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Osteoarthritis (OA) is the most common chronic joint disease characterized, for which

there are no available therapies being able to modify the progression of OA and prevent

long-term disability. Critical roles of G-protein coupled receptors (GPCRs) have been

established in OA cartilage degeneration, subchondral bone sclerosis and chronic pain. In

this review, we describe the pathophysiological processes targeted by GPCRs in OA,

along with related preclinical model and/or clinical trial data. We review examples of

GPCRs which may offer attractive therapeutic strategies for OA, including receptors for

cannabinoids, hormones, prostaglandins, fatty acids, adenosines, chemokines, and

discuss the main challenges for developing these therapies.
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INTRODUCTION

Osteoarthritis (OA) is the most common degenerative joint disease and one of the leading causes of
chronic disability in elderly (1). As a joint degenerative disease, it is characterized by chronic pain,

restricted mobility and loss of joint function, increasingly causing a substantial financial burden to

society and decreasing quality of life for patients (2). Although OA was primarily thought to be

driven by cartilage metabolism disorders, other pathological processes including osteophyte

formation, imbalanced subchondral bone remodeling and synovial inflammation are found to

form a vicious cycle that contributes to OA progression (Figure 1) (3, 4).
Multiple cells, including chondrocytes, osteocytes, osteoclasts, osteoblasts, endothelial cells and

sensory neurons, all contribute to this progression (5–7). Early during the cycle, changes first occur

in cartilage, including the disruption of chondrocytes pericellular matrix and increased metabolic

activity of chondrocytes. As the disease progresses, microscopic cracks are observed in the

superficial zone of the articular cartilage, and subchondral bone plate becomes thinner and more

porous. With further disease progression, erosion of extracellular matrix (ECM) and increased

senescent chondrocytes lead to the development of deep fissures. In the subchondral
microenvironment, in response to abnormal mechanical loading and pro-inflammatory

mediators, osteocytes upregulate the ratio of RANKL/OPG and osteoclasts are activated resulting

in bone resorption and active angiogenesis. In late-stage OA, cartilage chondrocyte death is evident

and calcified cartilage expands into the superficial zone of articular cartilage. In addition to the

development of subchondral bone cysts, growing sensory innervation and vascular invasion from

subchondral bone into cartilage, and osteophyte formation also occur.
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Patients with OA experience pain and disability, for which

there are predominantly palliative options, such as pain
management with analgesics/anti-inflammatory medication

and intra-articular injections of corticosteroids (8–10). No

current pharmacological therapy is able to exhibit convincing

disease-modifying efficacy and prevent long-term disability.

Developments in the understanding of OA pathophysiology

have enabled the identification of a variety of potential

therapeutic targets involved in OA pain, synovial inflammation
or structure alteration. Emerging putative disease-modifying OA

drugs (DMOADs) hold promise for OA management by

regulating cartilage anabolic or catabolic processes,

subchondral bone remodeling or synovial inflammation (6,

11). However, the clinical benefit of OA treatments is

uncertain as most clinical trials of DMOADs fail to rescue the
pathophysiological changes in OA, in addition to the challenges

caused by the long follow-up period of clinical trials in

developing DMOADs. Therefore, novel OA management

strategies are urgently needed.
G protein-coupled receptors (GPCRs), receptors with seven

transmembrane domains, comprise the largest and most diverse

family of integral membrane proteins that participate in different

physiological processes, such as neurotransmission, hormone

release, heart contractility and immune responses (12). Based

on structural similarities, GPCRs are divided into 6 major

families. Only four families are present in humans, including
class A (rhodopsinlike) family, class B (secretin) family, class C

(metabotropic glutamate-like) and class F (frizzled/smoothened)

family. Among them, class A is the largest family with

approximately 670 receptors (13, 14). GPCRs couple

extracellular stimuli to intracellular responses via two main

signal transduction mechanisms: heterotrimeric G proteins-
dependent and -independent. G proteins are heterotrimeric

guanine nucleotide binding proteins that consist of Ga, Gb

FIGURE 1 | Vicious cycle during OA progression. During the osteoarthritis process, the imbalance between the anabolic activities and catabolic activities of cartilage

ECM-degrading enzymes (aggrecanases and matrix metalloproteinases) leads to further extracellular matrix degradation. Products from matrix degradation act on

the synovium to induce inflammation and the release of pro-inflammatory mediators (cytokines, chemokines, etc.) that feedback on chondrocyte and cause cartilage

breakdown. This process also promotes phenotypic alterations of chondrocytes and leads to chondrocytes hypertrophy and senescence. In the subchondral bone,

osteoclasts are activated in response to abnormal mechanical loading and pro-inflammatory mediators, resulting in bone resorption and release of osteoclast-derived

mediators which regulate sensory innervation and vascular invasion into the osteochondral junction. This process also correlates with OA pain. Abnormal bone

remodeling is then followed by increased bone formation, leading to subchondral bone sclerosis. The homeostatic imbalance of the osteochondral unit increases

cartilage susceptibility to disruption and contributes to OA pathological processes.
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and Gg subunits (15, 16). The coupling specificity and

downstream regulation of GPCRs are largely driven by Ga
-subunits, which are classified as Gs, Gi/o, Gq and G12/13

according to their functions. Gb and Gg subunits form a

constitutive heterodimer that binds reversibly to the Ga
subunit. After activation of GPCRs, Gbg subunits are released
to trigger the activation of downstream effect signaling pathways.

