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Abstract1

Trade is a complex, multi-faceted process that can contribute to the spread2

and persistence of disease. We here develop novel mechanistic models of dy-3

namic trade in which individual-level trading patterns are determined by time-4

varying state variables determining stock demanded and available supply. Our5

model is framed within a livestock trading system, where farms form and end6

trade partnerships with rates dependent on current demand, with these trade7

partnerships facilitating trade between partners. With these time-varying,8
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stock dependent partnership and trade dynamics, our trading model goes9

beyond current state of the art modelling approaches. By studying instan-10

taneous shocks to farm-level supply and demand we show that behavioural11

responses of farms lead to trading systems that are highly resistant to shocks12

with only temporary disturbances to trade observed. Individual adaptation13

in response to permanent alterations to trading propensities, such that ani-14

mal flows are maintained, illustrates the ability for farms to find new avenues15

of trade, minimising disruptions imposed by such alterations to trade that16

common modelling approaches cannot adequately capture. In the context of17

endemic disease control, we show that these adaptations hinder the potential18

beneficial reductions in prevalence such changes to trading propensities have19

previously been shown to confer. Assessing the impact of a common disease20

control measure, post-movement batch testing, highlights the ability for our21

model to measure the stress on multiple components of trade imposed by22

such control measures and also highlights the temporary and, in some cases,23

the permanent disturbances to trade that post-movement testing has on the24

trading system.25

1 Introduction26

Trade plays a critical role in the interactions of individuals, firms, and nations [1,27

2]. In recent years, the development of network theory has provided a novel frame-28

work with which to model and understand the actions of individuals that does not29

require the simplifying assumptions of more classical modelling approaches, for ex-30

ample making a well-mixed assumption [3, 4]. Representing individuals as nodes31

and interactions between these nodes as edges (either directed or undirected, as32

well as possibly weighted by the interaction) allows for highly complex interaction33

patterns, elegantly capturing scale-free (or approximately scale-free [5]) behaviour34

often observed in real-world trading systems [6, 7, 8, 9, 10, 11]. Despite these35

clear advantages, network approaches frequently assume the network is static, i.e.36

the connections of individuals are permanent and do not change, or that it is an37

aggregated time series of successive static snapshots of the network [12]. Exten-38
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sions, whereby network connections change over time but the overall connectivity of39

the network is maintained, e.g. neighbour exchange models [13, 14], have recently40

been proposed. However, all these approaches neglect the highly temporal nature41

of the real-world systems they represent, obscuring dynamical properties of individ-42

uals such as seasonal trading patterns or behavioural responses to changes in trade43

[15, 16, 17]. Temporal networks, and specifically generative models of temporal net-44

works, in which the dynamic network develops and changes based on individual-level45

properties is an area of network theory that is currently lacking [18] and is the focus46

of this article.47

In this article, we develop a dynamical trading model in the context of a livestock48

trading system. Much work has been done to understand the dynamics of these sys-49

tems, and they are often framed in a network context representing farms as nodes,50

and trades between farms as temporal edges in the network [10, 11, 19]. Moreover,51

the increasing availability of large-scale datasets in which animal movements are52

recorded at individual-animal level allows for detailed replications of past animal53

movements, offering insight into long-term trading patterns, disturbances to trade54

caused by external perturbations, and the impact of changes in policy [6, 8, 16, 17].55

As such, these systems act as an exemplar of trade dynamics. Beyond the commer-56

cial benefits of trade itself, there is a further economic incentive to understand the57

complexities of livestock trade owing to the continual presence of endemic disease58

and risks of outbreaks, which impose ongoing and unexpected costs to farms and59

governments. Bovine tuberculosis, or bTB, for example, is estimated to cost the60

UK in excess of £100 million per year [20]. There can also be significant short-term61

disturbances to trade in response to an epidemic outbreak, as was the case with62

the 2001 UK Foot-and-Mouth disease epidemic [21, 22]. This outbreak cost the UK63

approximately £3.1 billion due to stock losses [23] and £3.2 billion due to other64

economic factors such as closure of countryside impacting tourism [24].65

Trade has frequently been shown to be a risk-factor in disease spread [8, 11, 21, 25,66

26, 27, 28]. Indeed, the 2001 FMD outbreak initially spread due to the movement67

of animals to market, allowing for widespread dissemination of the disease [21, 24].68
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Moreover, the disturbances to trade imposed by disease control measures and the69

resulting atypical trading patterns, such as increases in traded animal batch sizes,70

following the outbreak have been suggested as a contributing factor in the recent71

surge in bTB persistence in England and Wales [23, 29].72

Disease outbreaks have resulted in policy changes, such as post-movement standstills73

and mandatory batch testing [30] which have previously been shown to alter trading74

patterns of farms [31]. In Scotland, for example, the introduction of mandatory75

bTB testing from high-risk areas of England and Wales resulted in Scottish farms76

avoiding trades from these areas, trading more frequently within Scotland [32]. This77

behaviour is known as risk aversion, and has been shown to be an important con-78

sideration when modelling disease spread within a population [33]. Adaptation in79

response to policy change, however, has also been reported to mitigate the potential80

benefits of these policies, leading to temporary reductions in prevalence followed81

by gradual increases, and long-term boom and bust dynamics as new policies are82

introduced [15].83

While many approaches to modelling disease spread via livestock trade have involved84

replaying a historic set of animal movements overlayed with a simulated disease85

process [10, 11, 19, 21, 34, 35], it is challenging to infer future trading patterns using86

this approach, or indeed how farms may change their trading patterns in response87

to new policy. Despite these inadequacies, there have been few attempts to develop88

mechanistic and generative models of trade using data to inform general trading89

propensities and patterns of farms. Such attempts have focused on analysing the90

global properties of the system, ignoring individual heterogeneity and responses [36]91

or restrict trading dynamics by assuming a fixed list of farms from whom animals92

can be purchased [37].93

Here we extend our previous trading model outlined in [38], incorporating a stochas-94

tic dynamical trading model including the individual supply- and demand-based95

trading behaviour of [36, 37]. This represents, to our knowledge, the first attempt96

at creating a truly dynamic generative model of trade in which the actions of indi-97

viduals are adaptive to system-wide stock properties. Our model is not intended to98
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replicate any known trading system, however some assumptions outlined below are99

informed by past analyses and studies of the Scottish cattle trading system. In this100

model, farm trading patterns are determined by current demand, and the resulting101

trading system is an emergent property of the collective actions of farms’ attempts102

to form trading partnerships and trade with appropriate sellers. We will show that103

this dynamic modelling approach leads to trading systems that are highly resilient104

to shocks in farm stock levels (Section 3.2.2), and the trading patterns of farms105

will adapt to long-term changes in trade, finding new avenues by which demand is106

satisfied and animal flows are maintained (Section 3.2.3). We will explore the poten-107

tial of such adaptive behaviour on endemic disease spread, finding that adaptation108

hinders the potential benefits of changes to trade, meaning that significant stress109

must be imposed on the system for meaningful reductions in between-farm preva-110

lence (Section 3.3.1). We will analyse the impact of post-movement batch testing on111

both between-farm prevalence and on the trading system (Section 3.3.2). It will be112

shown that testing can be an effective disease control measure when test sensitivi-113

ties are high, with short-term disturbances to trade observed while disease is cleared114

from the system. However, for low sensitivity tests, we will show that long-term115

disturbances to the trading system emerge, and disease cannot be fully eradicated.116

