAD role for 47 statins, a group of first-line lipid-lowering medications. Despite the well-established experimental 48 evidence for the protective effect of statins against knee OA progression and subchondral bone 49 damage in animal models, [2] previous observational studies on human OA patients have been 50 inconclusive.[3-13] Such discrepancy could be due to heterogeneous subject selection related to 51 different OA phenotypes, degree of baseline joint structural damage, and most importantly, 52 presence vs. absence of cardiovascular disease (CVD) indications for statin use among 53 participants. While there are controversial reports on the causal relationship between CVD and 54 OA, [14-18] previous studies have shown OA is strongly associated with CVDs and CVD risk 55 factors such as obesity and dyslipidemia.[15; 19-21] Therefore, the presence of CVD indications 56 of statins can possibly confound or intermediate statins' DMOAD assessment.

57 Experimental studies have shown a protective effect of statins on the subchondral bone.[2] In 58 human OA patients, subchondral bone marrow lesions (BMLs) are known as the imaging hallmark 59 of OA-related subchondral bone damage in MRI examinations.[22] To date, no study has assessed 60 the effect of statins on BMLs, and only one trial on the statins' DMOAD effect on cartilage loss 61 has been conducted.[23; 24] In this trial, authors used a 2-year follow-up Magnetic Resonance 62 Imaging (MRI) and included participants had no CVD indications for statin use and had 63 heterogeneous OA etiologies. [23; 24] While authors reported that overall statins had no protective 64 effects against OA progression, they stated that statin might reduce cartilage loss only in the 65 subgroup of OA patients with no subchondral BMLs. [23; 24] Moreover, it has been recently shown that statin use is associated with decreased radiographic knee OA radiographic progression compared to non-use, only in those OA participants with Heberden's nodes (HN⁺).[25] HNs are bony enlargements of the distal interphalangeal joints (DIPs) detectable in clinical examination and are considered a hallmark of generalized OA phenotype.[26-28]

70 Using the results of the only available clinical trial and recent observational data on HN⁺ 71 patients, as potential responders to the DMOAD effects of statin, we hypothesized that statins 72 potential DMOAD role might be through their protective effect on early subchondral BML 73 formation and worsening in a distinct subgroup of OA patients with generalized OA (HN⁺), 74 no/minimal BMLs, and CVD indications for statin use. Using propensity-score (PS) matching for 75 CVD factors and potential confounding by indication (OA and CVD) covariates, we tested this 76 hypothesis in participants of the Osteoarthritis Initiative (OAI) ancillary studies with tailored selection criteria for assessing worsening of MRI-based subchondral bone OA-related damage 77 78 over 24 months follow-up.

80 Materials and Methods

81 Study population

82 In this study, we used data from the longitudinal multi-center Osteoarthritis Initiative (OAI) 83 study (2004-2015, clinicaltrials.gov identifier: NCT00080171, details can be found at 84 https://nda.nih.gov/oai/). All enrolled patients filled written informed consent and institutional 85 review boards of four OAI collaborating centers have approved the Health Insurance Portability 86 and Accountability Act-compliant protocol of this study. We collected and pooled all previously 87 conducted MRI-based measurements of participants from nested ancillary studies performed 88 inside OAI to assess OA-related subchondral bone damage. (Figure 1) These studies' design and 89 selection criteria are specially tailored to assess MRI-based OA structural damage worsening in a 90 specific subset from all OAI participants (details are explained in the OAI online repository[29]). 91 Following deletion of duplicate measurements (753 cases between different projects), MRI 92 Osteoarthritis Knee Score (MOAKS) measurements for 1677 knees were included from the 93 following OAI ancillary studies: 1) Foundation for the National Institute of Health (FNIH) 94 Consortium Osteoarthritis Biomarkers Project [30] (473 knees, project no. 22), 2) project no. 30 95 (125 knees) 3) projects no. 63A-63F (328 knees) 4) Pivotal OAI MRI Analyses (POMA) study 96 (751 knees).[31] The same OAI team centrally performed all measurements according to the 97 validated semi-quantitative MOAKS.[32]

Since it is difficult to assess structural OA damage in patients with advanced knee OA due to 'ceiling' effects on the scores, knees with end-stage knee OA on baseline X-ray were excluded. (Exclusion #1 in Figure 1) These consist of knees with replacement surgery (63 knees) and baseline radiographic Kellgren-Lawrence (KL) grade of 4 (302 knees). Moreover, knees without available baseline and 24-month follow-up evaluation of BMLs in the mentioned OAI ancillary studies were 103 excluded (7641 knees, Exclusion #2 Figure 1). Both knees were included in a minority of
104 participants (N:36, 5% of included knees).

To assess the potential skewness of our sampling and risk of selection bias, we compared the baseline characteristics of OAI participants included in the ancillary studies and the rest of the OAI participants. There was no significant difference in neither of the potential confounders. (Supplementary Table 1)

109 Assessment of HNs

At the baseline visit, trained OAI nurse staff examined whether HNs on the DIP joints of the $2^{nd}-5^{th}$ digits and first interphalangeal joint were present by palpation. Participants with at least one HN in either hand were categorized as HN⁺; whereas, participants free of HN in both hands were categorized as HN⁻ and were separately assessed in the sensitivity analysis (Sensitivity analysis #1 in Figure 1)

115 MRI acquisition and outcome measures

MRI acquisition was performed using 3T MRI systems (Trio, Siemens Healthcare, Erlangen, 116 117 Germany). Parameters and pulse sequence protocol of OAI MRIs have been previously 118 reported.[32] The validated semi-quantitative MOAKS method was used to assess BMLs at 119 baseline, and follow-up MRIs and features of BML size and number of affected subregions in all 120 14 anatomical knee joint sub-regions were extracted.[32] BMLs volume was scored based on the 121 percentage of the total subregion volume occupied as 0: none, 1: <33%, 2: 33-66%, and 3: >66% 122 of joint/sub-region volume. To categorize knees according to baseline BML status, we considered 123 both the BML score and the number of affected knee joint subregions. Knees with both criteria of 124 a) ≤ 2 knee subregions with BMLs and b) maximum BML score ≤ 1 were considered no/minimal 125 BML involvement. Subsequently, knees with either a) >2 knee subregions with BMLs or b)

126 maximum BML score >1 were considered with moderate/severe BML involvement. A 24-month 127 BML score worsening was defined as a whole- or within-grade change, where within-grade was 128 defined as a definite visual change while not fulfilling a whole-grade change definition. BML 129 worsening for longitudinal analysis (i.e., outcome to the models) was defined according to 130 previously validated measures[33] as follows: 1) worsening in the number of affected subregions 131 with BML (ranged from improvement to no change, worsening in 1 subregion, and worsening in 132 \geq 2 subregions), 2) maximum worsening in BML score (ranged from no change, within-grade 133 worsening, to worsening by 1 grade, and worsening by ≥ 2 grades), and 3) worsening in either of 134 BML score (whole or within-grade) or the number of affected subregions (yes/no).[33]

135 **Definition of statin use:**

136 According to the OAI protocol, participants were asked to bring their medications at baseline 137 and annual visits. Staff recorded all information on statin type, frequency, and duration of use at 138 each visit, and data were recorded in the OAI Medication Inventory forms (MIFs). To determine 139 the accuracy of self-reported dosage, type, and duration of statin use, in statin users, we extracted 140 and used all available data about the indication of treatment (e.g., primary dyslipidemia, diabetes, 141 heart disease, or cerebrovascular accident), type of statin (including atorvastatin, lovastatin, 142 fluvastatin, simvastatin, pravastatin, and rosuvastatin), and duration of statin use from the OAI 143 MIF dataset. Participants who reported at least one year (equal to 50% of follow-up duration) statin 144 use in OAI MIF forms were considered statin users. Participants who had <1 year of statin use 145 (two participants in the PS-matched cohorts) or did not report statin use were regarded as statin 146 non-users.

