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Background: This study aimed to explore the radiomic features from PET images to

detect active cardiac sarcoidosis (CS).

Methods: Forty sarcoid patients and twenty-nine controls were scanned using FDG

PET-CMR. Five feature classes were compared between the groups. From the PET

images alone, two different segmentations were drawn. For segmentation A, a region

of interest (ROI) was manually delineated for the patients’ myocardium hot regions with

standardized uptake value (SUV) higher than 2.5 and the controls’ normal myocardium

region. A second ROI was drawn in the entire left ventricular myocardium for both study

groups, segmentation B. The conventional metrics and radiomic features were then

extracted for each ROI. Mann-Whitney U-test and a logistic regression classifier were

used to compare the individual features of the study groups.

Results: For segmentation A, the SUVmin had the highest area under the curve

(AUC) and greatest accuracy among the conventional metrics. However, for both

segmentations, the AUC and accuracy of the TBRmax were relatively high, >0.85.

Twenty-two (from segmentation A) and thirty-five (from segmentation B) of 75 radiomic

features fulfilled the criteria: P-value < 0.00061 (after Bonferroni correction), AUC >0.5,

and accuracy >0.7. Principal Component Analysis (PCA) was conducted, with five

components leading to cumulative variance higher than 90%. Ten machine learning

classifiers were then tested and trained. Most of them had AUCs and accuracies ≥0.8.

For segmentation A, the AUCs and accuracies of all classifiers are >0.9, but k-neighbors

and neural network classifiers were the highest (=1). For segmentation B, there are four

classifiers with AUCs and accuracies ≥0.8. However, the gaussian process classifier

indicated the highest AUC and accuracy (0.9 and 0.8, respectively).

Conclusions: Radiomic analysis of the specific PET data was not proven to be

necessary for the detection of CS. However, building an automated procedure will help to
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accelerate the analysis and potentially lead to more reproducible findings across different

scanners and imaging centers and consequently improve standardization procedures

that are important for clinical trials and development of more robust diagnostic protocols.

Keywords: cardiac sarcoidosis, PET-MRI, imaging, radiomics, machine learning

INTRODUCTION

Sarcoidosis is a multisystem, granulomatous inflammatory
disease of unknown etiology, characterized by the presence
of non-caseating granulomas in the involved organs (1, 2).
Sarcoidosis primarily affects the lungs. The development of this
disease in the pulmonary system has been identified in more
than 90% of reported cases (3, 4). However, it can affect the
extrapulmonary organs as well, including the heart (5). Clinically,
cardiac involvement is uncommon, manifesting in only ∼5% of
sarcoid patients, but it can occur without apparent symptoms,
i.e., a “clinically silent” disease, which is reflected in the high rate
of cardiac involvement in autopsy studies. At least 25% of patients
with sarcoidosis are diagnosed with cardiac involvement (6–8).

The challenging in diagnosing cardiac sarcoidosis (CS) is due
to the probability of involving any organ, leads to variability
in clinical presentation (9). In addition, a lack of reliable
biomarkers or diagnostic tests poses a challenge to diagnosing
cardiac sarcoidosis. Furthermore, the role of advanced imaging
modalities such as Cardiovascular Magnetic Resonance Imaging
(CMR) with Late Gadolinium Enhancement (LGE) and [18F]
Fluorodeoxyglucose Positron Emission Tomography [[18F] FDG
PET] have been demonstrated in the literature to improve the
identification and treatment of patients with CS. Currently, these
imaging tools are critical for early diagnosis, disease prediction
and progression, and therapeutic response monitoring.

To increase the diagnostic performance of [18F] FDG
PET, it is important to suppress the use of glucose by
normal cardiomyocytes as this improves its specificity. Several
approaches have been proposed, including following a ketogenic
diet (high fats and low carbohydrates), prolonged fasting,
intravenous heparin, and usually, a combination of these
methods (10). However, strategies to improve diagnostic
performance do not help in up to 25% of patients, which can
result in false-positive findings (11) due to failure to suppress
the physiological uptake of the myocardium. A semi-quantitative
analysis can be used to diagnose CS. A common tool, a maximum
standardized uptake value (SUVmax), can identify the highest
uptake value within the region of interest (ROI). This can
differentiate positive (CS+) and negative (CS−) results; however,
in the presence of high physiological uptake, this metric fails
to detect sarcoidosis within this region (12). In addition, the
maximum target-to-background ratio (TBRmax) is more robust
than SUVmax due to the effective normalization for blood
uptake (12, 13), which makes it more reliable for comparing

