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We utilize an isobar model to investigate the K+�− photoproduction off a neutron in the resonance region.
Except for the Born terms, we include high-spin (spin-3/2 and spin-5/2) nucleon resonances in the consistent
formalism together with a few � and kaon resonances to achieve an acceptable agreement with data. Inter-
estingly, we reveal that no hyperon resonances are needed to achieve a reasonable description of data. On the
other hand the N (1720)3/2+ resonance was found to be very important for correct description of data. The free
parameters of the model were fitted to experimental data from the LEPS and CLAS Collaborations on either
differential cross sections or photon beam asymmetry. The novel feature of the fitting procedure is the use of a
regularization method, the least absolute shrinkage selection operator, and information criteria in order to choose
the best fit.

DOI: 10.1103/PhysRevC.104.065202

I. INTRODUCTION

The study of the kaon-hyperon photo- and electropro-
duction from nucleons in the third nucleon resonance region
provides important information about the spectrum of baryon
resonances and interactions in the systems of hyperons and
nucleons, which arise from quantum chromodynamics. Not
only do we aim at studying the reaction mechanism, we also
focus on obtaining more information about the existence
and properties of the so-called missing resonances, which
have been predicted by quark models but have not been seen
in the pion production of πN scattering processes [1,2].
These states may have escaped experimental confirmation
due to their stronger decay coupling to K� and K� rather
than to the more well-known pion final states; see results
of the coupled-channel analysis [3] and outcomes of the
partial-wave analysis [4].

A plethora of theoretical studies on hyperon production
have been performed over the past decades with focus pri-
marily given to the K+� production channel off the proton
due to the large amount of available experimental data; see,
e.g., Ref. [5] and references therein. The analyses before 2004
unfortunately suffered from a lack of high-quality experimen-
tal data [6] but the situation changed dramatically after new
high-duty-factor accelerators, providing good quality, high-
current, and polarized continuous beams, were constructed in
Jefferson Lab (CEBAF) and Bonn University (ELSA).

The K� photoproduction channels were also studied,
but, similarly to the case of the K+� channel, only after
2004 could these studies be based on more good-quality
data, mainly due to the data in the resonance region of the
K+�0 channel from the CEBAF, ELSA, MAMI (University
in Mainz), and SPring-8 (Japan) facilities; see, e.g., Ref. [7]
and references therein. However, data in the other channels

with the � hyperon are still quite scarce in comparison with
the number of data in the K+� and K+�0 channels; see
Tables 11–15 in a recent overview by Ireland, Pasyuk, and
Strakovsky [8]. A combined analysis of all four channels
with � was performed by Mart and Kholili in Ref. [7]. The
background part of the amplitude was constructed using an
isobar model and the resonant part using a multipole formu-
lation. The problem with unbalanced data sets for the K+�0

and the other channels (about a factor of 10) was solved by
introducing a weighting factor and its optimum value was
used in the analysis.

For the time being, the database of the channels using
neutron targets is very limited, with available measurements
of the differential cross section for K+�− [9,10] and K0�

reactions [10]. Inclusive momentum spectra in K0 photopro-
duction off deuteron were measured in the threshold region
at LNS of Tohoku University [11]. There are only two
measurements of the beam asymmetry �: from the LEPS
Collaboration [9] associated with very limited kinematical
coverage, and just recently a precise measurement from the
CLAS Collaboration [12], which covers a wide range of kine-
matics. There are also recent results on beam-target helicity
asymmetry E , also from the CLAS Collaboration [13].

In the present paper we reanalyze the new CLAS data
on the beam asymmetry [12] and the other older data in
the K+�− channel using an isobar model and the LASSO
(least absolute shrinkage and selection operator) method of
adjusting free parameters of the model (fit L). Our previous
analysis of these data, denoted here as fit M, was done using
an ordinary χ2 method, similarly to the work done in Ref. [5]
for the K+� channel, and this fit was already presented in
Ref. [12] in comparison with the new data. Here we will
give more details on the model fit M and compare it with the
new model fit L mainly in view of their resonance content
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TABLE I. Characteristics of included resonances with their masses and widths taken as the Particle Data Group (PDG) Breit-Wigner
averages. The available branching ratios to the K� and K� channels are also taken from the PDG [17]. For the nucleon and � resonances,
the values of coupling constants, g1 and g2, show the baryon-K� scalar and tensor couplings obtained in our fit, while for the K∗ and K1 states
they represent the vector and tensor couplings, respectively. We show values of g1 and g2 achieved with MINUIT only (denoted as fit M) and
with the LASSO method (fit L).

Mass Width Branching ratio Fit M Fit L

Tag Resonance (MeV) (MeV) K� K� g1 g2 g1 g2

K* K∗(892) 891.7 50.8 0.366 ± 0.024 1.103 ± 0.198 0.310 ± 0.019
K1 K1(1270) 1270 90 −1.448 ± 0.189 0.473 ± 0.156
N3 N (1535) 1/2− 1530 150 −0.709 ± 0.071
N4 N (1650) 1/2− 1650 125 0.07 0.00 0.314 ± 0.034 −0.085 ± 0.006
N8 N (1675) 5/2− 1675 145 −0.013 ± 0.001 0.022 ± 0.003 −0.010 ± 0.001 0.003 ± 0.002
N6 N (1710) 1/2+ 1710 140 0.15 0.01 −0.940 ± 0.093
N7 N (1720) 3/2+ 1720 250 0.05 0.00 −0.098 ± 0.017 −0.082 ± 0.002 −0.187 ± 0.004 −0.126 ± 0.002
P4 N (1875) 3/2− 1875 200 0.01 0.01 −0.220 ± 0.023 −0.223 ± 0.023 −0.042 ± 0.015 0.025 ± 0.013
P1 N (1880) 1/2+ 1880 300 0.16 0.14 −0.050 ± 0.064
Mx N (1895) 1/2− 1895 120 0.18 0.13 −0.063 ± 0.005 0.019 ± 0.002
P2 N (1900) 3/2+ 1920 200 0.11 0.05 −0.051 ± 0.005 −0.004 ± 0.001 0.027 ± 0.003 0.010 ± 0.001
M4 N (2060) 5/2− 2100 400 0.01 0.03 −0.00001 ± 0.0001 0.003 ± 0.0003 −0.003 ± 0.0001 0.004 ± 0.0002
M1 N (2120) 3/2− 2120 300 −0.034 ± 0.014 −0.010 ± 0.013 0.0003 ± 0.001 0.0 ± 0.0001
D1 �(1900) 1/2− 1860 250 0.01 0.298 ± 0.028
D2 �(1930) 5/2− 1880 300
D3 �(1920) 3/2+ 1900 300
D4 �(1940) 5/2− 1950 400
S1 �(1660) 1/2+ 1660 100
S2 �(1750) 1/2− 1750 90
S3 �(1670) 3/2− 1670 60
S4 �(2010) 3/2− 1940 220

and a quality of data description. We deem that the more
elaborate statistical method is more sensitive to a selected
resonant content of the model. This advanced method will be
also used in our further more robust analysis of data in the
photoproduction channels with the � hyperon.