2 Materials and methods117

2.1 An individual-based systems models of trade dynamics118

We assume a closed system of N competitive, interacting market agents (farms) that119

both form and end dynamic, directed trading partnerships, and trades occur in the120

direction of these partnerships with variable batch sizes. The dynamic elements of121

this trading system are determined by individual-level time-varying stock quantities,122

representing an individual’s available supply and demand at a given time t. We define123

Si(t) and Di(t) as individual i’s available supply and quantity of goods demanded at124

time t, respectively. Thus, in contrast to earlier studies [36, 37] this model represents125

both dynamic trade events and a dynamic partnership network between farms whose126
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Figure 1: Dynamic trading network Model flow diagram highlighting system processes that

generate the trading network

trading needs are not constant over time [38] but vary contingent on past trades as127

well as continuous generation of new demand. A full outline of model quantities128
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and parameters are presented in Table 1, model processes are illustrated in Figure129

1, and all results presented are generated using a Gillespie Stochastic Simulation130

Algorithm (SSA) [39, 40]. All processes defined below are stochastically generated.131

Our model is general so that distributions of these quantities are arbitrary, however132

in Section 3.1 we specify how these quantities are distributed for this study.133

2.2 A global pricing strategy and mechanisms of stock gen-134

eration135

The global (system-wide) supply and demand, defined as S(t) =
∑N

i=1 Si(t) and136

D(t) =
∑N

i=1 Di(t), respectively, determine a global price of goods at a given time137

t, P (t). We adopt the pricing model of [36] and assume that the rate of change of138

the logarithm of the price is proportional to the rate of change of the global excess139

demand, defined as D(t)− S(t), i.e.140

d

dt
P (t) = σP (t)

d

dt
(D(t)− S(t)) ,

⇒ P (t) = P0 exp(σ(D(t)− S(t)− (D0 − S0)))

where P0, D0, and S0 are, respectively, the price, global demand, and global supply141

at t = 0. The constant σ represents the sensitivity of price to excess demand, i.e.142

the market response to imbalances in stock levels. For small values of σ, large stock143

imbalances are required for large changes in price, and vice versa for large values of144

σ. Unlike the pricing model of [36], σ is not dimensionless, and there is an implicit145

dependence on the system size N . We assume that the system begins in an initial146

stock-free state, so that D0 = S0 = 0, meaning P0 = P ∗ can be interpreted as the147

equilibrium price when supply and demand are balanced (when the market is in148

price equilibrium). Thus, we have149

P (t) = P ∗eσ(D(t)−S(t)). (1)
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Quantity Definition

N Number of farms

Di(t) Demand of farm i at time t

Si(t) Supply of farm i at time t

D(t) Global demand at time t

S(t) Global supply at time t

P (t) = P ∗ exp(σ(D(t)− S(t))) Price of goods at time t

P ∗ Market equilibrium price

σ Price sensitivity to global excess demand

ηi(P ) = η∗i (P (t)/P ∗)−ǫD Rate at which farm i generates new demand

given current price P (t)

η∗i Rate at which farm i generates new demand at

market equilibrium

ǫD Price elasticity of demand

ζi(P ) = ζ∗i (P (t)/P ∗)ǫS Rate at which farm i generates new supply given

current price P (t)

ζ∗i Rate at which farm i generates new supply at

market equilibrium

ǫS Price elasticity of supply

αij(t) =
ai
N
Di(t)Sj(t)

m Rate at which farm i forms a trading partnership

with farm j given no current partnership

δi Rate at which farm i ends a current trading part-

nership

ϕij(t) = bi min(Di(t), Sj(t)) Rate at which farm i trades with its trade part-

ner j at time t

θij(t) = min(Di(t), Sj(t)) Size of trade following a trade between farm i

and its trade partner j

Table 1: Table of model quantities and their respective definitions
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Note that the price is determined not by the absolute value of global supply and de-150

mand, rather by the relative imbalance between them. The functional form of P (t) is151

desirable as it does not permit negative prices, and replicates simple macroeconomic152

properties, namely that positive excess demand (global demand larger than global153

supply) causes price increases, negative excess demand (global demand smaller than154

global supply) causes price drops, and balanced supply and demand causes the price155

to equilibriate.156

Our global pricing model contains information on system-wide imbalances in sup-157

ply and demand at a given time t. This information instantaneously propagates158

throughout the system via proportionate alterations to farm-level stock generation.159

We assume market agents (farms) generate single units of stock with per-farm, at160

time t price dependent rate ηi(P ) for farm i’s demand and ζi(P ) for i’s supply.161

Following [36] we assume the functional forms of ηi(P ) and ζi(P ) are162

ηi(P ) = η∗i

(

P (t)

P ∗

)−ǫD

, (2)

ζi(P ) = ζ∗i

(

P (t)

P ∗

)ǫS

, (3)

however we exclude stock losses, external flows (flows of goods leaving the system163

or entering the system from external sources), and we do not characterise farms as164

strict buyers or sellers. The constants η∗i and ζ∗i represent stock generation rates165

at market equilibrium, i.e. when global stock levels are balanced and P (t) = P ∗.166

