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Abstract

Forests are major components of the global carbon (C) cycle and thereby strongly influence
atmospheric carbon dioxide (CO,) and climate. However, efforts to incorporate forests into
climate models and CO; accounting frameworks have been constrained by a lack of accessible,
global-scale synthesis on how C cycling varies across forest types and stand ages. Here, we draw
from the Global Forest Carbon Database, ForC, to provide a macroscopic overview of C cycling in
the world’s forests, giving special attention to stand age-related variation. Specifically, we use 11 923
ForC records for 34 C cycle variables from 865 geographic locations to characterize ensemble C
budgets for four broad forest types—tropical broadleaf evergreen, temperate broadleaf, temperate
conifer, and boreal. We calculate means and standard deviations for both mature and regrowth
(age < 100 years) forests and quantify trends with stand age in regrowth forests for all variables
with sufficient data. C cycling rates generally decreased from tropical to temperate to boreal in both
mature and regrowth forests, whereas C stocks showed less directional variation. Mature forest net
ecosystem production did not differ significantly among biomes. The majority of flux variables,
together with most live biomass pools, increased significantly with the logarithm of stand age. As
climate change accelerates, understanding and managing the carbon dynamics of forests is critical
to forecasting, mitigation, and adaptation. This comprehensive and synthetic global overview of C
stocks and fluxes across biomes and stand ages contributes to these efforts.

1. Background

Forest ecosystems are shaping the course of cli-
mate change through their influence on atmospheric
carbon dioxide, CO, (Bonan 2008, IPCC 2018,
Friedlingstein et al 2019). Despite the centrality of
forest carbon (C) cycling in regulating atmospheric
CO;, gaps in our understanding of how C cycling var-
ies across forest types and in relation to stand his-
tory underly important uncertainties in climate mod-
els (Friedlingstein et al 2006, Krause et al 2018, Bonan

© 2021 The Author(s). Published by IOP Publishing Ltd

et al 2019, Di Vittorio et al 2020) and CO, accounting
frameworks (Pan et al 2011, IPCC 2019). Improved
understanding of forest C cycling globally require
accessible, comprehensive, and large-scale databases
with worldwide coverage, which runs contrary to the
traditional way forest C stocks and fluxes have been
measured and published. Large-scale synthesis is crit-
ical to benchmarking model performance with global
data (Luo et al 2012, Clark et al 2017, Fer et al 2021),
quantifying the role of forests in the global C cycle
(e.g. Pan et al 2011, Harris et al 2021), and using
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book-keeping methods to quantify actual or potential
exchanges of CO, between forests and the atmosphere
(Griscom et al 2017, Houghton 2020).

1.1. Forests in the global C cycle: current and future
A robust understanding of forest impacts on global
C cycling is essential. Total annual photosynthesis in
forests (gross primary productivity, GPP) is estimated
at approximately 69 Gt C yr~! (Badgley et al 2019).
Most of this enormous C uptake is counterbalanced
by releases to the atmosphere through ecosystem res-
piration (Re,) and fire. In recent years, total forest C
uptake has exceeded releases, such that forests glob-
ally have been a C sink (Harris et al 2021). This C
sink has averaged 3.2 4- 0.6 Gt Cyr~! for 2009-2018,
offsetting 29% of anthropogenic fossil fuel emis-
sions, when considering only areas remaining fores-
ted (Friedlingstein et al 2019). However, deforesta-
tion, estimated at ~1 Gt C yr~! in recent decades
(Pan et al 2011, Tubiello et al 2020), reduces the net
forest sink to ~1.1-2.2 Gt Cyr~! (Friedlingstein et al
2019, Harris et al 2021). Understanding, modeling,
and managing forest-atmosphere CO, exchange is
central to mitigating climate change (Cavaleri et al
2015, Grassi et al 2017, Griscom et al 2017).

The future of the current forest C sink is depend-
ent both upon forest responses to climate change and
human land use decisions, with land use change itself
strongly influencing the course of climate change
(Friedlingstein et al 2006). Regrowing forests (i.e.
secondary forests) will play a particularly import-
ant role (Pugh et al 2019), as almost two-thirds of
the world’s forests were secondary as of 2010 (FAO
2010). As anthropogenic and climate-driven disturb-
ances impact a growing proportion of Earth’s forests
(Andela et al 2017, McDowell et al 2020), under-
standing the carbon dynamics of regrowth forests
is increasingly important (Anderson-Teixeira et al
2013). Although age trends in aboveground bio-
mass have been well-studied and synthesized globally
(Cook-Patton et al 2020), there is a relative dearth of
data and synthesis on other C stocks and fluxes in
secondary forests. Understanding age-related trends
in forest C cycling is particularly critical for reducing
uncertainty regarding the potential for carbon uptake
and climate change mitigation by regrowth forests
(Krause et al 2018, Cook-Patton et al 2020).

1.2. Evolution of forest C cycle research

For more than half a century, researchers have sought
to understand how forest carbon cycling varies across
stands, including among biomes (e.g. Lieth 1973,
Luyssaert et al 2007) and with stand age (e.g. Odum
1969, Luyssaert et al 2008). Over this time, an increas-
ingly refined conceptual understanding of the ele-
ments of ecosystem C cycles has developed, as a grow-
ing number of variables have been defined, along with
appropriate measurement methods (e.g. Clark et al
2001, Chapin et al 2006). New technology has also
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enabled researchers to directly measure an expanding
set of variables, notably including continuous meas-
urements of soil CO, efflux (Kuzyakov 2006) and
ecosystem-atmosphere CO, exchange (Baldocchi et al
2001). Measurement techniques have been increas-
ingly standardized, such as the biomass allometries
that strongly influence estimates of most C cycle vari-
ables (e.g. Chave et al 2014). Further standardization
has been made possible through research networks
such as ForestGEO (Anderson-Teixeira et al 2015,
Davies et al 2021), NEON (Schimel et al 2007), and
FLUXNET (Baldocchi et al 2001, Novick et al 2018).
Remote sensing technology has become increasingly
useful for global- or regional-scale estimates of a
few critical variables, including aboveground biomass
(Bag> Saatchi et al 2011, Hu et al 2016, Spawn et al
2020) and GPP (Li and Xiao 2019). Yet, measure-
ment and validation of most forest C stocks and fluxes
requires intensive on-the-ground data collection.

Alongside these conceptual and methodological
developments, there has been a proliferation of meas-
urements across the world’s forests. The result of
decades of research on forest C cycling is tens of
thousands of records distributed across thousands
of scientific articles, varying in data formats, units,
measurement methods, etc. To address questions at a
global scale, researchers began synthesizing data into
increasingly large databases (e.g. Lieth 1973, Luys-
saert et al 2007, Bond-Lamberty and Thomson 2010,
Anderson-Teixeira et al 2016, 2018, Cook-Patton et al
2020). The current largest, most comprehensive data-
base on forest C cycling is ForC (Anderson-Teixeira
et al 2016, 2018), which contains published estimates
of forest ecosystem C stocks and annual fluxes (>50
variables), with different variables capturing distinct
ecosystem pools (e.g. woody, foliage, and root bio-
mass; dead wood) and flux types (e.g. gross and net
primary productivity; soil, root, and ecosystem res-
piration). These data represent ground-based meas-
urements, and ForC contains associated data required
for interpretation (e.g. stand history, measurement
methods). Since its most recent publication (ForC
v2.0-Ecology, Anderson-Teixeira et al 2018), ForC has
grown 129%, primarily through the incorporation
of two additional large databases that also synthes-
ized published forest C data: the Global Soil Respira-
tion Database (SRDB, Bond-Lamberty and Thomson
2010, Jian et al 2020) and the Global Reforestation
Opportunity Assessment database (GROA, Cook-
Patton et al 2020). Following these additions, ForC
currently contains 39 762 records from 10608 plots
and 1532 distinct geographic areas representing all
forested biogeographic and climate zones, making it
ideal for assessing how forest C cycling varies across
biomes and with respect to stand age.