The paper is organized as follows: In Sec. II, we discuss
the isobar model which we use for describing the �− photo-
production reaction off the neutron. Section III deals with the
free parameters in the model and with the new method of their
fitting to the data. In Sec. IV we discuss the obtained results
and Sec. V provides a brief summary and conclusions.

II. MODEL DESCRIPTION

The current model based on an effective Lagrangian in the
tree-level approximation is constructed to describe data only
in the K+�− channel assuming no final-state interaction.

The nonresonant part of the amplitude consists of the Born
terms and exchanges of resonances in the t channel (K∗

and K1 kaon resonances) and u channel (�∗ hyperon reso-
nances). The main coupling constant gK+�−n =

√
2 gK+�0 p,

that determines the strength of the Born terms, was taken
from the model constructed for the K+� channel [5] and kept
unchanged in the present fit. The resonant part is modeled
by s-channel exchanges of nucleon and � resonances with
masses from around the process threshold up to about 2 GeV.
Hadronic form factors included in the strong vertexes account
for a hadron structure and regularize the amplitude at large

energies. The form factors are introduced in a way that keeps
gauge invariance in analogy with the method used in Refs. [5]
and [14]. The relevant formulas to show gauge invariance of
the amplitude in the case of K+�− photoproduction are given
in Appendix A.

The considered set of nucleon resonances was motivated
by previous analyses of K+� and K� photoproduction [5,14]
and [15], respectively. Some additional nucleon resonances
decaying strongly into the K� channel were also considered
in our analysis, together with � and � resonances used to
complement the model in the s-channel and u-channel sec-
tors. The free parameters of a particular model, the coupling
constants, and ranges of hadronic form factors for a given set
of resonances, were fitted to the data, and the quality of the
model was checked by comparing its prediction with the data.
In the end, a variant with the smallest χ2/n.d.f. and reasonable
values of the parameters was selected. In our current best fit
with the CERN MINUIT library [16], which is also presented
in Ref. [12] and which was aimed at description of the new
CLAS data on asymmetry, we have used 14 resonances which
are shown in Table I. It includes the *** and **** baryon
states with most of them decaying into the K� and K�

channels [17] and also some other � and � resonances which
we have taken into account in our analysis. We note that we
used only the statistical errors when computing the χ2, which
results in a relatively large value χ2/n.d.f. = 2.39 obtained
for the selected solution. The reason for using only statistical
errors was missing systematic errors in some data sets. When
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systematics is taken into account, the χ2 value usually drops,
but the inclusion of systematics does not change the quality of
results.

In the following section we will introduce the fitting proce-
dure and its extension—the least absolute shrinkage selection
operator (LASSO)—which is a more sophisticated method for
adjusting the free model parameters. The LASSO method was
used in a recent analysis of pion photoproduction and study
of baryon resonances [18]. The advantage of this method lies
in its capability of removing redundant parameters and thus
limiting the number of contributing resonances.

III. ADJUSTING MODEL PARAMETERS

The model used in our study of strangeness production is
an effective model, with coupling constants and cutoff values
of hadron form factors not determined. Because of this, exper-
imental data play a crucial role in fixing these parameters that
enhance the predictive power of our model.

The free parameters to be adjusted are the main coupling
constant, gK+�−n, cutoff parameters for the hadron form fac-
tors of background and resonant terms, and the couplings of
resonances introduced. Please note that the gK+�−n coupling
was kept unchanged during the fitting procedure with MINUIT

but it was allowed to vary within the boundaries shown in
Eq. (2) during the fitting process with the LASSO method.
There is one free parameter for spin-1/2 resonance and two
free parameters for spin-3/2 and -5/2 (nucleon and hyperon)
resonances, while each kaon resonance introduces two addi-
tional free parameters (vector and tensor couplings).

We calculate the χ2, in order to check whether a given
hypothesis describes the given data well. The optimum set
of free parameters (c1, . . . , cn) for a given set of data points
(d1, . . . , dN ) is obtained by minimizing the χ2, calculated as
follows:

χ2 =
N

∑

i=1

[di − pi(c1, . . . , cn)]2

(

σ stat
di

)2 , (1)

where N is the number of data points, n is the number of
free parameters, and pi represents the theoretical prediction
of observables (differential cross sections and photon beam
asymmetry in this case) for the measured data point di.

The minimization was done with the help of least-squares
fitting method making use of the MINUIT library [16]. The
gK+�−n coupling constant was kept inside the limit of the 20%
broken SU(3) symmetry [19],

√
2 × 0.8 �

gK+�−n√
4π

�
√

2 × 1.3. (2)

Moreover, the cutoff parameters of the hadron form factors
for both background and resonant terms were kept inside the
limits from 0.5 to 3.0 GeV, in order to avoid too soft or too
hard form factors.

One of the problems that arise when fitting a theoretical
model to experimental data is that of overfitting the data.
This means that, although a more complex model (one with
more parameters) may improve the fitting to the existing data,
that model may fail to generalize to new data, resulting thus

in a poor description of reality. The set of techniques that
have been developed to combat this problem is known in the
machine learning literature with the name “regularization”
[20,21]. Typically, regularization involves the addition of a
penalty term in the error function that prevents the parameters
of the model from taking large values, when the total error
function is minimized. The penalty term may take various
forms and the amount by which it contributes to the total error
function is determined by the coefficient multiplying it, called
the regularization parameter and commonly denoted by λ.
Higher values of λ tend to push more parameters close to zero,
or even exactly to zero, thus favoring simpler models (with
fewer parameters), which may underfit the data. With differ-
ent values of λ leading to different sets of parameters, and
hence different models, the choice of the optimal λ becomes
a problem of model selection. For this choice we intend to
use criteria based on information theory, like the Akaike and
the Bayesian information criteria [22], that have been recently
used in similar problems [18].

Generally speaking, the χ2 is a good measure to determine
underfitting but it says nothing about overfitting [18]. For this
reason we turn to the LASSO method in order to select the
simplest model that can describe the data with the minimal
amount of resonances. In order to do so, we introduce a
penalty term

P(λ) = λ4
Nres
∑

i=1

|gi|, (3)

where λ is the regularization parameter, which we determine
using the information criteria, gi represents couplings of reso-
nances, and Nres is the number of assumed resonances. We opt
for the fourth power of λ, as a higher power enables us to move
quickly through the region of large values of λ and give more
weight to the region of small λ. The power affects also the
step in λ, resulting in a finer sampling of the region of small
λ. The reason why we want to stress the region with small λ

is that in this region more and more resonances are allowed to
contribute and the results can change abruptly with only slight
changes in λ. Moreover, in Eq. (3) each resonance is penalized
through its coupling gi, on top of the standard definition of the
χ2 in Eq. (1). In order to incorporate the penalty term, we
define the penalized χ2

T as

χ2
T = χ2 + P(λ). (4)

In practical calculations, we scan a range of λ values and
in each step minimize the χ2

T . With help of the χ2
T values

we then turn to several information criteria, which serve as
a tool to determine the optimal λ value and select the most
suitable model for the description of the given data. The
three information criteria used in this work are the Akaike
information criterion (AIC) [23], a finite sample size corrected
version of the AIC (further on referred to as AICc) [24],
and the Bayesian information criterion (BIC) [25], which are
respectively defined as

AIC = 2n + χ2
T , (5a)

AICc = AIC +
2n(n + 1)

N − n − 1
, (5b)

BIC = n ln(N ) + χ2
T . (5c)
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where n is the number of parameters which changes as a
function of λ and N is the number of data points.