147 Statistical analysis:

Propensity Score Matching: To minimize the confounding by indication bias, we matched study subcohorts for potential confounders (CVD-related factors: indications of statin use) using baseline clinical characteristics. Potential confounders were investigated using a Direct Acyclic Graph to assess causal inference.[34] (Supplementary figure 1) The missing data pattern was evaluated, and missing covariate data were imputed. A list of confounding variables and details of the imputation method is presented in the supplementary material.

The matching process was performed using the 1:1 PS-matching method separately in HN⁺ with no/minimal BMLs and HN⁺ with moderate/severe BMLs subcohorts; For every knee of statin users, one best-matched knee of the referent (non-users) was selected. We used the nearest neighbor method with a caliper distance of 0.1 calculated with a logistic regression model. We calculated the Standardized Mean Difference (SMD) before and after PS-matching to examine the balance of covariate distribution between the statin users and non-users subcohorts and defined imbalance as an SMD \geq 0.1.

Regression models: All statistical analyses were separately performed in the HN⁺ subcohorts 161 162 with no/minimal BMLs and with moderate/severe BMLs to further assess our hypothesis on 163 statin's effect on the HN⁺ statin users with no/minimal baseline BML. We used logistic mixed-164 effect regression models while considering random intercept for each cluster of matched statin 165 user:non-user and within-subject similarities (due to the inclusion of both knees in a minority 166 (N:36, 5%) of included knees). Statin use was the independent predictor, and BML worsening variables were the dependent outcomes. All models were adjusted for participants' propensity 167 168 scores, baseline KL grade, medial joint space narrowing grade, and knees' BML status.

169 *Sensitivity analysis:* We performed the same PS-matched analyses mentioned above on all 170 eligible participants (irrespective of OA phenotype) and the HN⁻ participants to assess whether

our results were sensitive to stratification for OA phenotype (Sensitivity analysis #1 in Figure 1).
We also evaluated the sensitivity of our results to data imputation with the exclusion of participants
with imputed missing data (Sensitivity analysis #2 in Figure 1). Moreover, we assessed sensitivity
to PS-matching by performing the analyses on the entire cohort of eligible HN⁺ OAI participants
without PS-matching (Sensitivity analysis #3 in Figure 1). Finally, we evaluated sensitivity to the
random exclusion of one of the two knees of participants with both knees included (Sensitivity

178 The open-source R software version 4.0.3 (MASS, haven, survival, MatchIt, mice, lme4,

179 *ImerTest*, and *tableone* packages) was used for statistical analysis.

180 **Results**

Participants' characteristics: After the implementation of exclusion criteria and PS-matching,
from a total of 9592 knees in the OAI, 332 (statin user: non-user, 166:166) matched knees of HN⁺
with no/minimal BMLs and 380 (190:190) matched knees of HN⁺ with moderate/severe BMLs
were included in the analysis. (Figure 1) The baseline characteristics of included knees before and
after PS-matching are shown in Table 1. The SMD was less than 0.1 for all variables included in
the PS-matching model. Participants in all PS-matched cohorts were on average±standard
deviation 63.5±8.5-year-old, were 63% women, and had an average BMI of 29±4.5 kg/m².

188 Outcome measures: In HN⁺ with no/minimal baseline BML subcohort, statin use was 189 associated with lower odds of an increasing number of affected subregions with BML (odds ratio, 190 95% confidence interval:0.54, 0.33–0.88), BML score worsening (0.62, 0.39–0.98), and worsening 191 in either BML score or the number of affected subregions (0.60, 0.37–0.99). (Table 2) There was no such association in the HN⁺ with moderate/severe baseline BML subcohort (worsening in the 192 193 number of affected subregions: 1.04, 0.70-1.53, BML score worsening: 0.96, 0.65-1.42, and 194 worsening in either BML score or the number of affected subregions:0.85, 0.50–1.47). (Table 2) 195 Sensitivity analysis: Our sensitivity analysis showed that without stratification for OA

phenotype (all HN^+ and HN^-s) or in HN^- subcohort, there was no association between statin use and BML worsening. (Supplementary table 2 & 3) Furthermore, our results were not sensitive to using the PS-matching method, data imputation, or random exclusion of one knee of participants with both knees included. (Supplementary Table 2)

201 Discussion

Using the available data from the previously published paper on HN⁺ participants and the recent trial, we have tested the hypothesis that statin use is associated with reduced BML worsening over two years in the knee joint, only in a specific OA phenotype with HNs, no/minimal BMLs, and with CVD indications for statin use. Our finding suggests that the protective effect of statins against OA-related subchondral bone damage, which is not seen in all OA patients and is exclusive to patients with HNs (as the hallmark of a generalized OA phenotype),[25] may be associated with a reduction in early OA-related subchondral damage.

209 The current data on statins' effects against OA-related outcomes is controversial and limited 210 to observational studies.[3-13] The reasons for the overall inconclusive results of previous 211 observational clinical studies could be due to the inclusion of heterogeneous OA populations in 212 terms of OA phenotype, degree of baseline structural damage in the joint, and underlying 213 comorbidities (e.g., CVDs) that may mediate or confound the potential DMOAD role of statins. 214 We, therefore, carefully formed our hypothesis and selected participants using findings of a 215 previous observational study on HN⁺ patients (generalized OA)[25] and the only conducted 216 clinical trial (minimal/no BML), [23; 24] while trying to address potential limitations of these 217 studies (e.g., excluding patients with CVD indications for statin use in the trial). Considering the 218 inclusion of patients with generalized OA, a large body of literature supports HNs as the hallmark 219 of generalized OA and a strong predictor of knee OA progression. [26; 35] Previous studies have shown generalized OA and HNs in DIPs are also strongly associated with CVD risk factors such 220 221 as elevated serum cholesterol and lipid dysregulation.[36]. Moreover, it has been shown HN⁺ OA 222 patients have 40% higher odds of OA MRI-detected subchondral damage during 24-months of 223 follow-up compared to HN⁻ patients.[37] Valdes et al., using a cross-sectional design,

demonstrated a significant association between statin use and less severe hip and knee OA – assessed by the Kellgren-Lawrence grading system– exclusively in patients with generalized OA.[7] It has been recently shown that statin use is associated with a 46% reduced risk of radiographic progression of OA over 8-years compared to no use, only in HN⁺ patients and not HN⁻s.[25]

229 On the other hand, from the only clinical trial on stating with a 2-year follow-up, [23; 24] the 230 authors reported a protective effect for statins on OA progression, but only in participants with no 231 baseline subchondral BMLs, another finding that helped to form our hypothesis and selecting 232 participants. However, according to the trial inclusion criteria, authors excluded patients with CVD 233 indications of statin use, and participants used statins purely for OA progression. [23; 24] This may 234 have resulted in excluding the population who could benefit from statins' effects on subchondral 235 bone. More importantly, the authors did not consider OA phenotypes (e.g., generalized OA) in the 236 subject selection. Our sensitivity analysis showed that when assessing all OA patients irrespective 237 of their phenotype (both HN^+ and HN^-), similar to this trial, we observed no protective association 238 with statin use.

