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Understandingwhere, when and how species’ ranges will bemodified is both

a fundamental problem and essential to predicting how spatio-temporal

environmental changes in abiotic and biotic factors impact biodiversity. Nota-

bly, different species may respond disparately to similar environmental

changes: some species may overcome an environmental change only with dif-

ficulty or not at all, while other species may readily overcome the same

change. Rangesmay contract, expand ormove. The drivers and consequences

of this variability in species’ responses remain puzzling. Importantly, changes

in a species’ range creates feedbacks to the environmental conditions, popu-

lations and communities in its previous and current range, rendering

population genetic, population dynamic and community processes inextric-

ably linked. Understanding these links is critical in guiding biodiversity

management and conservation efforts. This theme issue presents current

thinking about the factors and mechanisms that limit and/or modify species’

ranges. It also outlines different approaches to detect changes in species’ dis-

tributions, and illustrates cases of rangemodifications in several taxa. Overall,

this theme issue highlights the urgency of understanding species’ ranges but

shows that we are only just beginning to disentangle the processes involved.

Oneway forward is to unite ecology with evolutionary biology and empirical

with modelling approaches.

This article is part of the theme issue ‘Species’ ranges in the face of

changing environments (Part II)’.

1. Introduction
Species’ ranges are temporally and spatially dynamic, undergoing expansions,

contractions, shifts and/or local (de)fragmentation over time [1–7]. While range

changes are mostly triggered by modifications in environmental factors, they

can be underlain by ecological responses, evolutionary changes within species,

or both. A change in one species’ range may have impacts that extend to other

species, and to the communities and ecosystems in their new or abandoned

habitats. Thus, understanding the dynamics of species’ ranges is fundamental

to understanding the dynamics of biodiversity. This is a core task of modern

biology, greatly relevant to society, especially owing to ongoing global anthro-

pogenic change that has already caused modifications of many species’ ranges

as well as biodiversity loss [2,3,8], and is likely to cause more change and loss in

the near future [8].

© 2022 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution

License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original

author and source are credited.
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The task of forecasting species’ distributions in the light of

expected climate change is undoubtedly complex and chal-

lenging. Species’ intrinsic properties (e.g. mating system,

dispersal ability, intrinsic growth rate, niche requirements,

plastic and adaptive potential for niche evolution, etc.) vary

greatly, and may even vary among populations within

species. This variation will influence species’ responses to a

changing environment. Responses of individual species will

interact, modifying communities and ecosystem processes.

Unravelling these connections requires detailed theoretical

and empirical knowledge of the inextricably linked roles of

ecological and evolutionary processes that shape and

modify species’ ranges. This theme issue examines our cur-

rent state of knowledge regarding the drivers of range

changes and provides new hypotheses, alongside original

empirical and theoretical results.

We hope that the topics addressed, and the answers deliv-

ered, in this theme issue will help to identify key factors

determining long-term population persistence and shed

light on how and why they vary among species. Furthermore,

we hope that the theme issue will pave the way for better

forecasting of species’ ranges and community composition,

given a scenario of interest, including the rate at which poten-

tial range changes will occur, and their consequences. We

believe that providing answers of this type is essential for

designing successful policies and management actions

aimed at conserving biodiversity or mitigating its loss and

maintaining ecological resilience. While the theme issue con-

sists of two parts (part I [7,9–18] and part II [19–28]), they

should be viewed as a coherent unit. In what follows, we

briefly introduce the topics addressed in the theme issue.

In the final contribution [28], Bridle & Hoffmann provide

an overview of the conclusions, recommendations and

outstanding issues raised.

2. Single species perspectives
Most investigations of range limits and dynamics until now

have taken a single-species perspective, relating distributions

to environmental gradients that do not change in response to

evolutionary or ecological changes in the focal species [29].

Despite great theoretical (e.g. [30–33]) and empirical (e.g.

[2–6,8,34,35]) progress in understanding how processes like

gene flow and ecological variation shape adaptation at

range edges, many open questions remain, some of which

are the focus of contributions to this theme issue.

