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Abstract

Quantum fields do not satisfy the pointwise energy conditions that are assumed

in the original singularity theorems of Penrose and Hawking. Accordingly,

semiclassical quantum gravity lies outside their scope. Although a number of

singularity theorems have been derived under weakened energy conditions,

none is directly derived from quantum field theory. Here, we employ a quan-

tum energy inequality satisfied by the quantizedminimally coupled linear scalar

field to derive a singularity theorem valid in semiclassical gravity. By con-

sidering a toy cosmological model, we show that our result predicts timelike

geodesic incompleteness on plausible timescales with reasonable conditions at

a spacelike Cauchy surface.

Keywords: energy conditions, semiclassical gravity, singularity theorem, quan-

tum energy inequalities

(Some figures may appear in colour only in the online journal)

1. Introduction

Singularity theorems represent an effort to answer a central question in gravitational physics:

under which conditions do cosmological or astrophysical systems originate or end in a singu-

larity? In effect: are singularities inevitable in our Universe? The famous singularity theorems

of Penrose [1] and Hawking [2] address this question in general relativity by taking geodesic
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incompleteness as the defining characteristic of a singularity, and showing that this occurs,

from suitable starting situations, for any matter model obeying energy conditions broadly

expressing the idea of local energy positivity. In particular, Penrose’s theorem on null geodesic

incompleteness was based on the null energy condition (NEC), that the stress–energy tensor

should obey Tμνℓ
μℓν � 0 for all null vectors ℓμ, while Hawking’s result on timelike geodesic

incompleteness required the strong energy condition (SEC), that

ρU :=TμνU
μUν − Tμ

μ

n− 2
� 0 for all unit timelike vectorsU, (1)

where n is the spacetime dimension. Here, ρU is the effective energy density (EED) seen by

an observer with velocity Uμ (cf reference [3], which refers to the ‘effective density of gravi-

tational mass’). Via the Einstein equation, the SEC is equivalent to the geometrical condition

RμνU
μUν � 0 on the Ricci tensor (our conventions are listed at the end of the introduction).

It has long been recognized that the energy conditions are too restrictive. Even the classi-

cal massive minimally coupled scalar field violates the SEC and the non-minimally coupled

scalar field violates the NEC, while quantum fields violate all pointwise energy conditions

[4]. Reviews concerning the status of energy conditions include references [5, 6], while refer-

ence [7] is a comprehensive review of all aspects of singularity theorems. Accordingly, several

authors have focused on relaxing the energy condition in singularity theorems looking instead

at weaker, averaged energy conditions [8–11]. Most of that work focuses on Penrose-type (null

geodesic incompleteness) results and the half-averaged NEC. More recently, reference [12]

presented proofs of both Hawking-type (timelike geodesic incompleteness) and Penrose-type

singularity theorems with weakened energy conditions. Based on their results, reference [13]

proved aHawking-type singularity theorem for the classical Einstein–Klein–Gordonfield. The

essential technical ingredient in this work, as with almost all of the previous literature con-

cerning weakened energy conditions, is the analysis of a Riccati differential inequality derived

from the Raychaudhuri equations [14]. However, it has been realised very recently [15] that

index formmethods provide amuch simpler route to obtaining singularity theoremswith weak-

ened energy hypotheses, with the advantage that they also provide quantitative estimates of

the timescale on which the singularity occurs. Index form methods appear in some textbook

accounts of the original singularity theorems [16, 17] and are also employed in generaliza-

tions of the singularity theorems (and related results) in other directions—see e.g. [18–20].

An interesting account of the interplay between Riccati and index-form methods in a slightly

different context can be found in reference [21].

But what about quantum fields? Reconciliation of the energy conditions and quantum field

theory began with the seminal works of Ford [22, 23]. Motivated by an apparent conflict

between negative energy densities and the second law of thermodynamics, he suggested and

later proved that quantum field theory contains mechanisms that impose fundamental restric-

tions on the possible magnitude and duration of any negative energy densities or fluxes due to

the quantumfield; these restrictions—quantum energy inequalities (QEIs)—have been proved

to hold for a range of different quantum field theories in flat and curved spacetimes. See [6,

24] for recent reviews.

An important question is whether QEIs can be used as hypotheses for singularity theorems

and this has been addressed to some extent. Both references [12, 15] introduced singularity the-

orems with hypotheses inspired by QEIs. For example, reference [15] proved a Hawking-type

singularity theorem in spacetime dimension n = 2m (m ∈ N) under the following geometrical

condition on the Ricci tensor: for any unit-speed timelike geodesic γ : I →M, where I is a

compact interval in R, it is assumed that there are non-negative constants Qm(γ) and Q0(γ) of
appropriate dimensions so that the inequality

2
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∫

I

f (t)2Rμν γ̇
μγ̇ν |γ(t) dt � Qm(γ)‖ f (m)‖2 + Q0(γ)‖ f ‖2, (2)

holds for all smooth real-valued f supported in the interior of I. Here ‖ · ‖ denotes the standard
norm of L2(I). Under this condition, and additional assumptions on the extrinsic curvature

of a spacelike Cauchy surface, it was shown that timelike goedesic completeness must fail.

Quantitative estimates of the required initial contraction and timescales for the singularity were

obtained in various cases, including models drawn from cosmology.

However, none of the conditions used in the works just mentioned were derived directly

from quantum field theories. Indeed, QEIs on the quantised EED—needed for Hawking-type

results—were only derived recently [25]. What we will do in this paper is to use those QEIs

as the basis for a singularity theorem valid in semiclassical quantum gravity. There remains a

slight gap. The bounds obtained in [25] hold in flat and curved spacetime backgrounds but in

the latter case require a reference state to be chosen. (InMinkowski spacetimewe simply adopt

the Poincaré invariant vacuum state as the reference.) As we will argue, however, the contribu-

tion from the reference state can be neglected on sufficiently small scales, on which the bound

is dominated by terms with a universal form (essentially equal to the bound in Minkowski

spacetime). This is due to the universal singularity structure of Hadamard states, and the delin-

eation of ‘sufficiently small scales’ depends both on the spacetime and the reference state and

may vary over the spacetime. To be slightly more specific, the scales must be small enough

that the ‘universal’ terms in the QEI bound outweigh those coming from the renormalised

stress energy tensor in the reference state (see the arguments leading up to equation (27)). The

upshot is that we assume the bound (2) for solutions to semiclassical Einstein–Klein–Gordon

system, with constants Qm and Q0 obtained from the QEI and other assumptions, but restrict-

ing to functions f whose support extends over sufficiently short intervals of proper time. This

timescale is expected to shrink as a singularity is approached. Ideally, it would be derived

from the QEI itself—a line of work that will be pursued elsewhere—but in the present paper

it must be supplied as an additional piece of information. Thus we will speak of a geodesic

being T-regular, where T : I → R, if the inequality (2) holds for functions f supported in inter-

vals of width T t centered at t, allowing t to vary within I (see definition 3.1 for a precise

statement).

One approach (which had been our initial plan) is only to assume (2) for f with support

duration below a fixed timescale determined by the largest curvature scales encountered along

the geodesic γ. This corresponds to T-regularity for a constant function T . In principle a direct
application of the results in [15] would now give a singularity theorem predicting geodesic

incompleteness with a side assumption that the curvature remain below some threshold chosen

sufficiently high that spacetimes violating the assumption might be judged to be ‘singular for

practical purposes’. However we found this to require such large extrinsic curvatures at the

initial surface as to be of limited practical use. What we are going to do here is to allow the

‘sufficiently small’ timescale to shrink linearly in proper time along the geodesic γ : [0, τ ]→
M, by taking

Tt = T0(1− t/τ ) (3)

for some T0 > 0. On physical grounds, spacetimes for which this is not valid should exhibit

very large curvatures along future complete geodesics and therefore also exhibit singular

behaviour ‘for practical purposes’. We then employ a partition of unity argument to control

the Ricci tensor over the whole of γ, where the bump function in the partition near t ∈ [0, τ )
has support width less than T t.

3
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Simplifying slightly, our result is essentially the following. Consider any solution to the

semiclassical Einstein–Klein–Gordon equations in which the expectedmagnitude of the scalar

field does not exceed some threshold φmax. It is assumed that the spacetime of the solution is

globally hyperbolic and that the state of the quantum field is Hadamard. Let S be a spacelike

Cauchy surface in the spacetime and suppose that, for some T0, τ > 0, all future-directed unit-

speed timelike geodesics of length τ emanating normally fromS are T-regularwhere T t is given

by (3). Suppose also that the SEC holds for a period of proper time τ 0 at the start of each such
geodesic. If the extrinsic curvature of S is sufficiently large and negative, where the threshold is

determined by T0, τ , τ 0 and the spacetime dimension n, then no future-directed timelike curve

emanating from S can have proper duration more than τ and the spacetime is future-timelike

geodesically incomplete. Of course, a sufficiently large extrinsic curvature −K > (n− 1)/τ 0
at the initial surface will result, by Hawking’s original theorem, in timelike geodesic incom-

pleteness within the timescale τ 0 on which the SEC is assumed. It is important to clarify that

there are indeed regimes where our threshold for−K is much lower than (n− 1)/τ 0. Another
way of interpreting our result is that if the initial extrinsic curvature exceeds our threshold in a

solution to the semiclassical Einstein–Klein–Gordon theory obeying the SEC near S, then one

or more of the followingmust occur: (a) the spacetime is timelike geodesically incomplete; (b)

the field strength must somewhere exceed φmax; (c) the timescale on which (2) holds is some-

where smaller than T t = T0(1− t/τ ) at proper time t along a geodesic emanating normally

from S. Depending on the choice of parameters, possibilities (b) and (c) may be regarded as

indicating the onset of early-universe conditions and therefore of singular behaviour for practi-

cal purposes. Of course, it is well known that there are specific models in semi-classical gravity

that avoid a cosmological singularitywith a bounce—see e.g. [26–29]. This is not in contradic-

tion with our result, but indicates that there are circumstances in which possibilities (b) or (c)

come to the fore, and the fact that the initial extrinsic curvature must exceed a given threshold.

