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Supplementary material

1 Iterative method for obtaining values of ai and

bi

Obtaining values of ai and bi for each farm i is challenging, as the rates of partnership

formation and trade are functions of time-varying farm-level stock quantities, namely

supply Si(t) and demand Di(t). We use an iterative process to obtain ai and bi by

taking initial values for both constants. Using these initial values, we simulate the

system and obtain equilibrium values for k∗

i (the equilibrium average number of

trade partners for farm i) and Φ∗

i (the equilibrium per unit-time number of trades

for farm i). These values are compared to their expected values (<ki> for number

of trade partners and <Φi> for number of trades) obtained as explained in Section

X of the main text. New values for ai and bi are obtained by calculating the factor

difference between simulated and expected values as follows:

ai(s+ 1) = ai(s)
<ki>

k∗

i (s)
, (1)

bi(s+ 1) = bi(s)
<Φi>

Φi(s)
, (2)

where ai(s) and bi(s) are the values of ai and bi for farm i on simulation s, and k∗

i (s)

and Φ∗

i (s) are, respectively, the equilibrium number of trade partners and trades

for farm i on simulation s. The new values of ai and bi are used to re-simulate the

system, and the recursive formula above is used again to inform updated values of
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Figure 1: Mean Absolute Percentage Error (MAPE) for farms’ average number of trading partners

and trades comparing simulation output from a particular iteration of the parameter fitting process

and the expected values drawn from distributions. Iteration 0 represents the initial state where

ai = bi = 0.1 for all farms i.

ai and bi. This iterative process is repeated until values are obtained that accurately

replicate desired trading patterns for each farm.

Our iterative method is somewhat analogous to an Expectation-Maximisation al-

gorithm (EM algorithm). The EM algorithm calculates an expectation for the log-

likelihood given current parameter estimates, followed by computation of parameter

values that maximise the expectation of the calculated log-likelihood. The two steps

are then iteratively repeated until suitable parameter values are obtained [1].

To assess the fits of simulation to expected values after each iteration of our fitting

method, we use the Mean Absolute Percentage Error (MAPE). Figure 1 shows that

our iterative method quickly finds values of ai and bi that minimises the error be-

tween expected and simulated values. Figure 2 further highlights this, showing after

20 iterations simulation output agrees well with desired trading patterns for farms
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Figure 2: Per-farm fits for average number of trade partners and trades, comparing actual values

(as drawn from their respective distributions) and simulated values after 20 iterations of our fitting

method. Blue lines represent a linear fit. Axes are plotted on a log
10

scale.

across the entire distribution of trading partners and number of trades.

2 Stock divergences

Figure 4 shows the dynamics of global excess demand (difference between global

demand and supply) over time for a number of independent stochastic simulations

in the absence of a pricing model, i.e. when the price sensitivity parameter σ = 0.

In the absence of a pricing model, imbalances in supply and/or demand do not

inform changes in price, and thus farm stock generations rates ηi(P ) and ζi(P ) do

not deviate from their equilibrium values η∗i and ζ∗i . As such, stock imbalances are

not diminished, instead they accumulate over time leading to long-term divergent

imbalances. Figure 4 highlights that these imbalances can occur with equal frequency

for both supply and demand. Thus, our pricing model mitigates stochastic elements
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Figure 3: System-average stock generation rates, price, and global excess demand (the difference

in global demand and supply) for various values of the price sensitivity parameter σ. For all

values of σ, stock generation rates and price are stable, however for larger values of σ we note that

price changes in response to stock imbalances are larger, which result in larger alterations to stock

generation rates. Smaller values of σ result in more variable stock imbalances, and the special case

when σ = 0 results in divergent stock imbalances as the system and individuals cannot alter prices

and stock generation in response to these imbalances. Each trajectory is obtained by averaging

over 15 independent stochastic simulations.

of our model that lead to these imbalances, ensuring supply and demand remain

stable.
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Figure 4: Global excess demand (difference between global demand and supply) for 10 independent

stochastic simulations in the absence of a pricing model, i.e. when price sensitivity parameter σ = 0.

Divergences are not confined to either supply or demand, occurring uniformly based on cascading

imbalances that cannot be rectified by alterations in supply and demand generation rates.