Abbreviations: CS, cardiac sarcoidosis; SUV, standardized uptake value;

[18F]FDG PET, [18F]-fluorodeoxyglucose positron emission tomography; CMR,

cardiovascular magnetic resonance imaging; AUC, area under the curve; PCA,

principal component analysis.

data across patients and institutions. Radiomic features, which
rely on the spatial correlations of image values or derived
image-based metrics, have the potential to elucidate features
robust to background physiological uptake. The purpose of
this study is to explore radiomic features from PET images to
identify potential candidate radiomic metrics. Specifically, this
study will characterize radiomic features that separate active CS
from controls.

MATERIALS AND METHODS

Ethical Approval
This study was conducted with the approval of the Institutional
Review Board at Mount Sinai (GCO # 01-1032), and all subjects
gave written informed consent.

Subject Selection
Subjects with clinical suspicion of CS based on demonstrated
clinical manifestations of extracardiac lesions and/or disease were
recruited at Mount Sinai Hospital in New York, to undertake a
PET-CMR examination. All subjects were treatment-naïve and
had to avoid carbohydrate diet for 24 h before the scan and
fast during the last 12 h. The preparation for imaging followed
the recent recommendations by Ishida et al. (14). After the
acquisition, the results were assessed by an expert cardiologist for
indications of CS and had no indications of failed suppression
of FDG uptake. Subjects were divided into patients and controls
based on their results. Subjects with patchy FDG uptake were
designated as CS+ and were assigned to the patient group
for this study (15), and those without either FDG or CMR
findings were designated as control subjects for this study.
Control population had normal cardiac appearance and regular
echocardiography. Forty patients and twenty-nine controls
met these criteria for this study. Exclusion criteria include
insulin-dependent diabetes mellitus, pretest blood glucose >200
mmol/dl, menopausal phobia, pregnancy/lactation, the presence
of a cardiac pacemaker or automatic implantable cardioverter-
defibrillator, and renal dysfunction.

Imaging Protocol
The simultaneous CMR with LGE and [18F] FDG PET on
an integrated PET-CMR system (BiographTM mMR, Siemens
Healthcare, Erlangen, Germany) was used in this study.
Five MBq/kg of [18F] FDG was injected into the patients
intravenously, who then waited for 10min. Thoracic PET
acquisition (one-bed position centered on the heart) took about
90min but for this study only a late time window (last 60min)
was selected. PET images were reconstructed using the iterative
ordinary Poisson ordered subset expectation maximization (OP-
OSEM) with three iterations and 21 subsets on a 344 × 344 ×
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FIGURE 1 | Area under the curve (AUC) and accuracy with stratified 5-fold cross-validation of the conventional metrics of (A) segmentation A and (B) segmentation

B. SUV, standardized uptake value; TBRmax, maximum target-to-background ratio.

129 image matrix and an isotropic voxel size of 2mm, followed
by an isotropic 4mm Gaussian post-filtering. The data obtained
with PET were not respiratory-gated or ECG-gated and were
not corrected for any potential motion artifacts. A 3D breath-
hold Dixon-basedMR image was used for attenuation correction.
Simultaneously with PET imaging, CMR was performed with
electrocardiograph triggered; the scan included short-axis T2
mapping and cine images. Approximately 15min after 0.2
mmol/kg gadolinium injection, inversion-recovery fast gradient-
echo LGE sequences were acquired.

Segmentations
3D slicer software (Version 4.11.2; https://www.slicer.org) was
used for the segmentation (16, 17). Segmentations were
performed by study personnel according to methods used in a
previous study (12).

Segmentation A
From the PET images (with use of CMR for anatomical
localization, and aiding in focal lesion identification when
possible) of the patient group, an ROI was manually drawn in
the hot region of the myocardium with an SUV higher than 2.5,
which is a cut-off value previously used to differentiate between
benign (normal in cases of CS) and malignant (abnormal in cases
of CS) lesions (18, 19). For patients with more than one focal
lesion, the largest and most active was selected. Due to the focal
nature of the disease, applying a threshold helped ensure that the
extracted features are only from voxels with abnormal uptakes.
For the control group, an ROI was drawnmanually in the normal
myocardium. Once the SUVmax and SUVmean (in the blood pool
of the right atrium) were extracted, the TBRmax was calculated

using the following equation:

TBRmax=
SUVmax

(

target
)

SUVmean

(

background
)

Thirty-five subjects out of forty who had a TBRmax within the
range of 1 to 3 and patchy uptake were labeled as patients. The
remaining five subjects who had TBRmax > 3 were excluded as
failed suppression could not be completely discounted in these
cases (12) even though the FDGwas patchy and initially included
in the study cohort and subsequently in the study cohort for
segmentation B.