Apart from cosmological models there are also non-singular semiclassical models of stellar

collapse. The singularity is avoided either by avoiding the formation of a trapped surface [30]

or the presence of negative energy does not allow the inner horizon to reach the center [31]. It

would be interesting to examine the latter models using our methods but such a task is beyond

the scope of this paper.

The paper is structured as follows. Section 2 briefly summarises the quantization procedure

used in [25] to obtain a QEI on the EED (called a quantum strong energy inequality or QSEI).

The QSEI is recalled in section 3, where we also explain why the bounds of the type (2) may be

expected on sufficiently small scales, leading to the idea of a T-regular geodesic. In section 4

we define the partition of unity used to discuss averages over long timescales, deferring many

details to appendix A. Section 5 presents the singularity theorem that constitutes our main

result. It is then shown in section 6 how quantitative information can be extracted concerning

the time at which geodesic incompleteness occurs and the required extrinsic curvature at the

initial surface. In the context of a toy cosmological model we show that plausible extrinsic cur-

vatures lead to singular behaviour on timescales that exceed the lifetime of our own Universe

by as little as one order of magnitude. As a definition of ‘plausible’ parameters, we use val-

ues that are predicted to have occurred in our Universe according to ΛCDM cosmology fitted

with PLANCK data [32]. We emphasise that the purpose of these calculations is to show that

results of the type we have developed do indeed apply beyond the domain of applicability of

Hawking’s result, and also as a proof of principle that the quantitative information produced

by results of the type we have developed might have practical use. A summary and discussion

of our results in section 7 concludes the paper.

We work in n spacetime dimensions unless otherwise stated and employ [−,−,−] con-

ventions in the Misner et al classification [33]. That is, the metric signature is (+,−,−, . . .),

4
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the Riemann tensor is defined as R
μ

λην vν = (∇λ∇η −∇η∇λ)v
μ, and the Einstein equation is

Gμν = −8πTμν . The d’Alembertian is written �g = gμν∇μ∇ν . For the most part, we adopt

units in which GN = c = 1.

2. Quantization

Throughout this work, we assume that the spacetime is a smooth n-dimensional Lorentzian

manifold (M, g) that is globally hyperbolic.We consider theminimally coupled classical scalar

field φ with Lagrangian density

L[φ] =

√−g
2

(
(∇φ)2 −M2φ2

)
, (4)

where M has dimensions of inverse length, equal to the reduced Compton length of massive

particles in the correspondingquantumfield theory. The field equation and stress–energy tensor

are

(�g +M2)φ = 0 (5)

and

Tμν = (∇μφ)(∇νφ) +
1

2
gμν(M

2φ2 − (∇φ)2), (6)

while the EED defined by equation (1) becomes

ρU = UμUν(∇νφ)(∇μφ) −
1

n− 2
M2φ2. (7)

Quantization follows exactly the procedure described in reference [25] so we will be brief

and direct the reader there for more details. It is based on the algebraic approach (see [34] for

a review) and starts by introducing a unital ∗-algebra A (M) on our manifoldM, so that self-

adjoint elements of A (M) are observables of the theory. The algebra is generated by elements

Φ( f ) where f ∈ C∞
0 (M), which represent smeared quantum fields and obey the following

relations

• Linearity

The map f → Φ( f ) is complex-linear,

• Hermiticity

Φ( f )∗ = Φ( f ) ∀ f ∈ C∞
0 (M),

• Field equation

Φ((�g +M2) f ) = 0 ∀ f ∈ C∞
0 (M),

• Canonical commutation relations

[Φ( f ),Φ(h)] = iE( f , h)1 ∀ f , h ∈ C∞
0 (M).

Here, C∞
0 (M) denotes the space of smooth functions of compact support fromM to C and

E(x, y) = EA(x, y)− ER(x, y) is an antisymmetric bi-distribution equal to the difference of the

advanced and retarded Green functions of �g +M2, which exist due to global hyperbolicity

of the spacetime.

In the algebraic approach, states of the theory are described by linear mapsω : A (M)→ C

that are normalized (ω(1) = 1) and positive (ω(A∗A) � 0 for all A ∈ A (M)). The expression

5
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ω(A) is interpreted as the expectation value of A ∈ A (M) in state ω. Physical conditions must

be specified to narrow down the choice of states, and a particularly well-behaved class of states

is given by those that are Hadamard (see [34], and also [35] for a recent improvement to the

original definition [36]).

The algebra A (M) only contains polynomials built from elements of the form Φ( f ). For

example, A (M) contains elements of the form

:Φ⊗2:ω( f ⊗ f ) = Φ( f )Φ( f )−W( f , f )1 (8)

for any test function f and any state ω, where

W( f , h) = ω(Φ( f )Φ(h)) (9)

is the two-point function of ω. These elements have the property that 〈:Φ⊗2:ω( f ⊗ f )〉ω = 0.

To form a Wick square, one needs to replace f ⊗ f ∈ C∞
0 (M×M) by a suitable com-

pactly supported distribution supported on the diagonal (and also address finite renormal-

isation freedoms). This idea can be implemented in the case where ω is quasifree4 and

Hadamard and leads to the definition of an extended algebra W (M), described in [37], that

containsA (M) as a subalgebra, but also contains elements such as Wick polynomials and the

smeared stress–energy tensor. For example, the quadratic Wick polynomials in the field and

its derivatives needed to define the quantized stress–energy tensor are given as follows.

Let f μ1...μrν1...νs be a smooth compactly supported tensor field and define a compactly

supported distribution T r,s[ f ] onM×M by

T (r,s)[ f ](S) =

∫

M
dVol f μ1...μrν1...νs

[[
(∇(r) ⊗∇(s))Ssym

]]
μ1...μrν1...νs

. (10)

Here, Ssym(x, y) = 1
2
(S(x, y)+ S(y, x)) is the symmetric part of S ∈ C∞(M×M), while∇(r) is

a symmetrised rth order covariant derivative and the double square brackets [[·]] in the integrand
denote a coincidence limit. Then we obtain a smeared Wick polynomial

:∇(r)Φ∇(s)Φ:ω( f ) := :Φ⊗2:ω(T
r,s[ f ]), (11)

which has a vanishing expectation value in the reference state ω. However, as there is no pre-

ferred choice of state in a general curved spacetime ([38]; see [39] for discussion) it is desirable

to seek prescriptions leading to local and covariantWick polynomials. This can be done in var-

ious ways and the renormalisation freedom cannot be removed completely. Here we follow the

axioms of Hollands and Wald [37, 40]. In this scheme, Wick polynomials obey a Leibniz rule

for differentiation of products, but the field equation cannot be used freely.

The axioms are enough to define the stress–energy tensor Tμν for perturbatively interacting

theories, up to finite renormalisation freedoms, which might be fixed by reference to the expec-

tation values obtained in certain standard states on standard spacetimes, or other criteria. In the

case of the linear real scalar field, the finite renormalisation freedom reduces to linear combi-

nations of the tensors M4gμν , M
2Gμν , Iμν and Jμν where the latter are conserved symmetric

curvature tensors arising by functional derivatives of R2 and RμνR
μν with respect to the met-

ric. It is natural to use some of this freedom to choose a prescription in which the Minkowski

vacuum state has vanishing expectation value, for example. At any rate, we assume that a pre-

scription has been fixed as part of the physical specification of the matter model. Once this is

4A state is quasifree if all its odd n-point functions vanish and all its even n-point functions can be expanded as sums

of products of the two-point function according to Wick’s theorem.

6
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done, the semiclassical Einstein equation (SEE) for the Einstein–Klein–Gordon system with

vanishing cosmological constant can be formulated as follows.

Definition 2.1. Fix a locally covariant prescription for the stress–energy tensor of the mas-

sive minimally coupled scalar field. A solution to the SEE is a triple (M, g,ω) where (M, g)

is a globally hyperbolic spacetime of even dimension n = 2m and ω is a Hadamard state of the

quantised minimally coupled Klein–Gordon field on (M, g), such that

Gμν = −8π〈Tμν〉ω (12)

holds everywhere onM.