1.3. Biome differences
Forest C cycling varies enormously across bio-
mes, categories that encapsulate major differences in
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climate and vegetation. The dominant role of climate
in shaping global variation among forests has been
recognized since the early 19th century (Humboldt
and Bonpland 1807, Holdridge 1947). Global scale
data syntheses have shown that C fluxes includ-
ing GPP, net primary productivity (NPP), and soil
respiration (Ryy) decrease with latitude or, corres-
pondingly, increase with mean annual temperature
(figure 1(a); e.g. Lieth 1973, Luyssaert et al 2007,
Hursh et al 2017, Banbury Morgan et al 2021). C
stocks of mature forests show less directional vari-
ation (figure 1(c)). On average, aboveground bio-
mass (B,g) tends to decrease with latitude, but not as
dramatically as fluxes, and with the highest biomass
forests in relatively cool, moist temperate regions
(Smithwick et al 2002, Keith et al 2009, Hu et al
2016). In contrast, standing and downed dead wood
(DWytanding and DWqyn, respectively, summing to
DW,4) and the organic layer (OL) tend to accumu-
late more in colder climates where decomposition is
slow relative to NPP (Harmon et al 1986, Allen et al
2002).

Phenomenological analyses relating C stocks and
fluxes to climate and other environmental variables
have recently been taken to a new level through use
of machine-learning algorithms that relate ground-
based C cycle data to global maps of environmental
covariates (e.g. Warner et al 2019, Cook-Patton et al
2020). The resulting models enable construction of
fine-scale global maps of estimated C cycling vari-
ables. This approach can be particularly effective
when it integrates satellite measurements that cor-
relate with C cycle variables of interest; for example,
solar-induced chlorophyll fluorescence is useful for
fine-scale mapping of gross primary productivity
(GPP, Li and Xiao 2019), while LiDAR, radar, and
optical imagery are being used to model B,, at
regional to global scales (e.g. Saatchi ef al 2011, Hu
et al 2016). However, all such analyses are ultimately
constrained by the quality and coverage of ground-
based estimates of forest C fluxes or stocks to train
models (e.g. Schepaschenko et al 2019). While estim-
ates of some variables (e.g. B,g, GPP, NPP, Ry) are
widely available, many remain poorly characterized
(e.g. DWy4; OL; autotrophic respiration, Ry ), €ven
at the coarse resolution of biomes. This is a crit-
ical limitation for understanding forest C cycling and
quantifying forest-based climate change mitigation
potential across forest biomes or ecozones (e.g. IPCC
2019).

1.4. Age trends and their variation across biomes

Stand age is another important axis of variation in
forest C cycling (figures 1(b) and (d)). In 1969,
E.P. Odum’s ‘The Strategy of Ecosystem Develop-
ment’ laid out predictions as to how forest energy
flows and organic matter stocks vary with stand age
(Odum 1969). Although the conceptualization of
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the C cycle in this paper was simplistic by current
standards, the paper was foundational in framing
the theory around which research on the subject still
revolves (Corman et al 2019), and the basic frame-
work still holds, albeit with modest modifications
(figure 1(b), Anderson-Teixeira et al 2013). Following
stand-clearing disturbance, GPP, NPP, and biomass
of leaves (Bgliage) and fine roots (Broot—fine) initially
increase rapidly and thereafter remain relatively stable
(Bfoliage> Broot—fine> sometimes GPP) or decline slightly
(NPP, sometimes GPP; e.g. Law et al 2003, Pregit-
zer and Euskirchen 2004, Amiro et al 2010, Goulden
et al 2011). The decline in NPP occurs because R,y
increases relative to GPP as forests age, correspond-
ing to declining carbon use efficiency with stand age
(DeLucia et al 2007, Collalti et al 2020). Hetero-
trophic respiration, most of which originates from
the s0il (Rpet—soil), remains relatively constant with
stand age (Law et al 2003, Pregitzer and Euskirchen
2004, Goulden et al 2011). As a result, net ecosystem
production (NEP = GPP — R,, where R, is total
ecosystem respiration) is initially negative, increases
to a maximum at intermediate ages, and thereafter
declines—typically to a small positive value (Law
et al 2003, Pregitzer and Euskirchen 2004, Luyssaert
et al 2008, Amiro et al 2010, Goulden et al 2011).
The result is that biomass accumulation is rapid in
young forests, followed by a slow decline to near
zero in old forests (e.g. Lichstein et al 2009, Yang
et al 2011). While these trends have been the subject
of fairly recent qualitative review (Anderson-Teixeira
et al 2013), there is need for a synthetic, quantitative
review taking advantage of the greatly expanded data
now available.

In the past few decades, researchers have started
asking how age trends—mostly in B, or total bio-
mass (Byor) accumulation—vary across biomes. Early
research on this theme showed that biomass accu-
mulation rates during secondary succession increase
with temperature on a global scale (Johnson et al
2000, Anderson et al 2006) and with water availability
in the neotropics (Poorter et al 2016). Cook-Patton
et al (2020) reinforced these earlier findings with a
much larger dataset and created a high-resolution
global map of estimated potential C accumulation
rates. However, there has been little synthesis of cross-
biome differences in variables other than biomass
and its accumulation rate (but see Cook-Patton et al
2020 for DW, OL, and soil C accumulation in young
stands). Given the important role of secondary forests
in the current and future global C cycle, a con-
crete understanding of age trends in C fluxes and
stocks and how these vary across biomes is critical
to better understanding the global C cycle. Accur-
ate estimates of C sequestration rates by regrowth
forests are also critical for national greenhouse gas
accounting under the IPCC framework (IPCC 2019,
Requena Suarez ef al 2019) and quantifying the value
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Figure 1. Schematic diagram summarizing current understanding of biome differences (a), (c) and age trends (b), (d) in forest C
cycling. Variables are defined in table 1. Age trends, which represent idealized dynamics following a disturbance that removes all
living vegetation, are an updated version of the classic figure from Odum (1969). Reprinted with permission from AAAS, with
heavy lines (b), (d) corresponding to those in Odum’s figure 1 and NEP corresponding to Odum’s ‘net production’ (b). *Positive
NEP of young forests is typically dominated by woody NPP (NPPy,0dy = ANPP\,00dy + BNPPeoarse). As forests age and biomass
accumulation slows, NPPy,0q4y approaches equilibrium with woody turnover (Mygody + ANPPpanch + coarse root turnover), and
NEP may be dominated by changes in dead wood or soil organic carbon. Dotted lines refer to decomposition of potential ‘legacy’
organic material produced prior to the disturbance and remaining at the site (e.g. standing and fallen dead wood, DW/q; soil
organic matter). Error bars on C stocks plot represent within-biome variability, wherein mean biomass is highest in the tropics,
but maximum biomass is highest in temperate regions.

of regrowth forests for climate change mitigation
(Anderson-Teixeira and DeLucia 2011, Goldstein et al
2020).

Here, we conduct a data-based review of carbon
cycling from a stand to global level, and by biome
and stand age, using our open-source Global Carbon
Forest database (ForC; figure 2). Our goal is to provide
a comprehensive synthesis on broad trends in forest
C cycling that can serve as a foundation for improved
understanding of global forest C cycling and highlight
where key sources of uncertainty still reside.