239 While showing beneficial effects of statins in an OA population who already have statin use 240 indication may first seem only incremental in clinical practice, a considerable beneficial 241 epidemiologic impact of DMOAD role for statins can be expected in two distinct patient 242 populations. The first population is current statin users for CVD and its risk factors. Statins are 243 among the most prescribed medications in the elderly, mainly indicated for dyslipidemia and other 244 CVD risk factors.[38] One of the main challenges for statin use is the disappointing long-term 245 adherence rate of as low as 25% [39] due to reasons like perceived lack of efficacy of statins and 246 subjective musculoskeletal pain or its related subjective concerns (also known as statin-associated

247 muscle symptoms or SAMS).[40] Furthermore, older patients[41] (also more affected by OA) and 248 those with debilitating comorbidities like OA[42; 43] are among the groups with the least 249 adherence to statins.[44; 45] the second population who benefit are generalized OA statin "non-250 users" with a CVD indication for statin use. Reports show that a third of the adults in developed 251 countries like the U.S. meet statin CVD indications, but nearly half of this population have never 252 initiated stain use.[46] If the potential DMOAD role for statins is proven, it can improve both 253 initiation of and adherence to one of the world's most commonly prescribed medications.[44; 45] 254 As for the strengths of the current study, we studied a hypothesis-driven selected large sample 255 of PS-matched participants from the validated OAI cohort. Also, we used MOAKS scorings which 256 have been shown to closely correlate with pain and structural damage or the progression of 257 OA.[33] Previous studies on the OAI data reported intra- and inter-observer reliability of 90% for 258 longitudinal BML MOAKS measurement, suggesting a low risk of measurement error for 259 influencing outcome results.[47] Moreover, we uniquely selected and PS-matched participants 260 based on previous evidence and performed several stratification and sensitivity analyses to OA 261 phenotype (HN⁻, moderate/severe BMLs) and selected methods (PS-matching, missing data 262 imputation, the inclusion of both knees) to assess the robustness of our results.

However, our study has several limitations. First, we lacked precise data on the duration, dosage, and intensity of statin use. OAI examiners confirmed the prescription for statins according to medications participants brought with them during visits. This approach may not be as valid as the exact pill count and cannot be used for exploring the dose-dependent effects of statins, but it may be more reliable than a self-report of medication use. A similar approach has been implemented in previous OAI studies.[8; 13; 25], and it has been shown that these measures of statin use are relatively accurate.[48] Second, we have included all statin users with different statin 270 use duration before the baseline visit (both prevalent and incident users). This will increase the 271 risk of Neyman bias in our results, which is a selection bias in which very sick/healthy participants 272 (because of chronic disease) are excluded from enrolment.[49] Third, our defined subcohorts were 273 not pre-specified in the OAI data collection process because of the retrospective analysis of the 274 prospectively collected data. We were limited by including participants with available MRI 275 scorings from previously conducted nested case-control studies within OAI (e.g., FNIH, POMA), 276 which have specific inclusion-exclusion criteria. We tried to tailor our study sample to address this 277 limitation using detailed selection criteria and the PS-matching method, and we assessed the 278 sensitivity of our results to using the PS-matching method. Forth, in assessing CVD statin 279 indications, lipid profile was not available in the OAI dataset, and dyslipidemia is among the most 280 common indications of statin prescription for primary CVD prevention.[50] While we tried to 281 match our participants according to other statin CVD statin indications and the majority (>70%)282 of our participants had statin indications (all statin users, 40% of non-users according to PS-283 matching results), it is not possible to thoroughly address this issue in studies with an observational 284 design where exposure (statin use) was not considered in selection criteria. Finally, we have not 285 assessed SAMS and muscle strength and quality in this study, a matter that can potentially 286 complicate the implementation of statin DMOAD role in routine clinical practice. Given the high 287 prevalence of SAMS, detecting any deterioration of muscle quality will raise a critical concern for 288 statins' DMOAD role in clinical practice, a matter left for future studies.

In conclusion, our results suggest that statin use may be protective against BML worsening only in a specific OA phenotype with HNs and no/minimal baseline BMLs and with CVD statin indications, which is in line with the recent observational data[25] and the only available clinical trial.[23; 24] While our exploratory study results cannot be directly translated to clinical use, future studies focusing on the repurposing of widely available statins as DMOADs[51] with proper
patient selection may produce clinical and potential cost-saving benefits compared to designing
new DMOAD compounds.

297	Patient consent
298	Subjects have given informed consent before participating in the Osteoarthritis Initiative
299	(OAI) project.
300	Ethics approval
301	The medical ethics review boards of the University of California, San Francisco (Approval
302	Number: 10-00532) and the four clinical centers of osteoarthritis initiative project recognized the
303	project as Health Insurance Portability and Accountability Act (HIPAA)-compliant.
304	Data sharing statement
305	The de-identified clinical and demographic information and knee MRI read of subjects is
306	publicly available at the osteoarthritis initiative project data repository at https://oai.nih.gov. All
307	dataset and the R codes used in this work are available from the corresponding author upon

308 reasonable requests.

311	1	Bijlsma JWJ, Berenbaum F, Lafeber FPJG (2011) Osteoarthritis: an update with
312		relevance for clinical practice. The Lancet 377:2115-2126
313	2	Farnaghi S, Prasadam I, Cai G et al (2017) Protective effects of mitochondria-targeted
314		antioxidants and statins on cholesterolinduced osteoarthritis. FASEB Journal 31:356-367
315	3	Kadam UT, Blagojevic M, Belcher J (2013) Statin Use and Clinical Osteoarthritis in the
316		General Population: A Longitudinal Study. Journal of General Internal Medicine 28:943-
317		949
318	4	Makris UE, Alvarez CA, Mortensen EM, Mansi IA (2018) Association of Statin Use with
319		Increased Risk of Musculoskeletal Conditions: A Retrospective Cohort Study. Drug Saf
320		41:939-950
321	5	Clockaerts S, Van Osch GJVM, Bastiaansen-Jenniskens YM et al (2012) Statin use is
322		associated with reduced incidence and progression of knee osteoarthritis in the Rotterdam
323		study. Annals of the Rheumatic Diseases 71:642-647
324	6	Wang J, Dong J, Yang J, Wang Y, Liu J (2020) Association between statin use and
325		incidence or progression of osteoarthritis: meta-analysis of observational studies.
326		Osteoarthritis and cartilage 28:1170-1179
327	7	Valdes AM, Zhang W, Muir K, Maciewicz RA, Doherty S, Doherty M (2014) Use of
328		statins is associated with a lower prevalence of generalised osteoarthritis. Annals of the
329		Rheumatic Diseases 73:943-945

330	8	Riddle DL, Moxley G, Dumenci L (2013) Associations between Statin use and changes
331		in pain, function and structural progression: A longitudinal study of persons with knee
332		osteoarthritis. Annals of the Rheumatic Diseases 72:196-203
333	9	Michaëlsson K, Lohmander LS, Turkiewicz A, Wolk A, Nilsson P, Englund M (2017)
334		Association between statin use and consultation or surgery for osteoarthritis of the hip or
335		knee: a pooled analysis of four cohort studies. Osteoarthritis and Cartilage 25:1804-1813
336	10	Mansi IA, Mortensen EM, Pugh MJ, Wegner M, Frei CR (2013) Incidence of
337		musculoskeletal and neoplastic diseases in patients on statin therapy: results of a
338		retrospective cohort analysis. The American journal of the medical sciences 345:343-348
339	11	Eymard F, Parsons C, Edwards MH et al (2017) Statin use and knee osteoarthritis
340		progression: Results from a post-hoc analysis of the SEKOIA trial. Joint Bone Spine
341		85:609-614
342	12	Chodick G, Amital H, Shalem Y et al (2010) Persistence with Statins and Onset of
343		Rheumatoid Arthritis: A Population-Based Cohort Study. PLoS Medicine 7:e1000336-
344		e1000336
345	13	Veronese N, Koyanagi A, Stubbs B et al (2019) Statin Use and Knee Osteoarthritis
346		Outcomes: A Longitudinal Cohort Study. Arthritis Care Res (Hoboken) 71:1052-1058
347	14	Kuusalo L, Felson DT, Wang N et al (2021) Metabolic osteoarthritis - relation of diabetes
348		and cardiovascular disease with knee osteoarthritis. Osteoarthritis Cartilage 29:230-234
349	15	Hall AJ, Stubbs B, Mamas MA, Myint PK, Smith TO (2016) Association between
350		osteoarthritis and cardiovascular disease: Systematic review and meta-analysis. European
351		Journal of Preventive Cardiology 23:938-946