The system (12) is a highly complex set of equations linking the evolution of the metric to

that of the two-point function of the quantum stateω. If a prescription has been chosen in which
the Minkowski vacuum state has vanishing expectated stress–energy tensor, then Minkowski

space furnishes a rather trivial example solution.More generally, the analysis of these equations

is highly nontrivial. Recently Sanders [41] has succeeded in classifying all static symmetric

semiclassical solutions to the Einstein–Klein–Gordon system with spatial topology S3 and

arbitrary cosmological constant and allowing for nonminimal coupling. Before that, the exis-

tence of solutions has been shown in situations with high levels of symmetry, for example in

flat FLRW spacetimes (see [42, 43]). In this paper, however, we will formulate a singularity

theorem for solutions to the SEE without further discussing the question of existence. Clearly,

if (M, g,ω) is a solution to the SEE, then the Ricci tensor obeys

RμνU
μUν = −8π〈ρU〉ω (13)

for any timelike unit vector Uμ, where ρU is the renormalized EED. As a smeared field, ρU
takes the form

ρU( f ) = (∇μΦ∇νΦ)(U
μUν f )− Φ

2

(
1

n− 2
M2 f

)
, (14)

where U is any unit timelike vector field and f is any smooth compactly supported function

onM.5

For further manipulations, the following point-splitting formula is useful:

〈(∇(r)
Φ∇(s)

Φ)( f )〉ω − 〈(∇(r)
Φ∇(s)

Φ)( f )〉ω0 = 〈:(∇(r)
Φ∇(s)

Φ):ω0( f )〉ω
= Tr,s[ f ](W −W0), (15)

where both ω and ω0 are quasifree Hadamard states with respective two-point functionsW and

W0. Because ω and ω0 are Hadamard, the difference :W: = W −W0 is necessarily smooth, so

the right-hand side is well-defined. Here, and for the rest of this paper, we denote all quantities

normal-ordered relative to ω0 by :X:, rather than :X:ω0 . It follows that

〈ρU( f )〉ω = 〈ρU( f )〉ω0 + 〈:ρU : ( f )〉ω, (16)

where

〈:ρU : ( f )〉ω =

∫

M
dVol f

[
[[(∇U ⊗∇U) :W:]]−

(
M2

n− 2

)
[[:W:]]

]
. (17)

5At nonminimal coupling there are terms such as Φ(�g + ξR+M2)Φ. These do not necessarily vanish in the Hol-

lands–Wald scheme, but they turn out to be state-independent and therefore cancel in differences of expectation values

in Hadamard states.

7
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The quantity appearing in square brackets will be denoted 〈:ρU:〉ω by a slight abuse of

notation.

It is important to note that equation (13) assumes a particular choice to fix finite renormalisa-

tion freedoms has beenmade for ρU , inherited from the choicesmade for the stress–energy ten-

sor. In equation (16) the term :ρU: is independent of such choices because they are manifested

in terms that are multiples of the identity operator.

3. Quantum strong energy inequality

We can now turn to the QEIs satisfied by the quantized EED derived in reference [25], which

established a variety of lower boundson averages of 〈:ρU:〉ω alongworldlines or over spacetime

volumes, allowing for possibly nonminimal coupling to the scalar curvature. Here, we will

employ the worldline result for the minimally coupled massive field.

Let γ be a smooth geodesic parametrized by proper time τ and let Uμ be a timelike unit

vector field agreeing with γ̇μ on γ. For any real valued test function f ∈ C∞
0 (R,R), we write

〈:ρU : ◦γ〉ω( f 2) =
∫

dτ f 2(τ )〈:ρU:〉ω(γ(τ )). (18)

It was shown in theorem 5 of [25] that the QEI

〈:ρU : ◦γ〉ω( f 2) � −
[∫ ∞

0

dα

π
φ∗((∇U ⊗∇U)W0)( fα, fα)+

M2

n− 2
〈:Φ2 : ◦γ〉ω( f 2)

]
(19)

holds for all Hadamard states ω, where fα(τ ) = eiατ f (τ ) and φ :R× R→M×M
by φ(τ , τ ′) = (γ(τ ), γ(τ ′)). Consequently the Hadamard-renormalized EED obeys the

inequality

〈ρU ◦ γ〉ω( f 2) +
M2

n− 2
〈Φ2 ◦ γ〉ω( f 2) � 〈ρU ◦ γ〉ω0( f 2)+

M2

n− 2
〈Φ2 ◦ γ〉ω0( f 2)

−
∫ ∞

0

dα

π
φ∗((∇U ⊗∇U)W0)( fα, fα) (20)

for all Hadamard states ω, for any choice of Hadamard reference ω0 with two-point function

W0, and for all real-valued test functions f .

This bound is not easy to use in practice, due to the lack of closed-form expressions for

Hadamard two-point functions that could define a reference state. An alternative would be to

derive an ‘absolute’ QSEI that avoids the need for a reference state, and this will be pursued

elsewhere. Here, we will instead work around the obstacle by making a physically motivated

approximation. Namely, if the support of f is sufficiently small, the integration in the last term

of (20) involves the two-point function W0(x, y) near to coincidence along γ. In this regime,

the two-point function is dominated by its leading singularity, which is universal across all

Hadamard states and is shared, in particular, by the Minkowski vacuum two-point function

of a massless scalar field. For test functions of sufficiently small support—where ‘sufficiently

small’ is determined by the reference state ω0 and the spacetime geometry but not the states ω
of interest—the bound (20) continues to hold for all ω if the integral on the right-hand side is

replaced by

∫ ∞

0

dα

π

∫

R2

dt dt′∂t∂t′WMink(t, 0; t
′, 0) fα(t) fα(t

′) (21)

8



Class. Quantum Grav. 39 (2022) 075028 C J Fewster and E-A Kontou

where

WMink(x, x
′) = h̄

∫
dn−1

k

(2π)n−1

e−ik·(x−x′)

2k
(22)

is the massless Minkowski vacuum two-point function and kμ = (‖k‖, k). Planck’s constant
appears explicitly as it has not been set to unity. The integral may be evaluated as

h̄

∫ ∞

0

dα

π

∫
dn−1

k

(2π)n−1

∫

R2

dt dt′
k

2
e−i(α+k)(t−t′) f (t) f (t′)

= h̄
Sn−2

(2π)n

∫ ∞

0

dα

∫ ∞

0

dkkn−1| f̂ (α+ k)|2

= h̄
Sn−2

(2π)n

∫ ∞

0

du

∫ u

0

dkkn−1| f̂ (u)|2

= h̄
Sn−2

(2π)n

∫ ∞

0

du
un

n
| f̂ |2(u), (23)

where Sn−2 is the volume of the (n− 2)-dimensional standard unit sphere and f̂ is the Fourier

transform f̂ (u) =
∫
dt e−iut f (t). In the first step, we have used the definition of the transform

and integrated out the angular dependence, and in the second we have changed variables from

α and k to u = α+ k and k. Restricting to spacetimes with even dimension of at least 4, writing

n = 2m for m ∈ N and m � 2, we may use the fact that f̂ ′(u) = iu f̂ (u) to obtain

h̄
Sn−2

(2π)n

∫ ∞

0

du
un

n
| f̂ |2(u) = h̄

S2m−2

4m(2π)2m

∫ ∞

−∞
du| f̂ (m)|2(u)

= h̄
πS2m−2

2m(2π)2m

∫ ∞

−∞
dt| f (m)|2, (24)

where we have also extended the integral to the full line, using the fact that | f̂ |2 is real and

even, and used Parseval’s theorem in the final step. As we have argued, this expression can

be used—at least for sufficiently small support width—as a replacement for the integral in

(20). We can say a bit more about the magnitude of this term in relation to the others, because

smooth functions f , compactly supported in an interval I of length τ , obey the Rayleigh–Ritz
inequality

∫ ∞

−∞
dt| f (m)|2 � λ(m)

min

τ 2m

∫ ∞

−∞
dt| f |2, (25)

where λ(m)
min is the minimum eigenvalue of the operator (−1)md2m/dx2m on (0, 1), subject to

Dirichlet boundaryconditions. (See [44] for other applications of this observation.)By contrast,

the first two terms in (20) can be bounded below by

inf
I

(
〈ρU ◦ γ〉ω0 +

M2

n− 2
〈Φ2 ◦ γ〉ω0

)∫ ∞

−∞
dt| f |2, (26)

so it is clear that the third term dominates when τ is sufficiently small. In other words, the first

two terms can be made less in magnitude than any prescribed multiple of the third, for small

9
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enough τ . Thus for any constant C > 1, and any t ∈ R, there is a timescale T t > 0 so that an

inequality

〈ρU ◦ γ〉ω( f 2) +
M2

n− 2
〈Φ2 ◦ γ〉ω( f 2) � −Ch̄ πS2m−2

2m(2π)2m

∫ ∞

−∞
dt| f (m)|2, (27)

holds for all Hadamard states ω and all real-valued f supported in the interval (t − T t/2, t+
T t/2). Thus (27) holds for all real-valued f belonging to

DT := { f ∈ C∞
0 (R) : supp f ⊂ (t − Tt/2, t+ Tt/2) for some t ∈ R}. (28)

As, in fact, the QEIs derived in reference [25] are not expected to be optimally sharp, we

may without loss replace C by 1. The timescale T t depends on the curve γ, the spacetime

geometry, the mass parameterM, and the reference state ω0. The effect of the mass parameter

may be significant because QEI bounds for massive fields are exponentially smaller than those

of massless fields—see [45] for detailed analysis. Therefore our use of the massless bound is

quite conservative and may be expected to hold over reasonable length scales. Furthermore, as

we are free to choose any Hadamard state ω0 as the reference we could in principle choose a

different reference state for each value of t ∈ R so as to maximise T t.

Of course it is far from trivial to compute T t in this way and no sufficient conditions on T t
are known for (27) to hold (with C = 1) for all real-valued f ∈ DT . Such conditions would

presumably involve the injectivity radius near γ(t) and derivatives of curvature tensors in a

neighbourhood thereof. Extrapolating from [46] it may be that only the first three derivatives

of the Riemann tensor are relevant at leading order. Lacking sufficient conditions of this type,

we turn the problem around and make the following definition.

Definition 3.1. For τ ∈ [0,∞] let γ : [0, τ ] ∩ [0,∞)→M be a unit-speed timelike

geodesic. Let T : t �→ T t be a strictly positive function on [0, τ ) with dimensions of time.

We say that γ is T-regular if (a) γ may be extended to a geodesic [−τ∗, τ ] ∩R→M where

τ∗ = supt∈[0,τ ](
1
2
Tt − t) and (b) the EED of the real scalar field with massM obeys

〈ρU ◦ γ〉ω( f 2)+
M2

n− 2
〈Φ2 ◦ γ〉ω( f 2) � −h̄ πS2m−2

2m(2π)2m

∫ ∞

−∞
dt| f (m)|2 (29)

for all real-valued f ∈ DT ∩ C∞
0 (−τ∗, τ ) and all Hadamard states ω.