From an ecological point of view, a species’ range is

expected to end where environmental conditions exceed the

limits of its ecological niche, i.e. where its population growth

rate at low density is no longer positive. However, this limit

may not be realized owing to historical factors, such as tem-

poral changes in the environment, stochastic variation in

conditions or spatial barriers that take time to overcome.

Three comparative studies address the impact of adaptive con-

straints on range limits and range sizes [9,10,19], while Holt

and co-authors [21] explore the impacts of temporal variation

in environmental conditions, which can sometimes lead to

wider range limits than expected in stable environments.

Niche limits may be exceeded locally, within the species’

range, as well as at its geographical limits [27]. Understanding

these ecological limits is critical for the management of range

change, as discussed here for non-native marine species [18].

Adding an evolutionary perspective can modify this view

of range limits, turning the question to the limits of adap-

tation: why do populations that are close to their ecological

limits not evolve ways to cope better with local conditions,

thus expanding their niche and their range (e.g. [36,37])?

Theoretical treatments of this question have focused on the

role of gene flow and the efficacy of selection in small, mar-

ginal populations on continuous gradients or in source-sink

pairs. In this issue, theory is extended to varying environ-

mental conditions in a metapopulation [22], to the role of

plasticity and the way it evolves in response to the nature

of environmental variation [12], to the effect of drift,

migration and demographic stochasticity on the risk of

extinction in peripheral populations [14], and to the costs

and benefits of dispersal in small populations [20]. Empirical

studies also consider the role of plasticity at range margins

[10,11,23]. Effects of dispersal may be influenced by the

breeding system, which Dawson-Glass & Hargreaves [13]

consider in relation to pollen limitation at range margins. If

a species is able to increase its range, for example

following an environmental change, additional eco-evol-

utionary processes may come into play. One that is

considered here is the spread of underdominant mutations,

which might have important consequences for the future

structure of populations [15].

3. Community perspectives
Classical ecological theory emphasizes the key contribution

of biotic interactions to establishing range limits [38]. This

means that at least some of the variation in the rates and

extents of species’ range modifications seen under environ-

mental change (e.g. [8]) is likely to be explained by the

complex interplay of direct and indirect effects within species

interaction networks [39,40]. For example, Stewart et al. [25]

investigate the role of phenological synchrony between the

range-shifting butterfly Aricia agestis and its novel plant

hosts at its range edge. Because climate affects the phenology

of host plant and butterfly independently, and may, therefore,

erode novel host suitability, host shifts may be transitory.

Range shifts are, therefore, likely to be dynamic and complex,

as climate change impacts the spatial and temporal

distributions of multiple interacting species.

Because biotic interactions regulate population dynamics

and abundance, they are important agents of selection that

act in concert with the abiotic environment across a species’

range. O’Brien et al. [24] discuss how ecological constraints

imposed by antagonistic biotic interactions can reduce fitness

and increase the steepness of environmental gradients,

thereby sharpening limits to adaptation at range margins;

alternatively, adaptation to new biotic interactions, such as

host shifts [24,25], might facilitate rapid range expansion.

Biotic interactions can also influence selection at range limits

via trade-offs in responses to abiotic and biotic factors, as illus-

trated by a simple model developed by Alexander et al. [26].

Importantly, ecological and evolutionary ‘limits’ should not

only be thought of as occurring at the edges of a species’ geo-

graphical distribution. As Parmesan & Singer [27] show,

species’ ranges constitute mosaics of environmental stress,

driven as much by behaviour and microclimatic exposure as

by macroclimatic conditions, so that species might frequently

meet ‘extremes’ within the centre of their distribution.
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Selection can push populations to limits of adaptation within

such environments, rendering (meta)populations vulnerable

to climatic variability or ongoing directional climate change.