Even though it may be self-evident, let us stress that the
information criteria are useful in selecting the best model in
the particular set, and that models which are not included
in the set remain out of consideration. If all the models of
the set are poor, the information criteria will still guide us
towards the best model, but even that relatively best model
might be poor in the absolute sense. Therefore, while using the
information criteria, every effort must be made to ensure that
the set of models is well founded. For detailed information
on the regularization method and a brief derivation of the
information criteria, see Appendix B.

A. Experimental data

In the fitting procedure, we used altogether 674 data points
to fit around 20 free parameters of our model. The currently
available experimental data in the K+�− channel are data on
the differential cross section, photon beam asymmetry, and
beam-target asymmetry only. In the last two decades, data
on the differential cross section and the beam-spin asym-
metry were determined by the CLAS [10,12] and LEPS
[9] Collaborations. The CLAS Collaboration provided mea-
surements for a wide range of kinematics. The differential
cross sections were measured for photon laboratory energies
from the near-threshold value E lab

γ = 1.15 to 3.55 GeV and
for cos θ c.m.

K in the range from −0.85 to 0.85, whereas the
beam-asymmetry data span the region of photon laboratory
energies E lab

γ from 1.1345 to 2.276 GeV and cos θ c.m.
K from

−0.7687 to 0.7484. The LEPS Collaboration provided com-
plementary measurements at forward angles as they focused
only on the region of cos θ c.m.

K from 0.65 to 0.95. The most
recent results on the beam-spin asymmetry from the CLAS
Collaboration provided tight constraints due to their preci-
sion and kinematical coverage [12]. We have exploited these
data, except for the beam-target asymmetry data, in a similar
fashion to what we have done in Refs. [5,14] for the K+�

channel.
In the fit M we considered the experimental data for ener-

gies smaller than 2.6 GeV whereas the fit L was fitted up to
energies 2.95 GeV.

B. The course of the fitting procedure

The goal of the fitting process is to find the global min-
imum, i.e. the set of parameters which describe the data in
the best way and produce the smallest χ2. Unfortunately, this
is not an easy task as we work in a very large parameter
space with numerous local minima scattered around. Thus, the
results of the fitting process depend also on the starting values
of the parameters that are being adjusted.

What makes the situation even worse is the fact that the χ2

is only a mathematical tool that illustrates the goodness of fit.
Hence, the results with similar (or even identical) χ2 values
can give rather different predictions of the observables as we
may end up in different local minima. In order to distinguish
satisfactory results from the unreliable ones, we pay attention
not only to the final χ2 value but also to the values of fitted

parameters. Moreover, we briefly check the agreement of the
fit with data.

Extremely helpful in recognizing valuable outcomes of the
fitting procedure is the LASSO method as described above.
The first step in using this technique is initializing the reso-
nance parameters with random values in the range from −1
to +1. The main coupling constant, gK+�−n, was initialized
with a random value within the range shown in Eq. (2) and
the initial values for the cutoff parameters were chosen inside
the range of (0.8,3.0) GeV. We use the forward LASSO tech-
nique, which means that we decrease the value of λ in the
penalty term [see Eq. (3)]. The starting value of λ is chosen
to be 3 and we decrease it by subsequent steps of either 0.2
or 0.1 until we reach zero. The role of this parameter, and
the penalty function as a whole, rests in turning off model
parameters. The larger the λ the more model parameters are
turned off. This in turn means that with large λ we can produce
very economical models with a very few parameters but their
agreement with data (as illustrated by the χ2 value) is rather
clumsy. This, in our opinion, is a clear sign of underfitting the
data as the model includes too few parameters which do not
allow it to capture the data. Usually, we arrive at reasonable
fits when λ decreases to around 1. For smaller values of
λ, the values of the information criteria [Eqs. (5)] tend to
increase which is an indication of overfitting, i.e., introducing
more parameters than is needed. In some sense, the value of
λ for the minimal value of the information criterion shows
how far we are from the ideal number of parameters; i.e.,
λ ≈ 0 would mean that we are close to the ideal number of
parameters, but when λ is significantly larger than zero we
have considered too many parameters in the beginning of the
process.

What is more, there seems to be a strong influence of the
λ value on the fit results and the convergence of the fitting
process. It seems that large values of λ prevent the mini-
mizer from converging as they turn off too many parameters.
In the MINUIT library, there are several different minimiz-
ers available. We decided to use the Minimize minimizer as
it combines the merits of Migrad and Simplex minimizers.
When we include also the hyperon resonances, we observe
that for λ = 3 there is no convergence by either Migrad or
Simplex minimizers; for λ approximately between 0.6 and 2.5
only the Simplex method converges; below 0.5 Simplex and
Migrad alternate; and only for λ < 0.05 the Migrad converges
without Simplex being called.

In the LASSO method, we have to consider also the num-
ber of decimal digits for each parameter, i.e., from which
value the parameter is considered numerically zero and there-
fore does not appear in the total number of fitted parameters.
For example, when we do calculations with individual reso-
nances whose coupling parameters are at the order of 10−5

or 10−6, their contributions are almost zero. Thus we reckon
that we should not take so many decimal places into account.
From where we stand, it seems that taking into account four
decimal places for each resonance is enough. When we use
more, we artificially turn on parameters that are not needed
and include resonances which do not contribute. In this way
we would artificially increase the number of parameters n and
decrease the precision of the information criteria.
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FIG. 1. Information criteria (IC) values in dependence on the
parameter λ. We show the Akaike (blue), corrected Akaike (orange),
and Bayesian (green) information criteria. Please note that the scale
of the vertical axis is logarithmic. Also note that it is not the absolute
size of the individual information criteria which is important, it is the
differences between IC values for different λ.

The number of parameters n encompasses all of the pa-
rameters we introduce, including the main coupling constant
gK�N and the cutoffs for the background, �bgr, and resonant
terms, �res. The values of these three parameters are not
included in the penalty term. The reason for doing so is that
we do not want these parameters to vanish. On the contrary,
the rest of the fitted parameters do appear in the penalty term
which then pushes their values to zero and tends to turn off
their contributions.

Similarly to what we have done in our analysis of the K+�

channel, we tried to modify the masses and widths of the
nucleon resonances within the ranges provided by the PDG ta-
bles. Unfortunately, this does not lead to any better agreement
with data (even though in some cases it can produce smaller
values of the χ2).

As mentioned above in the case of using pure MINUIT,
even when we exploit the LASSO method we may end up in
one of many local minima. From what we observe, we can
conclude that even with the LASSO method the minimum
which we find strongly depends on the initial values of the
fitted parameters. Therefore, we cannot avoid the pitfall of
local minima and we cannot guarantee that the fit we end up
with is the best fit which exists and can be found (which would
correspond to a truly global minimum). We rather say that the
models we show are among the best fits we could find.