The purpose of condition (a) is to ensure that every interval (t − T t/2, t+ T t/2) lies in the

domain of the geodesic, in order that condition (b) be well-defined (clearly τ ∗ > 0 because

τ 0 > 0). Note that if γ is T-regular, then it is also T̂-regular for any strictly positive function

t �→ T̂ t � Tt.

The above definitionwill be important in the singularity theorems for semiclassical quantum

gravity to be proved in section 5, where we consider T-regular geodesics γ : [0, τ ]→M deter-

mined by the function T t = (1− t/τ )T0. By definition 3.1, any solution to the SEE satisfies

the geometric condition

∫
dt f 2(t)Rμν γ̇

μγ̇ν � h̄
S2m−2

m(2π)2m−2

∫ ∞

−∞
dt| f (m)|2 + 4πM2

m− 1
〈Φ2 ◦ γ〉ω( f 2) (30)

along any T-regular unit-speed timelike geodesic, for all f ∈ DT ∩ C∞
0 (−τ∗, τ ). Note that the

timescale T t on which (29) holds becomes vanishingly small as t→ τ , which means that the

constraint it provides becomes progressively weaker as γ(τ ) is approached.

10
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The second term of the lhs of equation (30) is state dependent; however, we can restrict ω to

a class of Hadamard states for which the field’s magnitude has a finite maximum magnitude.

Definition 3.2. A φmax-solution to the SEE is a solution to the SEE according to definition

2.1 where the state ω is additionally restricted to a class of Hadamard states for which

∣∣〈:Φ2 : ◦γ〉ω
∣∣ � φ2

max, (31)

where φmax is a finite constant.

The above assumptions allow us to make the following statement, which is immediate from

equation (30) using definition 3.2.

Proposition 3.3. For any φmax-solution to the SEE according to definition 3.2 on a T-

regular geodesic according to definition 3.1 the inequality

∫
dt f 2(t)Rμν γ̇

μγ̇ν �
h̄S2m−2

m(2π)2m−2
‖ f (m)‖2 + 4πM2φ2

max

m− 1
‖ f ‖2 (32)

holds for all real-valued f ∈ DT ∩ C∞
0 (−τ∗, τ ), where the norms are those of L

2(0,∞).6

4. Partition of unity

Let τ ∈ (0,∞] and suppose γ : [0, τ ] ∩ [0,∞)→M is a T-regular unit-speed timelike

geodesic. According to proposition 3.3 a φmax-solution to the SEE satisfies the QEI of

equation (32) on γ. By definition, this means that the QEI holds for test functions of suffi-

ciently small support, where a neighborhood of t ∈ [0, τ) is deemed sufficiently small if it is

contained in (t − 1
2
Tt, t +

1
2
Tt) ∩ [−τ∗, τ ). However, the singularity theorems require control

over averages of the EED taken over the whole of [0, τ ). These averages may be addressed

by choosing a partition of unity to break the long-term average into pieces each of which is

sufficiently small that (32) holds.

Accordingly, we seek smooth compactly supported functions φn ∈ C∞
0 (−τ∗, τ ) such that

∞∑

n=1

φ2
n = 1 (33)

holds on [0, τ ) and with suppφn ⊂ [tn−1, tn], where the strictly increasing sequence tn (n ∈ N0)

is chosen so that tn → τ as n→∞ and

[tn−1, tn] ⊂ [tn − Ttn/2, tn + Ttn/2] (34)

for each n, which implies φn ∈ DT ∩ C∞
0 (−τ∗, τ ).

For each f ∈ C∞
0 (0, τ ), we may make a decomposition f 2 =

∑∞
n=1( fφn)

2 and apply

proposition 3.3 to each function fφn separately. Summing up, we obtain the inequality

∫ τ

0

dt f 2(t)Rμν γ̇
μγ̇ν � Q0‖ f ‖2 + Qm

∞∑

n=1

‖( fφn)(m)‖2, (35)

for any f ∈ C∞
0 (0, τ ), where the sum contains only finitely many nonzero terms and

6We only use the inequality for real-valued f, but it extends immediately to complex-valued f on considering the real

and imaginary parts separately and replacing f2 by |f(t)|2 on the lhs.

11
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Figure 1. The function θ(x) defined in equation (38).

Qm =
h̄S2m−2

(2π)2m−2
, and Q0 =

4πM2φ2
max

m− 1
(36)

(recall that m � 1 so there is no conflict in the above definition). For suitably chosen φn, the
second term in (35) may be estimated in terms of a weighted Sobolev norm.

As the construction of the functions φn and the derivation of the required estimates is quite

complex, we summarise the main points here and provide the details in appendix A. First, in

appendix A.1, we will construct functions φn obeying the conditions above, for any positive,

nonincreasing continuous function Tt. Here we choose tn to satisfy the equation tn+1 − tn =
1
2
Ttn+1

for n � 0 and t0 = − 1
2
T0, from which t1 = 0 follows; it is shown in particular that

tn → τ as n→∞. The corresponding φn are defined by

φn(t) =

{
F((t− tn)/Ttn + 1/2) t < tn,

G((t− tn)/Ttn+1
) t � tn,

(37)

where F and G are the functions F(x) = sin(θ(x)) and G(x) = cos(θ(x)), and θ ∈ C∞(R) is the

smooth nonnegative function given by

θ(x) = A

∫ x

0

H(x′)H(1/2− x′)e−1/x′ e−1/(1/2−x′) dx′, (38)

whereH(x) is the Heaviside step function. Here, A ≈ 3.2392× 104 is chosen so that θ(1/2) =
π/2. The function θ interpolates smoothly from 0 to π/2, as shown in figure 1.

In appendix A.2 we will consider examples of Tt for both finite and infinite intervals. It

will also be shown that other examples can be obtained by reverse engineering the function Tt
from a sequence tn. A function of interest, appropriate for a finite interval [0, τ], is t �→ Tt =

T0(1− t/τ ). For that choice we have

tn = τ

(
1−

(
2τ

T0 + 2τ

)n−1
)
, (39)

12
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Figure 2. The series of functions φn for the linear Tt = T0(1− t/τ ). The center of each
function is given by tn (equation (39)) and their support shrinks to a point as t→ τ .

for all n ∈ N0. The functions φn have vanishing support width in the limit t→ τ as illustrated

in figure 2.

In appendix A.3 we estimate the second term of equation (35). Our aim is to estimate this

quantity in terms of (weighted) Sobolev norms of f, keeping reasonably explicit control of any

constants appearing. We will do that both for a partition of unity corresponding to a general

T-regular geodesic and a specific choice of Tt for a finite interval. In particular, for the choice

of Tt = T0(1− t/τ ) and choosing τ 0 with 0 < τ 0 < t2 = τT0/(T0 + 2τ ), we will show that

∞∑

n=1

‖( fφn)(m)‖2 � 2

⎡
⎣

m∑

j=0

H j

(
m

j

)(‖χ f (m− j)‖
(2t2) j

+ c j
∥∥∥∥
(1− χ) f (m− j)

(τ − ·) j
∥∥∥∥
)⎤
⎦
2

≡ ‖| f ‖|2, (40)

where χ is the characteristic function of [0, τ 0],

Hi = max{‖F(i)‖∞, ‖G(i)‖∞}, (41)

and

c =
2τ 2

(2τ − T0)T0
. (42)

The upshot of this analysis is expressed by the following theorem.

Theorem 4.1. Let 0 < τ < ∞, T0 > 0 and 0 < τ 0 < τT0/(T0 + 2τ ), define Tt = T0(1−
t/τ ). For any φmax-solution to the SEE according to definition 3.2 on a T-regular geodesic

according to definition 3.1, the inequality

∫
dτ f 2(t)Rμν γ̇

μγ̇ν � Qm‖| f ‖|2 + Q0‖ f ‖2 (43)

holds for all real-valued f ∈ Wm
0 (0, τ ), where ‖| f ‖|2 is given in equation (40) and the norms

are those of L2(0,∞).

13
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Here, we recall that the Sobolev space Wm
0 (0, τ ) is the completion of the space C∞

0 (0, τ )
in the norm ‖ f ‖m = (‖ f ‖2 + τ 2m‖ f (m)‖2)1/2. In particular, its elements are functions with

m− 1 absolutely continuous7 derivatives which all vanish (including the function itself ) at

the endpoints, and whose mth distributional derivative may be identified with a element of

L2(0, τ).

Proof. For f ∈ C∞
0 (0, τ ), the inequality (43) follows immediately fromproposition 3.3 using

equations (35) and (40). Now let f ∈ Wm
0 (0, τ ) and let fn ∈ C∞

0 (0, τ ) be a sequence converg-
ing to f in Wm

0 (0, τ ). We may apply (43) to each fn, and observe that
∫
dτ fn(τ )

2Rμν γ̇
μγ̇ν →∫

dτ f (τ )2Rμν γ̇
μγ̇ν and ‖ fn‖ → ‖ f ‖ as n→∞. Therefore (43) will apply to f provided one

also has ‖| fn‖| → ‖| f ‖| < ∞. As ‖χ f (m− j)
n ‖ → ‖χ f (m− j)‖ for all 0 � j � m, attention can

be focused on the remaining terms contributing to ‖| · ‖|. These are controlled using the

higher-order Hardy inequality (proved in appendix A.4)

∫ τ

τ0

|h(t)|2
(τ − t)2 j

dt �
4 j

((2 j− 1)!!)2

∫ τ

τ0

|h( j)(t)|2 dt, (44)

which holds for all absolutely continuous functions h whose first j− 1 derivatives are also

absolutely continuous, and which obey h(τ ) = h′(τ ) = . . . = h( j−1)(τ ) = 0 and hence for all

h ∈ W
j
0(0, τ ). It is then elementary to see that |(‖| fn‖| − ‖| f ‖|)| � ‖| fn − f ‖| � const× ‖ fn −

f ‖m → 0, completing the proof. �

5. The singularity theorem

We now apply methods from [15] to prove a singularity theorem applicable to φmax-solutions

(M, g,ω) to the SEE. We will assume that there is a Cauchy surface S in M from which

all normally emanating future-directed timelike geodesics of length τ are T-regular, with

T t = T0(1− t/τ ) for T0 positive. Furthermore, we assume that the SEC holds for a short

period of proper time along these geodesics after S (this corresponds to ‘scenario 1’ in [15]).