2. Methods and design

This review synthesizes data from the ForC data-
base (figure 2, https://github.com/forc-db/ForC,
Anderson-Teixeira et al 2016, 2018). ForC amal-
gamates numerous intermediary data sets (e.g. Luys-
saert et al 2007, Bond-Lamberty and Thomson 2010,
Cook-Patton et al 2020) and original studies. Ori-
ginal publications were referenced to check values

and obtain information not contained in inter-
mediary data sets, although this process has not
been completed for all records. The database was
developed with goals of understanding how C cyc-
ling in forests varies across broad geographic scales
and as a function of stand age. As such, there has
been a focus on incorporating data from regrowth
forests (e.g. Anderson et al 2006, Bonner et al
2013, Martin et al 2013) and obtaining stand age
data when possible (83% of records in ForC v.2.0,
Anderson-Teixeira et al 2018). Particular attention
was given to developing the database for tropical
forests (Anderson-Teixeira et al 2016), which rep-
resented roughly one-third of records in ForC v2.0
(Anderson-Teixeira et al 2018). Since publication
of ForC v2.0, we imported three large additional
databases into ForC via a combination of R scripts
and manual edits. First, we imported (via R script)
the Global Soil Respiration Database (SRDB v4,
9488 records, Bond-Lamberty and Thomson 2010),
with corrections and improvements to SRDB arising
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Figure 2. Map of sites included in this analysis. Symbols are colored according to the number of records at each site. Underlying
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(color differences). Distribution of sites, plots, and records among biomes is shown in the inset.
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from this process incorporated into SRDB v5 (Jian
et al 2020). Second, we imported (via R script) the
Global Reforestation Opportunity Assessment data-
base (GROA v1.0, 10 116 records, Anderson-Teixeira
et al 2020, Cook-Patton et al 2020), which itself
had drawn on an earlier version of ForC. Because
all records in GROA were checked against original
publications, these records were given priority over
duplicates in ForC (appendix S1 (available online
at stacks.iop.org/ERL/16/053009/mmedia)). Third,
we incorporated records of annual NEP, GPP, and
Reco from the FLUXNET2015 dataset (Pastorello
et al 2020), treating these records as authoritative
when they duplicated earlier records (appendix S1).
We have also added data from individual public-
ations, focusing on productivity (e.g. Taylor et al
2017), dead wood, and ForestGEO sites (e.g. John-
son et al 2018, Lutz et al 2018). A record of data
sets added to ForC over the course of its devel-
opment is available at https://github.com/forc-db/
ForC/blob/master/database_management_records/F
orC_data_additions_log.csv. The database ver-
sion used for this analysis has been tagged as
a new release on Github (v3.0) and assigned
a DOI through Zenodo (DOI: 10.5281/zenodo.
4571538).

All measurements originally expressed in units of
dry organic matter (OM) were converted to units of
C using the IPCC default of C=0.47 x OM (IPCC
2018). Duplicate or otherwise conflicting records
were purged as described in appendix S1, result-
ing in a total of 22265 records (56% size of total
database). Records were filtered to remove plots that
had undergone significant anthropogenic manage-
ment or major disturbance since the most recent
stand initiation event. Specifically, we removed plots

with any record of managements manipulating CO,,
temperature, hydrology, nutrients, or biota, as well
as any plots whose site or plot name contained the
terms ‘plantation, ‘planted, ‘managed, ‘irrigated, or
“fertilized’ (13.9% of duplicate-purged records). We
also removed stands that had undergone any not-
able anthropogenic thinning or partial harvest (5.6%
of duplicate-purged records). We retained sites that
were grazed or had undergone low severity natural
disturbances (<10% mortality) including droughts,
major storms, fires, and floods. We removed all plots
for which no stand history information had been
retrieved (5.7% of duplicate-purged records). In total,
this resulted in 17 349 records (43.6% of the records
in the database) being eligible for inclusion in the
analysis.

We selected 23 annual flux and 11 C stock vari-
ables for inclusion in the analysis (table 1). These
different flux and stock variables represent differ-
ent pools (e.g. aboveground biomass, root biomass,
dead wood) and levels of combination (e.g. total net
primary productivity, NPP, versus the individual ele-
ments of NPP such as foliage, roots, and branches).
We did not analyze soil carbon, which is not a focus
of the ForC database. Note that two flux variables,
aboveground heterotrophic respiration (Ryet—ag) and
total heterotrophic respiration (Ry,), were included
for conceptual completeness but had no records in
ForC (table 1). Records for our focal variables rep-
resented 90.3% of the total records eligible for inclu-
sion. For this analysis, we combined some specific
variables from ForC into more broadly defined vari-
ables. Specifically, net ecosystem exchange (meas-
ured by Eddy-covariance, Baldocchi et al 2001) and
biometric estimates of NEP were combined into
the single variable NEP (table 1). Furthermore, for




Table 1. Carbon cycle variables included in this analysis, their sample sizes, and summary of biome differences and age trends.
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N records
Variable Description Records Plots Geographic areas Biome differences® Age trend”
Annual fluxes
NEP Net ecosystem production or net ecosystem exchange (4 indicates C sink) 329 146 88 N.s. +; xB
GPP Gross primary production (NPP + Rauto or NEP + Reco) 303 115 84 TrB > TeB > TeN > BoN +; xB
NPP Net primary production (ANPP + BNPP) 214 112 74 TrB > TeB > TeN > BoN N.s.
ANPP Aboveground NPP 343 236 131 TrB > TeB > TeN > BoN +; xB
ANPP,00dy Woody production (ANPPgem + ANPPpranch) 64 53 37 N.s. +
ANPPgiem Woody stem production 217 190 117 TrB > TeN > TeB > BoN N.s.
ANPPyanch Branch turnover 69 59 42 TrB > TeB > TeN N.s.
ANPP jiage Foliage production, typically estimated as annual leaf litterfall 162 132 88 TrB > TeB > TeN > BoN +
ANPPjiterfall Litterfall, including leaves, reproductive structures, twigs, and sometimes branches 82 70 55 N.s. +
ANPPepro Production of reproductive structures (flowers, fruits, seeds) 51 44 34 N.t. N.t.
ANPPglivory Foliar biomass consumed by folivores 20 12 11 N.t. N.t.
Myoody Woody mortality—i.e. Bag of trees that die 18 18 18 N.t. N.t.
BNPP Belowground NPP (BNPPcoarse + BNPPj,,) 148 116 79 TrB > TeN > TeB > BoN +
BNPPoarse Coarse root production 77 56 36 TeN > TrB N.s.
BNPPg,e Fine root production 123 99 66 N.s. +
Reco Ecosystem respiration (Rauto+ Rpet) 213 98 70 TrB > TeB > TeN +
Rauto Autotrophic respiration (Rauro-ag+ Rroot) 24 23 15 N.t. N.t.
Rauto-ag Aboveground autotrophic respiration (i.e. leaves and stems) 2 2 1 N.t. N.t.
Rroot Root respiration 181 139 95 TrB > TeB +
Ryoil Soil respiration (Rpet-soil + Rroot) 627 411 229 TrB > TeB > TeN >BoN N.s.
Rhet-soil Soil heterotrophic respiration 197 156 100 TrB > TeB > TeN N.s.
Ricteag Aboveground heterotrophic respiration 0 0 0 — —
Rpet Heterotrophic respiration (Rhet-ag + Rhet-soil) 0 0 0 — —
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Table 1. (Continued.)