The initial set of resonances for the LASSO method was
the one that was first found with help of MINUIT. We took
those resonances and ran the forward LASSO, i.e., we in-
troduced the penalty term to the χ2 definition, as can be
seen in Eq. (4), set the λ at 3.0 and reduced it in subsequent
steps of 0.2 until we reached λ = 0. When we plot values of
the information criteria in dependence on the λ, Fig. 1, we
observe two distinct minima. One is around λ = 2.5 and the
other somewhere around λ = 1. We were discouraged from
taking the first minimum, the deeper one, as the best fit since
its χ2 is larger than the χ2 of the other minimum and the
correspondence with data is also much worse. Clearly, the

first minimum is a result of underfitting. The other minimum
was, on the other hand, acceptable as its χ2 value appeared to
be reasonable, χ2/n.d.f = 3.2, and its agreement with data is
good.

In subsequent fits, we added hyperon and � resonances on
top of this core set. It seems though that no hyperon reso-
nances are needed for data description in the K+�− channel.
None of them was found to be substantial in either the pure
χ2 fitting or using the LASSO method since the couplings
of hyperon resonances were zero for every value of λ. What
is more, with hyperon resonances included and values of
λ > 0.05 MINUIT was unable to reach convergence.

We did not rely only on the LASSO outcomes but we
also compared several results with experimental data. All of
the fits with the hyperon resonances tend to diverge at very
forward angles. We deem this is so basically because there
are not enough data in this kinematical region, especially for
cos θ c.m.

K = 0.95, and thus there is nothing that can control
the behavior of the models in this region. At central angles,
the majority of fits with the hyperon resonances do not capture
the data at the very threshold and some of the fits overestimate
the first peak in the backward angles. Besides, in the fits
where the λ allows some of the hyperon resonance couplings
to acquire nonzero values, the information criteria (both the
Akaike and Bayesian ones) tend to have larger values. This
is a clear indication that these parameters (resonances) are
not substantial for data description. Moreover, in the plot
of the information criterion values against the λ parameter,
we see a significant drop once the hyperon resonances do
not contribute. This is a very interesting observation and it
strongly corroborates the claim of hyperon resonances not
being important for this channel.

The results with additional � resonances are slightly better
than the results with hyperon resonances. However, once we
add the � resonances, i.e., we add more resonances to the
core set of resonances, the χ2 gets worse. In other words,
we add more free parameters and thus the model has more
freedom to adapt to data but contrary to common sense the χ2

becomes larger not smaller. We again deem this to be a clear
indication of unimportance of the � resonances for reliable
data description in this channel.

IV. DISCUSSION

We concluded the fitting process with two distinct models.
One of them, which we will refer to in the subsequent text
by fit M, was achieved using solely the MINUIT procedure for
minimizing the χ2 (see Sec. II and Ref. [12]). The other one,
which we will call fit L, is a result of using MINUIT together
with the LASSO technique as presented in Sec. III.

The fit M incorporates altogether 14 resonances: two kaon
resonances, multiple nucleon resonances, one � resonance
and no hyperon resonances. The latter feature is rather surpris-
ing given our experience with describing the K+� production
channel where a plethora of hyperon resonances contribute in
a significant way (see Ref. [5]). The obtained couplings g1

and g2 listed in Table I are all reasonable and the same can be
said about the hadronic form factor ranges �bgr = 0.87 GeV
and �N = 1.45 GeV, see [14] for a description of these
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FIG. 2. The differential cross section as a function of the kaon
center-of-mass angle θ c.m.

K . The points represent data from CLAS
[10]. The solid red line and dashed blue lines show the models with
parameters determined applying the LASSO method and MINUIT

alone, respectively.

parameters. The fit produces results which are in a very good
agreement with the cross section and beam asymmetry data.
This analysis also showed that hyperon resonances do not play
a key role in the description of the available data, and their
inclusion results in negligible effects.

Besides the best MINUIT fit, we revealed another notewor-
thy fit using only the MINUIT procedure. We do not show
its comparison with data as it is hardly distinguishable from
the fit M. Its χ2 is 2.33, there are two � resonances, and
one of these, the D3 = �(1920) 3/2+ one, has a significant
effect on data description. When we omit this � state, the
beam asymmetry falls and is in accordance with data only
at very forward kaon angles. Moreover, as there is a hyperon
resonance S1 = �(1660) 1/2+ included, we could observe its
effect on the beam asymmetry data description, which is neg-
ligible. This corroborates our observation with the fit M. The
N7 = N (1720) 3/2+ state in this fit behaves in a similar way
to the fit M, i.e., when we leave it out the beam asymmetry
drops substantially, in some angular regions even to negative
values of the beam asymmetry.

In comparison to the fit M, the χ2 of the fit L, χ2 = 3.42 is
significantly larger. The large χ2 value is the price we had to
pay for a smaller number of parameters. In the fit L, there are
mere 17 parameters and 9 resonances while in the fit M there
are 25 parameters and 14 resonances; see Table I.

In Fig. 2, we compare the two best fits with one another
and with the experimental data on differential cross sections
from the CLAS Collaboration. The overall trend of the data
is captured by both models. The fit M produces a slightly
sharper peak at forward angles and for photon laboratory
energies around 2 GeV overshoots the data, while the fit L is
more moderate and tends to underestimate the data at highest
photon laboratory energies shown. Unfortunately, neither of

FIG. 3. The differential cross section as a function of the incident
photon energy E lab

γ . CLAS and LEPS data are shown with the black
and green points, respectively. The curves indicate the two methods
used for obtained the best description of the data as described in
Fig. 2.

the models is able to capture the two-peak structure of the
differential cross section above the threshold at energies 1.35
and 1.55 GeV as both models produce a smooth differential
cross section at central kaon angles.

The differential cross sections in dependence on the photon
laboratory energy E lab

γ are shown in Fig. 3. We again compare
our best fits with the experimental data from the CLAS and
LEPS Collaborations. In all angular bins, the models are in
a satisfactory agreement with the data. The fit M tends to
diverge quickly at very forward angles, while the fit L, on the
other hand, underestimates the data at energies above 2.5 GeV
in the cos θ c.m.

K = 0.75 bin. Also noteworthy are the structures
that the fit L produces at forward angles. Whereas the fit M
produces more or less flat cross sections, the fit L shows two
broad peaks which are also supported by the data.

Among the set of included nucleon resonances in the fit M,
the most noteworthy is the contribution of the N (1720) 3/2+

nucleon resonance whose omission leads to substantially de-
creased cross sections. An important effect of this resonance
was also observed in the K0�+ channel [26] and in the com-
bined analysis of all � channels performed in Ref. [7]. We
also note a significant contribution of the N (1895) 1/2− state
with a relatively large K� branching ratio. This state was
found in Ref. [7] to be among the most significant states for
dynamics in the K� channels. The role of the �(1900) 1/2−

resonance is in modeling the peak in the cross-section data,
but it slightly modifies the beam asymmetry description as
well. This can be seen once a contribution of this resonance
is switched off (see Figs. 4 and 7). This � state was found to
be the most significant one in Ref. [7]. We see, therefore, that
the results of our single-channel analysis are in a very good
agreement with the results of a multichannel analysis.
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FIG. 4. The differential cross section as described by the full fit
M (solid line) and by the same fit with the N3 (dotted line), D1
(dashed line), and N7 (dash-dotted line) resonances omitted. The data
are from CLAS [10] and LEPS [9] experiments.