These free subunits are competent to interact with the

downstream enzymes or channels to drive second messenger

generation and modulate cell physiology (17, 18). Once G

proteins are released, the protein kinase family of G-protein

coupled receptor kinases (GRKs) phosphorylate the intracellular
region, after which the phosphorylated GPCRs recruit b-
arrestins. This leads to the desensitization and internalization

of GPCRs, thereby playing the role of “closing” signal, as a

negative feedback of G protein-dependent GPCR signaling. In

addition, MAPK and PI3K/Akt signals can be activated by b-
arrestins or the Gq pathway, indicating that there is potential
crosstalk between heterotrimeric G protein-dependent and

independent signaling pathways (19, 20).

GPCRs are important targets for drug discovery largely owing

to the wide range of physiological and pathophysiological

processes in which GPCR targeting can have a major impact.

To date, approximately 500 approved drugs target GPCRs, which

accounts for almost 30% of all drugs approved by FDA (14, 19).
Although most GPCR-targeted drugs are for metabolic diseases,

cancers, neurodegenerative diseases and others (21–23), it has

been reported that several different types of GPCRs are

important for regulating OA symptoms including cartilage

degeneration, subchondral bone sclerosis and chronic pain

(Figure 2). In this review, we’ll review current understanding

of these GPCRs ’ physiological roles and mechanistic

involvements in OA, and discuss emerging therapeutic targets
that show promise in preclinical models of OA and/or in

clinical trials.

CANNABINOID RECEPTORS

Over the past decade, the endocannabinoid system has emerged

as a potential target for OA therapy with evidence of its

involvement in carti lage destruction and OA pain.

Cannabinoids target cannabinoid receptors 1 and 2 (CB1 and

CB2), two GPCRs originally identified as classical cannabinoid

receptors (24, 25). Both cannabinoid receptors have been

suggested to be expressed in arthritis tissues including OA
cartilage, subchondral bone and synovial tissue (26–28). It has

been extensively demonstrated that natural cannabinoids have

anti-inflammatory properties and can protect cartilage from

degradation during OA (26, 29, 30). ACEA, a CB1 agonist,

suppresses interleukin 1 beta (IL-1b)-induced senescence in

human primary chondrocytes (31). In a surgical mouse model
of OA, the CB2 receptor has been shown to regulate

susceptibility to OA. The study revealed that genetic ablation

FIGURE 2 | The role of GPCRs in osteoarthritis. In an osteoarthritic joint, GPCRs are expressed in different tissues and cell types. Various types of GPCRs mediate

and regulate OA symptoms including cartilage degeneration, subchondral bone remodeling and OA pain.
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of CB2 aggravated OA pathogenesis compared to wild-type OA

mice (32). Additionally, CB2 depleted chondrocytes produced

less proteoglycans in vitro. Moreover, HU-308 (CB2 agonist) and

WIN55212-2 (synthetic cannabinoids) prevented cartilage

degradation, while WIN55212-2 was also found to inhibit the

activity of an aggrecanase, a disintegrin and metalloproteinase
with thrombospondin motifs-4 (ADAMTS-4) (31). These studies

suggest that the endocannabinoid system protects against

cartilage degradation.

Furthermore, endocannabinoids and their receptors have

been reported in osteoblasts, osteoclasts and osteocytes (33–

35). CB1 regulates bone growth during skeletal development,
while CB2 plays an important role in maintaining the balance

between bone resorption and bone formation (36, 37). Knockout

of CB2 led to accelerated age-related osteoporosis in mice, while

CB1 knockout mice expressed less nuclear factor kappa B ligand

(RANKL), suggesting their possible roles in bone remodeling

processes during OA (38, 39). CB1 and CB2 receptors are located
in synovial tissue where they are expressed on nerve endings that

innervate the knee (38, 40). In a monoiodoacetate (MIA) model,

an OA model that intra-articular injection of sodium

monoiodoacetate induces chondrocyte cell death in the

articular cartilage, OA pain and articular structural changes

(41, 42), agonists of CB1 (ACEA) and CB2 (JWH133 and A-

796260) all decreased pain behavior or subchondral bone
degeneration (43–45). However, current clinical trials targeting

the endocannabinoid system in OA gave inconclusive results. A

randomized clinical trial in OA patients of PF-04457845, a

potent FAAH (fatty acid amide hydrolase with a prominent

role in the hydrolysis of endocannabinoids) inhibitor, indicated

no significant difference in analgesia compared to placebo
(NCT00981357) (46). In another on-going phase II study

(NCT03098563), patients with knee OA are being treated with

combinations of cannabinoids, benzodiazepines, and opioids for

evaluating changes in pain ratings and sensitivity but no results

have been published yet.

CHEMOKINES AND RECEPTORS

Chemokines and their G protein-coupled receptors control the

migratory patterns, positioning and cellular interactions of

immune cells, and also induce the recruitment of immune cells

into the organs. High levels of chemokines have been observed in

rheumatoid arthritis (RA), systemic lupus erythematosus (SLE)
and idiopathic inflammatory myopathies (IIM), which are

systemic autoimmune disorders (47, 48). Many studies have

also found that chemokine system is involved in the process of

OA. In this section, we summarize the pathogenic functions of

chemokines and their receptors in OA, and discuss their

potentials as therapeutic targets.

CXC motif chemokine ligand 12 (CXCL12), also known as
SDF-1, is recognized as a homeostatic cytokine. SDF-1 and its

receptor C-X-C motif chemokine receptor 4 (CXCR4) and

CXCR7 play multiple regulatory roles. SDF-1 is involved in the

regulation of cartilage tissue homeostasis and can also regulate

chondrocyte proliferation, survival, differentiation (49–51).