- Corti MC, Rigon C (2003) Epidemiology of osteoarthritis: Prevalence, risk factors and
 functional impact. Aging Clinical and Experimental Research 15:359-363
- Fernandes GS, Valdes AM (2015) Cardiovascular disease and osteoarthritis: common
- 355 pathways and patient outcomes. European Journal of Clinical Investigation 45:405-414
- 356 18 Ong KL, Wu BJ, Cheung BMY, Barter PJ, Rye K-A (2013) Arthritis: its prevalence, risk
- factors, and association with cardiovascular diseases in the United States, 1999 to 2008.
- 358 Annals of Epidemiology 23:80-86
- Plumb MS, Aspden RM (2004) High levels of fat and (n-6) fatty acids in cancellous bone
 in osteoarthritis. Lipids Health Dis 3:12
- 361 20 Findlay DM (2007) Vascular pathology and osteoarthritis. Rheumatology 46:1763-1768
- 362 21 Kadam UT (2004) Clinical comorbidity in patients with osteoarthritis: a case-control
 363 study of general practice consulters in England and Wales. Annals of the Rheumatic
 364 Diseases 63:408-414
- 365 22 Dore D, Quinn S, Ding C et al (2010) Natural history and clinical significance of MRI-
- 366 detected bone marrow lesions at the knee: a prospective study in community dwelling
- 367 older adults. Arthritis Research & Therapy 12:R223
- 368 23 Wang Y, Jones G, Hill C et al (2020) Effect of atorvastatin on knee structure and pain in
- 369 patients with knee osteoarthritis: a randomised controlled trial. Osteoarthritis and
- 370 Cartilage 28:S478-S479
- 371 24 Wang Y, Jones G, Hill C et al (2021) Effect of atorvastatin on knee cartilage volume in
- 372 patients with symptomatic knee osteoarthritis: results from a randomised placebo-
- 373 controlled trial. Arthritis Rheumatol. 10.1002/art.41760

374	25	Haj-Mirzaian A, Mohajer B, Guermazi A et al (2019) Statin Use and Knee Osteoarthritis
375		Outcome Measures according to the Presence of Heberden Nodes: Results from the
376		Osteoarthritis Initiative. Radiology 293:190557
377	26	Kellgren JH, Moore R (1952) Generalized osteoarthritis and Heberden's nodes. British
378		medical journal 1:181-187
379	27	Irlenbusch U, Dominick G (2006) Investigations in generalized osteoarthritis. Part 2:
380		Special histological features in generalized osteoarthritis (histological investigations in
381		Heberden's nodes using a histological score). Osteoarthritis and Cartilage 14:428-434
382	28	Nelson AE, Smith MW, Golightly YM, Jordan JM (2014) "Generalized osteoarthritis": A
383		systematic review. Seminars in Arthritis and Rheumatism 43:713-720
384	29	(2016) Overview and Description of Central Image Assessments. Available via
385		https://nda.nih.gov/binaries/content/documents/ndacms/resources/oai/oai-image-
386		assessment-overview/oai-image-assessment-overview/ndacms:resource. Accessed
387		04/25/2021 2021
388	30	Aboulenain S, Saber AY (2021) Primary OsteoarthritisStatPearls. StatPearls Publishing
389	Copyri	ight © 2021, StatPearls Publishing LLC., Treasure Island (FL)
390	31	Hoaglund FT (2013) Primary osteoarthritis of the hip: a genetic disease caused by
391		European genetic variants. J Bone Joint Surg Am 95:463-468
392	32	Hunter DJ, Guermazi A, Lo GH et al (2011) Evolution of semi-quantitative whole joint
393		assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis and
394		Cartilage 19:990-1002

395	33	Collins JE, Losina E, Nevitt MC et al (2016) Semiquantitative Imaging Biomarkers of
396		Knee Osteoarthritis Progression: Data From the Foundation for the National Institutes of
397		Health Osteoarthritis Biomarkers Consortium. Arthritis Rheumatol 68:2422-2431
398	34	Schisterman EF, Cole SR, Platt RW (2009) Overadjustment Bias and Unnecessary
399		Adjustment in Epidemiologic Studies. Epidemiology 20:488-495
400	35	Blagojevic M, Jinks C, Jeffery A, Jordan KP (2010) Risk factors for onset of
401		osteoarthritis of the knee in older adults: a systematic review and meta-analysis.
402		Osteoarthritis and Cartilage 18:24-33
403	36	Kovari E, Kaposi A, Bekes G et al (2020) Comorbidity clusters in generalized
404		osteoarthritis among female patients: A cross-sectional study. Seminars in Arthritis and
405		Rheumatism 50:183-191
406	37	Haj-Mirzaian A, Mohajer B, Guermazi A et al (2019) Heberden's Nodes and Knee
407		Osteoarthritis-Related Osseous Structural Damage: Exploratory Study From the
408		Osteoarthritis Initiative. Arthritis & Rheumatology 71:935-940
409	38	Smith DA, Galin I (2006) Statin therapy for native and peri-interventional coronary heart
410		disease. Curr Mol Med 6:589-602
411	39	Jackevicius CA, Mamdani M, Tu JV (2002) Adherence with statin therapy in elderly
412		patients with and without acute coronary syndromes. ACC Current Journal Review 11:36
413	40	Wei MY, Ito MK, Cohen JD, Brinton EA, Jacobson TA (2013) Predictors of statin
414		adherence, switching, and discontinuation in the USAGE survey: Understanding the use
415		of statins in America and gaps in patient education. Journal of Clinical Lipidology 7:472-
416		483

417	41	Warren JR, Falster MO, Fox D, Jorm L (2013) Factors influencing adherence in long-
418		term use of statins. Pharmacoepidemiology and Drug Safety 22:1298-1307
419	42	Mauskop A, Borden WB (2011) Predictors of Statin Adherence. Current Cardiology
420		Reports 13:553
421	43	Parkinson L, Waters DL, Franck L (2017) Systematic review of the impact of
422		osteoarthritis on health outcomes for comorbid disease in older people. Osteoarthritis and
423		Cartilage 25:1751-1770
424	44	Mann DM, Allegrante JP, Natarajan S, Halm EA, Charlson M (2007) Predictors of
425		Adherence to Statins for Primary Prevention. Cardiovascular Drugs and Therapy 21:311-
426		316
427	45	Vinker S, Shani M, Baevsky T, Elhayany A (2008) Adherence with statins over 8 years
428		in a usual care setting. The American journal of managed care 14:388-392
429	46	Mercado C, DeSimone AK, Odom E et al (2015) Prevalence of cholesterol treatment
430		eligibility and medication use among adults—United States, 2005–2012. 64:1305-1311
431	47	Roemer FW, Guermazi A, Collins JE et al (2016) Semi-quantitative MRI biomarkers of
432		knee osteoarthritis progression in the FNIH biomarkers consortium
433		cohort - Methodologic aspects and definition of change. BMC Musculoskeletal Disorders
434		17:466
435	48	Boudreau DM, Daling JR, Malone KE, Gardner JS, Blough DK, Heckbert SR (2004) A
436		Validation Study of Patient Interview Data and Pharmacy Records for Antihypertensive,
437		Statin, and Antidepressant Medication Use among Older Women. Am J Epidemiol
438		159:308-317

439	49	Danaei G, Tavakkoli M, Hernan MA (2012) Bias in observational studies of prevalent
440		users: lessons for comparative effectiveness research from a meta-analysis of statins. Am
441		J Epidemiol 175:250-262
442	50	Force USPST (2016) Statin Use for the Primary Prevention of Cardiovascular Disease in
443		Adults: US Preventive Services Task Force Recommendation Statement. JAMA
444		316:1997-2007
445	51	(2015) New Indications and a Sense of (Re)purpose. EBioMedicine 2:1257-1258

- **Figure and Table Legends**

- **Figure 1.** Flowchart of study participants and exclusion criteria
- 451 *** Figure 1 ***
- 452 BML: Bone marrow lesion, HN: Heberden's node, KL: Kellgren-Lawrence, OAI: Osteoarthritis
- 453 initiative, PS: Propensity-score.