In the fit L, the most important contributions stem from the
K∗, N7, and M4 resonances. The kaon resonance K∗ helps
us to capture the experimental data predominantly at forward
angles. When we omit this resonance, the cross section falls
substantially (the smaller the kaon angle, the more notable
the cross-section drop becomes). The N7 nucleon resonance
on its own creates the first peak and near this peak clearly
dominates the model. Once we omit this resonance, the fit pro-
duces a plateau instead of a peak. In contrast, the M4 nucleon
resonance contributes in a substantial way to the description
of the second peak, which is more tangible at small kaon
angles. Besides these three resonances, no other resonance
can produce such a substantial effect in the differential cross
sections (see Fig. 5).

As the real reason why we began investigating the K+�−

channel was the new data on the photon beam asymmetries,
this paper would not be complete without showing the results
for this observable, which we could achieve with merely the
MINUIT fitting procedure and also with the LASSO method.
Figure 6 shows the photon beam asymmetry in dependence
on the cosine of the kaon center-of-mass angle θ c.m.

K . The
recent CLAS data [12] have a distinctive shape; they are
large, positive, and almost uniform for central kaon angles,
and gradually decrease at backward kaon angles. At forward
kaon angles, the data are typically slightly larger than the data
at backward angles (this is more notable for higher energies).
The figure is complemented with the LEPS data [9] which
are limited to forward going kaons and have slightly larger
uncertainties than the CLAS data. Above the threshold, the
two fits are hardly distinguishable as both of them produce
beam asymmetry which is large and positive around central
kaon angles and fall off gradually at backward angles and
rather abruptly at forward angles, i.e., both models can capture
the experimental data well. The sole difference can be seen at

FIG. 5. The differential cross section as described by the full fit
L (solid line) and by the same fit with the N7 (dashed line), M4
(dotted line), and K* (dash-dotted line) resonances omitted. The data
are from CLAS [10] and LEPS [9] experiments.

energies above 2 GeV around cos θ c.m.
K = −0.5 where the fit

M creates a peak while the fit L shows a dip. The latter behav-
ior is more in concert with experimental data which indicate a
plateau or a dip rather than a peak in this kinematical region.

In Figs. 7 and 8, we show description of the photon beam
asymmetry data by both of our fits with some of the most
contributing resonances omitted. The strongest contributions
to the fit M, Fig. 7, stem from N7 and D1 resonances. The
omission of the N7 nucleon resonance is tangible in all energy

FIG. 6. The photon beam asymmetry for several energetic bins in
dependence on the kaon center-of-mass angle θ c.m.

K as calculated by
the best fit achieved by the MINUIT alone and by the LASSO method
and compared with the CLAS [12] data. Notation of the curves is the
same as in Fig. 2.
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FIG. 7. The photon beam asymmetry described by the full fit M
(solid line) and by the same fit with the N7 (dashed line) an D1
(dotted line) resonances omitted. The data are from CLAS [12] and
LEPS [9] experiments.

bins as it leads to a significant drop of the photon beam asym-
metry to zero and in some cases even below zero. When we
leave out the D1 � resonance, on the other hand, we observe
only minor modifications and in most energy bins we can still
find agreement with data.

In the case of the fit L, we identified the K∗, N7, and M4
resonances to be the ones that contribute most to the photon
beam asymmetry; see Fig. 8. When we omit the K∗ kaon
resonance, we cannot capture the magnitude of the data as
the model outcomes lie below the data in almost all energy

FIG. 8. The photon beam asymmetry described by the full fit L
(solid line) and by the same fit with the K* (dash-dotted line), N7
(dashed line), and M4 (dotted line) resonances omitted. The data are
from CLAS [12] and LEPS [9] experiments.

FIG. 9. The photon beam asymmetry in dependence on the pho-
ton laboratory energy E lab

γ as calculated by the best fit achieved by
MINUIT alone and by the LASSO method and compared with the
CLAS [12] data. Notation of the curves is the same as in Fig. 2.

bins. Similar but more pronounced outcomes are produced
when we turn off the N7 nucleon resonance: Near the energy
threshold, the photon beam asymmetry even changes its sign.
The omission of the M4 nucleon resonance leads to a minor
corrections up to E lab

γ = 1.8 GeV, while beyond this energy
we observe a dip at backward angles.

We show also the energy dependence of the photon beam
asymmetry for four angular bins in Fig. 9. The two fits pro-
duce again very similar results, the only difference being the
behavior at energies above 2 GeV, which is most notable in
the cos θ c.m.

K = (−0.49,−0.39) angular bin. Please note that
the model results are calculated for the middle value in each
angular bin whereas the data are scattered within the whole
bin.

FIG. 10. The CLAS beam-target asymmetry data [13] in depen-
dence on cos θ c.m.

K compared with predictions of fit L (solid line) and
fit M (dashed line).
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In Fig. 10, we show the angular dependence of the beam-
target asymmetry E . This observable was not included among
the data and thus Fig. 10 illustrates merely the predictive
power of our new fits. The data are positive in all energy bins
shown and for energies below 1.8 GeV the fit M can capture
their shape as it produces decreasing E . The fit L, on the other
hand, can produce acceptable beam-target asymmetry only in
the E lab

γ = 2.17 GeV bin; in other energy bins it underesti-
mates all the data except for the data point at cos θ c.m.

K = −0.5.

V. CONCLUSION

Exploiting the isobar model, we performed an investigation
of the K+�− photoproduction off a neutron target in the
resonance region. In order to reach an acceptable correspon-
dence with experimental data, we used the tree-level Feynman
diagrams with exchanges of particles in their ground as well as
excited states. For high-spin nucleon states, we have used the
consistent formalism where spurious lower-spin modes vanish
in the amplitude.

The cornerstone of this analysis was, however, the upgrade
to the fitting method. In our previous studies, we used only
the plain χ2 minimization. Such a technique, unfortunately,
cannot prevent us from overfitting the data, i.e., introducing
more parameters (and thus resonances) than are needed for the
data description. In the third nucleon-resonance region, where
the process under study in this paper occurs, there are a plenty
of resonant states which overlap each other. It is therefore
of crucial importance to limit the number of states which
we consider in our analysis. A solution to this issue seems
to be a method called regularization, where we introduce a
penalty term which in effect restricts the number of nonzero
parameters and in this way hinders us from overfitting the
data.