SDF-1 was shown to negatively regulate mesenchymal stem

cell (MSC) chondrogenesis, but the effects of SDF-1 on

chondrocyte proliferation and death varied in different studies.

CXCR4 and CXCR7, both expressed by chondrocytes, regulate

homeostatic and pathological processes during the progression

of OA. The upregulated CXCL12/CXCR7 signaling aggravated
joint destruction in mice. SDF-1/CXCR4 induced chondrocyte

hypertrophy during endochondral bone formation, and the

induction of hypertrophic chondrocyte markers, including

Runt-related transcription factor 2 (RUNX2), Collagen type X

(COLX), and matrix metalloproteinase 13 (MMP13) in

chondrocytes, required the presence and interaction of both
SDF-1 and CXCR4 (52). During ECM degradation in OA,

SDF-1/CXCR4-mediated upregulation of aggrecanase occurred

via activation of the nuclear factor-kB (NF-kB), mitogen-

activated protein kinase (MAPK), and Wnt/b-catenin in

chondrocytes (53). Moreover, SDF-1/CXCR4 regulates the

crosstalk between subchondral bone and articular cartilage in
OA pathogenesis (54). Subchondral bone deterioration and

excessive bone resorption were aggravated by increased SDF-1

in anterior cruciate ligament-transection (ACLT) mice. SDF-1

from subchondral bone binds to CXCR4 in chondrocytes and

induces articular cartilage degradation by promoting shift of

TGF-b receptor 1 (TbRI) signal transduction from activin

receptor-like kinase 5 (ALK5) to ALK1. The impact of TGF-b
on cartilage is anabolic through ALK5 while catabolic through

ALK1 (55, 56). Indeed, AMD3100, a specific inhibitor of SDF-1/

CXCR4 axis, attenuated OA by stabilizing subchondral bone

microarchitecture and protecting the integrity of cartilage. In

addition, studies have demonstrated that TN14003, another

antagonist of CXCR4, was more effective in inhibiting release
of matrix-degrading enzymes, such as MMP3, MMP9 and

MMP13, and in preventing collagen type II (COL2a1) and

aggrecan (ACAN) degradation (57, 58). Mechanistically,

FGFR3 inhibits CXCR7 expression and CXCL12-dependent

macrophage chemotaxis through regulating the NF-kB
pathways. FGFR3 deficiency in myeloid cells results in more

severe joint destruction and synovitis in the destabilization of the
medial meniscus (DMM)-induced mouse OA model and in

aging mice, whilst blocking CXCR7 in FGFR3 deficiency mice

relieved joint destruction of age-related/DMM-induced arthritis

(59). Thus, SDF-1 (as CXCL12) plays an important role in the

development of OA and further preclinical and clinical studies

are warranted to investigate the feasibility of therapeutically
targeting SDF-1/CXCR4/CXCR7 signaling to treat OA.

Other CXCRs may also be involved in the development of

OA. For example, even though CXCR2-/- mice do not

spontaneously develop arthritis, the blockade of CXCR1/2

signaling led to decreased ECM production and increased

chondrocyte apoptosis. These pathological changes result in

the loss of phenotypic stability in chondrocytes and promote
OA-like phenotypic alternations (60, 61). CXCR3 protein level

was also significantly increased in OA patients while knockdown

of CXCR3 receptor attenuated chondrocyte apoptosis induced by

sodium nitroprusside (62). In the collagenase-induced

osteoarthritis (CIOA) model, neutrophils and NK cells were

Wang et al. GPCRs in Osteoarthritis
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showed to be increased in the synovium as disease-promoting

immune cells. The CXCL10/CXCR3 axis promoted the

accumulation of NK cells and macrophages in the OA joint,

whereas CXCR3-/- mice failed to develop CIOA (63).

C-C chemokine receptor type 5 (CCR5), the receptor for C-C

motif chemokine ligand 4 (CCL4) and CCL5, is expressed in
normal chondrocytes but at elevated levels in OA chondrocytes.

Cartilage degeneration was markedly reduced in CCR5-/- mice

affected by post-traumatic OA, while mild changes appeared in

osteophyte formation and synovitis compared to wild-types (64).

These phenotypes suggest that CCR5 plays a selective role in

joint damage.
In the bone microenvironment, CCL2, a key regulator mainly

expressed by osteoblasts, promotes subsequent recruitment and

migration of mononuclear cells via binding to CCR2 (65).

Additionally, CCL2 stimulation enhanced the apoptosis of OA

chondrocytes while intra-articular injection of CCL2 in mouse

knees induced cartilage degradation (66). This result suggests
that CCL2/CCR2 axis is involved in cartilage destruction.

Further studies showed that CCR2+ macrophages were

abundant in OA synovium and in association with articular

cartilage tissues. Receded OA pathogenesis is accompanied with

lessened local macrophage numbers in CCR2- knockout mice.

Pharmacological intervention by RS-504393, a CCR2 antagonist,

effectively diminished OA disease progression in part by
reducing synovial macrophage accumulation (67). In

conclusion, disruption of CCL2/CCR2 signaling contributes to

reduced macrophage accumulation, synovitis and cartilage

breakdown in murine OA models.

Intriguingly, chemokine receptors are critical regulators of

neurodegenerative conditions and synapse activity, contributing
to pain management. In mice, intra-articular/peripheral tissues

injections of CXC chemokines induced pain-like behaviors (68).