Segmentation B
As the approach A took into account both intensity and
pattern, it was useful to investigate a different approach that
was independent of these. From the PET images, an ROI was
drawn in the entire left ventricular myocardium for forty patients
and twenty-nine controls regardless of the TBRmax findings and
SUV thresholds to compare the reliability of features among
segmentation approaches. Radiomic features and conventional
metrics were then extracted.

Feature Extraction
PyRadiomics (Version 3.0.1) was used to extract five feature
classes (75 features in total) from the PET image ROIs of
the patients and controls (20) in addition to the conventional
metrics (7 metrics). PyRadiomics adheres to the image
biomarker standardization initiative (IBSI’s feature definitions).
A bin width of 0.05 was applied. All other parameters were
left as default. Harmonization was not required for these
datasets as they originated from a single scanner. A list of
all radiomic features and conventional metrics is shown in
Supplementary Material 1.
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TABLE 1 | Conventional metrics and five best performing radiomic features for the different segmentations based on P-values.

Segmentation A Segmentation B

Feature P-value AUC Feature P-value AUC

Conventional SUV 10 percentile 1 × 10−11 0.99 SUV 10 percentile 6 × 10−7 0.85

SUV 90 percentile 1 × 10−10 0.96 SUV 90 percentile 3 × 10−8 0.90

SUV maximum 3 × 10−10 0.95 SUV maximum 8 × 10−9 0.90

SUV mean 1 × 10−10 0.97 SUV mean 6 × 10−8 0.88

SUV median 1 × 10−10 0.97 SUV median 2 × 10−7 0.88

SUV minimum 6 × 10−13 1.00 SUV minimum 9 × 10−3 0.71

TBRmax 1 × 10−10 0.96 TBRmax 3 × 10−11 0.96

Radiomics GLDM_small dependence

low gray level emphasis

3 × 10−13 1.00 GLSZM_low gray level zone

emphasis

5 × 10−8 0.85

GLCM_inverse difference

normalized

1 × 10−11 1.00 GLDM_dependence

non-uniformity

1 × 10−7 0.87

GLSZM_small area low gray

level emphasis

1 × 10−11 0.99 NGTDM_complexity 1 × 10−7 0.85

GLSZM_large area high

gray level emphasis

3 × 10−11 1.00 GLSZM_high gray level

zone emphasis

1 × 10−7 0.85

GLCM_maximal correlation

coefficient

5 × 10−11 0.98 GLSZM_small area high

gray level emphasis

1 × 10−7 0.85

SUV, Standardized Uptake Value; TBRmax , maximum Target-to-Background Ratio; GLDM, Gray Level Dependence Matrix; GLCM, Gray Level Co-occurrence Matrix; GLSZM, Gray

Level Size Zone Matrix; NGTDM, Neighboring Gray Tone Difference Matrix.

FIGURE 2 | Area under the curve (AUC) and accuracy with stratified 5-fold cross-validation of the five best-performing radiomic features of (A) segmentation A and

(B) segmentation B based on AUC values. GLSZM, Gray Level Size Zone Matrix; LAHGLE, Large Area High Gray Level Emphasis; GLCM, Gray Level Co-occurrence

Matrix; MCC, Maximal Correlation Coefficient; GLCM C, Correlation; GLDM, Gray Level Dependence Matrix; LDHGLE, Large Dependence High Gray Level Emphasis;

DV, Dependence Variance; DNU, Dependence Non-Uniformity; GLRLM, Gray Level Run Length Matrix; RLNU, Run Length Non-Uniformity; HGLZE, High Gray Level

Zone Emphasis; NGTDM, Neighboring Gray Tone Difference Matrix; NGTDM C, Complexity; SAHGLE, Small Area High Gray Level Emphasis.