While individual farms are not explicitly defined as buyers or sellers, this can be167

included in the model by choosing appropriate values for η∗i and ζ∗i , for example168

setting η∗i = 0 and ζ∗i > 0 results in farm i generating no demand and generating169

supply at some non-zero rate; thus, farm i is a strict supplier. The constants ǫD170

and ǫS are, respectively, the price elasticities of demand and supply. Their values171

determine the sensitivity of stock generation to perturbations of the price around172

the market equilibrium price and, for simplicity, we have assumed they are constant173

across farms, so that the market as a whole responds in a similar relative manner to174

alterations in price. We note that changes in price do not alter current farm-level175
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supply and demand, rather they alter the rates at which farms generate future supply176

and demand. Increases in price beyond the market equilibrium price decrease the177

rate at which new demand is generated and increases the rate at which new supply178

is generated, and vice versa. This, combined with our pricing model described179

above replicates the so-called Law of Supply and Demand. There is a feedback loop180

between the price of goods and stock levels: surplus demand leads to increases in181

price, which causes the demand generation rate, ηi(P ), to decrease and the supply182

generation rate, ζi(P ), to increase. Over time, this results in more supply generated183

than demand, the surplus demand diminishing, and the price begins to return to the184

market equilibrium price P ∗. As the price returns to the equilibrium price, the stock185

generation rates return to their equilibrium values η∗i and ζ∗i . Thus, the inclusion of186

a pricing model can act as a corrective mechanism to prevent stock divergences. We187

will show in Section 3.2.1 that the exclusion of a pricing model will indeed lead to188

long-term imbalances in supply and demand levels.189

2.3 The dynamics of trade partnerships190

In a previous model of dynamic trade, we introduced dynamical trading partner-191

ships between farms that facilitated the movement of animals [38]. This innovation192

enabled representation of a dynamic network of trade partnerships on which trades193

occurred. Here we extend this concept to our supply- and demand-based model by194

supposing the rates at which farms seek out new trading partners is influenced by195

current farm-level demand, i.e. farms with large demand will seek out new trading196

partners with greater urgency than a similar farm with low demand. The rate at197

which a farm i forms a trading partnership with another farm j, assuming there is198

not a partnership currently present, is given by199

αij(t) =
ai
N
Di(t)Sj(t)

m, (4)

where ai is a constant representing the general propensity for farm i to seek out new200

trading partners, and m is a measure of the influence prospective trading partners’201
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supply has on whether a given farm is chosen to be a trading partner. For small m,202

and especially the extreme case when m = 0, supply is less of a determinant in the203

choice of trade partners and trade partners are chosen more uniformly. Conversely204

for large m, farm-level supply is much more influential and large supply farms are205

more readily chosen as trade partners than small supply farms. The functional form206

of αij(t) is informed by past analysis of the Scottish cattle trade system [38], and207

has functional similarities with the gravity model of trade describing flows between208

individuals [41], though we neglect distance between farms as a consideration in209

farms’ choice in trade partners. For simplicity, and again informed by past analysis210

of cattle trade dynamics [38], we assume that current trade partnerships end with a211

constant rate δi for farm i. The number of concurrent trading partnerships of farm212

i at time t, equivalent to i’s degree in network terminology, is defined as ki(t).213

As farm-level supply and demand are dynamic and vary over time, so do the dy-214

namics of trade partnership formation; periods of high demand will cause a surge in215

partnership formations, followed by the gradual removal of these trade partners as216

demand is satisfied.217

2.4 The dynamics of trade218

The movement of animals between farms via trade is mediated by the presence of219

trade partnerships; trades can only occur between a farm i and another farm j if j is220

a current trading partner of i. Previous mechanistic models of trade have assumed221

trade dynamics are dependent on long-term properties of farms, namely in- and out-222

flows of animals [36, 37, 38]. This results in trading patterns that are unaffected by223

changes in farms’ business requirements, for example satiation of farm-level demand.224

As with the dynamics of trade partnerships, we incorporate a dynamic rate of trade225

between farms of the form226

ϕij(t) = bi min(Di(t), Sj(t)) (5)

for farm i and its trading partner j. The constant bi is intended to represent any227
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impediment to efficient trade (trade friction) [36]. As with the partnership formation228

rate αij(t), the rate at which farms purchase stock is driven entirely by current229

demand levels, rather than long-term trading trends. For a farm i, ϕij(t) allocates230

the highest trade rate to a trade partner j that can match or exceed i’s demand.231

Therefore, trading partners that exceed i’s demand are essentially equivalent and232

have the same probability of being chosen for trade. Our trade rate neglects harder233

to quantify variables that may be present in real-world trading systems, e.g. farmer234

reputation. In addition, current price of goods P (t) does not directly influence the235

rate at which farms trade, though may impact it indirectly as, for example, periods236

of high prices correspond to periods of large demand generation via ηi(P ), increasing237

demand and thus ϕij(t).238

Trades initiate a batch movement of animals, which lead to a depletion of the demand239

of the purchasing farm and the supply of the selling farm, the size of which is also240

determined by current stock levels:241

θij(t) = min(Di(t), Sj(t)). (6)

At most, farms will purchase enough animals to satisfy their demand at a given time,242

and sellers operate on a first-come, first-served basis, i.e. sellers will offload their243

entire supply in a single trade if demanded. Farms, therefore, buy and sell based244

on current market pressures, excluding any forecasting, allocation of stock, future245

agreements to sell, etc. Analysis in [37] for a subset of the French cattle trading246

system found that batch sizes that allocated stock in this manner resulted in sim-247

ulation output most closely resembling real-world movement dynamics, suggesting248

that farms do indeed purchase and sell animals in the most fluid way possible.249

Interpreting θij(t) is straightforward: supply and demand are indivisible quantities250

in our model, representing animals available for sale and number of animals a farm251

wants to buy at a given time, respectively. As such, batches can take minimum size252

1, i.e. a single animal moved. The maximum size, however, is determined by current253

stock quantities of the buying and selling farm, which can lead to residual supply254
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or demand following a batch movement if, for example, a buying farm’s demand is255

greater than the selling farm’s supply. Therefore, transactions are imperfect [36] in256

the sense that batch movements may not fully satisfy the buyer’s demand. Residual257

stock from a trade is carried over and influences future trades. In all cases, trades258

will always fully satisfy either the demand of the buying farm or the supply of the259

selling farm (or both) as batch sizes allocate the maximum amount of available goods260

between buyer and seller.261

When running a simulation, the trading system of our mechanistic model develops262

from an initial disconnected state (farms do not possess any trade partners) in263

which farms have no supply or demand. As farms generate new supply and demand,264

they dynamically search for appropriate trading partners and begin trading. Thus,265

the trading system develops based on individuals’ desire to meet current business266

requirements, and is adaptive to global stock imbalances via alterations to pricing267

and new stock generation. Moreover, at the individual level, farms modify their268

trading patterns based on changes to their demand and other farms’ supply.269

3 Results270

3.1 System parameterisation271

Throughout this article we assume a constant N = 1000 farms. To parameterise272

the system, we assume equilibrium (at price equilibrium P ∗) farm stock generation273

rates, η∗i and ζ∗i for farm i, and the average duration of trade partnerships, τi = 1/δi,274

are drawn from Power-Law distributions of the form px ∼ x−y with parameters275

given in Table 2. For stock generation rates, we impose maximum values for η∗i276

and ζ∗i , set to 1000 each, and any values that exceed this maximum are rejected277

and another sample from the distribution is drawn. We do not impose any such278

maximums for partnership durations, as very long partnership durations correspond279

to effectively permanent trading partnerships. We note here that our parameter280

values are not intended to replicate any known trading system, rather values are281

chosen that result in a highly active trading system in which large numbers of animals282