CCL2/CCR2 signaling was upregulated in the joint innervating

dorsal root ganglion. This result was clearly associated with

movement-provoked pain behaviors after disease induction.

Macrophage infiltration and movement-provoked pain

behaviors were not developed in CCR2-null mice. However,
CCR2-null mice had similar severe allodynia and structural

knee joint damage. These results suggested that targeting the

CCL2/CCR2 axis will have clinical benefits for OA pain (69–71).

A placebo-controlled, Phase II trial testing PF-04136309 (the

specific CCR2 antagonist) for OA pain has been completed but

the results are as yet unknown (NCT00689273).
Evidence from pre-clinical studies suggests that the

development of more effective inhibitors of chemokine receptors

has attractive therapeutic potential in treating OA. It should also

be noted that numerous chemokines and their receptors are

involved in OA pathogenesis, thus targeting the relevant

multiple receptors might be needed for therapeutic benefits.

METABOLITE-SENSING GPCRs

The main metabolite-sensing GPCRs bind metabolites derived

from common foodstuffs, including long-chain fatty acids

(LCFAs), medium-chain fatty acids (MCFAs), short-chain fatty

acids (SCFAs), bile acid, and various others. It has been reported

that free fatty acids (FFAs) contribute to skeletal health, as

increasing the supplementation of long-chain polyunsaturated

fatty acids (LCPUFAs) positively contributes to joint health and

prevents osteoporosis (72–74). LCPUFAs are essential factors to
support cartilage homeostasis. Studies have revealed that long-

chain w-3 fatty acids reduced secretion or expression of

inflammatory cytokines and matrix-degrading enzymes

involved in cartilage degradation, such as collagenases or

aggrecan-degrading enzymes (aggrecanases). SCFAs augmented

systemic bone mass by protecting from bone resorption and
suppressing inflammation in chondrocytes (75, 76). In this

section, we introduce the metabolite-sensing GPCRs involved,

biological relevance between metabolism and osteoarthritis, and

highlight the beneficial effects of nutritional protection.

Five GPCRs, including GPR40, GPR41, GPR43, GPR84 and

GPR120, have been reported to be activated by FFAs. Among
which, GPR40 and GPR120 are receptors for LCFAs, GPR41 and

GPR43 for SCFAs, while GPR84 for MCFA. OA progression in

the knee joint instability-induced OA model was aggravated in

GPR40-/- mice, and GPR40-/- chondrocytes secreted more

inflammatory mediators and decreased anabolism upon IL-1b
treatment (77). In contrast, GW9508, a GPR40 agonist, blocked

degeneration of type II collagen and aggrecan by attenuating the
expression of matrix-degrading enzymes and pro-inflammatory

cytokines in vitro (78). GPR120-/- mice displayed an accelerated

progression of ACLT surgery-induced OA (79). GPR120

agonists, GW9508 and TUG891, prevented IL-1b-induced
reduction of ECM through SRY (sex-determining region Y)-

related HMG (high mobility group) box 9 (SOX9) mediated
expression of collagen II and aggrecan in ATDC5 chondrocytes

(80). In our previous research, we found that MCFAs receptor

GPR84 signaling safeguarded cartilage homeostasis. Activating

GPR84 by 6-OAU (agonist) or lauric acid (natural ligand)

resulted in increased expression of ECM-related genes in

chondrocytes and protected human OA explants against

degeneration (81). SCFAs receptors, such as GPR43, were also
shown to be involved in chondrocyte homeostasis. Butyrate, a

SCFA produced through microbial fermentation in gut,

decreased the inflammatory response in IL-1b-stimulated

chondrocytes, including reduced expression of pro-

inflammatory mediators (cyclooxygenases 2, nitric oxide

synthase 2, IL-6), pro-inflammatory adipokines (lipocalin-2
and nesfatin-1), and adhesion molecule (Vascular cell adhesion

molecule 1 and Intercellular adhesion molecule 1). Importantly,

the anti-inflammatory activities of butyrate were completely

dampened by GPR43 silencing (82).

TGR5, a bile acid-sensing GPCR expressed in cultured

chondrocytes, showed reduced expression in response to IL-

1b/tumor necrosis factor alpha (TNFa)-stimulation in
chondrocytes or OA patient chondrocytes. Furthermore,

activation of TGR5 using the specific synthetic agonist, INT-

777, significantly decreased IL-1b induced senescence and

rescued TNFa-induced decreased expression of ECM-related

genes in SW1353 cell (83, 84).
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These studies of metabolite-sensing GPCRs provide

intriguing links between the fields of nutrition, metabolism and

OA, which provide insights that nutrient intervention may

become new approaches for OA treatment or prevention. The

main drawback of research in metabolite-sensing GPCRs and

OA is the insufficiency of translational studies using animal
models and related clinical trials.

ADENOSINE RECEPTORS

Adenosine is a catabolite of ATP and can act as a physiological

regulator. Adenosine binds and activates four adenosine receptor

subtypes (A1, A2A, A2B, and A3), which are all GPCRs (85, 86).