Table 1. Baseline characteristics of the study population before and after propensity score matching for statin use according to baseline

455 BML in MRI.

	HN ⁺ participant with no/minimal BMLs						HN ⁺ participant with moderate/severe BMLs					
Characteristic	Before matching			Prop	Propensity score-		Before matching			Propensity score-matched		
Characteristic					matched							
	Statin	Statin	SMD	Statin	Statin	SMD	Statin	Statin	SMD	Statin	Statin	SMD
	(-)	(+)	DIVID	(-)	(+)	SIVID	(-)	(+)	SMD	(-)	(+)	SIMD
No. of knees	339	175		166	166		386	203		190	190	
Variables in the P.S matching (Potential confounders)												
Age (year) [mean	60.99	63.82	0.342	63.66	63.61	0.006	62.91	64.91	0.244	63.94	64.75	0.098
(SD)]	(8.69)	(7.87)		(8.41)	(7.93)		(8.65)	(7.75)		(7.54)	(7.80)	
No. of women [N	239	109	0.175	110	104	0.076	251	125	0.072	120	118	0.022
(%)]	(70.5)	(62.3)		(66.3)	(62.7)		(65.0)	(61.6)		(63.2)	(62.1)	
BMI (kg/m²) [mean	28.10	28.40	0.069	28.15	28.31	0.04	28.92	30.05	0.261	29.50	29.72	0.049
(SD)]	(4.69)	(3.84)		(3.94)	(3.91)		(4.46)	(4.19)		(4.67)	(3.97)	
Statin CVD	76	52	0.167	48	50	0.026	119	89	0.272	76	78	0.021
indications except	(22.4)	(29.7)		(28.9)	(30.1)		(30.8)	(43.8)		(40.0)	(41.1)	
dyslipidemia[N(%)]♦												
Alcohol use, ≥1/week	167	75	0.129	76	75	0.012	174	83	0.085	78	81	0.032
[N (%)]	(49.3)	(42.9)		(45.8)	(45.2)		(45.1)	(40.9)		(41.1)	(42.6)	
Smoking, Current or	151	92	0.161	84	87	0.036	170	101	0.115	90	91	0.011
past [N (%)]	(44.5)	(52.6)		(50.6)	(52.4)		(44.0)	(49.8)		(47.4)	(47.9)	
PASE score [mean	166.32	155.45	0.145	156.54	155.16	0.019	164.61	150.55	0.181	152.93	152.84	0.001
(SD)]	(79.40)	(70.78)		(74.01)	(72.30)		(82.81)	(72.49)		(78.22)	(73.36)	
Race, non-white [N	42	19	0.048	17	17	0.001	66	34	0.009	32	32	0.001
(%)]†	(12.4)	(10.9)		(10.2)	(10.2)		(17.1)	(16.7)		(16.8)	(16.8)	
Other variables not in	the P.S m	atching										
Hx of knee Injury,	80	36	0.07	37	35	0.02	121	72	0.00	59	65	0.07
[N (%)]	(23.6)	(20.6)	0.07	(22.3)	(21.1)	0.05	(31.3)	(35.5)	0.09	(31.1)	(34.2)	0.07
Statin tuna												
Staun type			_			_			_			_
atomicatatin		79			73			82			77	
atorvastatin	—	(60.3)		_	(59.3)		—	(48.2)		—	(49.0)	

fluvastatin	_	2 (1.5)		-	2 (1.6)		—	3 (1.8)		_	2 (1.3)	
lovastatin	_	6 (4.6)		_	6 (4.9)		_	9 (5.3)		_	7 (4.5)	
pravastatin	_	9 (6.9)		_	8 (6.5)		_	14 (8.2)		_	14 (8.9)	
rosuvastatin	_	6 (4.6)		_	6 (4.9)		_	7 (4.1)		_	6 (3.8)	
simvastatin	_	29 (22.1)		_	28 (22.8)		_	55 (32.4)		_	51 (32.5)	
Statin use duration, years, [mean (SD)]	0.00 (0.00)	3.92 (2.05)	2.7	0.00 (0.00)	3.90 (2.06)	2.68	0.00 (0.00)	4.23 (2.06)	2.9	0.00 (0.00)	4.18 (2.08)	2.85
Number of affected subregions with BML			0.07			0.05			0.2			0.32
0	206 (60.8)	101 (57.7)		95 (57.2)	94 (56.6)		75 (19.4)	39 (19.2)		37 (19.5)	37 (19.5)	
1	83 (24.5)	44 (25.1)		45 (27.1)	43 (25.9)		24 (6.2)	18 (8.9)		7 (3.7)	17 (8.9)	
2	50 (14.7)	30 (17.1)		26 (15.7)	29 (17.5)		51 (13.2)	34 (16.7)		22 (11.6)	34 (17.9)	
3	0 (0.0)	0 (0.0)		0 (0.0)	0 (0.0)		99 (25.6)	55 (27.1)		56 (29.5)	51 (26.8)	
4	0 (0.0)	0 (0.0)		0 (0.0)	0 (0.0)		64 (16.6)	(14.3)		32 (16.8)	25 (13.2)	
≥5	0 (0.0)	0 (0.0)		0 (0.0)	0 (0.0)		(18.9)	28 (13.8)		36 (18.9)	26 (13.7)	
Maximum BML grade in knee			0.16			0.03			0.02			0.09
0	148 (43.7)	63 (36.0)		63 (38.0)	61 (36.7)		0 (0.0)	0 (0.0)		0 (0.0)	0 (0.0)	
1	191 (56.3)	112 (64.0)		103 (62.0)	105 (63.3)		58 (15.0)	30 (14.8)		34 (17.9)	28 (14.7)	
2	0 (0.0)	0 (0.0)		0 (0.0)	0 (0.0)		217 (56.2)	116 (57.1)		107 (56.3)	109 (57.4)	
3	0 (0.0)	0 (0.0)		0 (0.0)	0 (0.0)		111 (28.8)	57 (28.1)		49 (25.8)	53 (27.9)	
Baseline KL grade			0.21			0.235			0.062			0.166