13



Parameter Value Definition

ηmin 5 Minimum demand generation rate

ζmin 5 Minimum supply generation rate

ηmax 1000 Maximum demand generation rate

ζmax 1000 Maximum supply generation rate

<η> 20 System average demand generation rate

<ζ> 20 System average supply generation rate

ηexp 2.33 Exponent for distribution of η∗i

ζexp 2.33 Exponent for distribution of ζ∗i

τmin 0.5 Minimum partnership duration

<τ> 1.5 System average partnership duration

τexp 2.5 Exponent for distribution of τ

P ∗ 1 Market equilibrium price

σ 0.0001 Price sensitivity to global excess demand

ǫD 0.412 Price elasticity of demand

ǫS 0.821 Price elasticity of supply

Table 2: Table of model parameters, their values, and corresponding definitions. Values for the

price elasticities of supply and demand are taken from UK-FAPRI model 2011 [42]

are exchanged between farms. Power-Law distributions are chosen because scale-free283

(or approximately scale-free) trading behaviour has been observed in many trading284

systems [6, 8, 9], and such distributions produce large heterogeneity in individual285

trading patterns.286

To match desired system averages for each quantity (as given in Table 2), we scale287

each value sampled from the Power-Law distribution by a necessary scaling factor,288

except for farms whose values are either the minimum value of the respective distri-289

bution or, in the case of in- and out-flows, whose η∗i and/or ζ∗i exceed the maximum290

of the distribution. This in turn ensures that total in- and out-flows are equal.291

For simplicity, we here neglect explicit correlations between farm flows, however292

previous analysis of the Scottish cattle trading system revealed only weak positive293
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relationships between a farm’s in- and out-flows [38].294

From past analyses of the Scottish cattle trading system, a strong positive linear re-295

lationship between a farm’s in-flow and number of concurrent trading partners ki(t),296

and number of trades and concurrent trading partners has been observed [38]. To297

exploit these relationships, we relate farm flows to stock generation rates by assum-298

ing that over sufficiently long time periods, the two quantities are equal [36, 37]. In299

other words, over time farms find patterns of trade such that animal in-flows match300

the demand generated, and similarly for animal out-flows and generated supply.301

This equivalency allows us to obtain expected numbers of trading partners, <ki>,302

and number of trades, <Φi>, for individual farms i solely from their equilibrium303

demand generation rate η∗i by assuming linear relationships of the form304

<ki> = mkη
∗

i ,

<Φi> = mΦ<ki>.

We choose mk = 0.25 and mΦ = 1.5 for each farm i, which, given <η> = 20, yields305

a system-average number of concurrent trading partners of 5 and system-average306

number of trades of 7.5.307

Obtaining values of ai and bi so that per-farm average number of concurrent trading308

partners and number of trades are maintained is challenging. This is due to the309

dynamic nature of the partnership formation rate αij(t) and trade rate ϕij(t) through310

their dependence on farm-level at time t supply and demand. To obtain values of311

ai and bi, we use an iterative process outlined in Electronic Supplementary Material312

(ESM) Section 1 that takes initial values of ai and bi, simulates the system, and313

calculates the factor difference between the simulated output for number of trading314

partners and trades for each farm i and their expected value as described above. The315

values of ai and bi are scaled by these factor differences, the system is re-simulated316

and the process repeats. ESM Figure 2 shows that this process is able to obtain317

values of ai and bi such that desired global individual trading properties for each318

farm are met.319
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Figure 2: Impact of price sensitivity on trade network Trading system response to various

values of σ. In all cases except when σ = 0 the trading system is largely unaffected by market

sensitivity to stock imbalances, with the system reaching similar equilibria regardless of σ. The

special cases when σ = 0, which corresponds to the absence of a price model, results in unstable

system-level supply and demand, with long-term divergences observed. Each trajectory is obtained

by averaging over 15 independent stochastic simulations

Our resulting parameterised trading system has stable equilibria, with independent320

stochastic simulations yielding very similar equilibrium values for all components of321

trade. Variation around these equilibria are the result of inherent stochasticity of322

stock generation, formation and cessation of trade partners, timing of trade, and323

batch sizes.324

3.2 Model analysis325

3.2.1 Exclusion of a pricing model can lead to divergent stock levels326

We first explore the systems- and individual-level impact of various values of the327

price sensitivity parameter σ, which dictates the price response to imbalances in328
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global supply and demand, and in turn informs alterations to farm-level supply and329

demand generation via ζi(P ) and ηi(P ), respectively. Thus, large values of σ yield330

pricing models that are more sensitive to small imbalances in system-wide stock331

imbalances, e.g. small excess demand yields large increases in price. As these large332

increases in price yield large alterations to stock generation rates, large values of σ333

correspond to trading systems that can more readily correct stock imbalances and334

return to market equilibrium. Figure 2 shows that the long-run trading properties335

of the system are largely unaffected by the value of σ, with the system reaching336

similar equilibria even for very small σ, i.e. when the system is less responsive to337

stock imbalances. The exception is the special case when σ = 0, which is essentially338

equivalent to the absence of a pricing model. In this case, the price is always equal339

to its market equilibrium price (P (t) = P ∗ ∀ t), such that farm stock generation340

rates do not deviate from their equilibrium values (ηi(t) = η∗i and ζi(t) = ζ∗i ∀ i, t).341

As such, imbalances in supply or demand are not corrected for by alterations to342

stock generation rates, leading to imbalances growing over time and stocks (supply343

and demand levels) diverging (see ESM Figure 3). ESM Figure 4 shows that these344

divergences can occur in both supply or demand and are not confined exclusively to345

either of these quantities. We note from ESM Figure 3 that larger values of σ result346

in individual- and systems-level responses as predicted above, namely that large σ347

results in price dynamics that are more responsive to global stock imbalances, which348

result in greater supply and demand generation rates. For small σ global supply349

and demand must become more imbalanced before price deviates from the market350

equilibrium price sufficiently such that stock generation rate values update and im-351

balances are corrected. We note that for real-world systems, σ will be partially352

determined by the product being sold. For example, for luxury or “rare” products,353

where the market may be more sensitive to the introduction of new supply or po-354

tential buyers (thus, increased demand), we would expect large values of σ. Thus,355

σ is a measure of price volatility [43].356
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Figure 3: Demand shocks on the trade network System-level response to instantaneous shocks

in farm-level demand. In all cases, shocks are applied at t = 50 and x-axes are log
10

scaled. For a

shock of size s, all farms i instantly update their demand to Di(t) → Di(t) + s. Each trajectory is

obtained by averaging over 15 independent stochastic simulations.