In bone homeostasis, adenosine receptor-mediated mechanisms
are involved in bone fracture and repair, and response to loading

(87, 88). Articular chondrocytes in humans express primarily A2A

receptor (A2AR) and A2B receptor (A2BR) subtypes (89). When

cartilage has an aging phenotype or cartilage homeostasis is

destroyed, the extracellular ATP will decrease, leading to a

decrease in the content of adenosine. Subsequently, the
reduction of extracellular adenosine concentration increases the

release of chondrocyte-damaging molecules. These molecules

include nitric oxide (NO), prostaglandin E2 (PGE2), MMPs,

ECM fragments, which further contribute to the cartilage

destruction and the pathogenesis of OA (90, 91). Observations

in mice deficient of A2AR and ecto-5′ nucleotidase (an enzyme

that converts extracellular AMP to adenosine) showed consistent
results of developing spontaneous OA. In contrast, intra-articular

injection of adenosine prevented development of OA and restored

the cartilage homeostasis by engaging A2AR in rats (92). This

could be due to the fact that the exogenous adenosine activates

A2AR and regulates the pathogenesis of OA via suppressing the

expression of a variety of pro-inflammatory cytokines, such as NO,
PGE2, IL-1 and TNF. The anti-inflammatory role of A2AR has

indeed been proposed in mouse articular chondrocytes treated

with hyaluronan oligosaccharides or collagen-induced arthritis

(CIA) (93, 94). In addition, studies have shown that A2AR

stimulation enhances mitochondrial metabolism and prevents

mitochondrial injury. Intra-articular injections of a liposomal
A2AR agonist improved the reactive oxygen species (ROS)

burden, proteoglycan catabolism and chondrocyte viability in

knee cartilage of obesity-induced OA mice (95). Moreover,

polydeoxyribonucleotides (PDRNs), deoxyribonucleotide

polymer chains with 50-2000 base pairs in length, can counter

proteoglycan degradation in cartilage explants by decelerating the

activity of MMPs (96) and can also activate A2AR to decrease
cytokine production and reduce cartilage erosion of collagen-

induced arthritis (97). There have been multiple randomized,

double-blind clinical trials comparing the efficacy of intra-

articular polynucleotides and hyaluronic acid injections in

treating knee osteoarthritis. Results suggested that Knee Society

Score total score (KOOS) and pain items were statistically
significantly ameliorated in both polynucleotides- and

hyaluronic acid-supplemented groups, with higher efficacy in the

polynucleotides group. Additionally, polynucleotides led to

significant symptomatic relief as measured by the KOOS after

only 2 weeks of treatment, while similar improvements with

administration of hyaluronic acid were seen after 18 weeks

(98–101).

Other adenosine receptor subtypes have also been suggested

to have potential roles in OA. The A2BR has been associated with
chondrogenic differentiation. A2BR agonists suppressed hMSC

chondrogenic differentiation through downregulating the

expressions of ECM-related genes and cartilaginous

transcription factors, while antagonists of A2BR induced

chondrogenic differentiation of hMSC (102). Ablation of A3R

led to development of OA in aged mice. A3R selective agonists
protected cartilage by downregulating intracellular CaMKII

kinase and RUNX2 transcription factor (103). CF101, a highly

selective, synthetic agonist to the A3R, can induce apoptosis of

inflammatory cells, and prevent cartilage damage and bone

destruction in rat knee osteoarthritis (104). It is worth noting

that excessive adenosine supplement to body is not advisable, as
children lacking adenosine deaminase develop chondrodysplasia,

with plasma adenosine levels increasing to the micromolar level

(105, 106). In summary, the adenosine receptor is an important

homeostatic regulator of cartilage homeostasis, cartilaginous

inflammation and OA progression. Therefore, adenosine

supplement may represent a novel approach for OA treatment.

PROTEASE-ACTIVATED RECEPTOR

Proteinase-activated receptors (PARs) constitute a unique family

of GPCRs that are widely expressed by fibroblast-like cells,

chondrocytes and osteoblasts, immune cells in joints as well as

in sensory neurons. Proteolytic enzymes signaling via PARs have

been implicated in inflammation and pain in RA. For a

comprehensive review, please refer to Oikonomopoulou et al.,
2018 (107). PAR2 was detected in chondrocytes and synovial

tissues from OA patients, while expression of PAR2 in OA

chondrocytes was upregulated by IL-1b/TNFa (108, 109).

Activation of PAR2 in human OA cartilage upregulated

catabolic and pro-inflammatory pathways, resulting in cartilage

degradation (110). PAR2 expression was significantly
upregulated in articular cartilage in OA mice. Several studies

suggested that deletion of PAR2 retarded the OA progression,

cartilage damage, and subchondral bone remodeling

disequilibrium in OA mouse models (111–113). Additionally,

PAR2 has been shown to be expressed in the proliferative/

hypertrophic chondrocytes within osteophytes. PAR2-/- mice

presented less osteophyte formation, no osteosclerosis, and
reduced pain perception in a DMM model. Intra-articular

injection of hPAR2 in PAR2-/- mice restored osteophyte

formation and cartilage damage to the similar level as in wild-

type mice, confirming the pathogenic role of PAR2 in the DMM

model (114). Further studies showed that AZ3451, an antagonist

of PAR2, prevented the IL-1b-induced inflammatory cytokines
release, catabolic gene expression, senescence, and apoptosis in

chondrocytes. Intra-articular injection of AZ3451 ameliorated

cartilage destruction in a rat OA model (115). Therefore, PAR2
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has the potential to orchestrate OA-related pain, cartilage and

bone pathology. It is plausible that, through further preclinical

and/or clinical verification, targeting proteolytic pathways can

bring in benefits to RA or OA patients and reduce joint damage

and inflammation.

PROSTAGLANDIN RECEPTORS

PGE2, the most abundant prostaglandin in most tissues, is

generated by the initial actions of the cyclooxygenases on

arachidonic acid (116). COX-2-selective non-steroidal anti-

inflammatory drugs (NSAIDs) reduce pain and inflammation,

and are thought to act via inhibiting PGE2 in humans (117, 118).