We will prove that if the initial extrinsic curvature scalar on S is sufficiently negative then

every such geodesic contains a focal point. It follows by standard arguments (summarised in

[15]) that the spacetime is future timelike geodesically incomplete—indeed, no future-directed

timelike curve leaving S can have length greater than τ . In full detail, we will prove the fol-

lowing singularity theorem, which closely follows the structure of theorems 4.2 and 4.4 of

reference [15].

Theorem 5.1. Let (M, g,ω) be a φmax-solution of the SEE according to definition 3.2 and

let S be a smooth spacelike Cauchy surface inM. Suppose that:

(a) There exist constants τ > 0 and T0 > 0 so that every unit-speed timelike geodesic

γ : [0, τ ]→M emanating normally from S is T-regular, with T t = T0(1− t/τ ) (see

definition 3.1)

(b) There exist constants ρ0 � 0 and τ 0 ∈ (0, τT0/(T0 + 2τ )) so that, along each such γ, the
inequality Rμν γ̇

μγ̇ν |γ(t) � ρ0 holds for t ∈ [0, τ 0];

(c) The extrinsic curvature K of S satisfies

7The absolutely continuous functions on [0, τ ] those arising as integrals of L1 (and hence in particular L2) functions.
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−K � min

{
n− 1

τ0
, ν∗(T0, τ0, τ , ρ0)

}
, (45)

with ν∗(T0, τ 0, τ , ρ0) given by equation (54) below.

Then no future-directed timelike curve emanating from S has length greater than τ and M
is future timelike geodesically incomplete.

The idea of the proof is to show that each unit-speed geodesic γ : [0, τ ]→M emanat-

ing normally from S contains a focal point. Under the hypotheses of the theorem, let ρ(t) =
RμνU

μUν |γ(t) for some such γ,8 which defines a smooth function on [0, τ ] because the state ω
is Hadamard. By proposition 2.2 of reference [15], which brings together results from [12, 16]

and references therein, γ contains a focal point to S if there is a piecewise smooth g : [0, τ ]→ R

with g(0) = 1 and g(τ ) = 0, such that

J[g] � −K|γ(0), (46)

where

J[g] =

∫ τ

0

(
(n− 1)ġ(t)2 + g(t)2ρ(t)

)
dt. (47)

We proceed to estimate J[g] for the specific piecewise smooth function g ∈ Cm−1([0, τ])
given by

g(t) =

{
1 t ∈ [0, τ0)

I(m,m; (τ − t)/(τ − τ0)) t ∈ [τ0, τ ],
(48)

where I(p, q; x) [commonlywritten Ix(p, q)] is the regularised incompleteBeta function9. Note

that g(0) = 1, g(τ ) = 0. A plot of g form = 2 is given in figure 3, which also shows the related

function ϕ : [0, τ ]→ R defined by

ϕ(t) =

{
I(m,m; t/τ0) t ∈ [0, τ0)

1 t ∈ [τ0, τ ].
(49)

The advantage of these functions for our purposes is that their L2-norms and those of their

first derivatives are known in closed form [15, 47]. To be specific, the L2-norms on the interval

[0, τ] are

‖χ[τ0,τ ]g‖2 = (τ − τ0)Am, ‖g′‖2 = Bm

τ − τ0
, (50)

(see the proof of lemma 4.1 in [15]) where χ[a,b] is the characteristic function of [a, b] and the

constants Am and Bm are

Am =
1

2
− (2m)!4

4(4m)!m!4
, Bm =

(2m− 2)!2(2m− 1)!2

(4m− 3)!(m− 1)!4
(51)

8By the SEE, ρ(t) = −8π〈ρU〉ω , which is a slightly unfortunate collision of notation between the present paper and

[15].
9The function g was also used in section 4.1 of reference [15], where it was denoted f .
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Figure 3. Plot of the functions g(t) and ϕ(t) defined in equations (48) and (49)
respectively.

Table 1. The first few values of the constants Am and Bm.

m 1 2 3 4

Am 1/3 13/35 181/462 521/1287
Bm 1 6/5 10/7 700/429

for m ∈ N. The first few relevant values are tabulated in table 1. For the function ϕ we have

‖χ[0,τ0]ϕ‖2 = τ0Am. It is then easily seen that for the product f = gϕ we have

‖ f ‖2 = Amτ. (52)

As the function f = gϕ belongs toWm
0 (0, τ ), and γ satisfies the hypotheses of theorem 4.1 due

to assumption (a) of theorem 5.1, it may be shown that

∫ τ

0

ρ(t) f (t)2dt � Q0Amτ + QmHm(T0, τ0, τ ), (53)

where Hm(T0, τ 0, τ ) = ‖| f ‖|2 is given by equation (99) and the details of the derivation are

discussed in appendix A.5. Now it is straightforward to prove the following lemma.

Lemma 5.2. Under the hypotheses of theorem 5.1, if γ : [0, τ ]→M is a unit-speed

geodesic emanating normally from S then the functional J defined by (47) satisfies the estimate

J[g] � ν∗(T0, τ0, τ , ρ0) :=QmHm(T0, τ0, τ )+ Q0Amτ

+ (n− 1)
Bm

τ − τ0
+ ρ0τ0(1− Am) (54)

for the function g given by (48). Consequently, if−K|γ(0) � ν∗ then γ contains a focal point to
S.

Proof. Using g2 = (ϕg)2 + (1− ϕ2)g2 = f 2 + (1− ϕ2) and equation (53) we have

16



Class. Quantum Grav. 39 (2022) 075028 C J Fewster and E-A Kontou

∫ τ

0

dtg(t)2ρ(t) =

∫ τ

0

dtρ(t) f (t)2 +

∫ τ

0

dt(1− ϕ2)ρ(t)

� QmHm(T0, τ0, τ )+ Q0Amτ +

∫ τ0

0

dt(1 − ϕ2)ρ(t)

� QmHm(T0, τ0, τ ) + Q0Amτ + ρ0τ0(1− Am), (55)

where we have also used the estimates for the Sobolev norms of g, ϕ and f and assumption (b)

of theorem 5.1. Using the estimate of ‖ġ‖2 from equation (50) the proof of (54) is complete

and the remaining statement follows by [15, proposition 2.2] as discussed above. �

The proof of our main result is now straightforward.

Proof of theorem 5.1. Using assumptions (a)–(c) and lemma 5.2, all unit-speed timelike

geodesics of length τ emanating normally from S contain a focal point to S. It follows that

every unit-speed geodesic emanating normally from S that does not contain focal points has

length strictly less than τ . Theorem 5.1 now follows by standard reasoning, as summarised e.g.

in proposition 2.4 (b) of [15]. �

6. A quantitative application using cosmological parameters

To conclude, we will show that the theorems given above can be used quantitatively. We will

use parameters drawn from the cosmology of our Universe and show that the time-reversed

version of our theorem predicts a past singularity, or singularity-like behaviour, on reasonable

cosmological timescales. It should be borne in mind that this prediction relates to our SEE

coupled to a single scalar quantum field. Thus the aim is not to make predictions about our

Universe but rather to show that our singularity theorem can make physically plausible quan-

titative statements about a toy cosmology. This was also our approach in [13, 15] to which we

will refer for some details.

The relevant information about our own Universe is drawn from the ΛCDM cosmology

model fitted with data from the PLANCK experiment [32]. In particular, the ratios of dust

and dark energy densities to the critical density are taken respectively as Ωm = 0.31 and

ΩΛ = 0.69 at the present time. According to the model fitted with these parameters, the

SEC was last satisfied when the Universe’s age was approximately 2.41× 1017 s (at red-

shift parameter z∗ = 0.642), after which dark energy became dominant. The Hubble param-

eter at that time was H∗ = 3.14× 10−18 s−1 (for details on this calculation see [15]). Also

at that time, the four-dimensional Ricci scalar had magnitude |R∗| = 5.7× 10−35 s2. What

we draw from this is that (this model of) our own Universe contains a Cauchy surface with

extrinsic curvature K = H∗ towards the future, and that the SEC was obeyed for some period

beforehand.