N records
Variable Description Records Plots Geographic areas Biome differences® Age trend®
Stocks
Biot Total live biomass (Bag + Broot) 188 157 87 TrB > TeB > BoN +; xB
Bag Aboveground live biomass (Bag-wood + Bfoliage) 4466 4072 621 TrB > TeN > TeB > BoN +; xB
Bag-wood Woody component of aboveground biomass 115 102 64 TeN > TrB > BoN +; xB
Broliage Foliage biomass 134 115 72 TeN > TrB > BoN > TeB +; xB
Broot Total root biomass (Broot-coarse + Broot-fine) 2329 2298 360 N.s. +;xB
Broot-coarse Coarse root biomass 134 120 73 TeN > TeB > BoN +;xB
Broot-fine Fine root biomass 226 180 109 N.s. +;xB
DWiot Deadwood (DWanding + DWaown) 79 73 42 N.t. +;xB
DWitanding Standing dead wood 36 35 22 N.t. N.t.
DW 4own Fallen dead wood, including coarse and sometimes fine woody debris 278 265 37 N.t. +;xB
OL Organic layer/litter/forest floor 474 413 115 N.s. +;xB

ATrB: tropical, TeB: temperate broadleaf, TeN: temperate needleleaf, BoN: boreal, n.s.: no significant differences, n.t.: not tested

b4 or —: significant positive or negative trend, xB: significant age x biome interaction, n.s.: no significant age trend, n.t.: not tested.
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NPP, aboveground NPP (ANPP), and the litter-
fall component of ANPP (ANPPjerfar), we com-
bined ForC variables specifying inclusion or exclusion
of minor components (e.g. measurements includ-
ing or excluding fruit production, flower production,
and herbivory). Throughout ForC, for all measure-
ments drawing from tree census data (e.g. biomass,
productivity), trees were censused down to a min-
imum diameter breast height threshold of 10 cm or
less. All records were based on ground-based field
measurements.

We grouped forests into four broad biome types
(tropical broadleaf, temperate broadleaf, temperate
needleleaf, and boreal needleleaf) and two age clas-
sifications (young and mature). The climate com-
ponent of the biome definitions (figure 2) was
based on site geographic coordinates according to
Koppen—Geiger zones (Rubel and Kottek 2010). We
defined the tropical biome as including all equat-
orial (A) zones, temperate biomes as including all
warm temperate (C) zones and warmer snow climates
(Dsa, Dsb, Dwa, Dwb, Dfa, and Dfb), and the boreal
biome as including the colder snow climates (Dsc,
Dsd, Dwc, Dwd, Dfc, and Dfd). Forests in dry (B)
and polar (E) Koppen-Geiger zones were excluded
from the analysis. We distinguished broadleaf and
needle leaf forests based on descriptions in original
publications (prioritized) or values extracted from
a global map based on satellite observations (SYN-
MAP, Jung et al 2006). For young tropical forests
imported from GROA but not yet classified by leaf
type, we assumed that all were broadleaf, consistent
with the rarity of naturally regenerating needle leaf
forests in the tropics. We classified forests as ‘young’
if stand age was less than 100 years, or ‘mature’ if
stand age was older or if they were described as
‘mature, ‘old growth, ‘intact,’ or ‘undisturbed’ in the
original publication. Assigning stands to these group-
ings required excluding records for which ForC lacked
geographic coordinates (0.4% of sites in the full data-
base) or records of stand age or forest maturity (5.7%
of records in the full database). We also excluded
records with stand age of zero years (0.8% of records
in full database). In total, our analysis retained 11 923
records. Numbers of records by biome and age class
are provided in table SI.

We calculated the means and standard deviations
of each mature forest C cycle variable by biome
over geographically distinct areas to produce biome-
specific schematics. We first averaged any repeated
measurements within a plot. To avoid pseudo-
replication, we then averaged multiple measure-
ments within geographically distinct areas, defined as
plots clustered within 25 km of one another (sensu
Anderson-Teixeira et al 2018), weighting by area
sampled if available for all records. Finally, we took
means and standard deviations over geographic areas.

We tested whether the C budgets described
above ‘closed’—i.e. whether they were internally
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consistent. Specifically, we first defined rela-
tionships among variables (e.g. NEP = GPP —
Recos BNPP = BNPPyarse + BNPPgye, DW=
DWitanding + DWdown). Henceforth, we refer to the
variables on the left side of the equation as ‘aggregate’
fluxes or stocks, and those that are summed as ‘com-
ponent’ fluxes or stocks, noting that the same variable
can take both aggregate and component positions in
different relationships. We considered the C budget
for a given relationship ‘closed’ when the means of
component variables summed to within one standard
deviation of the mean of the aggregate variable.

To test for differences across mature forest bio-
mes, we also examined how stand age impacted fluxes
and stocks, employing a mixed effects model (‘lmer’
function in ‘lme4’ R package, Bates e al 2015) with
biome as a fixed effect and plot nested within geo-
graphic area as random effects on the intercept. When
biome had a significant effect, we used Tukey’s pair-
wise comparison to see which biomes were signific-
antly different from one another. This analysis was
run for variables and biomes with records for at least
seven distinct geographic areas per biome (table 1).

To test for age trends in young (<100 years)
forests, we employed a mixed effects model with
biome and log10(stand age) as fixed effects and plot
nested within geographic area as a random effect on
the intercept. This analysis was run for variables and
biomes with records for at least three distinct geo-
graphic areas per biome, excluding any biomes that
failed this criterion (table 1). When the effect of stand
age was significant at p < 0.05, and when each biome
had records for stands of at least ten different ages,
a biome X stand age interaction was included in the
model. We note that the logarithmic function fit in
this analysis does not always correspond to theoret-
ical expectations, particularly for NEP (figure 1(b));
however, data limitations did not support fitting of
functions with more parameters or reliable com-
parisons of different functional forms. Within the
data constraints, we deemed a logarithmic func-
tion to be the appropriate functional form for most
variables.

To facilitate the accessibility of our results and
data, and to allow for rapid updates as additional
data become available, we automated all database
manipulation, analyses, and figure production in R
(Team R C 2020).

3. Review results and synthesis

3.1. Data coverage

Of the 39762 records in ForC v3.0, 11923 met our
strict criteria for inclusion in this study (figure 2).
These records were distributed across 5062 plots in
865 distinct geographic areas. Of the 23 flux and
11 stock variables mapped in our C cycle diagrams
(figures 3—6 and S1-S4), ForC contained sufficient
mature forest data for inclusion in our statistical
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major natural or anthropogenic disturbance in that time.

analyses (i.e. records from >7 distinct geographic
areas) for 20 fluxes and 9 stocks in tropical broadleaf
forests, 15 fluxes and 8 stocks in temperate broadleaf
forests, 14 fluxes and 7 stocks in temperate conifer
forests, and 8 fluxes and 7 stocks in boreal forests. For
regrowth forests (<100 years), ForC contained suf-
ficient data for inclusion in our statistical analyses
(i.e. records from >3 distinct geographic areas) for
11 fluxes and 10 stocks in tropical broadleaf forests, 16
fluxes and 10 stocks in temperate broadleaf forests, 16
fluxes and 10 stocks in temperate conifer forests, and
14 fluxes and 9 stocks in boreal forests.