3.2.2 System resilience to shocks in supply and demand357

We now explore the resilience of our trading system to instantaneous individual-358

level shocks in supply and demand. This reveals the ability for individuals (and359

thus the system as a whole) to adapt trading patterns in response to perturbations360

from equilibrium in a way that leads to small disturbances in the long run. We first361

analyse shocks in demand, allowing the trading system to reach equilibrium before362

an instantaneous demand shock, at a given time t, to all farms, e.g. farm level363

demand instantaneously rises. This instantaneous generation of demand may occur364

following culling to control a disease outbreak. The response to similar shocks to365

supply, to both supply and demand, and also the removal of all supply and demand366

are shown in ESM Section 3. Figure 3 and ESM Figure 5 show the system is resilient367

to shocks in demand due to individual-level changes in trading patterns in response368
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Figure 4: Evolution of trade network in response to changes in trade frequency System-

level average trading quantities for various values of the trade frequency scaling parameter εb. For

εb < 1, farms trade less frequently, and for εb > 1 farms trade more frequently. In all cases, the

trading system reaches an equilibrium at εb = 1 before changes to εb are made at t = 50. Axes are

log
10

scaled. Each trajectory is obtained by averaging over 15 independent stochastic simulations.

to these shocks, as well as appropriate changes in stock generations rates caused by369

price increases in response to stock imbalances that demand shocks introduce. In370

particular, shocks (instantaneous increases in the presented case) in demand cause371

large imbalances in global supply and demand, which in turn increases price. This372

leads supply and demand generation rates ζi(P ) and ηi(P ) to immediately adjust so373

that over time less demand, and more supply, is generated allowing excess demand374

to be cleared.375

At the farm level, shocks alter trading patterns as farms seek to satisfy the additional376

demand these shocks introduce. Following the shock, farms immediately form new377

trading partnerships and trade more frequently, with trades occurring with larger378

batch sizes. Even for very large shocks in demand, average farm supply does not379

drop to zero because of the adjustment to stock generation rates resulting in very380
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large supply generation to meet the increased demand of farms. For all shocks to381

demand, the system eventually returns to the pre-shock equilibrium, highlighting the382

system can respond appropriately to shocks such that long-term disturbances to the383

trading system are averted. Of note is the observation that the time for the system to384

return to pre-shock equilibrium is the same regardless of the size of shock to demand,385

indicating the systems-level response is proportionately similar regardless of the size386

of shock. We note that this may not be feasible for some real-world systems such as387

cattle trade, as there are biological constraints preventing unrestricted increases to388

the supply generation rate ζi(P ). In addition, while the frequency and size of trade,389

and animal flows, quickly return to pre-shock equilibrium values, the dynamics of390

trading partnerships is slower to return (Figure 3). This is a consequence of the391

trade partnership cessation rate δi being a constant and unaffected by farm-level392

supply and demand. As such, the time for trade partnerships to return to pre-shock393

equilibrium values is determined by the per-farm expected partnership duration 1/δi.394

3.2.3 Farm- and systems-level adaptation to long-term changes to trad-395

ing patterns396

Our analysis of shocks to demand in the previous section highlighted the ability for397

individuals to temporarily adapt their trading patterns and stock generation rates398

to instantaneous perturbations away from equilibrium. We now explore long-term399

individual and system adaptation to permanent alterations to trading propensities.400

To do so, we alter farm-level trading propensities in a manner similar to [38], by401

introducing scaling factors such that402

bi → εbbi,

ai → εaai,

δi → εδδi.

Thus, εb, for example, alters the propensity for farms to trade with their trading403

partners, with εb < 1 decreasing the propensity trade, and vice versa. We introduce404

20



these scaling parameters once the trading system has reached equilibrium at baseline405

trading dynamics (in other words, for εb = εa = εδ = 1), allowing us to investigate406

the initial disturbance to the trading system that permanent alterations to trade407

cause, as well as any long-term adaptation and persistent impacts on trading pat-408

terns. In contrast with previous work exploring such changes (in particular in the409

context of disease control) [36, 38], in which the system response to the above scal-410

ing parameters was linear, here we anticipate a nonlinear response for our dynamic411

trading system. This hypothesis is predicated on the fact that the rates determining412

trade and trade partnership dynamics are functions of at time t supply and demand413

of farms, which are likely to be affected by alterations to trading propensities.414

We consider alterations to the propensity for farms to trade with their trade partners415

by exploring various values of εb (we perform similar analyses for εa and εδ in ESM416

Section 4). Figure 4 shows that in general, for εb < 1 farms trade less frequently417

and with larger batch size. Conversely, when εb > 1, farms trade more frequently418

and with smaller batch sizes. These results concur with previous findings [36, 38].419

However, we observe that after an initial disturbance to trading patterns following420

the change in εb, farms adapt their trading patterns in response to increases or de-421

creases in supply and demand to minimise disruptions caused by changes in trading422

propensities and maintain animal flows. For example, when εb < 1, initial reductions423

in animal in-flows are observed, farms trade with their current trade partners less424

frequently, and farm-level supply and demand begin to increase rapidly. These in-425

creases in supply and demand encourage farms to seek new trade partners, allowing426

farms to overcome the reductions in trading propensities imposed by εb and trades427

begin to occur more frequently (however they do not return to frequencies observed428

when εb = 1, i.e. at baseline trading patterns). As trades occur less frequently, farms429

accumulate greater levels of supply and demand before a trade occurs, resulting in430

increased batch sizes. This relationship between trade frequency and batch size al-431

lows farm flows to return to desired levels even for very small εb, however we note432

in these cases animal flows are more variable around the equilibrium than for large433

εb (εb ≥ 1). The system reorganises itself so that animal flows return to the same434
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equilibrium levels as before. However, the trading system itself returns to a new435

equilibrium with different numbers of trade partners, trading frequencies, and batch436

sizes compared with the system equilibrium before changes to trading propensities437

are introduced.438

ESM Figure 11 shows that trade flows are maintained for a wide range of values439

of εb, but other aspects of the new equilibria the system reaches are exponentially440

related to εb for εb < 1. However this relationship is not observed for εb > 1. Larger441

values of εb leads to, in general, more frequent trade so that farm-level supply and442

demand, and batch sizes, decrease. However, batches can take minimum size 1, so443

there are threshold trading frequencies at which point increasing εb further result in444

negligible alterations to the equilibria the system reaches.445

Thus, the dynamic trading behaviour of individual farms and the behavioural re-446

sponse as trading propensities are changed allow for farms to find new avenues of447

trade to maintain desired animal flows. These individual responses drive changes448

to the structure of the whole trading system, with the system rapidly adapting and449

adjusting its structure even for very large changes in trading propensities, before450

finding a new stable structure in which animal flows are maintained. Individual-451

and systems-level responses and adaptation to regulatory changes in trade such that452

individuals alter their trading patterns has previously been observed, for example453

within the UK cattle trade system [15, 31, 32].454

3.3 Role of dynamic trade in endemic disease persistence455

We have shown that our dynamic trading system can adapt at the individual level to456

shocks and long-term changes to trading patterns. Within the cattle trade industry,457

disease spread within and between farms is a major economic concern, due, for ex-458

ample, to production disruptions these diseases can incur [44]. We now explore the459

role of trade in disease spread and persistence, and the impacts of common biose-460

curity measures on both between-herd disease prevalence and the trading system461

itself.462

We assume from an epidemiological perspective that farms can be treated as a unit463
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Figure 5: Impact of changes in trade frequency on disease Disease prevalence over time (top

panel) and equilibrium prevalence (bottom panel) for various values of the trade frequency scaling

parameter εb. In all cases, the trading system reaches an equilibrium at εb = 1 before changes to