Now let us examine the quantitative predictions of the time-reversed version of theorem

5.1, in the four-dimensional case m = 2. The idea is the Cauchy surface S in the theorem

should correspond to the z∗ = 0.642 hypersurface in the ΛCDM model. Several parameters

are required:M (the mass of the field, expressed as the inverse reduced Compton length), φmax

(the maximum magnitude of the scalar field), timescales T0 and τ that determine the function

T t, together with parameters ρ0 and τ 0 relating to the period where SEC is assumed. Recall

that our assumption is that the SEC should hold in the form Rμν γ̇
μγ̇ν � ρ0 � 0 for at least a

period of time τ 0 just before the surface S. We set ρ0 = 0, so our assumption becomes simply

the statement that SEC held for at least a period τ 0. For M, we use values corresponding to
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three elementary particles: the pion, proton10 and Higgs. In each case φmax is determined using

the square root of the Wick square in a Minkowski spacetime KMS state of a temperature that

is 1% of the reduced Compton temperatureTCompton = ch̄M/k of the particle concerned,where
k is Boltzmann’s constant. The temperature TCompton defines a scale beyond which the model

cannot be trusted and, following [13, 15] provides a heuristic basis for the value

φ2
max ∼ 10−2 c

4

GN

(MℓPl)
2K1(100), (56)

where Kν is a modified Bessel function of the second kind and ℓPl is the Planck length. We

should note that equation (56) is sensitive to the choice of temperature 10−2TCompton and that

φmax would change significantly if this is raised or reduced. For the moment, we leave the

timescales T0, τ and τ 0 as free parameters. Let us recall that T t is the timescale over which the

Minkowski QEI provides a valid estimate on the EED in the spacetime, and in particular that T0

sets that timescale at the surface S. For theorem5.1 wemust assume τ 0 < t2 = τT0/(T0 + 2τ ).
The time-reversed version of theorem 5.1 asserts that, provided the past-directed unit-speed

geodesics emanating normally from S are T-regular, with T t = T0(1− t/τ ), past geodesic
incompleteness occurs within timescale τ if the extrinsic curvature of S (to the future) exceeds

min{3/τ0, ν∗(T0, τ 0, τ , ρ0)}, where ν∗ was defined in equation (54). As ρ0 = 0,

ν∗(T0, τ0, τ , 0) = Q2H2(T0, τ0, τ )+ Q0A2τ +
3B2

τ − τ0
, (57)

where A2 = 13/35, B2 = 6/5 and, restoring dimensions, the constantsQ2 andQ0 are given by

Q2 = h̄
GN

2πc5
= 4.60× 10−88 s2, Q0 =

4πGNM
2φ2

max

c2
. (58)

The values ofQ0 for the three elementary particles based on the φmax calculation described are

given in table 2, while the function H2(T0, τ 0, τ ) is evaluated in appendix A.5 as

H2(T0, τ0, τ ) = 2

[√
12

τ 30
+

√
12

(τ − τ0)3
+ 2H1

(√
3

10τ0t22
+ c

√
12

(τ − τ0)3

)

+ H2

(√
13τ0
560t42

+ c2

√
13

3(τ − τ0)3

)]2

, (59)

where the numerical coefficients are H1 = 10.87 and H2 = 234.6 and c = 2τ 2/((2τ − T0)T0)

The required extrinsic curvature depends on the three remaining independent parameters

T0, τ 0 and τ . We will consider situations in which τ , the timescale within which the singu-

larity occurs, is much greater than T0, the timescale on which the Minkowski QEI is valid

in the curved spacetime near S. This implies that τ 0 < t2 ≈ T0/2 ≪ τ and c ≈ τ/T0 ≫ 1. If

the extrinsic curvature at S exceeds 3/τ 0, then Hawking’s theorem already implies that past

timelike geodesic incompleteness occurs within time τ 0 of S, i.e. in the region where SEC

10The proton is of special interest in cosmology as the majority of baryonic matter is in the form of hydrogen. Of

course the proton, as a spin-1/2 particle, is not described by a scalar field and we emphasize again that our aim here

is to obtain reasonable order of magnitude parameters rather than to accurately model cosmology. Nonetheless, the

QEIs for fermionic fields that have been developed (e.g. [48, 49]) take a similar form to those applying to scalar fields.

It seems reasonable to expect that the same would be true for a QSEI, although no such bound has yet been derived

for fermionic fields.
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Table 2. The temperature scale and Q0 for three elementary particles with different
masses, the pion, the Higgs and the proton.

Particle Mass in kg TCompton in K Q0 in s
−2 τ in s ν∗ in s−1 min T0 in s

Pion 2 × 10−28 1.56 × 1012 2.38 × 10−40 2.02 × 1020 3.57 × 10−20 1.05 × 10−10

Proton 1.67 × 10−27 1.089 × 1013 5.60 × 10−37 4.16 × 1018 1.73 × 10−18 1.51 × 1011

Higgs 2.23 × 10−25 1.45 × 1015 1.78 × 10−28 2.33 × 1014 3.09 × 10−14 1.14 × 10−13

holds. This rather trivial result is avoided by restricting to the situation where ν∗ ≪ 3/τ 0. Our
theorem now predicts that past timelike geodesic completeness fails within time τ provided

K > ν∗.
For convenience, let us assume that the first term of equation (57) is much smaller than the

other two (as actually happens for a broad range of parameters). Then the required extrinsic

curvature is given by a combination of the last two terms,

ν∗(T0, τ0, τ , 0) ≈ Q0A2τ +
3B2

τ
(60)

different for each particle, but roughly independent of T0 and τ 0 provided we remain in

the regime mentioned above. The value of τ that minimizes ν∗ and the corresponding value

of ν∗ are

τ =
√
3B2/(Q0A2) = 3.11Q

−1/2
0 , ν∗ =

√
12A2B2Q0 = 2.31Q

1/2
0 . (61)

Evaluating these expressions for the pion gives τ = 2.02× 1020 s and ν∗ = 3.57× 10−20 s−1,

while for the proton we have τ = 4.16× 1018 s and ν∗ = 1.73× 10−18 s−1. Both values of ν∗
are smaller than the valueH∗ = 3.14× 10−18 s−1 drawn fromΛCDMcosmology.Therefore, in

either of these models, we could conclude the presence of a past singularity within timescale

τ if the extrinsic curvature took the value H∗ on S. Note that the timescales are larger, by 1

order of magnitude (proton) or 3 orders of magnitude (pion) than the age of our Universe at

z∗ = 0.642. Particularly for the proton, these results show that the theorem provides physically

plausible quantitative estimates. In theHiggs case, we have τ = 2.33× 1014 s and ν∗ = 3.09×
10−14 s−1, very much larger than H∗. Similar behaviour was observed in an earlier hybrid

model [15].

The parameters τ 0 and T0 are still free, though must be chosen to be much less than τ
and to ensure that all the subsidiary assumptions made above still hold. Let us examine the

condition that the first term in equation (57) be much smaller than the others, which sum to the

approximate value of ν∗ given in equation (61) in our situation of interest. Taking τ 0 ≈ T0/2
the assumption T0 ≪ τ implies that Q2H2(T0, τ0, τ ) ≈ 4.77× 105Q2τT

−4
0 . Using the above

values, the first term of (57) is at least two orders of magnitude smaller than the sum of the

other two provided T0 � 1.31× 10−20Q
−1/4
0 , giving values of 1.06× 10−10 s for the pion,

1.51× 10−11 s for the proton and 1.14× 10−13 s for the Higgs. The largest of these values

corresponds to a length scale of a few centimeters. By comparison, in the ΛCDM model at

the z∗ = 0.642 surface, the four-dimensional Ricci scalar |R∗| = 5.7× 10−35 s2 gives a crude

indication that curvature scales are on the order of |R∗|−1/2 = 1.3× 1017 s, while the Hubble

parameter sets a timescale H−1
∗ = 3.2× 1017 s of a similar order. As the minimum values of

T0 are many orders of magnitude below those scales it seems very reasonable to accept the

validity of the Minkowski QEI. The τ , ν∗ and T0 values for each particle are summarized in

table 2.
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If, instead of taking τ 0 ≈ T0/2, we allow τ 0 to be much less than T0, then the contribution

to H2 equal to 24Q2/τ
3
0 might become dominant. Requiring this term to remain at least two

orders of magnitude smaller than 4.77× 105Q2τT
−4
0 we find a minimum value of τ 0 for which

our approximations remain valid. This reasoning gives a minimum value of τ 0 for the pion

1.46× 10−21 s, for the proton 4.00× 10−22 s and for the Higgs 1.53× 10−23 s. In other words,

the SEC need be assumed to hold only for a fleeting instant (this does not exclude it holding for

a much longer period!). Furthermore, in all cases considered we have 3/τ 0� 6/T0 ≫ 6/τ =

0.84ν∗ so we are well outside the regime (by several orders of magnitude) in which Hawking’s

result would predict geodesic incompleteness.

Finally, we note that there is still a lot of freedom that could be exploited. For example, if

we multiply the value of τ from that given in equation (61) by a factor of a, the value of ν∗ is
multiplied by a factor of a/2+ 1/(2a). In the case of the proton we may use this freedom to

lower the singularity timescale for a proton to about 5.3 times the age of our Universe at the

z∗ = 0.642 surface, while the required extrinsic curvature remains less than H∗.

7. Conclusions

In this work we presented the first proof of a semiclassical singularity theorem based directly

on a QEI satisfied by a quantum field. In previous works we have derived, on the one hand, a

singularity theoremwith a weakened energy condition [15] and, on the other, a quantum strong

energy inequality (QSEI) [25]. Here we have connected those pieces, showing how a suitable

energy condition for a singularity theorem can be derived from such a QEI. The main chal-

lenge we overcame was the need to approximate the curved spacetime QEI by its Minkowski

counterpart, which necessitated a partition of unity argument into pieces of vanishingly short

duration towards the end of the geodesic segments under consideration, thus allowing for a

possible blow-up in the curvature scales.

In particular, we showed that a solution to the SEE with a massive scalar field cannot

be future timelike complete if four conditions hold: (i) an assumption essentially requir-

ing that the local temperature of the scalar field remains below a specified threshold, (ii)

all the unit speed timelike geodesics of length τ emanating normally from a spacelike

hypersurface S are T-regular for a function T t = T0(1− t/τ ) that decreases linearly to the

future (i.e. the Minkowski QEI provides a reliable estimate of the curved spacetime QEI

on timescales given by T t at time t), (iii) the SEC holds for a short period just after S and

(iv) the extrinsic curvature of S should obey a specific inequality. Failure of any of condi-

tions (a) and(b) might be regarded as indicating singular behaviour for many practical pur-

poses, provided the temperature threshold is high enough—for instance, failure of (ii) indi-

cates that the curvature scales shrink to zero faster than linearly along at least one geodesic

leaving S.