With the help of both plain χ2 minimization and the more
advanced LASSO method, we could arrive at two models
which both give us satisfactory agreement with data. We
discussed the course of the fitting process, commented on
the outcomes, and identified the resonant states which con-
tribute most to the differential cross sections and photon beam
asymmetries in various kinematic regions. We observe only
slight differences in the data description by our models, the
most notable ones being the description of differential cross
sections at very forward angles where the fit L produces two
broad peaks while the fit M is flat, and the photon beam
asymmetries beyond 2 GeV at backward angles where the fit
M produces a bump which is not supported by the data. In both
fits, the N (1720)3/2+ resonance was found to be important
for correct description of data.

A natural step forward for us will be using the LASSO
method to perform the multichannel analysis of the photopro-
duction as we deem this method to be of immense importance
for selecting the optimal resonances contributing to the pro-
cess.
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APPENDIX A: CONTRIBUTIONS TO

THE INVARIANT AMPLITUDE

We consider the process

γV (k) + n(p) → K+(pK ) + �−(p� ) (A1)

with the corresponding four-momenta given in the paren-
theses; the four-momentum of the intermediate particle is
denoted by q. In the following sections, we summarize the
invariant amplitudes and include also the hadron form factors,
fx(x), x = s, t, u, which turn out to be essential for the gauge
invariance of the full amplitude.

1. Born s channel

The invariant amplitude of the proton exchange reads

MBs = ū(p� )VS fs(s)
� p+ �k + mp

s − m2
p

V EM
μ εμ(k)u(p), (A2)

where

VS = igK�nγ5 (A3)

and

V EM
μ = i

κn

2mn

σμνkν (A4)

are strong and electromagnetic vertex functions, respectively,
and σμν = i

2 [γμ, γν].
When we recast the amplitude into the compact form

M = ū(p�)
6

∑

j=1

A j (k
2, s, t, u)M ju(p), (A5)

we can extract the scalar amplitudes

A1 =
gK�n

s − m2
n

κn fs(s), (A6a)

A4 =
gK�n

s − m2
n

κn

mn

fs(s) = −2A6. (A6b)

The operators M j appearing in Eq. (A5) are defined in
Eqs. (17) in Ref. [5].

2. Born t channel

The invariant amplitude of the kaon exchange in the t

channel reads

MBt = ū(p� )VS ft (t )
1

t − m2
K

V EM
μ εμ(k)u(p) (A7)

which can be cast into the compact form

MBt = ū(p� )γ5

(

A2M2 + A3M3 − gK�n ft (t )
k · ε

k2

)

u(p).

(A8)
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The last term in the brackets is a gauge-invariance breaking
term. There are only two nonzero scalar amplitudes,

A2 = −A3 = 2
gK�n

t − m2
K

ft (t ). (A9)

3. Born u channel

The electromagnetic γ�� vertex factor has the form

V EM
μ = γμ + i

κ�

2m�

σμνkν (A10)

and the strong vertex function is the same as in Eq. (A3). The
hyperon exchange in the u channel reads

MBu = ū(p� )V EM
μ

� p�− �k + m�

u − m2
�

VS fu(u)εμ(k)u(p) (A11)

and can be again recast into the compact form

MBu = ū(p� )

(

A1M1 + A5M5 + A6M6

+ gK�n fu(u)
k · ε

k2

)

u(p). (A12)

Similarly to the t-channel exchange, the last term in the
brackets is the gauge-invariance breaking term. In case we do
not assume hadron form factors, i.e., ft = fu = 1, the gauge-
invariance terms in t and u channels cancel each other and the
resulting amplitude is gauge invariant.

The scalar amplitudes are

A1 =
gK�n

u − m2
�

fu(u), (A13a)

A5 =
gK�n

u − m2
�

κ�

m�

fu(u) = 2A6. (A13b)

4. Contact current

In case we introduce the hadron form factors, the full
amplitude contains gauge noninvariant terms. In order to get
rid of them, we consider a contact term which acquires the
form

Mcc = ū(p� )VSe

[

−(2pK − k)μ
ft − 1

t − m2
K

fu

+ (2p� − k)μ
fu − 1

u − m2
�

ft

]

εμ(k)u(p) (A14)

and can be recast into the compact form

Mcc = iegK�nu(p)γ5

{[

−2M2 + 2M3

+
(

t − m2
K

)k · ε

k2

]

ft − 1

t − m2
K

fu

+
[

2M3 −
(

u − m2
�

)k · ε

k2

]

fu − 1

u − m2
�

ft

}

u(p).

(A15)

Its contributions to the scalar amplitudes read

A2 = −2iegK�n

ft − 1

t − m2
K

fu, (A16a)

A3 = 2iegK�n

[

ft − 1

t − m2
K

fu +
fu − 1

u − m2
�

ft

]

. (A16b)

and the gauge-invariance breaking terms abolish those terms
in the t (A7) and u (A11) channel exchanges.

APPENDIX B: ASPECTS OF THE FITTING PROCEDURE

1. Ridge and LASSO regularization

Typically, the regularization term is a norm of the pa-
rameter vector θ = (θ1, . . . , θn) multiplied by a regularization
parameter λ that determines the amount of the penalty on the
parameter values,

P(λ) = λ

n
∑

j=1

|θ j |q. (B1)

The two most common types of regularization correspond
to q = 1 and q = 2. The q = 1 case, or L1-norm regular-
ization, is also known as LASSO [27], while the q = 2
case, or L2-norm regularization, is also known as Ridge [28].
Minimizing the new function χ2

T = χ2 + P(λ) is equivalent
to minimizing χ2, subject to the constraint

∑n
j=1 |θ j |q � c

(where c > 0). Due to the geometry of the constraint in pa-
rameter space (hyperoctahedron for LASSO, as opposed to
hypersphere for Ridge) LASSO forces some of the parameters
to zero, thus favoring a sparser model. This characteristic of
LASSO makes it more suitable for feature selection and this
is why we use it in our approach.

2. Parameter selection procedure

In machine learning, a model’s accuracy is not assessed by
the error calculated on the training set, which is used to fit its
parameters, but on an independent test set that is intentionally
held out of the original dataset. In the process called k-fold
cross-validation, the original dataset is partitioned in k sam-
ples of equal size, each of which serves as the test set against
which the model trained on the rest of the data (the remaining
k − 1 samples) will be evaluated and the results of these runs
are then averaged [20].

When more parameters are added to a model, the training
set error will invariably decrease, but if the test set error
increases it is a sign that the model is overfitted to the training
set and fails to generalize to new data. So, using only a subset
of a model’s parameters may improve its prediction accuracy,
as well as its interpretability.

Choosing the best subset can be done through either
forward or backward stepwise selection [21]. Forward selec-
tion consists in sequentially adding the parameter that most
improves the fit, while backward selection consists in se-
quentially removing the parameter that, when removed, least
worsens the fit. In both cases, it is the test set (prediction)
error that decides which is the best parameter subset. Forward
selection has a wider applicability than backward selection, as
it can be used also in cases where the number of parameters
exceeds the number of data points, while backward selection
cannot be used in such cases. Naturally, these selection pro-
cedures become highly impractical when a large number of
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parameters are involved, resulting in extremely large number
of subsets to be evaluated.