εb are made at t = 50. For top panel, the x-axis is log
10

scaled. Each trajectory is obtained by

averaging over 15 independent stochastic simulations.

and disease status can be applied to the whole farm, that is to say we ignore within-464

herd disease dynamics. As such, farms are classified as either susceptible (S) and465

can be infected by others, or infectious (I) allowing them to infect other premises.466

For simplicity, disease spread is modulated entirely through trade, ignoring other467

sources of infection such as external wildlife reservoirs and non-trade related con-468

tacts between farms. An infected farm has constant within-herd prevalence λ while469

infected. This prevalence is unaffected by herd demographics (for example births470

and deaths) or farm flows (introduction of new animals into the herd or animals471

leaving the herd via trade). Thus, we neglect the potential for trade to remove472

infection from a farm by selling infected animals (rapid trade as a counter intuitive473

measure to reduce disease persistence has previously been shown in a trading model474

with mandatory post-movement animal testing [45]). As such, estimated reductions475
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in prevalence are likely to be conservative. Infectious farms remain infectious for476

an exponentially distributed period of time with expectation 1/γ at which point477

they return to the susceptible category and can be infected once again. We assume478

recovery from disease does not incur any financial burden on farms, nor does it alter479

supply and demand levels. In addition, infected farms are näıve to their disease sta-480

tus, incurring no financial burdens and do not alter their trading patterns. Trades481

modulate the spread of disease through both the frequency of infectious contacts482

and the probability of infection by assuming that larger batch sizes increase the483

probability of transmission. The probability that a susceptible farm i is infected by484

its infectious trade partner j is given by485

B (θij(t)) = 1− (1− λ)θij(t) , (7)

so that trades of larger batch size are more likely to spread disease. The trans-486

mission rate between i and j (while the trade partnership exists) is thus βij(t) =487

ϕij(t)B(θij(t)), i.e. the rate at which i initiates a trade with j multiplied by the488

probability the resulting trade results in disease transmission.489

In all cases below, we assume λ = 0.25 and 1/γ = 3, intended to represent a highly490

prevalent and persistent disease. Under the parameterisation outlined in Table 2,491

this disease results in an equilibrium between-herd prevalence of 0.85, i.e. at any492

given time only 15% of farms are disease free. In all simulations presented, we allow493

the disease to reach equilibrium before we impose any changes to trade. Thus our494

analysis restricts itself to the impact of changes to trade on endemic diseases at495

equilibrium within the trading system.496

3.3.1 Individual adaptation to changes in trading propensities hinders497

disease control498

Altering individual trading propensities has previously been shown to be beneficial in499

controlling disease, with infrequent large trades reducing endemic disease prevalence500

[36, 38]. However, in Section 3.2.3 we showed that individuals adapt their trading501
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patterns in response to alterations in trading propensities, finding new avenues of502

trade that maintain animal flows. We now explore the potentially hindering conse-503

quences on disease prevalence reduction incurred by such adaptation by introducing504

similar long-term changes to trade via the scaling parameters outlined in Section505

3.2.3. To highlight the role of adaptation in our dynamic trading model, in ESM506

Section 6 we simulate our system under our previous trading model introduced in507

[38]. We here focus on changes to trade frequency via the scaling parameter εb (see508

ESM Section 5 for similar exploration of changes to trade partnership dynamics via509

εa and εδ).510

Figure 5 shows the impact of changes to εb on disease prevalence. In general, decreas-511

ing εb decreases prevalence, i.e. trading infrequently decrease prevalence. However,512

complete eradication is only possible in the extreme case when trades occur very513

infrequently and with batches of very large size. This is a consequence of the adap-514

tation of farms, with increased supply and demand causing farms to seek out a515

larger number of trade partners increasing the connectivity of the system, and thus516

susceptible farms are more exposed to infected farms. Comparing with ESM Fig-517

ure 19, we see that this adaptation prevents disease eradication for a large range518

of values of εb. While decreasing εb can reduce prevalence if the system is stressed519

sufficiently, significantly increasing εb (so that the farms trade more frequently with520

smaller batch sizes) does not increase disease prevalence. Large εb increases the fre-521

quency of trade which reduces farm-level unmet supply and demand and the batch522

size of trades. As such, farms decrease their number of trade partners reducing their523

exposure to infected farms, preventing increased disease spread as may be expected.524

ESM Figure 19 shows that without this dynamic feedback, increased values of εb525

do lead to increased disease prevalence, though we note that this increase is small526

and saturates as εb increases. To investigate whether this is due to the high baseline527

prevalence observed when εb = 1, we investigated increasing εb for a disease charac-528

terised by herd prevalence λ = 0.1 and recovery rate γ = 2/3, resulting in a long-run529

disease prevalence of approximately 40%. ESM Figure 16 shows that increasing εb530

does not significantly alter disease prevalence, suggesting the negligible changes in531
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Figure 6: Impact of movement testing on the trade network and disease prevalence

Impact of testing and whole batch removal on the trading system and disease prevalence for various

test sensitivities. In all cases the trading system reaches an equilibrium in the absence of testing

before testing is introduced at t = 50. Long-term disturbances to trade are observed for low test

sensitivities, however for high sensitivities the system returns to pre-test equilibria. Each trajectory

is obtained by averaging over 15 independent stochastic simulations.

prevalence observed in Figure 5 when εb is increased is not a unique case, but is532

rather a characteristic of the farm adaptation described above.533

Thus, individual adaptation to changes in trade, while beneficial in maintaining534

animal flows, can be detrimental to disease control, highlighting the complexities of535

dynamic trade and the need to incorporate behavioural responses in assessments of536

disease control strategies.537

3.3.2 Assessing the effect of post-movement testing on prevalence and538

the trading system539

The testing of traded animals before introduction into herds is a commonly prac-540

ticed control strategy for many livestock diseases, whether mandatory in the case of541
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Figure 7: Impact of test sensitivity on long-run trade dynamics and prevalence under

movement testing Equilibrium values of various trading quantities after testing is introduced for

the whole batch rejection (solid lines) and individual animal rejection (dashed lines) regimes. For

all test sensitivities ξ, whole batch rejection yields greater reductions in prevalence than individual

animal rejection except for ξ ≥ 0.95, where both regimes fully remove disease. Whole batch

rejection, however, leads to greater disturbances to the trading system for ξ < 0.85.