To gain some insight into the potential utility of our theorem, it was applied using data

drawn from ΛCDM cosmology and the PLANCK experiment [32], with the mass of the scalar

field taken equal to that of the pion, the proton and the Higgs particle in turn. For the proton,

we found physically reasonable parameter values so that an extrinsic curvature of a magnitude

found at redshift z = 0.642 in the ΛCDMmodel would guarantee a singularity within an order

of magnitude of the actual age of the Universe at that time. The SEC need only be assumed for

a fleeting instant—far shorter than would be needed for Hawking’s result to predict a singu-

larity. It should be emphasised that our result holds across all solutions to the SEE satisfying

the assumptions, so it is not at all surprising that the timescale to singularity is longer than

in the physical cosmology. Nonetheless, it is gratifying that the simple model produces such

physically plausible results.
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A drawback in our result is the assumption of T-regularity, which works around the fact that

curved spacetime QEI in its current form requires the specification of a reference state. In fact,

we believe it likely that our approach ends up overestimating the threshold on the extrinsic

curvature needed to guarantee geodesic incompleteness. A more satisfactory approach would

require a suitable ‘absolute’ version of the QEI from [25] that does not require a reference state.

Even then it would be necessary to estimate various terms in the Hadamard parametrix. Such

a computation has been done in the case of the quantum weak energy inequality [46] based

on an absolute QEI from [50]. The QSEI presents additional challenges as the bound is state

dependent even in the minimally coupled scalar field case and is the topic of ongoing work.

The singularity theorem presented here concerns timelike geodesic incompleteness. In ref-

erence [15]we derived singularity theoremswith weakened energy conditions for both timelike

and null geodesics. However, QEIs along null geodesics in four-dimensional spacetime do not

exist, as was shown by an explicit counterexample in [51]. The counterexample can be circum-

vented if a momentum cut-off is imposed, and it was recently shown in reference [52] that a

conjectured null QEI with a UV momentum cutoff [53] is sufficient to prove a null geodesic

singularity theorem using methods from [15]. However, the QEI involved remains to be proven

and any curvature corrections estimated.

Finally, it is important to note that the SEE is a highly nontrivial system and relatively little is

known about its solution space exceptwhere a high level of symmetry is imposed. In the case of

static spacetimes, let us note that all of the solutions studied in [41] are timelike geodesically

complete (in all cases the metric is simply g = dt2 − a2h where h is the round three-sphere

metric and a > 0 is constant). One might wonder whether this indicates a contradiction with

our theorems, but this is not the case: because the solutions in [41] also obey the timelike

convergence condition, there can be no spacelike Cauchy surface whose extrinsic curvature is

bounded away from zero—because otherwise the Hawking singularity theorem would imply

the failure of timelike geodesic completeness. Therefore our theorem does not apply to these

solutions and there is accordingly no contradiction. Solutions have also been derived in the

case of cosmological spacetimes—see e.g. [42, 43, 54]. It would be of interest to examine the

behavior of solutions obtained in those works and the range of initial conditions that predict a

primordial singularity.
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Appendix A. Details concerning the partition of unity

In this appendix we provide the details of the partition of unit construction summarized in

section 4.
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A.1. Construction of the partition of unity

We aim to construct functions φn obeying equations (33) and (34), starting from a given

function t �→ T t. A first task is to show that a sequence tn of the required type can be found.

LemmaA.1. Suppose that t �→ Tt is strictly positive, nonincreasing and continuous on [0, τ )
where 0 < τ � ∞,with Tt → 0 as t→ τ if τ < ∞. Then there is a strictly increasing sequence

tn (n ∈ N0) in [0, τ) satisfying (34), with t0 = − 1
2
T0, t1 = 0, tn+1 − tn =

1
2
Ttn+1

for n � 0 and

tn → τ as n→∞. Furthermore, defining n : [0, τ )→ N so that t′ ∈ [tn(t′), tn(t′)+1) for all t
′ ∈

[0, τ), the following estimates hold for all t ∈ [0, τ):

tn(t)+1 � t +
1

2
Tt, Ttn(t)+1

� Tt+Tt/2. (62)

Proof. We first show that there is a sequence tn ∈ [0, τ) obeying t1 = 0 and tn+1 − tn =
1
2
Ttn+1

for n � 1 (clearly this holds also for n = 0 if we set t0 = − 1
2
T0). If τ < ∞ then set

T t = 0 for t � τ , thus extending T t as a continuous function. Suppose inductively that the

first n terms of the sequence can be constructed for n � 1 and all lie in [0, τ), noting that this
holds for n = 1. The function h(t) = t − 1

2
Tt is continuous on [0,∞), strictly increasing, obeys

h(tn) < tn and h(t) � t − 1
2
Ttn for t � tn. Thus h(τ ) > tn and h(tn +

1
2
Ttn) � tn. By the interme-

diate value theorem, the equation h(t) = tn has a solution t ∈ (tn, tn +
1
2
Ttn] ∩ (0, τ ), which is in

fact the unique solution in (tn,∞). Therefore tn is well-defined as a strictly increasing sequence

tn in [0, τ ).
As T t is nonincreasing, the sequence tn also has the property tn+1 − tn =

1
2
Ttn+1

� 1
2
Ttn =

tn − tn−1. It follows that [tn−1, tn+1] ⊂ [tn − Ttn/2, tn + Ttn/2].
If τ < ∞, the sequence is increasing and bounded above, so tn → t∗ = supn tn � τ , where-

upon Ttn → 0 as n→∞ and hence Tt∗ = 0 by continuity, showing that t∗ � τ . Thus tn → τ .
Similarly, if τ = ∞ but the sequence tn is bounded, then tn → t∗ < ∞ and we again deduce

Tt∗ = 0, contradicting the assumption that T t is strictly positive on (0, τ ).
To establish (62) one notes that tn(t) � t < tn(t)+1 by definition, so

tn(t)+1 � t + tn(t)+1 − tn(t) = t +
1

2
Ttn(t)+1

� t +
1

2
Tt, (63)

as T t is non-increasing, from which we also deduce Ttn(t)+1
� Tt+Tt/2. �

We remark that one also has the very simple estimate tn(t)+1 � t + t2 for all t, on noting

that tn(t)+1 � t + 1
2
Tt2 = t + t2 for t � t2, and trivially, that tn(t)+1 = t2 � t + t2 for t < t2. The

functions φn (n ∈ N) corresponding to the sequence tn are defined by equation (37), where

F(x) = sin(θ(x)) and G(x) = cos(θ(x)), with θ given by equation (38). We must check that

they are indeed smooth functions satisfying the conditions (33) and (34).

Clearly, each φn takes values in [0, 1] with φn(tn) = 1. Additionally, φn is clearly smooth

everywhere except perhaps t = tn; but as all derivatives of θ(x) vanish as x→ 0 or x→ 1
2
, it is

easily seen that each φn is smooth at tn with all its derivatives vanishing there.

As φn(t) vanishes identically for t < tn − Ttn/2 = tn−1 and for t > tn + Ttn+1
/2 = tn+1, we

have suppφn ⊂ [tn−1, tn+1]. Thus, on the interval [tn, tn+1] only φn and φn+1 can be nonzero,

and one has

φn(t)
2 + φn+1(t)

2 = cos2[θ((t − tn)/Ttn+1
)]+ sin2[θ((t− tn+1)/Ttn+1

+
1

2
)] = 1

because tn+1/Ttn+1
− 1/2 = tn/Ttn+1

. Summarising, we have constructed a sequence φn (n �
1) of smooth compactly supported functions taking values in [0, 1], with suppφn ⊂ [tn−1, tn+1]

and satisfying (33) on ∪∞
n=1[tn, tn+1] = [0, τ ).
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A.2. Specific examples of the sequence tn

Finite interval. For a first example, define T t = T0(1− t/τ ) on [0, τ) for 0 < τ < ∞. The

equation tn+1 − tn =
1
2
Tt can be rearranged to

tn+1 =
tn + T0/2

1+ T0/(2τ )
, (64)

which is solved uniquely, subject to t1 = 0, by

tn = τ

(
1−

(
2τ

T0 + 2τ

)n−1
)

(65)

for all n ∈ N0. In particular, t2 = τT0/(T0 + 2τ ) and t0 = − 1
2
T0. Defining n : [0, τ )→ N so

that t′ ∈ [tn(t′), tn(t′)+1), one finds

n(t′) = 1+

⌊
log(1− t′/τ )

log(2τ/(T0 + 2τ ))

⌋
, (66)

from which tn(t)+1 may be calculated. Here ⌊x⌋ is the largest integer no greater than x. For

convenience, one may use the estimate (62) to give

tn(t)+1 �

(
1− T0

2τ

)
t +

T0

2
∈ [T0/2, τ ) (67)

and therefore

Ttn(t)+1
�

(τ − t)(2τ − T0)T0

2τ 2
=

τ − t

c
, c =

2τ 2

(2τ − T0)T0
(68)

holds for all t ∈ [0, τ). For 0 � t < t2, one has n(t) = 1 and therefore Ttn(t)+1 = Tt2 = 2t2 holds

for t ∈ [0, t2).