In the present work the parameter subset selection is done
automatically by changing the regularization parameter λ ac-
cordingly; e.g., to implement forward selection we start from a
large value of λ that leads to a very sparse model and gradually
decrease it to zero, leading to the full unregularized model.
The optimal value of λ and, hence the best parameter subset,
is chosen based on information criteria which are commonly
used in model selection. Furthermore, it has been shown that
model selection by cross-validation is asymptotically equiva-
lent to Akaike’s information criterion [29].

3. Maximum likelihood estimation

In a measurement process, an observation di can be repre-
sented by a random variable Di characterized by a probability
density function f (Di|θ), which depends on a set of parame-
ters θ = (θ1, . . . , θn). The joint probability of N independent
and identically distributed measurements is given by the prod-
uct of the individual densities,

P(D|θ) = P(D1, . . . , DN |θ) =
N

∏

i=1

f (Di|θ). (B2)

For a sample of data d = (d1, . . . , dN ), this joint probability
distribution (now only a function of θ) defines the likelihood
function

Ld (θ) = P(D = d|θ) (B3)

for that particular sample and expresses how probable the
observed data d is, for given values of the parameters θ. In
maximum likelihood estimation (MLE), we seek the parame-
ter values θ̂ that maximize the likelihood, (Ld )max = Ld (θ̂) and
hence the probability of observing the specific sample of data.
For computational reasons, it is the natural logarithm of the
likelihood, ln Ld (θ̂), that is commonly maximized. Further-
more, the fundamental assumption is made that the outcome
di of each measurement follows a Gaussian distribution char-
acterized by a given variance σ 2

i (given by experiment) and a
mean value μi. In fitting a theoretical model that depends on
a set of parameters c = (c1, . . . , cn) to the data, we adjust the
parameters of the model so that its predictions pi(c) provide
the mean values that maximize the likelihood of the partic-
ular sample. The likelihood function to be maximized thus
becomes

Ld (c) =
N

∏

i=1

(

2πσ 2
i

)−1/2
exp

(

−
[di − pi(c)]2

2σ 2
i

)

(B4)

and the log-likelihood

ln Ld (c) = const −
N

∑

i=1

(di − pi(c))2

2σ 2
i

= const − χ2. (B5)

Thus, under the above assumptions, maximizing the log-
likelihood is equivalent to minimizing χ2.

4. Derivations of information criteria

The following two sections present the basic steps in de-
riving the Akaike (AIC) and the Bayesian (BIC) information
criteria and are based on [30] and [20,22] respectively.

a. Akaike information criterion

The Akaike information criterion [31] is an extension of
the maximum likelihood principle based on the notion of
relative entropy, or Kullback-Leibler (K-L) divergence, from
information theory [32].

The K-L divergence is defined as

I ( f , g) =
∫

f (x) ln

(

f (x)

g(x|θ)

)

dx ≡ Ex

[

ln

(

f (x)

g(x|θ)

)]

(B6)

and expresses the degree of dissimilarity between the true (but
unknown) probability distribution f (x) that generates the data
and an approximating distribution g(x|θ) that is specified by a
set of parameters θ = (θ1, θ2, . . . , θn). It can also be regarded
as the expected value of ln[ f (x)/g(x|θ)] with respect to the
true distribution f (x), for the whole population x. Using the
likelihood function in place of g(x|θ), one observes that the
value θ0 that maximizes likelihood also minimizes the K-L
divergence, meaning that g(x|θ0) is as close as possible to the
true f (x).

However, since our data d is a sample taken from the
statistical population x, we can only make an estimate θ̂(d ) of
the true θ0, based on this sample. Hence, the aim of seeking
the minimum I ( f , g(·|θ0)) is replaced by finding the (larger)
minimum of the average Ed [I ( f , g(·|θ̂(d )))] over repeated
samples d. It should be noted that with increasing sample size
the likelihood maximizing θMLE = θ̂ approaches the true θ0.

For θ = θ̂(d ), Eq. (B6) can be written as

I ( f , g(·|θ̂(d ))) =
∫

f (x) ln f (x)dx −
∫

f (x) ln g[x|θ̂(d )]dx

= constant − Ex[ln g(x|θ̂(d ))] (B7)

where the first term does not depend on θ, so the focus will be
on Ex[ln g(x|θ̂(d ))].

If we Taylor expand ln g(x|θ̂) around θ0 up to second order
we get

ln g(x|θ̂) ≈ ln g(x|θ0) + (θ̂ − θ0)⊺∇ ln g(x|θ0)

+ 1
2 (θ̂ − θ0)⊺∇2 ln g(x|θ0)(θ̂ − θ0) (B8)

with the second term containing the gradient vector and the
third term the Hessian matrix of second derivatives, both
evaluated at θ0. Taking the expected value Ex[· · · ] of both
sides of Eq. (B8), as defined in Eq. (B6), it is easily shown
that the gradient term vanishes since θ0 is the true minimum
of I ( f , g(·|θ)). So, from Eq. (B8) we have

Ex[ln g(x|θ̂)] ≈ Ex[ln g(x|θ0)] − 1
2 (θ̂ − θ0)⊺I(θ0)(θ̂ − θ0),

(B9)
where I(θ0) is the n × n matrix with matrix elements

I(θ0)i j = Ex

[

−
∂2 ln g(x|θ)

∂θi∂θ j

∣

∣

∣

∣

θ=θ0

]

(B10)
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known as the Fisher information matrix. As already men-
tioned, the quantity we seek to minimize is the average
Ed [I ( f , g(·|θ̂(d )))] over different samples d, which can be
written as E

θ̂
[I ( f , g(·|θ̂))], i.e., as the average over the dif-

ferent θ̂’s of each sample.
Therefore, the relevant quantity to maximize [because of

the minus sign in Eq. (B7)] is

T ≡ E
θ̂
Ex[ln g(x|θ̂)]. (B11)

Using Eq. (B9), T can be written

T ≈ Ex[ln g(x|θ0)] − 1
2 E

θ̂
[(θ̂ − θ0)⊺I(θ0)(θ̂ − θ0)] (B12)

since the first term does not depend on θ̂. Taking into account
the matrix identity involving the trace z⊺Az = tr(Azz⊺) and
the fact that I (θ0) is independent of θ̂, Eq. (B12) becomes

T ≈ Ex[ln g(x|θ0)] − 1
2 tr(I(θ0)E

θ̂
[(θ̂ − θ0)(θ̂ − θ0)⊺]). (B13)

In the large sample limit, E
θ̂
[(θ̂ − θ0)(θ̂ − θ0)⊺] is the covari-

ance matrix of the maximum likelihood estimate, denoted by
�, so T is written

T ≈ Ex[ln g(x|θ0)] − 1
2 tr[I(θ0)�]. (B14)

In the next steps, the first term, Ex[ln g(x|θ0)], is approxi-
mated in a similar way as Ex[ln g(x|θ̂)] in Eqs. (B8) and (B9),
but with θ̂ and θ0 switched. So, ln g(x|θ0) is expanded around
θ̂

ln g(x|θ0) ≈ ln g(x|θ̂) + (θ0 − θ̂)⊺∇ ln g(x|θ̂)

+ 1
2 (θ0 − θ̂)⊺∇2 ln g(x|θ̂)(θ0 − θ̂) (B15)

only, this time, the gradient vanishes before taking the ex-
pected value, as it is evaluated at θ̂, which is the value that
maximizes the log-likelihood ln g(x|θ), leading to

ln g(x|θ0) ≈ ln g(x|θ̂) + 1
2 (θ0 − θ̂)⊺∇2 ln g(x|θ̂)(θ0 − θ̂).