3 Shocks to supply, both supply and demand, and

removal of all supply and demand

3.1 Shocks to supply

Similarly to shocks to farm-level demand as described in the main text, we apply

instantaneous shocks to farm-level supply at time t = 50. Figures 6 and 7 show the

system response to these shocks. In general, shocks to supply result in increased

network connectivity, as well as increased trading frequency with larger batch sizes

in a manner similar to shocks in demand. These changes are temporary while the

increased supply is cleared from the system, after which the system returns to pre-

shock equilibrium values. In contrast with shocks to demand, shocks in supply

result in increases in demand generation rate, reductions in supply generation rate,
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Figure 5: Stock generation rates, price, and global excess demand (difference between global de-

mand and supply) in response to instantaneous shocks in farm-level demand. In all cases, shocks

are applied at t = 50 and x-axes are log
10

scaled. The size of shocks represent the magnitude by

which farm-level supply is increased. Each trajectory is obtained by averaging over 15 independent

simulations.

as well as reductions in price. This is to be expected given our pricing model yields

reductions in price for surplus supply, which translates into increases in demand

generation and reductions in supply generation.

3.2 Simultaneous shocks to supply and demand

Figures 8 and 9 shows the impact of simultaneous, and of similar magnitude, shocks

to both supply and demand. In general, the trading system responds similarly to

shocks in supply and demand, however the impacts on price and stock generation

rates are noticeably different. In particular, there is no change when shocks are

introduced, however this is to be expected as shocks are applied to supply and

demand simultaneously, hence the difference is unchanged by shocks. Thus, price

and stock generation rates are unchanged.
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Figure 6: System-level response to instantaneous shocks in farm-level supply For a shock of size s,

for all farms i supply is updated to Si(t) → Si(t)+ s. In all cases, shocks are applied at t = 50 and

x-axes are log
10

scaled. The sizes of shocks represent the magnitude by which farm-level supply is

increased. Each trajectory is obtained by averaging over 15 independent simulations.

3.3 Removal of all supply and demand

Figure 10 shows the response of the trading system to the instantaneous removal of

all supply and demand. As predicted, removal of all stock results in a sharp reduction

in trading frequency, and the network initially becomes more disconnected. However,

as farms begin to regenerate supply and demand, the system rapidly returns to the

pre-shock state and there are no long-term alterations to the trading system.
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Figure 7: Stock generation rates, price, and global excess demand (difference between global de-

mand and supply) in response to instantaneous shocks in farm-level supply. In all cases, shocks

are applied at t = 50 and x-axes are log
10

scaled. The size of shocks represent the magnitude by

which farm-level supply is increased. Each trajectory is obtained by averaging over 15 independent

simulations.
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Figure 8: System-level response to instantaneous simultaneous shocks in farm-level supply and

demand. For a shock of size s, for all farms i supply and demand is updated to Si(t) → Si(t) + s

and Di(t) → Di(t) + s, respectively. In all cases, shocks are applied at t = 50 and x-axes are

log
10

scaled. The sizes of shocks represent the magnitude by which farm-level stock quantities are

increased. Each trajectory is obtained by averaging over 15 independent simulations.
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Figure 9: Stock generation rates, price, and global excess demand (difference between global de-

mand and supply) in response to instantaneous simultaneous shocks in farm-level supply and

demand. In all cases, shocks are applied at t = 50 and x-axes are log
10

scaled. The size of shocks

represent the magnitude by which farm-level stock quantities are increased. Each trajectory is

obtained by averaging over 15 independent simulations.
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Figure 10: System-level response to instantaneous removal of all supply demand. Stock removal

is applied at t = 50 and x-axes are log
10

scaled. Each trajectory is obtained by averaging over 5

independent simulations.
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Figure 11: Equilibrium values for system-average trade quantities for various values of the trade

frequency scaling parameter εb. Initially, the system reaches an equilibrium at baseline trading

patterns when εb = 1 before changes to εa are made at t = 50. Averages are obtained by averaging

from t = 75 to t = 100.

4 Effect of long-term changes to partnership for-

mations and partnership durations on trading

system

4.1 Changes to εa

Here we explore the effect of alterations to the propensity for farms to form new

trade partnerships, via the scaling parameter εa. As described in the main text, this

parameter linearly scales the per-farm constant ai such that small εa decreases the

propensity for farms to form trade partnerships, and vice versa.