The cartilage releases a high level of PGE2, a key pro-
inflammatory and joint pain molecule in OA patients. PGE2

binds to four specific G protein-coupled receptors, prostaglandin

E receptor 1-4 (EP1-4). Among them, EP2 and EP4 have been

found to be associated with cartilage repair and OA development.

Early research showed that simultaneous stimulation of EP2 and

EP4 enhanced proteoglycan accumulation and intracellular cyclic
adenosine 3’,5’-monophosphate (cAMP) production during the

differentiation of rat primary chondrocytes (119). The expression

patterns of EP2 and EP4 are different during the commitment of

MSC to chondrogenesis. EP4 expression continuously increases in

this process, while the expression of EP2 increases at the earlier

stage and then decreases (120). Other studies showed that growth-

promoting and apoptosis-protecting genes were upregulated in
human articular chondrocytes treated with EP2 agonists. The

culture of rat femurs showed an increase of proliferating cell

nuclear antigen (PCNA) staining in chondrocytes, suggesting EP2

enhanced the growth in articular cartilage (121). Gelatin hydrogel

containing PLGA microspheres conjugated with ONO-8815Ly, a

selective EP2 agonist, promoted tissue regeneration in a rabbit
chondral and osteochondral defect model (122), whilst intra-

articular injections of EP2 agonist lessened joint pain and

promoted tissue repair of osteochondral defect in rabbits (123).

Furthermore, an EP2 agonist enhanced reconstruction of the

boundary between articular cartilage and subchondral bone,

which is imperative to maintain the articular structure. It is
interesting to note that the regenerated tissue contained both

EP2- and PCNA-positive chondrocytes, indicating that the

cartilage regeneration was executed mainly by EP2-positive cells

(122). The same research team also found that ONO-8815Ly

prevented cartilage degeneration in ACLT and DMM-induced

cartilage traumatic models, which was associated with restraining

the expression of MMP13, a catabolic factor to matrix network
(124). Similarly, another study demonstrated EP2 agonist

downregulated MMP13 mRNA expression via the cAMP-

protein kinase A pathway in osteoarthritis chondrocytes (125).

A previous report suggested that EP4 was upregulated in OA

cartilage. However, effects of EP4 on the cartilage catabolism

during OA progression still remain controversial. EP4 antagonist
(AH23848) prevented PGE2 induced matrix degradation and

MMP13 expression in OA cartilage explants, implicating EP4’s

pivotal role in mediating the PGE2 catabolic effects during OA

progression (126). To the contrary, another study showed that

PGE2 inhibited IL-1b-induced expression of MMP1 and

MMP13 via EP4 by suppressing MKK4-JNK MAPK-c-JUN

pathway in human chondrocytes (127). Furthermore, the EP4

receptor mediates the PGE2-elicited inflammation and

sensitization of sensory neurons, while EP4 inhibition
contributes to the development of targeted therapies for anti-

inflammatory and analgesic effect in OA (128–131). Grapiprant,

an EP4 antagonist, has been approved for by the FDA treating

OA pain in dogs (132, 133). A multicenter, randomized study

demonstrated that the inhibitor of microsomal prostaglandin E

synthase-1 (LYA) but not the EP4 antagonist (LYB) improved
clinical signs of OA pain in dogs (134). Although there are

animal model studies and clinical applications in effects of EP

receptors in OA, the in vivo functions and molecular

mechanisms of EP receptors in cartilage homeostasis and OA

need further investigation. In particular, there is no relevant

research using gene-level ablation of EPs to verify their functions
in cartilage, while conditional knockout mice should be

considered in order to avoid the lethal consequence of

genome-wide knockout.

HORMONE RECEPTORS

Hormone receptor signal transduction, such as for

norepinephrine (NE) and epinephrine, plays important roles in

articular cartilage homeostasis and OA. In this section, we
summarize the relevant research on hormone receptors

involved in the cartilage system. a2A- and b2-adrenoreceptor
positive chondrocytes were observed in cartilage, with more

evidence in the pre-hypertrophic and hypertrophic cartilage.

Intercepting a2A-adrenoreceptor increased aggrecan

production and decreased MMPs expression in the degraded
temporomandibular joint cartilage of rats (135, 136). NE

reversed IL-1b induced production of IL-8, MMP13, COL2,

and glycosaminoglycans, and decreased proliferation in

chondrocytes. This was achieved via b-adrenoreceptor
signaling. However, NE was also shown to increase

proliferating cells and induce apoptosis via a1- adrenoreceptor
in chondrocytes (137).

The calcitonin receptor was identified in bovine articular

cartilage (138). KBP, an agonist of amylin and calcitonin

receptors, counteracted DMM induced cartilage erosion,

degradation biomarkers and pain behavior in rats (139).

Nerves containing the calcitonin gene-related peptide (CGRP)

have been implicated in a number of pain scenarios. The CGRP
release has been observed in the joints of OA rodents, as

perivascular sensory and sympathetic nerve fibers innervate the

osteochondral junction in osteoarthritic knees (140–142).