Bovine Tuberculosis [30] or non-mandatory for paratuberculosis [46], for example.542

We here explore the potential benefits of mandatory post-movement testing on re-543

ducing between-herd disease prevalence, and the disturbances to the trading system544

that such testing incurs.545

Consider a test-and-reject strategy in which buyers test batches of traded animals546

and reject the batch if at least one animal tests positive for infection (we implicitly547

assume 100% test specificity). Rejected animals are immediately removed from the548

system. Batches with infected animals that avoid detection can thereafter infect the549

buying farm. For a test with sensitivity ξ, the probability that a batch of size θ from550

an infected farm avoids detection is (1− λξ)θ. For a farm pair i and j where j is a551

trading partner of i, and i is susceptible and j infected, the expected update to the552
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demand of i and supply of j following a trade is553

Di(t) → Di(t)− θij(t) (1− λξ)θij(t) ,

Sj(t) → Sj(t)− θij(t).

We note that the above update to stock is an expectation, permitting real-valued554

updates to demand. Supply, demand, and batch size are integer values so in sim-555

ulation the number of animals rejected will also be integer-valued. In simulation,556

therefore, either the whole batch is accepted with probability (1 − λξ)θij(t), or the557

whole batch is rejected with probability 1− (1− λξ)θij(t). Thus, our test-and-reject558

strategies will necessarily lead to stock imbalances, with the greatest imbalances for559

tests with higher sensitivity.560

We also consider a test-and-reject individual animal regime. This is similar to the561

whole batch rejection regime, however individual animals are removed from the562

system if they test positive for infection rather than the entire batch. In this case563

the probability that an infected animal in a batch avoids detection is 1− ξ, and the564

expected update to stocks for the i, j pair above is565

Di(t) → Di(t)− θij(t)(1− λξ),

Sj(t) → Sj(t)− θij(t).

As with the whole batch rejection regime, the above updates to demand represent an566

expectation so can be real-valued. In simulation, an integer number of test positive567

animals are removed from the batch so the batch size remains integer-valued. We568

see that for 0 < ξ ≤ 1, whole batch rejection will lead to greater imbalances in569

stocks when batches take size larger than 1. When ξ = 1, the two testing regimes570

will fully eradicate disease, however individual animal rejection is preferable as this571

testing regime will incur smaller temporary disturbances to the trading system.572

Figures 6 shows the impact of whole batch rejection on the trading system and573

between-herd disease prevalence (equivalent figure for individual animal rejection is574
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provided in ESM Section 7). We here introduce an additional measure of stress on575

farms, net income. We define a selling farm’s net income as the number of animals576

in a batch that are not rejected multiplied by the current price, P (t). In general,577

low test sensitivities are unable to fully remove disease resulting in persistent and578

long-term disturbances to the trading system, with increased prices resulting in579

farms permanently altering their stock generation dynamics. On the other hand,580

for high test sensitivities, disease can be fully removed and disturbances to the581

trading system are temporary and rapidly return to pre-testing equilibrium values.582

Considering Figure 7, which shows the equilibrium values of the trading system post-583

introduction of testing (for both whole batch and individual animal rejection), we see584

that there is a maximum long-term disturbance to the trading system when ξ = 0.55585

for whole batch rejection, a test sensitivity for which detection occurs frequently586

enough to significantly disturb the trading system but is insufficient in fully removing587

disease. Moreover, whole batch rejection leads to larger long-term disturbances588

than individual animal rejection when ξ < 0.85. For higher test sensitivities, the589

disturbances of whole batch rejection are similar to individual animal rejection, and590

we observe that in this regime disease can be fully removed at lower test sensitivities591

than with individual animal rejection.592

4 Discussion593

In this article we have introduced a dynamic trading model in which individuals’594

trading patterns vary based on individual stock quantities representing supply and595

demand, framed in the context of a closed system of cattle trade between farms. This596

model is inspired by previous work but goes beyond current mechanistic models of597

trade by incorporating dynamic trade partnerships, as well as incorporating supply598

and demand levels into partnership formation rates and trade rates [36, 37, 38].599

Individuals in our trading system are competitive, seeking to minimise their unmet600

demand by forming trade partnerships with large supply sellers and make trades601

with these trade partners. The resulting temporal trade network is an emergent602

property of our system. The development of generative models of network dynamics603
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is a current pressing issue [18] and specifically within livestock trade, mechanistic604

models of trade are needed to understand the interplay between economic and epi-605

demiological interactions in order to design effective proposed measures for disease606

control [47]. Epidemic and endemic diseases within livestock herds are of major607

concern to farmers and governments due to the significant financial burden they im-608

pose [44]. It is well documented that trade contributes to the persistence of endemic609

diseases [8, 11, 21, 25, 26, 27, 28], and was a contributing factor to the long-range610

dispersal of Foot-and-Mouth disease during the 2001 outbreak in the United King-611

dom [21, 22, 24]. Thus, an understanding of the complexities of trade in an effort to612

control disease is of vital importance. The model presented here is one of the few613

attempts to gain a mechanistic understanding of these intricate processes and goes614

beyond earlier studies in its analysis of the dynamic nature of livestock trade and615

its impact on disease spread and persistence [36, 37, 38].616

As real-time trade requirements (represented by supply and demand levels) of indi-617

viduals dictate trading patterns within our model, any individual- or systems-level618

change that impact these quantities result in adaptation and alterations to trading619

patterns. This adaptation to disturbances from equilibrium is a critical emergent620

property of our system, modulated by information on global supply and demand621

through changes in a system-wide pricing model. This pricing model informs nec-622

essary alterations to farm-level stock generation rates and elegantly captures simple623

macroeconomic concepts such as the Law of Supply and Demand [48]. Adaptation624

of trading patterns in response to regulatory changes in trade has previously been625

observed, for example within the UK cattle trading system [15, 32].626

The model presented here is adaptive to instantaneous shocks to farm-level supply627

and demand, with farms rapidly altering their trading patterns over a short period628

of time so that excess stock is cleared, and the equilibrium of the trading system629

is maintained. In reality, responses such as increased supply generation may be630

constrained by biological processes introducing lags that our model does not incor-631

porate. As such, dynamics in response to shocks may be more complex, involving632

alterations to the supply chain from farm to consumer until farms can increase their633
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supply generation. We note that these lags due to the production cycle may also634

affect farm response to changes in price, a complexity we have not considered in635

this article instead assuming that stock generation alters instantaneously following636

a change in price.637

We also showed that individuals will adapt their long-term trading patterns in re-638

sponse to permanent alterations to trading propensities, finding new avenues of trade639

that minimise unmet demand and allow for the maintenance of animal flows. Long-640

term adaptation was shown to have important consequences for the persistence of641

endemic disease. Indeed, despite previous results suggesting simple alterations to642

trading frequency could significantly reduce disease burden [36, 37, 38], we have643

shown that the pressure imposed on farms by unmet demand and their desire to644

maintain animal flows will counteract the potential benefit on disease prevalence of645

such changes to trade, with a high level of resistance to change shown except for646

when trade is significantly stressed. These results are a clear example of the Law of647