Figure 12 shows the impact on the trading system of various values of εa over time,

and Figure 13 shows the long-term equilibrium values for the trading system once
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Figure 12: System trading quantities for various values of the scaling factor to the partnership

formation rate constant ai, εa. In all cases, the system is allowed to reach an equilibrium at εa = 1

before changes to εa are made at t = 50. For εa = 0.0001 and εa = 0.00001, faded lines are

simulation output and solid lines are fits using a local polynomial regression. Axes are log
10

scaled.

the system has adapted to the changes in partnership formation imposed by various

values of εa. We initially allow the system to reach an equilibrium at baseline

trading patterns, i.e. when εa = 1, before changes are instantaneously applied at

t = 50. For small εa, we notice initial reductions in the average number of trade

partners farms have, and supply and demand begin to increase. We note that the

reduction in network connectivity is gradual for εa < 1 because this is determined

by the partnership cessation rate, δi for farm i, which is a constant unaffected by

other trading factors such as stock levels. As supply and demand levels continue

to increase, this pressure results in network connectivity and trading frequency to

stabilise at new equilibrium values, and supply and demand also begin to reach

a new equilibrium, albeit farms have greater available supply and unmet demand

compared with the baseline case εa = 1. This results in larger batch sizes, and

this interplay allows for farm flows to return to baseline equilibrium values following
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Figure 13: Equilibrium values for system-average trade quantities for various values of the part-

nership formation scaling parameter εa. Initially, the system reaches an equilibrium at baseline

trading patterns when εa = 1 before changes to εa are made at t = 50. Averages are obtained by

averaging from t = 75 to t = 100.

an initial drop. The system takes longer to adapt to small εa than large εa. In

these cases, network connectivity rapidly increases and finds a new equilibrium, as

does trading frequency. This allows unmet demand to rapidly decrease and farms

similarly have smaller available supply, resulting in smaller batch sizes. Despite an

initial increase in farm flows, this clear-out of supply and demand quickly brings

farm flows back to baseline equilibrium values.

From Figure 13 we notice similar exponential relationships between εa and various

trading quantities as was observed for εb. In addition, this exponential relationship

appears to be present only for εa < 102, due to the biological constraints on the

batch size taking minimum size 1 imposed by our model being reached for values of

εa greater than this.
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Figure 14: System trading quantities for various values of the scaling factor to the partnership

cessation rate constant δi, εδ. In all cases, the system is allowed to reach an equilibrium at εδ = 1

before changes to εδ are made at t = 50. Axes are log
10

scaled.

4.2 Changes to εδ

We now explore the effect of altering the average partnership duration via εδ. In

this case, small εδ results in increases in partnership durations, and vice versa.

Figures 14 shows the impact on the trading system of various values of εδ over time,

and 15 shows the long-term equilibrium for the trading system once the system has

adapted to the changes in partnership durations imposed by various values of εδ.

As with εb and εa, we initially allow the system to reach equilibrium at εδ = 1

before changes are made. For small εδ, trade partnerships durations are increased,

with network connectivity increasing. This results in increased trade and supply

and demand begin to decrease (batch sizes decrease as a result). Conversely, for

large εδ trade partnerships become increasingly short lasting. As such, there is an

initial rapid reduction in network connectivity and trading frequency, and supply

and demand begin to increase. However, the increase in stock levels result in system
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Figure 15: Equilibrium values for system-average trade quantities for various values of the partner-

ship cessation scaling parameter εδ. Initially, the system reaches an equilibrium at baseline trading

patterns when εδ = 1 before changes to εδ are made at t = 50. Averages are obtained by averaging

from t = 75 to t = 100.

adaptation and network connectivity stabilises to a new equilibrium, and trading

frequency begins to increase and also finds a new equilibrium. Stock levels also find a

new equilibrium, however farms have increased available supply and unmet demand.

Farm flows exhibit similar behaviour to network connectivity and trading frequency,

initially decreasing followed by a rebound and return to the original equilibrium at

baseline trading patterns (when εδ = 1).

Figure 15 shows, as before, an exponential relationship between εδ and various trad-

ing quantities. Similarly, we observe that this exponential relationship does not hold

for all εδ considered here. For small εδ the biological constraint of small batch sizes

is increasingly encountered, so that trading patterns do not alter significantly as εδ

is further decreased (at least in the long-term).
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Figure 16: Equilibrium prevalence for various values of the rate scaling parameter εb for disease

parameters λ = 0.1 and γ = 2/3. Changes to εb are made at t = 50 after disease is introduced

and allowed to reach an equilibrium at baseline trading patterns, i.e. when εb = 1. X-axis is log10

scaled.