3.2. C cycling in mature forests
Average C cycles for mature tropical broadleaf,
temperate broadleaf, temperate conifer, and
boreal forests are presented in figures 3—6 (and
available in tabular format in the ForC release
accompanying this publication: ForC/numbers_
and_facts/ForC_variable_averages_per_Biome.csv).
For variables with records from >7 distinct geo-
graphic areas, these ensemble C budgets met our cri-
teria for budget ‘closure. That is, component vari-
ables summed to within one standard deviation of
their respective aggregate variables in all but one
instance. In the temperate conifer biome, the average
composite measure of root biomass (Byeot) Was less

than the combined average value of coarse and fine
root biomass (Broot—coarse a1d Broot—fine> respectively).
This lack of closure was driven by very high estim-
ates of Broot—coarse from high-biomass forests of the US
Pacific Northwest, a geographic region with a dispro-
portionately large number of records for this variable
(figure S25).

There were sufficient data to assess differences
among biomes in mature forest values for 15 flux
variables, and 12 of these variables exhibited statistic-
ally significant differences among biomes (table 1). In
all cases of significant differences (including C fluxes
into, within, and out of the ecosystem), C fluxes were
highest in tropical forests, intermediate in temperate
(broadleaf or conifer) forests, and lowest in boreal
forests (table 1, figures 7 and S5-S19). Differences
between tropical and boreal forests were consistently
significant, with temperate forests intermediate and
significantly different from one or both. Fluxes tended
to be numerically greater in temperate broadleaf
than temperate conifer forests, but the difference was
never statistically significant. This pattern held for
11 of the 12 variables with significant biome effects:
GPP, NPP, ANPP, ANPPer, ANPPp ety ANPPpoiages
BNPP, Reco> Rroots Rsoily and Ryer - soil. For two of the
variables without significant differences among bio-
mes (ANPPierfan and BNPPg,.; figures S12 and S15,
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of the corresponding flux. Mean component fluxes do not necessarily add up to the mean total fluxes because different sets of sites
are included depending on data availability (figures S5-S30). Mature forests are defined as >100 years old and with no known

major natural or anthropogenic disturbance in that time.

respectively), the same general trends applied but
were not statistically significant.

The most notable exception to the pattern of
decreasing flux per unit area from tropical to boreal
biomes was NEP, with no significant differences
across biomes but with the largest average in temper-
ate broadleaf forests, followed by tropical, boreal, and
temperate conifer forests (figures 7 and S5). For all
biomes, NEP was positive, with 95% confidence inter-
vals excluding zero. BNPP.o¢_ coarse also exhibited sig-
nificant differences among biomes with the highest
means outside the tropics, in this case in temperate
conifer forest, a biome for which all records came
from high-biomass forests in the US Pacific Northw-
est (figure S14; differences significant in mixed effects
model but not in post-hoc pairwise comparison).

Biome differences were less consistent across C
stocks than fluxes (figures 8 and S20-S30). There
were sufficient data to assess mature forest biome
differences for nine stock variables, and signific-
ant differences among biomes were detected for
five variables (Biot, Bags Bag—wood> Bfoliage> Broot—coarses
table 1). For By and B, tropical broadleaf forests
had the highest mean biomass and boreal forests
the lowest, with intermediate means for temperate
broadleaf and needleleaf forests (temperate needleleaf
excluded from By analysis because of insufficient
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data; figures S20 and S21). However, maximum val-
ues for these variables—along with all other stocks
including live or standing woody biomass (Byg—wood>
Broots Broot—coarses DWiot DWstanding)_ConSiStenﬂy
occurred in temperate biomes (figures 1(c), 8 and
§20-S30). For variables for which temperate con-
ifer forest records were disproportionately from
high-biomass forests in the US Pacific Northwest
(Bagfwood) Bfoliage) and Brootfcoarse)) temperate con-
ifer forests had significantly higher stocks than other
biomes.

3.3. C cycling in young forests
C fluxes commonly increased significantly with
stand age (tables 1 and S2, figures 7, 9 and S5-
S30). ForC contained 16 C flux variables with suf-
ficient data to analyze age trends in young forests
(see methods). Of these, ten increased significantly
with logl0(age): NEP, GPP, ANPP, ANPP,0q,
ANPPfliages  ANPPiitterfal, BNPP,  BNPPfine, Recos
and Ryoor. The remaining six—NPP, ANPPgm,
ANPPbranchy BNPPcoarse) Rsoil) and Rhet—soil_
displayed no significant relationship to stand age.
Differences among biomes in regrowth forest C
fluxes typically paralleled those observed for mature
forests, with C cycling generally most rapid in the
tropics and slowest in boreal forests (table 1, figures 7
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and S5-530). The single exception was ANPPg.p,, for
which temperate broadleaf and conifer forests had
flux rates similar to tropical forests. Notably, and in
contrast to the lack of biome differences in NEP for
mature forests (figure 7), the tendency for temperate
forests to have greater fluxes than boreal forests held
for NEP in regrowth forests (tropical forests excluded
because of insufficient data).

‘Closure’ and internal consistency of the C flux
budget were less successful for young than mature
forests (figure 9). Summed regression equations for
Ryoil—het and Ryoor Were generally very close to Ryj.
In assessing the C budget of young forests, we calcu-
lated Rayto—ag as the difference between Rec, and Ry
(except for tropical forests, which had insufficient
R, data), effectively guaranteeing near-closure of the
CO; efflux (respiration) portion of the budget (negat-
ive values in figure 9). In contrast, the CO; influx por-
tion of the budget generally did not ‘close’: the sum of
Rauto (Rroot + Rauto—ag»> as described above) and com-
ponents of NPP consistently fell short of GPP, par-
ticularly in young stands (range across forest types
and ages: 0.9-7.6 Mg C ha~! yr™!). Moreover, there
was not consistent budget closure among the com-
ponents of NPP, and substantially different age trends

resulting from the sum of components versus total
NPP (figure 9). Although age trends of young forests
often converged towards mature forest averages, there
were some discrepancies, most notably including
a tendency for higher fluxes in regrowth boreal
forests than in their mature counterparts (figures 7, 9
and S5-S30).

In terms of C stocks, ten variables (all but stand-
ing deadwood, DWanding) had sufficient data to test
for age trends (table 1, figures 8 and S20-S30). All
of these displayed a significant overall increase with
the logarithm of stand age. Age X biome interactions
were also significant for all ten of these C stock vari-
ables (table S2), with living C stocks tending to accu-
mulate more rapidly during the early stages of forest
regrowth in tropical forests (figures 8, 9 and S20-
$30). In the case of two non-living C stocks (DW gown
and OL), age x biome interactions were such that
age trends were positive in some biomes and neg-
ative in others. Specifically, DW4oun declined with
age in temperate and boreal forests, compared to an
increase in tropical forests (figures 8, 9 and S29).
Similarly, OL declined slightly with age in temper-
ate broadleaf forests, contrasting an increase in the
other three biomes (figures 8, 9 and S30). Again, there
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major natural or anthropogenic disturbance in that time.

are included depending on data availability (figures S5-S30). Mature forests are defined as >100 years old and with no known

were some discrepancies between young forest trends
and mature forests, most notably including generally
higher C stocks in mature forests relative to their
100 year counterparts, particularly for temperate con-
ifer forests (with discrepancies again driven by differ-
ences in geographic representation) and, to a lesser
extent, tropical broadleaf forests (figure 9).