Grada ()	111	49	53	45	54	28	22	28
Grade 0	(32.7)	(28.0)	(31.9)	(27.1)	(14.0)	(13.8)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(14.7)
Crada 1	102	68	50	64	92	50	43	48
Grade I	(30.1)	(38.9)	(30.1)	(38.6)	(23.8)	(24.6)	(22.6)	(25.3)
Crada 2	94	39	49	38	137	76	65	67
Grade 2	(27.7)	(22.3)	(29.5)	(22.9)	(35.5)	(37.4)	(34.2)	$\begin{array}{ccccc} (11.6) & (14.7) \\ 43 & 48 \\ (22.6) & (25.3) \\ 65 & 67 \\ (34.2) & (35.3) \\ 60 & 47 \\ (31.6) & (24.7) \end{array}$
Crada 2		19		19	103	49	60	47
Grade 5	32 (9.4)	(10.9)	14 (8.4)	(11.4)	(26.7)	(24.1)	(31.6)	(24.7)

Data are presented as numbers of knees. Statin (+) and Statin (-) corresponds to statin users and non-users, respectively. Knees with 456 both ≤ 2 knee subregions with BMLs and maximum BML score ≤ 1 were regarded with no/minimal BML involvement, while knees 457 either having >2 knee subregions with BMLs or maximum BML score >1 were considered with moderate/severe BML involvement. 458 459 BMI: Body mass index, BML: Bone Marrow Lesion, HN: Heberden's node, PASE: physical activity scale for the elderly, SMD: Standardized mean difference, SD: Standard deviation, N: Number of knees 460 461 A significant difference for SMD was defined as ≥ 0.1 . 462 ♦ Statin CVD indications except dyslipidemia were indicated as the presence of either history of coronary artery disease, cerebrovascular accident, diabetes (any stage of diabetes vs. no medical history of diabetes), or hypertension in clinical examination systolic blood 463 pressure \geq 140 mm Hg or diastolic blood pressure \geq 90 mm Hg at OAI visit clinical examination). 464 465 [†] race of participants was categorized as white and non-white considering the small number of participants in each non-white race group.

467 Table 2. Longitudinal 24-month assessment of subchondral BML worsening in MRI between
468 propensity-score matched HN⁺ statin users vs. non-users, according to BML involvement of the
469 knee joint in the baseline visit MRI examination.

		Н	N ⁺
	Statin user: non-user	No/minimal BML in baseline MRI	Moderate/severe BML in baseline MRI
		N: 332 (166:166)	N: 380 (190:190)
	Worsening in number of affected subregions with BML	0.54 (0.33 - 0.88), P:0.015	1.04 (0.7 - 1.53), P:0.859
	Maximum worsening in BML score	0.62 (0.39 - 0.98), P:0.041	0.96 (0.65 - 1.42), P:0.841
	Worsening in BML score or number of affected subregions	0.60 (0.37 - 0.99), P:0.044	0.85 (0.50 - 1.47), P:0.566
470	Participants in the HN ⁺ subcohort were	e separately matched for poss	ible confounders with the 1:1
471	PS matching method. Longitudinal mea	asures of BML worsening wer	e compared between matched
472	statin users: non-users using logistic mi	xed-effect linear models. Prev	viously validated longitudinal
473	24-month BML dependent variables (i	i.e., outcome to the models)	included 1) worsening in the
474	number of affected subregions with BM	ML (ranged from Improvement	nt to no change, worsening in
475	1 subregion, and worsening in ≥ 2 subregion	gions), 2) maximum worsenin	g in BML score (ranged from
476	no change, within-grade worsening, to	worsening by 1 grade, and v	vorsening by ≥ 2 grades), and
477	3) worsening in either of BML score (w	hole or within-grade) or the n	umber of affected subregions
478	(yes/no). All models were adjusted for	participants propensity score,	, baseline Kellgren-Lawrence
479	grade, medial Joint Space Narrowing (J	ISN) grade, and BML status (two variables of 1. number of
480	affected subregions affected by BMLs	s, and 2. max BML score in	the joint) while considering
481	random intercept for each cluster o	f matched statin user: non	-user and random intercept
482	considering within-subject similarities	s (due to the inclusion of b	both knees in a minority of
483	participants, 5%) where the knee is ne	ested within participant ID. A	all analyses were categorized

484	according to baseline	BML involvement in	MRI. Knees w	∕ith both ≤2 kn	ee subregions	with BMLs
-----	-----------------------	--------------------	--------------	-----------------	---------------	-----------

- 485 and maximum BML score ≤1 were regarded with no/minimal BML involvement, while knees
- 486 either having >2 knee subregions with BMLs or maximum BML score >1 were considered with
- 487 moderate/severe BML involvement. BML: Bone marrow lesions, HN: Heberden's node.
- 488

489 Supplementary Material

490 List of confounding variables

491 The selected covariates include age (years, quartiles), sex (male vs. female), body mass index 492 (BMI, quartiles) (kg/m²), physical activity for elderly scale (PASE) score, race (categorized as 493 Caucasian, African Americans, Asians, others), smoking status (classified as "never smoked," 494 "current or past smoker"), alcohol consumption in the past 12 months <1unit/week or 495 ≥lunit/week), having diabetes (any stages of diabetes vs. no medical history of diabetes), history 496 of heart attack (positive vs. negative), cerebrovascular accident (positive vs. negative), or 497 hypertension (systolic blood pressure \geq 140 or diastolic blood pressure \geq 90). Comorbid diabetes, 498 history of heart attack, cerebrovascular accident, and hypertension were all categorized together, 499 making a binomial variable indicating the presence of either of these comorbid statin CVD 500 indications. Units, levels, and categories of variables are listed in Table 1 in the main text.

501 Little's test

The pattern of missing data was assessed using the test of missing completely at random (Little's test), visual representation, and logistic regression models, which resulted in a missing not at the random pattern (1) in the OAI dataset, with fewer than 1.5% of values missing for all matching variables except for combined variable of statin cardiovascular disease (CVD) indications except dyslipidemia (2.9%). Despite the missing not at random pattern of data, multiple imputation models were used according to previous studies trying to reduce the possible associated bias (2).

- 509 Supplementary Figure 1. Directed acyclic graphs visual representations of causal assumptions
- 510 variables potentially contributing to confounding by indication bias.

Selection of the variables potentially contributing to confounding by indication bias (red circles) 512 for covariate adjustments. Exposure was statin use, and the outcome was knee OA structural and 513 514 symptomatic measures. Variables marked as blue circles were regarded as ancestors of the 515 outcome, which have no causal relationship with exposure and outcome variables and were not 516 included in the model adjustment. History of knee injury was defined as a positive response to the 517 question "Knee ever injured badly enough to limit the ability to walk for at least two days?" 518 Despite that history of knee injury might have causal relationship with knee OA BML damage, it 519 is unlikely to have causal effect on the statin use. Therefore, it has not been included as a 520 confounder in the propensity-score matching model.

- 521 OA: Osteoarthritis, BMI: Body mass index, PASE: physical activity for elderly scale, CVA:
- 522 Cerebrovascular accident, DM: Diabetes Mellitus, HTN: Hypertension, CAD: Coronary artery
- 523 disease. Injury: a history of knee injury, Alignment: knee alignment.

525 Supplementary Table 1. Comparison of baseline characteristics between the participants of OAI

526 ancillary studies on MRI-based worsening of the OA structural damage and all OAI participants.

^{527 &}lt;u>Relevant to Exclusion #3 in the methods and Figure 1 of study</u>.