5 Effect of long-terms changes to partnership for-

mations and partnership durations on preva-

lence

5.1 Changes to εa

We here explore the effect of changes to the propensity for farms to form new trade

partnerships on long-term disease prevalence. This is done by scaling the partnership

formation rate by a constant εa in a similar manner to the trade rate as described

in the main text. Figure 17 shows that farms must essentially cease forming new

trade partnerships to completely remove disease, and even to reduce prevalence by

significant magnitudes. As with the trade rate, and as described in Section 4.1 here,

this arises as a consequence of individual adaptation to find new avenues of trade
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Figure 17: Disease prevalence over time (top panel) and equilibrium prevalence (bottom panel)

for various values of the partnership formation scaling parameter εa. Changes to εa are made at

t = 50 after disease is introduced and allowed to reach an equilibrium at baseline trading patterns,

i.e. when εa = 1. For top panel, x-axis is log
10

scaled, and for bottom panel both axes are log
10

scaled.

that maintain animal flows. Increasing εa increases the connectivity of the network,

however leads to only small increases in prevalence that do not continuously scale

with εa.

5.2 Changes to εδ

Alterations to the average duration of trade partnerships, made by scaling the part-

nership cessation rate δi for farm i by a constant εδ. Figure 18 shows that increasing

the duration of trade partnerships does reduce disease prevalence, however even in

the extreme cases in which partnerships are effectively permanent, disease cannot

be fully eradicated. Moreover, reducing the duration of partnerships only slightly

increases disease prevalence, but does not scale continuously with εδ.
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Figure 18: Disease prevalence over time (top panel) and equilibrium prevalence (bottom panel) for

various values of the partnership duration scaling parameter εδ. Changes to εδ are made at t = 50

after disease is introduced and allowed to reach an equilibrium at baseline trading patterns, i.e.

when εδ = 1. For top panel, x-axis is log
10

scaled, and for bottom panel both axes are log
10

scaled.

6 Investigating impact of individual adaptation

on disease prevalence

Here we show the effect of adaptation in response to changes in εb on between-herd

disease prevalence by comparing with our previous trading model [2]. For this model,

farms are not characterised by at time t stock levels, nor do we include a pricing

model. Instead, farms’ rates of partnership formation and trade are functions of

long-term expected animal in-flows, η∗i and ζ∗i from the main text. The rates are

αij =
ai

N
η∗i

(

ζ∗j
)m

,

ϕij = bi min(η∗i , ζ
∗

j )
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Figure 19: Between-herd disease prevalence for various values of εb under the trading model of [2]

for the partnership formation rate and rate of trade, respectively. Batch sizes θi

are also constant and set by the buying farm. As such, regardless of the selling

farm, farm i will always purchase θi animals during a trade. To ensure a meaningful

comparison between the two models, we maintain the same distributions as described

in the main text so that a farm i in the above model maintains the same expected

number of trading partners and per unit-time trades. As such, ai and bi are scaled

appropriately so that this condition is met. We note that to ensure animal flows are

maintained in the above model, we assume any scaling to bi by εb is accompanied by

an inversely proportional change to the batch size θi. At baseline trading patterns,

i.e. when εb = 1, both models predict similar between-herd disease prevalence.

Figure 19 shows that under the above model, reductions in bi via εb result in greater

reductions in disease prevalence, and can eradicate disease for a greater range of εb,

than was observed for similar reductions as presented in the main text. Moreover,

increases in εb increase disease prevalence by a larger magnitude than presented in

the main text. These large differences are ascribed to the restructuring and adapta-
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Figure 20: System average trade quantities for individual animal rejection under various test

sensitivities. Each trajectory is obtained by averaging over 15 independent stochastic simulations.

tion of the trading system that occurs for the model in the main text, with changes

in network connectivity as well as increasing batch sizes observed. In contrast, for

the model described here, farms adapt to reductions in trading frequency by simply

increasing batch sizes and there are no changes to the connectivity of the network.

7 Post-movement testing and individual animal

removal

As described in the main text, we here explore the impact of post-movement testing

in which individual animals in a traded batch are removed if they are detected for

infection. This is in contrast to the whole batch removal in which the entire traded

batch is removed if a single animal tests positive for infection.

Figure 20 shows the impact on the trading system and disease prevalence caused by

the introduction of individual animal rejection. In general, the impact on the system
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is smaller compared with whole batch rejection as individual animals are rejected

rather than whole batches. This results in smaller disturbances to price, and as

such the disturbance to stock generation rates are also smaller. However, individual

animal rejection is less effective at reducing disease prevalence compared with whole

batch rejection, requiring near 100% test sensitivity to fully remove disease from the

system. As with whole batch rejection, we observe long-term disturbances to the

trading system if disease cannot be fully removed, and temporary disturbances if

disease can be fully, or near, eradicated.
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