4. Discussion

ForC v3.0 provided unprecedented coverage of most
major variables, yielding a broad picture of C cycling
in the world’s major forest biomes. Carbon cycling
rates generally decreased from tropical to boreal cli-
mates in both mature and regrowth forests (figures 1
and 7-9). In contrast, mature forest C stocks (bio-
mass, dead wood, and organic layer) and NEP, which
are defined by the differences between in- and out-
fluxes, exhibited little systematic variation across bio-
mes (figures 1, 3—6 and 8). Consistent with theory and
previous studies (figures 1(b) and (d)), the major-
ity of autotrophic C fluxes, together with most live
biomass pools, increased significantly with stand age
(table 1; figures 7-9 and S5-S30). Together, these
results refine and expand our understanding of C
cycling in mature forests, while providing the first

global-scale analysis of age trends in multiple forest
C stocks and fluxes (figure 9).

4.1. C cycling across biomes

Our analysis revealed that most C fluxes were
highest in tropical forests, intermediate in temper-
ate (broadleaf or conifer) forests, and lowest in
boreal forests—a pattern that generally held for both
regrowth and mature forests (figures 1(a) and 7-9).
For mature forests, this is consistent with a large body
of previous work demonstrating that C fluxes gener-
ally decline with latitude and increase with temperat-
ure on a global scale (e.g. Luyssaert et al 2007, Gillman
et al 2015, Li and Xiao 2019, Banbury Morgan et al
2021). This consistency is not surprising, particularly
given commonality in the data analyzed or used for
calibration. The finding that these patterns hold con-
sistently across numerous fluxes, while aligning with
theoretical expectations (figure 1(a)), is novel to this
analysis (but see Banbury Morgan et al 2021 for nine
autotrophic fluxes).

The notable exception to the pattern of fluxes
decreasing from tropical to boreal regions was NEP
(the difference between GPP and R, ), which showed
no significant differences across biomes, albeit with
the highest mean in temperate broadleaf forests
(figure 7(f)). Unlike the other C flux variables, NEP
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Figure 7. Age trends and biome differences in some of the major C fluxes: (a) GPP, (b) NPP, (c) ANPP, (d) R, (€) Reco, and (f)
NEP. The scatterplots show age trends in forests up to 100 years old, as characterized by a linear mixed effects model with fixed
effects of log10(age) and biome. The fitted lines indicate the effect of age (solid lines: significant at p < 0.05, dashed lines:
non-significant), and non-parallel lines indicate a significant logl0(age) X biome interaction (interaction effects were tested only
if the main age effect was significant and data were available for at least ten stand ages per biome—i.e. for GPP, ANPP, Ry, and
NEP). The boxplots illustrate variation among biomes in mature forests, with different letters indicating significant differences
between biomes. Data from biomes that did not meet the sample size criteria (see methods) are plotted, but lack regression lines
(young forests) or tests of differences across biomes (mature forests, indicated by a dash instead of a letter above the box plot).
Individual figures for each flux with sufficient data, along with maps showing geographic distribution of the data, are given in the

supplement (figures S5-S19).

does not characterize the rate at which C cycles
through the ecosystem, but, as the balance between
GPP and R.., represents net CO, sequestration
(or release) by the ecosystem. NEP tends to be relat-
ively small in mature forest stands, which accumu-
late carbon slowly relative to younger stands, if at
all (figures 1(a) and (b), Luyssaert et al 2008, Amiro
et al 2010, Besnard et al 2018). The lack of pro-
nounced differences across biomes is therefore con-
sistent with both theory and previous research (e.g.
Luyssaert et al 2007). Rather, variation in NEP of
mature forests appears to be controlled less by climate
and more by other factors including moderate dis-
turbances (Curtis and Gough 2018) or disequilibrium
of Ry relative to C inputs (e.g. in peatlands where
anoxic conditions inhibit decomposition, Wilson et al
2016). The fact that mature temperate broadleaf
forests have a higher mean than the other biomes
may reflect the fact that most of these forests are
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older secondary forests that, while classified here as
mature, are still accumulating carbon (Curtis and
Gough 2018).

In contrast to the patterns observed for NEP
in mature stands, NEP of stands between 20 and
100 years of age varied across biomes, being low-
est in boreal forests, intermediate in temperate
broadleaf forests, and highest in temperate con-
ifer forests (with insufficient data to assess trop-
ical forests; figures 7 and S5). This is consistent
with findings that live biomass accumulation rates
(AByy or AByy) during early secondary succes-
sion decrease with latitude (figures 8(a) and S20-
S30, Anderson et al 2006, Cook-Patton et al 2020).
Note, though, that NEP includes not only ABi,
but also changes in DW,, OL, and soil carbon
(not analyzed here). Biome differences in the accu-
mulation rates of DW, OL, and soil C have not
been detected, in part because these variables do not
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Figure 8. Age trends and biome differences in some of the major forest C stocks: (a) Bag, (b) Bioliages (€) Broot—fines (d) DWitanding»
(e) DWown, and (f) OL. The scatterplots show age trends in forests up to 100 years old, as characterized by a linear mixed effects
model with fixed effects of log10(age) and biome. The fitted lines indicate the effect of age (solid lines: significant at p < 0.05,
dashed lines: non-significant), and non-parallel lines indicate a significant log10(age) x biome interaction (all variables but
DWown)- The boxplots illustrate variation among biomes in mature forests, with different letters indicating significant differences
between biomes. Data from biomes that did not meet the sample size criteria (see methods) are plotted, but lack regression lines
(young forests) or tests of differences across biomes (mature forests, indicated by a dash instead of a letter above the box plot).
Individual figures for each stock with sufficient data, along with maps showing geographic distribution of the data, are given in
the supplement (figures S20-S30).

consistently increase with stand age (figures 1(d), 8
and S27-S30, and see discussion below, Cook-Patton
et al 2020).

For regrowth forests, little was previously known
about cross-biome differences in carbon fluxes, and
we are not aware of any previous large-scale compar-
isons of C fluxes that have been limited to regrowth
forests. Thus, this analysis was the first to examine
flux trends in regrowth forests across biomes. The
observed tendency for young forest fluxes to decrease
from tropical to boreal regions paralleled patterns in
mature forests (figures 7, 9 and S5-S19), suggesting
that regrowth forests follow latitudinal trends in car-
bon cycling similar to those of mature forests (e.g.
Banbury Morgan et al 2021).

In contrast to C fluxes and biomass accumu-
lation rates in regrowth forests, stocks showed less
systematic variation across biomes (cf figure 1(c)).
For aboveground biomass, which is the variable in
ForC with the broadest geographical representation,

the modest trend of declining biomass from tropical
to boreal regions mirrors observations from space-
borne lidar that reveal a decline in aboveground bio-
mass (for all forests, including secondary) with latit-
ude across the Northern hemisphere (Hu et al 2016).
The highest-biomass forests on Earth are, however,
found in coastal temperate climates of both the south-
ern and northern hemispheres (figures 1(c) and 8(a),
Smithwick et al 2002, Keith et al 2009, Larjavaara
and Muller-Landau 2012, Hu et al 2016). Dispro-
portionate representation of forests in one such
region—the US Pacific Northwest—inflated estim-
ates of temperate conifer fluxes and stocks for some
variables and was responsible for all the anomal-
ous results described here (e.g. lack of complete C
budget closure, an anomalous trend across biomes for
BNPP arse). Thus, biome differences should always
be interpreted relative to the geographic distribution
of sampling, which only rarely adequately represents
the majority of forested area within a biome.
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Whereas aboveground biomass can be remotely
sensed (albeit with significant uncertainties, Ploton
et al 2020) and receives substantial research attention,
far less is known about geographical variation in
deadwood and organic layer (OL) carbon across bio-
mes, which has proved a limitation for C account-
ing efforts (Pan et al 2011). Although these stocks
can be important, exceeding 100 Mg C ha™! in some
stands (figures 8 and S27-S29), this study is the
first to synthesize deadwood data on a global scale

(but see Cook-Patton et al 2020 for young forests).
Unfortunately, data remain too sparse for statistical
comparison across biomes (figures 8 and S27-S29;
but see below for age trends), pointing to a need
for more widespread quantification of both stand-
ing and downed deadwood. ForC coverage of OL
stocks is more comprehensive, revealing no signi-
ficant differences across temperate and tropical bio-
mes, but a tendency towards higher OL in boreal
forests, consistent with the idea that proportionally
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slower decomposition in colder climates results in
more buildup of organic matter (figures 1(c), Allen
et al 2002, Anderson-Teixeira et al 2011). Further
research on non-living C stocks in the world’s forests
will be essential to completing the picture.