Characteristic	OAI participants not included in the ancillary studies	Participants of OAI ancillary studies on MRI-based worsening of the OA structural damage	SMD
No. of knees	7641	1586	
Variables in the P.S matching (Poter	ntial confounders)		
Age (year) [mean (SD)]	61.16 (9.19)	61.36 (8.83)	0.023
No. of women [N (%)]	5608 (58.5)	1021 (60.9)	0.049
No. of obese patients [N (%)]	3534 (36.9)	703 (41.9)	0.098
Statin CVD indications except	2812 (30.2)	493 (30.2)	0.002
dyslipidemia [N(%)]♦			
Alcohol use, ≥1/week [N (%)]	4088 (43.0)	739 (44.5)	0.03
Smoking, Current or past [N (%)]	4462 (47.1)	780 (47.2)	0.001
PASE score [mean (SD)]	160.84 (82.48)	166.33 (82.01)	0.067
Race, non-white [N (%)]†	2002 (20.9)	280 (16.7)	0.97
Variables not included in the P.S ma	atching		
Hx. of knee Injury, [N (%)]	2584 (27.2)	509 (30.7)	0.077
Statin use at baseline, [N (%)]	2424 (25.3)	439 (26.2)	0.021
Statin type, [N (%)]			0.052
atorvastatin	1282 (52.9)	235 (53.5)	
fluvastatin	40 (1.7)	8 (1.8)	
lovastatin	108 (4.5)	18 (4.1)	
pravastatin	240 (9.9)	44 (10.0)	
rosuvastatin	102 (4.2)	22 (5.0)	
simvastatin	652 (26.9)	112 (25.5)	
OAI subcohort assignment, [N			0.197
(%)]			
Incidence	6568 (68.5)	1041 (62.1)	
Non-exposed	244 (2.5)	17 (1.0)	
Progression	2780 (29.0)	619 (36.9)	0.005
Baseline X-ray KL grade, [N (%)]			0.385
Grade 0	3354 (37.5)	359 (21.5)	
Grade 1	1592 (17.8)	470 (28.2)	
Grade 2	2468 (27.6)	489 (29.3)	
Grade 3	1224 (13.7)	273 (16.4)	
Grade 4	302 (3.4)	77 (4.6)	
Baseline X-ray medial JSN grade, [N (%)]			0.242

Grade 0	5706 (63.8)	870 (52.2)
Grade 1	2090 (23.4)	497 (29.8)
Grade 2	948 (10.6)	240 (14.4)
Grade 3	196 (2.2)	61 (3.7)
Data are presented as num	ore of know BMI · Bone Marrow I	asion UN: Habardon's

528	Data are presented as numbers of knees. BML: Bone Marrow Lesion, HN: Heberden's node, JSN:
529	Joint Space Narrowing (according to OARSI criteria), KL: Kellgren-Lawrence, PASE: physical
530	activity scale for the elderly, SMD: Standardized mean difference, SD: Standard deviation, N:
531	Number of knees. According to OAI protocol, participants were assigned to three Progression,
532	incidence, and non-exposed subcohorts based on the baseline assessment of radiographic knee OA
533	and its risk factors. Participants with terminal knee OA (including knee replacement or KL grade
534	of 4 in the baseline X-ray) were excluded. Obesity was defined as BMI \geq 30 kg/m2.
535	A significant difference for SMD was defined as ≥ 0.1 .
536	• Statin CVD indications except dyslipidemia were indicated as the presence of either history of
537	coronary artery disease, cerebrovascular accident, diabetes (any stage of diabetes vs. no medical
538	history of diabetes), or hypertension in clinical examination systolic blood pressure \geq 140 mm Hg
539	or diastolic blood pressure \geq 90 mm Hg at OAI visit clinical examinations).
540	† Race of participants was categorized as white and non-white considering the small number of
541	participants in each non-white race group.
540	

543	Supplementary Table 2. Sensitivity analysis of the 24-month assessment of subchondral BML
544	worsening results to #1) stratification for OA phenotype (HN ⁻ vs. HN ⁺), #2) exclusion of
545	participants with imputed missing data, #3) inclusion of entire HN ⁺ cohort of eligible OAI
546	participants without PS-matching, and #4) random exclusion of one knee of participants whose
547	both knees were included in HN ⁺ statin users vs. non-users.

	#1) Sensitivity to stratification for OA phenotype								
Statin user: non-user	All PS-matched participar (HN ⁺ & HN ⁻)	nts HN ⁻ PS-matched participants							
Worsening in number of affected subregions with BML (0-3)	0.92 (0.72 - 1.18), P:0.505	1.05 (0.67 - 1.64), P:0.844							
Maximum worsening in BML score (0-3)	0.95 (0.75 - 1.21), P:0.697	1.21 (0.79 - 1.86), P:0.390							
Worsening in BML score or number of affected subregions (Y/N)	0.81 (0.61 - 1.07), P:0.143	1.06 (0.65 - 1.74), P:0.814							
	#2) Sensitivity to the exclu	usion of participants with							
	imputed m	issing data							
Statin user: non-user	No/minimal BML involvement	Moderate/severe BML involvement							
Worsening in number of affected subregions with BML (0-3)	0.58 (0.35 - 0.96), P:0.036	0.98 (0.66 - 1.46), P:0.912							
Maximum worsening in BML score (0-3)	0.67 (0.42 - 1.06), P:0.09	0.99 (0.67 - 1.47), P:0.961							
Worsening in BML score or number of affected subregions (Y/N)	0.58 (0.34 - 0.97), P:0.039	0.84 (0.48 - 1.45), P:0.521							

#3) Sensitivity to the inclusion of the entire cohort of eligible OAI HN⁺ participants without PS-matching

No/minimal BML involvement	Moderate/severe BML involvement					
0.65 (0.42 - 0.98), P:0.042	1.13 (0.81 - 1.57), P:0.46					
0.65 (0.43 - 0.95), P:0.029	1.06 (0.76 - 1.46), P:0.737					
0.67 (0.45 - 0.98), P:0.042	0.80 (0.52 - 1.24), P:0.313					
#4) Sensitivity to the random exclusion of one knee of participants whose both knees were included						
	No/minimal BML involvement 0.65 (0.42 - 0.98), P:0.042 0.65 (0.43 - 0.95), P:0.029 0.67 (0.45 - 0.98), P:0.042 #4) Sensitivity to the rand participants whose box					

	<u>Statin user: non-user</u>	No/minimal BML involvement	Moderate/severe BML involvement
	Worsening in number of affected subregions with BML (0-3)	0.55 (0.32 - 0.91), P:0.021	1.00 (0.66 - 1.50), P:0.987
	Maximum worsening in BML score (0-3)	0.56 (0.35 - 0.89), P:0.015	0.87 (0.58 - 1.30), P:0.494
	Worsening in BML score or number of affected subregions (Y/N)	0.57 (0.34 - 0.97), P:0.038	0.79 (0.45 - 1.38), P:0.407
548	Previously validated longitudinal 24-	month BML dependent vari	ables (i.e., outcome to the
549	models) included 1) worsening in the	number of affected subregio	ns with BML (ranged from
550	Improvement to no change, worsenin	g in 1 subregion, and worse	ening in 2+ subregions), 2)
551	maximum worsening in BML score	(ranged from no change,	within-grade worsening, to
552	worsening by 1 grade, and worsening	by 2+ grades), and 3) worser	ning in either of BML score
553	(whole or within-grade) or the number	of affected subregions (yes/no	b). Longitudinal measures of
554	BML worsening were compared betw	ween statin users: non-users	using logistic mixed-effect
555	regression models while considering rat	ndom intercept for each cluster	of matched statin user: non-
556	user and random intercept considering	g within-subject similarities (o	due to the inclusion of both
557	knees in a minority of participants, 5%)) where the knee is nested with	in participant ID (except for
558	sensitivity analysis regarding the rand	om exclusion of one knee of	participants who their both
559	knees were included). All analyses we	re categorized according to ba	seline BML involvement in
560	MRI. Knees with both ≤2 knee subregio	ons with BMLs and maximum l	BML score ≤1 were regarded
561	with no/minimal BML involvement, w	hile knees either having >2 kn	ee subregions with BMLs or
562	maximum BML score >1 were conside	red with moderate/severe BM	L involvement.
563	Models were adjusted for participant	ts' propensity score calculate	ed for variables potentially
564	contributing to confounding by indica	tion bias and baseline KL gr	ade, medial JSN grade, and

565 BML status.

Supplementary Table 3. Baseline characteristics of the Heberden's nodes negative (HN⁻) participants before and after propensity score

567 matching according to statin use.