Unintended Consequences, where in this case system dynamics act to dampen the648

benefits of a well-intentioned intervention. In particular, they highlight the interac-649

tions in trading systems that must be accounted for if successful disease intervention650

strategies are to be developed.651

We analysed the potential for post-movement animal batch testing and rejecting,652

a typical disease control strategy employed in cattle trading systems [30, 46], to653

reduce disease prevalence for a highly prevalent and persistent endemic disease while654

simultaneously measuring the temporary and long-term implications this control655

strategy has on the trading system. Considering two rejection strategies, one where656

the entire batch is rejected if a single animal tests positive for infection, the other657

where individual animals are rejected if they test positive, we showed that whole658

batch rejection had the greater potential to reduce disease prevalence. However,659

when disease could not be completely removed there were long-term disturbances660

(illustrating the potential for our model to measure stresses on individual farms661

at many levels) to the trading system, with farms altering their trading patterns662

permanently. These disturbances were greater for the whole batch rejection strategy663
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but were also observed for the individual animal rejection strategy. For the whole664

batch rejection, these disturbances were maximised for middling test sensitivities,665

whereas for the individual animal rejection they were maximised for much higher test666

sensitivities (approximate sensitivities of 75%). For high test sensitivities, despite667

small long-term disturbances, short-term shocks to the system were observed for668

both the whole batch and individual animal rejection strategies. Endemic diseases669

such as Bovine Tuberculosis generally have high sensitivity tests (87-90%) [49, 50]670

suggesting disruption to the trading system may be small long-term, however for671

paratuberculosis test sensitivities are generally lower and estimates vary significantly672

[51, 52] so the disruption to the trading system as predicted by our model would673

be much greater (especially for the whole batch rejection strategy). We assumed a674

test specificity of 100%, a not unreasonable assumption given test specificities are675

generally very high (for example, >99% for the bTB skin test and ELISA test for676

paraTB [49, 51]. However, for specificities <100% false positives will lead to greater677

disturbances to the trading system, but may not alter the long-run impact of testing678

high test sensitivities. Therefore, our results showing the disturbance to the trading679

system may be a slight underestimate, but a more thorough analysis of the impact680

of test specificity is required to fully understand the impact of low test specificity681

under our model. We note that the alterations to trading patterns observed here682

are a consequence of the impact on the trading system imposed by post-movement683

testing and subsequent removal of detected animals. However, it has previously been684

reported that behavioural responses altering trading patterns due to similar control685

measures were, at least partially, a result of risk aversion whereby farms avoid high-686

risk farms [32]. The inclusion and analysis of risk-averse trading is possible within687

our modelling framework and will be the basis of future work.688

Our modelling framework is flexible and may be expanded to incorporate many el-689

ements of real-world trading. For example, we assume that trading behaviour and690

decisions are driven entirely by current farm-level supply and demand. As such,691

we neglect harder to quantify components of trade such as reputation, as well as692

future forecasting and decision making based on current price. Moreover, distance-693
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based considerations such as preferentially trading with closer individuals can be694

incorporated into our model and may have important consequences for the spatial695

distribution of disease. There is a trend towards fewer, larger farms in cattle trad-696

ing systems which may have important implications especially over the timescales697

considered in this study [7]. Such farm consolidation is likely to change network698

density, potentially increasing the susceptibility of the system to disease outbreaks.699

Incorporating such consolidation is a potential avenue for future work. Trade part-700

nerships and trades with farms based on animal/farm types, for example beef and701

dairy, is a complexity of many real-world systems not considered here. However,702

our model could be extended to include this increased complexity by, for example,703

defining farm-level supply and demand by animal type. We assumed that recovery704

from disease does not alter farm-level supply or demand, and imposes no financial705

burden on farms. For diseases that require farm intervention to remove, for exam-706

ple slaughter, it may be necessary to consider the resulting changes to farm-level707

supply. Reduced supply due to animal slaughter may lead to increased prices and708

changes to trading dynamics, thus impacting the efficacy of proposed changes to709

trade intended to control disease. Exploring these effects is an avenue for future710

work. Importantly, we have analysed a hypothetical trading system, however with711

the ever-growing availability of large-scale livestock trading datasets, in future work712

we aim to parameterise such a system to our dynamic trading model. We aim to713

assess the ability for our model to predict and replicate real-world trading dynam-714

ics and to explore potential disease control strategies and the resulting stress these715

impose on individuals and the trading system as a whole.716

In this article we have framed our trading model within a livestock trading system.717

However, the model is intended to be general and we anticipate that it can be ex-718

tended to a number of real-world systems in which goods are moved between distinct719

individuals. For example, the trade of plants and trees between nurseries is a ma-720

jor route of disease transmission and persistence [53]. We expect our supply- and721

demand-based trading model to extend and compliment current joint economic-722

epidemiological models of disease spread between plant nurseries [54]. The cur-723
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rent COVID-19 pandemic and resulting control measures have impacted national724

economies and the day-to-day living of individuals. Modelling these impacts and725

subsequent behavioural changes in individuals is an application of our model we will726

explore in future work. Information- and risk-based behavioural changes have been727

shown to compound mandatory restrictions in reducing disease spread [55], how-728

ever to our knowledge, there has been little work in understanding, from a mech-729

anistic modelling perspective, how individual-based financial stresses may dictate730

decision-making and behaviour, nor how these may affect compliance with restric-731

tions. Extending the model presented here to account for human behaviour and732

interactions driven by individual-level demand that may lead to emergent routes of733

disease transmission is the basis of future work.734

In conclusion, we have introduced a dynamic trading model incorporating individual-735

level desire to minimise demand and maintain flows, with resulting trading net-736

works an emergent property of the collective actions of these competing individuals.737

Individual-level adaptation results in a system that is highly resilient to shocks and738

can find new avenues of trade in response to long-term changes to trade. Adapta-739

tion is an important consequence of potential regulatory changes to trade that can740

impact the success of disease control strategies and therefore must be accounted for741

when designing and assessing effective interventions.742
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