4.2. Age trends in C cycling

Our study reveals that most autotrophic C fluxes
quickly increase and then decelerate as stands age
(figures 7 and 9), consistent with current understand-
ing of age trends in forest C cycling (figures 1(b);
e.g. Magnani et al 2007, Amiro et al 2010, Anderson-
Teixeira et al 2013). While limited records in very
young (i.e. <5 year old) stands resulted in poor res-
olution of the earliest phases of this increase for
many variables (sometimes detecting no age trend;
table 1), any autotrophic C flux (e.g. GPP, NPP and its
components, R,y,,) would be minimal immediately
following a stand-clearing disturbance (figure 1(b)).
These would be expected to increase rapidly, along
with the most metabolically active components of
biomass, foliage and fine roots, which also increase
rapidly with stand age (figures 1(b), d and 7-9). In
contrast, soil heterotrophic respiration (Rpe;—soi1) and
total soil respiration (Ry,)—and therefore R..,—are
expected to be non-zero following stand-clearing dis-
turbance (figure 1(b)). These may decrease with a
reduction of root respiration (R only) and C exud-
ates or increase in response to an influx of dead roots,
DW, and OL (Bond-Lamberty et al 2004, Maurer
et al 2016, Ribeiro-Kumara et al 2020), with the
latter being strongly dependent upon the type of
stand initiating disturbance (discussed below). This
study detects no significant overall age trends in
either Ryt - soi1 OF Ryoil, consistent with previous find-
ings (Law et al 2003, Pregitzer and Euskirchen 2004,
Goulden et al 2011).

Notably, net carbon sequestration (NEP) exhibits
an overall increase with age across the first 100 years
of stand development, with more pronounced pat-
terns in temperate than boreal forests (figure 7). This
finding is consistent with previous studies showing
an increase in NEP across relatively young stand ages
(Baldocchi e al 2001, Pregitzer and Euskirchen 2004,
Luyssaert et al 2008). However, NEP is theoretic-
ally expected to peak in intermediate-aged stands
and thereafter decline, consistent with decelerating C
accumulation as stands age (figure 9, Odum 1969),
and such declines have been documented (Law et al
2003, Luyssaert et al 2008). The fact that NEP val-
ues estimated by our models for 100 year-old stands
were not systematically different from those of mature
stands (lower for temperate broadleaf, higher for tem-
perate conifer, and equal for boreal; figure 9) may be
driven by differences in geographical representation
across age classes or by the fitting of an inappropriate
functional form. Moreover, both biomass and non-
living C stocks often continue to increase well bey-
ond the 100 year threshold used here to delimit young
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and mature stands (Luyssaert et al 2008, Lichstein et al
2009, McGarvey et al 2014). Additional data, includ-
ing on age trends of deadwood, the organic layer, and
soil C will be important to parsing the timing and
extend of an age-related NEP decrease across forest
biomes.

In terms of stocks, our study reveals consistent
increases in live biomass stocks with stand age, a
pattern that is well-known and expected (e.g. Lich-
stein et al 2009, Yang et al 2011). This contrasts with
more variable age trends in deadwood and the organic
layer (figure 9), which depend strongly on the type of
disturbance. Disturbances that remove most woody
material (e.g. clearcut logging, agriculture) result in
negligible deadwood in young stands, followed by a
buildup over time (e.g. tropical stands in figures 8 and
9, Vargas et al 2008). In contrast, natural disturbances
(e.g. fire, drought, typhoons/hurricanes) can produce
large amounts of deadwood (mostly DW,nding) that
slowly decomposes as the stand recovers, resulting
in declines across young stand ages (e.g. temperate
and boreal stands in figures 8 and 9, Carmona et al
2002). Further study and synthesis of non-living C
stocks across biomes, stand ages, and disturbance
types will be valuable in giving a more comprehensive
picture.

4.3. C variable coverage and budget closure

The large number of C cycle variables covered by
ForC, and the relatively high consistency among
them (figures 3—6 and 9), provide confidence that
our reported mature forest means provide useful
baselines for analysis. However, there is wide vari-
ation around these means, implying that any given
stand could deviate substantially, and the sample
means presented here probably do not represent
true biome means (particularly for temperate con-
ifer forests where high-biomass stands are over-
represented in ForC).

In this analysis, the C cycle budgets for mature
forests usually come close to closure—that is, the
sums of component variables do not differ from
the larger fluxes by more than one standard devi-
ation (figures 3—6 and 9). On the one hand, this
reflects the general fact that ecosystem-scale meas-
urements tend to close the C budget more easily
and consistently than, for example, for energy bal-
ance (Stoy et al 2013). On the other, however, ForC
derives data from multiple heterogeneous sources,
and standard deviations within each biome are high;
as a result, the standard for C closure is relatively
loose (see Houghton 2020). The one instance where
the C budgets do not close according to our cri-
teria is likely due to differences in the representa-
tion of forest types (i.e. disproportionate representa-
tion of US Pacific NW for B,oot - coarse relative to Broots
figure 5) rather than issues of methodological accur-
acy. The overall high degree of closure implies that
ForC gives a roughly consistent picture of C cycling
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within biomes for mature forests. This is an import-
ant and useful test because it allows for consistency
checks within the C cycle, for example leveraging sep-
arate and independently measured fluxes to constrain
errors in another (Harmon et al 2011, Williams et al
2014, Phillips etal 2017), or producing internally con-
sistent global data products (Wang et al 2018).

In contrast, age trends for young forests gener-
ally remain less clearly defined. In large part, this is
because their data records remain relatively sparse
(i.e. have low representation of different geographical
regions for any given age) for most variables, particu-
larly in the tropics (Anderson-Teixeira et al 2016). In
addition, variation in the type and severity of stand-
initiating disturbances introduces significant hetero-
geneity in both initial values and age trends of C
cycle variables (e.g. Cook-Patton et al 2020). While
this review provides the first analysis of age trends in
forest C cycling for multiple variables at a global scale,
improved resolution of these trends will require addi-
tional data.

There are, of course, notable holes in the ForC
variable coverage that limit the scope of our infer-
ences here. ForC currently has sparse—if any—
coverage of fluxes to herbivores and higher con-
sumers, along with woody mortality (M,ys4,) and
DW (table 1, figures S27-S29). We note that there are
considerable opportunities to expand data on Myoody
and DWgnding through calculations from existing
forest census data. ForC does not include soil car-
bon, which is covered by other efforts (e.g. Kochy et al
2015). ForC is not intended to replace databases that
are specialized for particular parts of the C cycle ana-
lyses, e.g. aboveground biomass (Spawn et al 2020),
land-atmosphere fluxes (Baldocchi et al 2001), soil
respiration (Jian et al 2020), or the human footprint
in global forests (Magnani et al 2007).