(B16)

Taking the expected value with respect to x, Eq. (B16) be-
comes

Ex[ln g(x|θ0)] ≈ Ex[ln g(x|θ̂)] − 1
2 Ex[(θ0 − θ̂)⊺ Î(θ̂)(θ0 − θ̂)]

(B17)
with Î(θ̂) the n × n matrix with matrix elements

Î(θ̂)kl = −
∂2 ln g(x|θ)

∂θk∂θl

∣

∣

∣

∣

θ=θ̂

(B18)

and employing again the matrix property z⊺Az = tr(Azz⊺)

Ex[ln g(x|θ0)]

≈ Ex[ln g(x|θ̂)] − 1
2 tr(Ex[Î(θ̂)(θ0 − θ̂)(θ0 − θ̂)⊺]). (B19)

For large samples, the approximation I(θ0) ≈ Î(θ̂) is valid and
the expected value inside the trace becomes

Ex[Î(θ̂)(θ0 − θ̂)(θ0 − θ̂)⊺]

≈ I(θ0)Ex[(θ0 − θ̂)(θ0 − θ̂)⊺]

= I(θ0)Ex[(θ̂ − θ0)(θ̂ − θ0)⊺] = I(θ0)� (B20)

leading to

Ex[ln g(x|θ0)] ≈ Ex[ln g(x|θ̂(x))] − 1
2 tr[I(θ0)�]. (B21)

Using this result in Eq. (B14) we get

T ≈ Ex[ln g(x|θ̂(x))] − tr[I(θ0)�]. (B22)

Maximizing this expression can be used as a criterion for
model selection when we have many and large samples to
average over.

If, however, we have only one sample at our disposal, we
can assume that an estimator of T , T̂ , will be of the same form
as T , without the expected value and with an estimator for the
trace,

T̂ ≈ ln g(x|θ̂) − t̂r[I(θ0)�]. (B23)

Instead of maximizing T , it is a convention to minimize the
quantity

−2T̂ ≈ −2 ln g(x|θ̂) + 2 t̂r[I(θ0)�]. (B24)

It can be shown [30] that if g(x|θ) is a good approximation for
the true distribution f (x), then I(θ0) = �−1 and t̂r[I(θ0)�] =
tr(In×n) = n, where n is the number of parameters. Thus, the
quantity to be minimized is

AIC = −2 ln g(x|θ̂) + 2n, (B25)

where θ̂ is the maximum likelihood estimate and n the number
of parameters of the model.

b. Bayesian information criterion

From Bayes’s theorem, the posterior probability of model
Mi from a set of r candidate models {M1, . . . , Mr}, given a set
of observations x = {x1, . . . , xn} is

P(Mi|x) =
g(x|Mi)P(Mi )

∑r
j=1 g(x|M j )P(M j )

, (B26)

where P(Mi ) is the prior probability of model Mi. The likeli-
hood of Mi, g(x|Mi ) is given by

g(x|Mi ) =
∫

g(x|θ, Mi )π (θ|Mi )dθ, (B27)

where g(x|θ, Mi ) is the likelihood of the model parame-
ters θ = (θ1, θ2, . . . , θn) and π (θ|Mi ) the corresponding prior
probabilities, and is referred to as marginal likelihood since
the parameters are marginalized (integrated) out. It is also
known as model evidence as it expresses the probability of
the data x being generated from model M whose parameters
are sampled from the specified prior distribution.

It is obvious from Eq. (B26) that the model with the largest
posterior probability is the one with the largest g(x|M )P(M )
and, assuming that all models have the same prior probabili-
ties P(M ), it is the model with the largest g(x|M ). The goal
is, therefore, to maximize the quantity g(x|M ) as it hints at
the most probable model from the set of r candidate models
{M1, . . . , Mr}.

The integral in Eq. (B27) can be evaluated using the
Laplace approximation [20,33], whereby the logarithm of
g(x|θ, Mi ) in the integrand is Taylor expanded to second order
around its maximum θ̂, leading to a Gaussian integral. The
expansion of the log-likelihood (Mi is omitted for simplicity)
yields

ln g(x|θ) ≈ ln g(x|θ̂) − 1
2 (θ − θ̂)⊺H(θ − θ̂) (B28)
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since the gradient vanishes at θ = θ̂, with H =
−∇∇ ln g(x|θ̂)|

θ=θ̂
the n × n Hessian matrix of the

log-likelihood. After exponentiation, the likelihood function
becomes

g(x|θ) ≈ g(x|θ̂) exp
{

− 1
2 (θ − θ̂)⊺H(θ − θ̂)

}

. (B29)

Assuming a uniform prior, π (θ) can be considered constant
and π (θ) ≈ π (θ̂), so that the right-hand side of Eq. (B27) can
be calculated as an n-dimensional Gaussian integral resulting
in

g(x|M ) ≈ g(x|θ̂)π (θ̂)
(2π )n/2

|H|1/2
, (B30)

where |H| is the determinant of H. Since the likelihood of a
sample is the product of the likelihoods of each observation,
the log-likelihood that appears in the elements of the matrix
H is the sum of log-likelihoods of the observations and the
elements of H become

Hkl = −
∂2 ln g(x|θ)

∂θk∂θl

∣

∣

∣

∣

θ=θ̂

= −
∂2 ln

∏N
j=1 g(x j |θ)

∂θk∂θl

∣

∣

∣

∣

∣

θ=θ̂

= −
∂2 ∑N

j=1 ln g(x j |θ)

∂θk∂θl

∣

∣

∣

∣

∣

θ=θ̂

= −N
∂2E [ln g(x j |θ)]

∂θk∂θl

∣

∣

∣

∣

θ=θ̂

= NI(θ̂)kl (B31)

where N is the sample size and I(θ̂) the Fisher information
matrix. Thus, the determinant of H equals |H| = Nn|I|, where
n is the dimensionality of the parameter space. Finally, if we
take again the logarithm of Eq. (B30) we get

ln g(x|M ) ≈ ln g(x|θ̂) + ln π (θ̂) +
n

2
ln 2π

−
1

2
n ln N −

1

2
ln |I| (B32)

and, keeping only terms that vary at least linearly with sample
size N , we end up with

ln g(x|M ) ≈ ln g(x|θ̂) −
n

2
ln N. (B33)

Let us recall that g(x|M ) is the quantity we sought to max-
imize and that θ̂ is the maximum likelihood estimate. As a
matter of convention we define

BIC = −2 ln g(x|M ) ≈ ln g(x|θ̂) + n ln N (B34)

as the quantity that, when minimized, will yield the most
probable model given the data.
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