Statistical Analysis
Statistical analyses were undertaken using Scikit-learn software
(Version 0.23.2) (21). Mann–Whitney U-test was used to
compare the radiomic features of the study groups. The P-
value was adjusted using a Bonferroni correction approach

for multiple tests [P-value (0.05) divided by the number of
features (82)] and the corrected P-value of < 0.00061 was
considered to be statistically significant. Logistic regression
classifiers were then trained with individual features. Stratified
5-fold cross-validation was used to determine the mean area
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FIGURE 3 | Areas under the curve (AUC) and accuracies of machine learning classifiers for (A) Segmentation A and (B) Segmentation B. rf, Random Forest; lgr,

Logistic Regression; svm, Support Vector Machine; dt, Decision Tree; gpc, Gaussian Process Classifier; sgd, Stochastic Gradient Descent; perc, Perceptron

Classifier; pasagr, Passive Aggressive Classifier; nnet, Neural Network Classifier; kneigh, K-neighbors Classifier.

under the curve (AUC), mean accuracy, and 95% confidence
intervals (CIs). Features with a P-value < 0.00061, AUC
>0.5, and accuracy >0.7 were retained. In addition, principal
component analysis (PCA) was used to identify highly correlated
features and reduce feature redundancy. PCA reduces a
large number of features into a small number of principal
components (PCs). Components that explained 90% of the
cumulative variance were retained. Lastly, to find the best
machine learning (ML) algorithm, PCs were used as an
input to test and train the following ten classifiers: Random
Forest, Logistic Regression, Support Vector Machine, Decision
Tree, Gaussian Process Classifier, Stochastic Gradient Descent,
Perceptron Classifier, Passive Aggressive Classifier, Neural
Network Classifier and K-neighbors Classifier with stratified 5-
fold cross-validation.

RESULTS

Conventional Metrics Diagnostic Utility
The results are relatively different by applying the Mann–
Whitney U-tests on the conventional metrics of the different
study groups for each segmentation separately. Predictably,
for segmentation A, the SUVmin had the highest AUC
and greatest accuracy due to specifying SUV >2.5 as the
minimum value for the patient group, while for segmentation
B, the highest performance was for TBRmax (see Figure 1).
However, for both segmentations, the AUC and accuracy
of the TBRmax were relatively high and had similar results
regardless of the segmentation approach (AUC 0.96;
accuracy 0.88–0.89 for segmentation A & B, respectively).
This slight difference in TBRmax results between both
segmentations came from the difference in the number of
participants in the patient group who met the criteria for
each segmentation.

Individual Radiomic Features Diagnostic
Utility
From the Mann–Whitney U-tests, for segmentation A: 40
of the 75 radiomic features and for segmentation B: 61 of
the 75 showed statistically significant differences between
patients and controls, with a P-value < 0.00061. The five best
radiomic features based on P-values for both segmentations
are shown in Table 1. After applying a logistic regression
classifier, only 22 radiomic features for segmentation A
and 35 radiomic features for segmentation B fulfilled the
following criteria: P-value < 0.00061, AUC >0.5, and
accuracy >0.7. The AUC and accuracy (95% CI for each
criterion) with stratified 5-fold cross-validation of the five
best-performing radiomic features based on the AUC value
are shown in Figure 2. All values of radiomic features and
conventional metrics for both segmentations are provided in
Supplementary Material 2.

Principal Component Analysis and
Machine Learning
As the SUV-related metrics tend to overperform, and to
study the performance of non-first order features, the
SUV-related metrics were excluded from the PCA. By
applying PCA, five PCs were retained to explain 90% of
the information. These PCs were used to test and train the
ML classifiers. Most of them had AUCs and accuracies ≥0.8.
For segmentation A, all classifiers showed high performance
in terms of AUC (95% CI 0.88–1.00) and accuracy (95%
CI 0.87–1.00), with values >0.9. A k-neighbors and neural
network classifiers showed the highest AUC and greatest
accuracy, with values equal to 1.00, as shown in Figure 3.
For segmentation B, there are four classifiers with AUCs and
accuracies ≥0.8, Figure 3. However, the gaussian process
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FIGURE 4 | The machine learning classifiers with high performance in (A,B) Segmentation A and (C) Segmentation B.

classifier indicated the highest AUC and accuracy (0.9 and
0.8, respectively). The ROC curves of the k-neighbors,
neural network, and gaussian process classifiers are shown
in Figure 4. The actual values of Figures 2, 3 are provided in
Supplementary Material 3.