Innervation of CGRP+ neurons in subchondral bone was

significantly augmented after OA induction, whilst blockade of

CGRP+ sensory fibers innervating in the subchondral bone
reduced OA pain (143, 144). In addition, antagonizing the

CGRP receptor ablated mechanosensitivity of joint nociceptors

in MIA and DMM OA rats (145).
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The parathyroid hormone (PTH)/parathyroid hormone-

related protein (PTH/PTHrP) receptors are well known for

their biologic actions in controlling mineral homeostasis, bone

development, and bone remodeling (146–148). Additionally,

activation of the PTH/PTHrP receptor slowed the chondrocyte

proliferation and delayed chondrocyte hypertrophy (149, 150),
although other studies showed that PTHR1 is upregulated in OA

cartilage (149, 151). Importantly, teriparatide (recombinant

human PTH), an FDA-approved treatment for osteoporosis,

has been shown to decelerate cartilage degeneration and

induce matrix regeneration in post-traumatic osteoarthritis

mice (152). Currently, a randomized clinical trial attempting to
evaluate teriparatide as a chondroregenerative therapy for OA is

ongoing (NCT03072147). This could present a new promising

clinical application for the drug by re-purposing it for

OA treatment.

Several other hormone receptors were also detected to be

expressed in the cartilage tissue or chondrocytes, which may
indicate novel targets. For instance, follicle stimulating hormone

receptor (FSHR) was detected in mouse chondrocytes and

human cartilage tissue (153). Oxytocin receptor (OTR) was

expressed in human primary chondrocytes, and significantly

reduced in OA chondrocytes (154). Angiotensin II receptor

(ATIIR) affected the proliferation and apoptosis of

chondrocytes under oxygen-glucose deprivation (155).
Activation of melanocortin receptor MCR1 and MCR3

downregulated IL-1b, IL-6 and IL-8 release, MMPs expression

and inhibited cell death in chondrocytes (156). MCR1-deficient

mice developed a more severe OA pathology of cartilage

degradation (157). Glucagon-like peptide-1 (GLP-1) is an

incretin hormone that activates GLP-1R to regulate glucose
and energy homeostasis. Exendin-4, a GLP-1R agonist,

alleviated chondrocyte apoptosis and ECM degradation in ACL

rats (158). Endothelin receptors ETA and ETB were also

expressed in rat chondrocytes (159).

OTHER GPCRs IN OA

There are also some other GPCRs involved in OA which may

represent potential targets and will be briefly summarized in this

paragraph. The calcium-sensing receptor (CaSR), senses changes

in serum Ca2+ in parathyroid glands to regulate PTH. It has been
established that knocking out CaSR in chondrocyte prevented

matrix degradation in the cartilage of OA mice (160). Frizzled

class receptor 4 (FZD4) was shown to be involved in the

pathogenesis of temporomandibular joint osteoarthritis, when

mediated by miR-101a-3p (161). It has been shown that

activation of Kappa opioid receptor (KOR) by chemical agonist
U-50,488H inhibited inflammation in arthritic conditions, and

KOR-/- mice exhibited accelerated cartilage degeneration in

cartilage and subchondral bone defects compared with WT

mice (162, 163). Extensive studies have indicated that

inflammatory diseases decreased the pH of the cartilage

environment (164–166). Acid sensing plays an essential role

for maintaining cell function through acid sensing ion channels

or proton-activated GPCR (167, 168). The proton-activated

GPR4 regulates OA pathogenesis via modulating CXCL12/

CXCR7 signaling, and inhibition of GPR4 with NE52-QQ57

ameliorates OA development in both mouse models and human

articular cartilage explants (169).

G PROTEIN-COUPLED RECEPTOR
KINASE IN OA

There are seven G protein-coupled receptor kinase (GRKs)

subtypes, relevant to the role in GPCR phosphorylation and

desensitization, and also phosphorylation of a number of

intracellular signaling proteins. Studies demonstrated that
GRK5 regulated cartilage degradation in OA progression via

NF-kB signaling. Intra-articular injection of amlexanox (a

selective GRK5 inhibitor and a candidate for OA treatment)

protected mouse cartilage against cartilage degradation and

reduced the expression of catabolic factors in DMM-induced

OA mice (170). Cartilage-specific GRK2 deletion promoted

matrix regeneration and prevented OA progression.
Furthermore, the GRK2-inhibiting antidepressant paroxetine

decelerated OA progression in DMM mice (171). As a

clinically used antidepressant with known pharmacological

profiles and safety record, paroxetine offers a promising

therapeutic strategy for OA that can be easily translated from

bench side to clinics.

PERSPECTIVES AND CONCLUSIONS

Evidence from preclinical models of OA and/or clinical trials

have highlighted multiple GPCRs as novel therapeutic targets in

OA treatment, and showed promising efficacy in managing OA

pain and structural progression (Table 1). For instance, the

prominent role in multiple arthritis has rendered the adenosine
receptor as a promising target for therapeutic intervention.

Particularly, results of clinical trials with polynucleotides in

OA patients have been encouraging. Interestingly, the fate of

MSCs towards chondrogenesis and osteogenesis can be

significantly mediated by adenosines via ecto-5′-nucleotidase/

CD73 through activation of A2AR and A2BR receptors,
differentially and respectively (172, 173). With this strategy,

MSCs for cartilage and bone repair in damaged parts can be

adjusted by regulating the activity of A2AR/A2BR at different

stages of joint repair. Metabolite-sensing GPCRs could be an

interesting target for OA prevention and treatment, but

preclinical animal studies and clinical trials are lacking at
this time.

In addition to identifying promising drugs for OA

management, a well-integrated drug platform incorporating

nanocarriers and tissue engineering could provide additional

benefits in the treatment of OA. Nanocarriers with a

chondrocyte-specific aptamer have been widely used for
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TABLE 1 | GPCRs relevant to OA.