Importantly, ForC and the analyses presented here
cover the forests that have received research attention,
which are not a representative sample of the world’s
existing forests, either geographically or in terms of
human impacts (Martin et al 2012). Geographically,
all variables are poorly covered in Africa and Siberia
(figure 2), a common problem in the carbon-cycle
community (Schimel et al 2015, Xu and Shang 2016).
In terms of human impacts, research efforts tend
to focus on interior forest ecosystems (Martin et al
2012), often in permanently protected areas (e.g. Dav-
ies et al 2021). Studies of regrowth forests tend to
focus on sites where recurring anthropogenic dis-
turbance is not a confounding factor. Yet, fragment-
ation and degradation impact a large and growing
proportion of Earth’s forests (FAO and UNEP 2020).
Fragmentation and the creation of edges strongly
impact forest C cycling (e.g. Chaplin-Kramer et al
2015, Remy et al 2016, Reinmann and Hutyra 2017,
Smith et al 2019, Ordway and Asner 2020, Reinmann
et al 2020). Partial logging and other forms of non-
stand clearing anthropogenic disturbance also alter
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forest C cycling (e.g. Huang and Asner 2010, Pipon-
iot et al 2016), but are under-studied (Sist et al 2015)
and excluded from this analysis. Fragmented and
degraded forests do not fit the idealized conceptual
framework around which this review is structured
(figure 1), yet their representation in models, sus-
tainability assessments, and C accounting systems is
critical to accurate accounting of C cycling in Earth’s
forests (e.g. Huang and Asner 2010, Reinmann and
Hutyra 2017, Piponiot et al 2019, Smith et al 2019).
Finally, plantation forests account for approximately
3% of Earth’s forests (FAO and UNEP 2020) but
are not included in this analysis. While it is known
that these tend to accumulate biomass faster than
naturally regenerating forests (Anderson et al 2006,
Bonner et al 2013), their global scale C cycling pat-
terns remain less clearly understood (see Cook-Patton
et al 2020). Additional research and synthesis are
needed to fill these critical gaps in our understanding
of forest C cycling.

4.4. Relevance for climate change prediction and
mitigation

The future of forest C cycling (Song et al 2019) will
shape trends in atmospheric CO, and the course
of climate change (Schimel et al 2015). Our find-
ings, and more generally the data contained in ForC
and summarized here, can help meet two significant
challenges.

First, improved representation of forest C cyc-
ling in models is essential to improving predictions
of the future course of climate change. By definition,
future projections extend our existing observations
and understanding to conditions that do not cur-
rently exist on Earth (Bonan and Doney 2018, Gust-
afson et al 2018, McDowell et al 2018). To ensure that
models are giving the right answers for the right reas-
ons (Sulman et al 2018), it is important to bench-
mark against multiple components of the C cycle
that are internally consistent with each other (Collier
et al 2018, Wang et al 2018). ForC’s tens of thou-
sands of records are readily available in a standard-
ized format, along with all code used in the ana-
lyses presented here. We recommend that researchers
use these resources to identify and summarize data
specific to the analysis at hand. Integration of ForC
with predictive models will be valuable to improving
model accuracy and reliability (Fer et al 2021).

Second, ForC can serve as a pipeline through
which information can flow efficiently from forest
researchers to decision-makers and practitioners
working to implement forest conservation strategies
at global, national, or landscape scales. This is already
happening: ForC has contributed to updating the
IPCC guidelines for carbon accounting in forests
(IPCC 2019, Requena Suarez et al 2019), mapping C
accumulation potential from natural forest regrowth
globally (Cook-Patton et al 2020), and informing eco-
system conservation priorities (Goldstein et al 2020).
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It is also interesting to consider the complement-
ary utility of global-scale but spatially discontinu-
ous databases such as ForC and wall-to-wall remote
sensing products. The latter provide insight, with
substantial uncertainty, into aboveground carbon
stocks and GPP, but are less useful for constrain-
ing belowground stocks or carbon fluxes in general
(Anav et al 2015, Bond-Lamberty et al 2016). Com-
bining observational data and remote observations
may provide a much more comprehensive and accur-
ate picture of global forest C cycling, particularly
when used in formal data assimilation systems (Liu
et al 2018, Konings et al 2019). Biomass is the largest
C stock in most forests, and most of the emphasis has
traditionally been on this variable. Remote-sensing
driven aboveground biomass estimates (e.g. Saatchi
et al 2011), calibrated based on high-quality ground-
based data (Chave et al 2019, Schepaschenko et al
2019), provide the most promising approach, but
significant uncertainties remain (Ploton et al 2020).
Note, however, that factors such as stand age and dis-
turbance history are difficult, if not impossible, to
detect remotely, and can only be characterized for
recent decades (Hansen et al 2013, Curtis et al 2018,
Song et al 2018). Ground-based data such as those in
ForC are therefore valuable in defining age-based tra-
jectories in biomass, as in Cook-Patton et al (2020),
and thus constraining variables such as carbon sink
potential (Luyssaert et al 2008).

In contrast, carbon allocation within forest eco-
systems and respiration fluxes cannot be remotely
sensed. Efforts such as the Global Carbon Project
(Friedlingstein et al 2019) and NASA’s Carbon Mon-
itoring System (Liu et al 2018) typically compute res-
piration as residuals of all other terms (Harmon et al
2011, Bond-Lamberty et al 2016). This means that
the errors on respiration outputs are likely to be large
and certainly poorly constrained, offering a unique
opportunity for databases such as ForC and SRDB
(Jian et al 2020) to provide observational bench-
marks. For example, Konings et al (2019) produced
a top-down estimate of global heterotrophic respira-
tion that can both be compared with extant bottom-
up estimates (Bond-Lamberty 2018) and used as an
internal consistency check on other parts of the car-
bon cycle (Phillips ef al 2017).

5. Conclusions

As climate change accelerates, understanding and
managing the carbon dynamics of forests—including
stocks and fluxes that satellites cannot observe—is
critical to forecasting, mitigation, and adaptation.
The C data in ForC, as summarized here, are valuable
to these efforts. Notably, the fact that tropical forests
tend to have both the highest rates of C sequestration
in young stands (figure 8, Cook-Patton et al 2020),
fueled by their generally high C flux rates (table 1;
figure 7), and the highest mean biomass (figure 8,
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table 1, Hu et al 2016, Jian et al 2020) reinforces the
idea that conservation and restoration of these forests
is a priority for climate change mitigation, along with
high-biomass old-growth temperate stands (Grassi
et al 2017, Goldstein et al 2020). It is also important
to note the trade-off in climate mitigation potential
of restoration of young forests, with high rates of CO,
sequestration (NEP, Cook-Patton et al 2020), versus
conservation and management of mature forests,
with low NEP but high C stocks that, if lost through
disturbance, could not be recovered on time scales
most relevant to avoiding dangerous climate change
(i.e. Goldstein et al 2020). Generally speaking, the
conservation of mature forests will yield greater cli-
mate benefits (Anderson-Teixeira and DeLucia 2011),
but both approaches are critical to avoiding cata-
strophic climate change (IPCC 2018).

Data availability statement

The data that support the findings of this study are
openly available. Materials required to fully repro-
duce these analyses, including data, R scripts, and
image files, are archived in Zenodo (DOI: TBD).
Data, scripts, and results presented here are also avail-
able through the open-access ForC GitHub repository
(https://github.com/forc-db/ForC), where many will
be updated as the database develops.

The data that support the findings of this study
are openly available at the following URL/DOI:
https://forc-db.github.io/.
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