DISCUSSION

This study aimed to explore the diagnostic utility of radiomic
features compared to conventional metrics to distinguish
between study groups and find the best performanceML classifier
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to create an automated model. From segmentation A, some
conventional metrics like SUVmin showed high performance
individually. These results were predictable as they are affected
by the distribution of voxel intensities within the ROI, one
of the criteria for including the patients at the first place. In
addition, these features cannot be relied upon because they are
greatly affected by the success of glucose suppression in normal
cardiomyocytes. TBRmax was the most reliable metric over other
conventional metrics among both segmentations. Although the
TBRmax is sensitive to noise and it is not necessarily easy to
harmonize across different scanners and imaging centers, types of
data, and parameters, this is not the case in this study as datasets
originated from a single scanner and institution. Therefore,
when comparing TBRmax with those of the five-best performance
radiomic features, the superiority of TBRmax over the rest of the
features can be clearly seen. This outcome supports any previous
studies that utilized TBRmax.

From segmentation A, by comparing the diagnostic utility
of individual radiomic features, GLSZM-Large Area High
Gray Level Emphasis radiomic feature showed the best
performance in terms of AUC and accuracy. This feature
measures the proportion in the image of the joint distribution
of larger size zones with higher gray level values. This
means there is a difference in gray level zones between
patients and controls. However, it cannot be reliable due
to the criteria of this segmentation approach that is based
on SUV threshold and TBRmax. On the other hand, from
segmentation B, the best performing radiomic feature was
GLDM_Dependence Non-Uniformity with AUC (0.87) and
accuracy (0.83). This feature measures the heterogeneity in the
ROIs. The values of this feature are higher in sarcoid patients
than controls which illustrates more heterogeneous regions
in the group of patients. In addition, many other features
measure heterogeneity with high AUCs and accuracies. These
features look at the spatial relationships rather than voxels
values themselves. However, these features had large error bars,
unlike the TBRmax which had very small bars regardless of the
segmentation approach.

Several studies of different diseases advocated the importance
of radiomic analysis to predict outcomes (22, 23). However, the
findings across these studies are not replicated; instead, they
are conflicted. Technical issues may illustrate this difference in
results among studies, such as ROI size, scanner resolution,
reconstruction, and segmentation algorithms, or any other
unrevealed factors. High scanner resolution and large number
of voxels can affect some radiomic features by increasing their
values (24). In terms of segmentation algorithms, numerous
studies indicated that using different segmentation methods gave
close results in survival analyses (23, 25). In addition, Cheng
et al. (23) argued that no significant difference exists between
radiomic features when using different segmentation methods,
unlike SUVmax and SUVmean. They reported, in addition, that
the effect of utilizing different attenuation correction methods
on radiomic features was not significant. At the same time
Yip et al. (26) had contrasting results, as some of the features
were affected by the attenuation correction method. However,
in this study, there was a clear difference between radiomic

features when using different segmentation approaches. This
may be due to the different sizes of ROIs and the voxel
intensities included in each segmentation. Applying the approach
of segmentation A, it can provide a good differentiation
between study groups based on the conventional metrics such as
SUVmin and TBRmax. However, this approach can be influenced
by observer experience, especially for cases with very small
hotspots. Conversely, segmentation B approach is more robust
and efficient.

This study is subject to some limitations. First, the sample
size is relatively small, and more extensive studies are needed
to confirm these results. This is of great significance to
prevent overfitting and type I errors. Applying a Bonferroni
correction and dimensionality reduction techniques resulted
in reducing the effect of this issue. In addition, the lack
of an automated segmentation, a segmentation reference to
compare with, unavailability of an independent clinical gold
standard to validate the performance of the model that was
trained on initial input data are other limitations for this
study. In addition, the selection of only one focal lesion
per patient in segmentation A was considered a limitation
of this approach. Furthermore, the models proposed in this
study should be validated in normal controls showing non-
specific physiological uptake. This study showed uncertainty
results of radiomic features and expanding the study to test
the reproducibility of the results is required. New knowledge
gained from this study is that using radiomic analysis does not
provide any additional information related to disease activity in
these patients. However, building an automated model regardless
of the strategies used for glucose suppression and/or observer
experience may prove helpful in further studies. Furthermore,
in this study, the MRI acquisitions were not utilized, except
for providing anatomical information. In this study the main
goal was the radiomic features on PET; the designated tool
for CS.

CONCLUSION

Radiomic analysis of PET data may not be a useful approach
to detect CS. Several radiomic features that were not
related to first-order tracer uptake showed high AUC and
accuracy with P-value < 0.00061. However, by measuring
AUCs and accuracies, large error bars can weaken the
results. TBRmax showed its superiority over all other
conventional and radiomic features in both segmentation
approaches. This methodology needs to be validated
further in normal control subjects showing non-specific
physiological uptake.
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