GPCR Cellular function Pathogenic function in OA Clinical trials Agonists/

antagonist

Refs

Cannabinoid receptors

CB1 Suppress chondrocyte senescence Inhibit OA pain NCT00981357 ACEA (26–46)

Decrease subchondral bone degeneration NCT03098563 HU-308

WIN55212-2

CB2 Promote chondrocyte proteoglycans Prevent cartilage degradation A-796260

JWH133

PF-

04457845

Chemokines and receptors

CXCR4 Induce chondrocyte hypertrophy Induce cartilage degradation AMD3100 (49–59)

TN14003

CXCR7 Enhance macrophage chemotaxis Aggravate joint destruction

CXCR1/2 Increase ECM production (60, 61)

Decrease chondrocyte apoptosis

CXCR3 Increase chondrocyte apoptosis Aggravate cartilage damage (62, 63)

Promote immune cells inflammatory response Increase synovitis

Increase osteophyte formation

CCR5 Maintain the inflammatory process Induce cartilage degeneration (65)

CCR2 Enhance chondrocyte apoptosis Aggravate cartilage degradation NCT00689273 RS-504393 (66–71)

Macrophage infiltration Increase synovitis PF-

04136309Increase OA pain

Metabolite-Sensing GPCRs*

GPR40 Reduce chondrocyte inflammatory Reduce chondral calcification GW9508 (77, 78)

Inhibit chondrocyte catabolism Reduce osteophyte formation

Reduce subchondral bone sclerosis

GPR120 Protect ECM production Prevent cartilage degradation TUG891 (79, 80)

Reduce synovitis GW9508

Reduce subchondral bone structural

change

GPR84 Increase ECM production Prevent cartilage degradation 6-OAU (81)

Inhibit chondrocyte catabolism Reduce osteophyte formation

Reduce subchondral bone sclerosis

GPR43 Decrease chondrocyte inflammatory (82)

TGR5 Decrease chondrocyte senescence INT-777 (83, 84)

Protect ECM production

Adenosine receptors*

A2AR Suppress chondrocyte inflammatory Prevent cartilage degradation PDRNs (89–101)

Enhance mitochondrial metabolism Reduce synovitis

Suppress chondrocyte catabolism Reduce subchondral bone structural

change

A2BR Suppress chondrogenic differentiation (102)

A3R Induce inflammatory cells apoptosis Prevent cartilage degeneration CF101 (103, 104)

Prevent bone destruction

Protease-activated receptor

PAR2 Promote chondrocyte apoptosis Aggravate cartilage damage AZ3451 (108–115)

Promote chondrocyte senescence Increase subchondral bone remodeling

Promote chondrocyte inflammatory Increase osteophytes formation

Promote chondrocyte catabolism Promote OA pain

Prostaglandin receptors

EP2 Enhance chondrocyte differentiation Increase cartilage regeneration ONO-8815Ly (119–125)

Protect chondrocyte apoptosis Lessen Joint pain

Prevent cartilage degeneration

EP4 Chondrocyte catabolism Matrix degradation AH23848 (126–133)

Inflammation Synovitis Grapiprant

OA pain

Hormone receptors

a2A-adreno-

receptor

Decrease chondrocyte metabolism Prevent cartilage degeneration (135, 136)

Inhibit chondrocyte inflammatory Prevent subchondral bone loss

b-adreno-receptor Protect chondrocyte proliferation (137)

Inhibit chondrocyte catabolism

Protect ECM production

PTH/PTHrP receptor Slow chondrocyte proliferation Decelerate cartilage degeneration NCT03072147 teriparatide (149–152)

(Continued)
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sustained delivery in cartilage tissue, providing improved

targeting specificity and pharmacokinetic profile (174–176).

Tissue engineering can lead to the construction of a ‘native’

microenvironment to deliver drug/growth factors, maintain

ECM deposition and support mechanical properties as naïve
cartilage (177, 178). This integration may form new approaches

to the prevention and treatment of OA.

On paper, many of the pathways can be selectively and

potently targeted, offering exciting opportunities for OA

management. However, it should be noted that complex

pathogenic mechanisms of OA limit clinical applications for
OA patients. Thus, future research should be directed towards

elucidating how these different pathways interact to that drive

structural progression or OA pain. Moreover, heterogeneity in

clinical presentation and histopathology can make it difficult to

elucidate OA pathophysiological changes. In a study published

last year, OA patients were classified into four distinct

osteoarthritis subtypes with a knee joint tissue transcriptome
atlas: a glycosaminoglycan metabolic disorder subtype (C1), a

collagen metabolic disorder subtype (C2), an activated sensory

neuron subtype (C3), and an inflammation subtype (C4) (179).

This provides a new paradigm for precision medicine in the

diagnosis and treatment of OA, although they may contradict

traditional OA diagnosis by clinical and radiographic
presentation. Hence, research that defines meaningful OA

phenotypes will be critical in determining optimal treatment

strategy, and should be prioritized.

In this review, we have described the pathophysiological processes

targetedbyGPCRs inOA,alongwith relatedpreclinicalmodels and/or

clinical trials data, and discussed the main challenges and
developments for these potential therapies. Further studies are

warranted to confirm the translatable symptomatic and long-term

benefits of candidate drugs. Meanwhile, expanding the knowledge of

the pathophysiological roles of agonists, antagonists or autoantibodies

forGPCRswill shed light on the biology of these receptors andprovide

new insights for potential therapeutic approaches.
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