		HN ⁻ par	ticipant	with no/m	inimal BN	ILs	HN [¬] participant with moderate/severe BMLs						
	Before	matching		Propensity score-matched			Bef	ore matchi	ng	Propensity score-matched			
	Statin (-)	Statin (+)	SMD	Statin (-)	Statin (+)	SMD	Statin (-)	Statin (+)	SMD	Statin (-)	Statin (+)	SMD	
	164	69		65	65		164	86		75	75		
Variables in the matching													
Age (year) [mean (SD)]	55.52 (7.36)	60.20 (9.36)	0.555	59.09 (7.50)	59.48 (9.12)	0.046	57.21 (8.39)	60.95 (8.20)	0.45	59.83 (9.65)	59.79 (8.03)	0.01	
No. of women [N (%)]	91 (55.5)	31 (44.9)	0.212	28 (43.1)	29 (44.6)	0.031	100 (61.0)	38 (44.2)	0.34	32 (42.7)	35 (46.7)	0.08	
BMI (kg/m ²) [mean (SD)]	28.56 (4.79)	30.49 (4.61)	0.411	29.71 (4.93)	30.34 (4.68)	0.133*	30.81 (5.54)	31.19 (4.64)	0.08	30.93 (5.66)	31.26 (4.86)	0.06	
Statin CVD indications except dyslipidemia [N (%)]	31 (18.9)	26 (37.7)	0.426	19 (29.2)	22 (33.8)	0.099	54 (32.9)	29 (33.7)	0.02	28 (37.3)	22 (29.3)	0.17 *	
Alcohol use, ≥1/week [N (%)]	66 (40.2)	23 (33.3)	0.144	24 (36.9)	21 (32.3)	0.097	72 (43.9)	41 (47.7)	0.08	34 (45.3)	34 (45.3)	0.01	
Smoking, Current or past [N (%)]	72 (43.9)	42 (60.9)	0.345	42 (64.6)	39 (60.0)	0.095	72 (43.9)	30 (34.9)	0.19	31 (41.3)	28 (37.3)	0.08	
PASE score [mean (SD)]	179.71 (90.36)	175.42 (91.93)	0.047	163.78 (81.52)	173.69 (93.07)	0.113*	171.52 (89.75)	179.15 (84.98)	0.09	174.49 (84.20)	181.47 (88.71)	0.08	
Race, non-white [N (%)]	23 (14.0)	6 (8.7)	0.169	5 (7.7)	6 (9.2)	0.055	57 (34.8)	23 (26.7)	0.17	25 (33.3)	23 (30.7)	0.06	
Variables not in the matchin	ng												
Hx of knee Injury, [N (%)]*	47 (28.7)	22 (31.9)	0.07	15 (23.1)	21 (32.3)	0.21	56 (34.1)	40 (46.5)	0.25	22 (29.3)	36 (48.0)	0.39	
Statin type*			_			_			_			_	

atorvastatin	_	31 (60.8)		_	30 (63.8)		_	26 (41.3)		_	21 (38.9)	
fluvastatin	_	1 (2.0)		_	1 (2.1)		_	2 (3.2)		_	2 (3.7)	
lovastatin	_	1 (2.0)		_	1 (2.1)		_	2 (3.2)		_	2 (3.7)	
pravastatin	_	6 (11.8)		_	6 (12.8)		_	11 (17.5)		_	10 (18.5)	
rosuvastatin	_	4 (7.8)		_	3 (6.4)		_	4 (6.3)		_	4 (7.4)	
simvastatin	_	8 (15.7)		_	6 (12.8)		_	18 (28.6)		_	15 (27.8)	
Statin use duration, years, [mean (SD)]	0.00 (0.00)	3.67 (1.92)	2.7	0.00 (0.00)	3.62 (1.96)	2.61	0.00 (0.00)	3.63 (1.84)	2.79	0.00 (0.00)	3.53 (1.86)	2.68
Number of knee subregions with BML*			0.15			0.15			0.47			0.59
0	103 (62.8)	43 (62.3)		40 (61.5)	43 (66.2)		44 (26.8)	10 (11.6)		23 (30.7)	8 (10.7)	
1	40 (24.4)	14 (20.3)		16 (24.6)	12 (18.5)		10 (6.1)	7 (8.1)		3 (4.0)	6 (8.0)	
2	21 (12.8)	12 (17.4)		9 (13.8)	10 (15.4)		30 (18.3)	13 (15.1)		16 (21.3)	12 (16.0)	
3	0 (0.0)	0 (0.0)		0 (0.0)	0 (0.0)		39 (23.8)	21 (24.4)		13 (17.3)	18 (24.0)	
4	0 (0.0)	0 (0.0)		0 (0.0)	0 (0.0)		16 (9.8)	15 (17.4)		8 (10.7)	13 (17.3)	
≥5	0 (0.0)	0 (0.0)		0 (0.0)	0 (0.0)		25 (15.2)	20 (23.3)		12 (16.0)	18 (24.0)	
Maximum BML grade in knee*			0.14			0.42			0.08			0.07
0	65 (39.6)	32 (46.4)		19 (29.2)	32 (49.2)		0 (0.0)	0 (0.0)		0 (0.0)	0 (0.0)	
1	99 (60.4)	37 (53.6)		46 (70.8)	33 (50.8)		15 (9.1)	7 (8.1)		5 (6.7)	6 (8.0)	
2	0 (0.0)	0 (0.0)		0 (0.0)	0 (0.0)		89 (54.3)	50 (58.1)		43 (57.3)	41 (54.7)	

	3	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	60 (36.6)	29 (33.7)	27 (36.0)	28 (37.3)	
568	Data are presented as	s numbers of k	mees. Statin	n (+) and Stati	in (-) corre	esponds to statin us	ers and no	on-users, respecti	vely. BM	I: Body
569	mass index, BML: Bo	one Marrow Le	esion, HN: H	Heberden's no	de, PASE:	physical activity sc	ale for the	elderly, SMD: S	tandardize	ed mean
570	difference, SD: Stand	lard deviation,	N: Number	of knees						
571	A significant differen	nce for SMD w	as defined a	$as \ge 0.1.$						
572	◆ Statin CVD indicat	ions except dys	slipidemia v	were indicated	as the pres	sence of either histor	ry of coron	ary artery disease	e, cerebrov	vascular
573	accident, diabetes (a	ny stage of dia	abetes vs. n	o medical his	tory of di	abetes), or hyperter	nsion in cl	inical examination	on systoli	ic blood
574	pressure ≥140 mm H	g or diastolic b	lood pressu	ure ≥90 mm H	g at OAI v	visit clinical examin	ation).			
575	† race of participants	was categorize	ed as white a	and non-white	considerir	g the small number	of particip	ants in each non-	white race	e group.
576	Variables that had	an SMD ≥ 0.1	between ma	atched groups	after PS-m	atching were includ	led as a co	variate in the stat	istical mo	dels for
577	further adjustment.									

578 Supplementary data references

- 579 1. Sterne JAC, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation
- 580 for missing data in epidemiological and clinical research: Potential and pitfalls. BMJ
- 581 2009;339:157–160.
- 582 2. Resseguier N, Giorgi R, Paoletti X. Sensitivity analysis when data are missing not-at-random.
- 583 Epidemiology 2011;22:282–283.