Here again, biotic interactions can play a key role, because

selection, for example to avoid predation or match host

phenology [26,27], can help push species towards their ther-

mal limits. Together, studies in this theme issue emphasize

that the community context is essential to understanding evol-

utionary constraints throughout species ranges and that

alterations to biotic interactions have both ecological and evol-

utionary consequences for the dynamics of species’ ranges as

environments change [25–27].

4. Conservation and management implications
and possible actions

In addition to knowledge about the relevant evolutionary

and ecological processes, understanding the situations

where evolution across ranges might occur rapidly (e.g. at

an expanding edge) versus those where it will be more con-

strained (e.g. at a trailing edge) will be valuable

information for managers seeking to promote or constrain

range expansions or conserve marginal populations [41].

This context might also influence the range of actions avail-

able to managers (e.g. genetic or demographic support,

such as ‘evolutionary rescue’, assisted colonization, and pro-

visioning of refuge sites) [42–44]. Such potential for rapid

evolutionary responses questions the usefulness of species

distribution models that lack evolutionary components in

assessing species’ and ecosystems’ vulnerability and manage-

ment [45]. Range limit dynamics will also affect the

predictability of (future) species’ ranges, for example using

climate envelope models, which remain an important

component of risk assessments [46].

A more immediate problem for managers and conserva-

tion practitioners is how to delimit populations of species,

potential routes and rates of connectivity among populations,

and not least to determine the optimal design of nature

reserves [47]. This is very important in spatial planning of

‘green infrastructure’ in both terrestrial and aquatic environ-

ments, to provide plots of large enough size and quality for

species to thrive. Jahnke & Jonsson [16] review the literature

to evaluate when biophysical approaches that model dispersal

potential can be used to support seascape genetic/genomic

analysis in assessing metapopulation dynamics and connec-

tivity. Holman et al. [18] compare current and historical

distributions of non-native ascidian species along the coast

of South Africa using both genetic and inventory data. They

also evaluate the usefulness of environmental DNA (eDNA)

in addressing this type of question. eDNA has been proposed

as a key tool in detecting non-native species at an early stage of

occurrence and could contribute important data on range size,

genetic composition and the early history of expansion (or

contraction), which will be very useful for managing threa-

tened native and thriving non-native species. It remains an

open question whether one method alone, or a combination

of several approaches, is the best way to evaluate the incidence

of range shifting species when their abundance is low, for

example in the early stages of introductions of non-native

species, or when endangered species are rare. Finally, the

role of human vectors is a much-discussed topic among man-

agers and scientists, not least in marine ecosystems where the

shipping industry, through transport and release of ballast

water, risks the movement of millions of larvae of marine

species [48]. The study byHudson et al. [17] poses the question

of whether, after a new species is established in an area, contin-

ued transport of propagules (e.g. marine larvae travelling in

ballast water) will blur the historical footprints of colonization

and finally homogenize the genetic structure of the species.

5. Concluding remarks
This theme issue provides insight into several factors

involved in the dynamics of species’ ranges, including spatial

and temporal heterogeneity of biotic and abiotic environ-

mental variables, and species-specific intrinsic properties.

However, more work is needed to unravel potential general-

izations of the patterns reported, and to make direct use of

them to improve forecasting of future species’ ranges in a

pragmatic manner, e.g. to identify key ecological tipping

points and dangerous levels of environmental change. To

this end, more studies that directly link theory with empirical

and experimental data, alongside more meta-analyses on fac-

tors implicated in shaping species’ ranges, will be especially

valuable. This will allow us to better understand the

dynamics of species’ ranges in the face of changing environ-

ments and, in particular, to establish a solid framework for

quantifying the rate at which species’ ranges are expected

to change, both within and at the edge of their geographical

distributions. Bridle & Hoffmann provide a thoughtful sum-

mary, alongside a number of most fruitful recommendations

for future work on the topic, in the final contribution of the

theme issue [28].

This theme issue was aimed to advance our understand-

ing of the factors and mechanisms involved in limiting and/

or modifying species’ ranges and we hope that the many

insightful contributions will inspire more studies on this

most urgent topic.
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