Infinite interval. As an example where τ = ∞, consider T t = T0 e
−λt for some constant

λ > 0. Then the equation

tn − tn−1 =
1

2
Ttn (69)

may be written as a recurrence relation in terms of Lambert’sW-function [55, section 4.13] by

tn+1 = tn + λ−1W

(
1

2
λT0 e

−λtn

)
, t1 = 0. (70)

In particular, t2 = W( 1
2
λT0) obeys 1 < eλt2 < 1+ 1

2
λT0.

To obtain asymptotic approximations to tn, it is convenient to write tn = sn/λ where the

sequence sn obeys

sn+1 − sn = μ e−sn+1 , s1 = 0 (71)

and μ = 1
2
λT0. Observe that the sequence Sn = log(μn+ e−μ) satisfies

Sn+1 − Sn = μ

∫ n+1

n

dr

μr + e−μ
>

μ

μ(n+ 1)+ e−μ
= μ e−Sn+1 ,

S1 = log(μ+ e−μ) > 0.

(72)
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Thus S1 > s1 and, because

Sn+1 − sn+1 > Sn − sn + μ
(
e−Sn+1 − e−sn+1

)
, (73)

a simple induction argument shows that Sn > sn for all integer n � 1, i.e. one has

sn < log(μn+ e−μ) n � 1. (74)

Now the relation (71) implies

sn = μ

n∑

r=2

e−sr (75)

so the upper bound on sn gives

sn >

n∑

r=2

μ

μn+ e−μ
= ψ(n+ 1+ μ−1 e−μ)− ψ(2+ μ−1 e−μ)

= log(n)− ψ(2+ μ−1 e−μ)+ O(1/n) (76)

where ψ(z) = Γ
′(z)/Γ(z) is the digamma function.

Thus sn = log(μn)+ O(1) as n→∞ and the upper and lower bounds on sn, together with

(71), give

μ

μn+ e−μ
< sn+1 − sn <

μ exp
(
ψ(2+ μ−1 e−μ)

)

exp
(
ψ(n+ 2+ μ−1 e−μ)

)

=
μ exp

(
ψ(2+ μ−1 e−μ)

)

μ(n+ 1/2)+ e−μ

(
1+ O(n−2)

)
(77)

i.e. sn+1 − sn = O(1/n). That is, our original sequence tn satisfies

tn = λ−1 log(
1

2
λT0n)+ O(1), tn+1 − tn = O(1/n) (78)

as n→∞.

Reverse engineering. To conclude this section, we note that other example sequences can

be obtained by reverse engineering the function T t from a required sequence tn. Suppose a

strictly increasing sequence tn (n ∈ N0) is given, with t1 = 0 and tn → τ as n→∞. Choose any

homeomorphism k : [0,∞)→ [0, 2τ/T0 + 1) that obeys k(0) = 0 and k(1) = 1, and provides

an interpolation of the sequence tn according to

tn =
1

2
(k(n)− 1)T0. (79)

Then it is easily seen, noting that k−1(2tn/T0 + 1) = n, that this sequence corresponds to

Tt = 2t + T0 − T0k
(
k−1(1+ 2t/T0)− 1

)
(80)

which, if k is differentiable, obeys T ′
0 = 2(1− k′(0)/k′(1)).

For instance, the sequence (65) arises in this way via the homeomorphism k : [0,∞)→
[0, 2τ/T0 + 1) given by

k(x) = 1+
2τ

T0

(
1−

(
2τ

T0 + 2τ

)x−1
)
, (81)
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while the sequence

tn =
T0

2
(ψ(n+ 1)+ γ − 1) =

⎧
⎪⎪⎨
⎪⎪⎩

1

2
T0

(
−1+

n∑

r=1

r−1

)
n � 1

−1

2
T0 n = 0

(82)

where γ is the Euler–Mascheroni constant, arises (via the homeomorphism of [0,∞) given by

k(x) = ψ(x + 1)+ γ) from

Tt = 2t + T0
(
1− γ − ψ

(
ψ−1(1− γ + 2t/T0)− 1

))
. (83)

A.3. Weighted Sobolev inequalities

Returning to a general partition of unity to start with, we can proceed to estimate the sum

appearing on the lhs of equation (35).

Exchanging the integral with the sum we can write, for any f ∈ C∞
0 (0, τ ),

∞∑

n=1

‖( fφn)(m)‖2 =
∫ τ

0

∞∑

n=1

∣∣∣∣∣
m∑

i=0

(m
i

)
f (m−i)φ(i)

n

∣∣∣∣∣

2

dt

=

∫ τ

0

m∑

i=0

m∑

j=0

(m
i

)(m
j

)
hi f (m−i)h j f

(m− j)Pi j dt,

Pi j(t) =

∞∑

r=1

φ(i)
r (t)φ

( j)
r (t)

hi(t)h j(t)
,

(84)

where the nonnegative functions h j(t), to be chosen below, have dimensions of [time]− j to

make the components Pi j dimensionless. For each t � 0, there are at most two nonzero terms

in the sum defining Pi j, namely the terms r = n(t) and r = n(t)+ 1, where n(t′) is defined
so that t′ ∈ [tn(t′), tn(t′)+1). (For example, if tn is related to an interpolating function k as in

equation (79), then

n(t) = ⌊k−1(2t/τc + 1)⌋, (85)

where ⌊x⌋ denotes the greatest integer less than or equal to x.) Therefore the sum defining

Pi j is finite. Using the elementary inequality that x†Px � ‖P‖max(
∑

i|xi|)2 where ‖P‖max =

maxi, j|Pi j|, the integral in (84) can be bounded as

∞∑

n=1

‖( fφn)(m)‖2 �
∫ τ

0

(
m∑

i=0

(m
i

)
hi(t)

∣∣ f (m−i)(t)
∣∣
)2

‖P(t)‖max dt. (86)

There is considerable freedom to choose the functions hi. A convenient choice is to set

hi(t) =
Hi

Ttn(t)+1

, Hi = max{‖F(i)‖∞, ‖G(i)‖∞}. (87)

To see why, note that

φ(i)
n (t) =

{
sinF

(i)((t− tn)/Ttn + 1/2) t < tn,

sin+1G
(i)((t− tn)/Ttn+1

) t � tn,
(88)
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where sn = 1/Ttn . At each t � 0, φ(i)
n(t)(t) = sin(t)+1G((t− tn)/Ttn+1

), while φ(i)
n(t)+1(t) =

sin(t)+1F((t− tn+1)/Ttn+1
). Thus, taking hi(t) = T−i

0 sin(t)+1 = T−i
tn(t)+1

, one has |Pi j(t)| � 2 and

hence the estimates

∞∑

n=1

‖( fφn)(m)‖2 � 2

∥∥∥∥∥∥

m∑

j=0

H j

T
j
tn(t)+1

(
m

j

)
| f (m− j)|

∥∥∥∥∥∥

2

� 2

⎡
⎣

m∑

j=0

H j

(
m

j

)∥∥∥∥∥
f (m− j)

T
j
tn(t)+1

∥∥∥∥∥

⎤
⎦
2

(89)

for all f ∈ C∞
0 (0, τ ), where we have used the triangle inequality in the last step.

To proceed, let us consider the specific partition of unity induced by T t = T0(1− t/τ ) on
the interval [0, τ), now assuming τ < ∞. Suppose that 0 < τ 0 < t2 and let χ be the character-

istic function of [0, τ 0]. Writing f (m− j) = χ f (m− j) + (1− χ) f (m− j) and again using the triangle

inequality,

∥∥∥∥∥
f (m− j)

T
j
tn(t)+1

∥∥∥∥∥ �

∥∥∥∥∥
χ f (m− j)

T
j
tn(t)+1

∥∥∥∥∥+

∥∥∥∥∥
(1− χ) f (m− j)

T
j
tn(t)+1

∥∥∥∥∥ , (90)

also using the fact that Ttn(t)+1
� 2t2 for t ∈ [0, τ0] and otherwise using the estimate Ttn(t)+1

�
(τ − t)/c, (see (68) and (68)) one has

∞∑

n=1

‖( fφn)(m)‖2 � 2

⎡
⎣

m∑

j=0

H j

(
m

j

)(‖χ f (m− j)‖
(2t2) j

+ c j
∥∥∥∥
(1− χ) f (m− j)

(τ − ·) j
∥∥∥∥
)⎤
⎦
2

(91)

for all f ∈ C∞
0 (0, τ ). This is precisely the inequality (40) needed to complete the proof of

theorem 4.1.

A.4. A higher order Hardy inequality

LetU and V be measurable real-valued functions on [0,∞) and suppose that B > 0 defined by

B2 = sup
x>0

(∫ ∞

x

|U(t)|2 dt
)(∫ x

0

dt

|V(t)|2
)

is finite. Where necessary, it is understood that the convention 0 · ∞ = 0 is in force. Then there

exists C > 0 such that the weighted Hardy inequality

∫ ∞

0

∣∣∣∣U(x)
∫ x

0

f (t)dt

∣∣∣∣
2

dx � C2

∫ ∞

0

|V(x) f (x)|2 dx. (92)

holds for measurable, locally integrable f and the least value of the constant C for which this

is true obeys B � C � 2B. In particular, the finiteness of the right-hand side implies that the

left-hand side is finite. See [56] for an elementary proof. Considerably more general results are

known.

We apply this inequality in the case U(x) = x−nH(1− x), V(x) = x−(n−1)H(1− x) where

H is the Heaviside function, for which
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Figure 4. Plots of the first (left) and second (right) derivatives of function θ (see
equation (38)). Their maximum values are indicated in red.

B2
= sup

x>0

H(1− x)(x−(2n−1) − 1)

(2n− 1)

x2n−1

(2n− 1)
=

1

(2n− 1)2

and therefore

∫ 1

0

∣∣∣∣
1

xn

∫ x

0

f (t)dt

∣∣∣∣
2

dx �
4

(2n− 1)2

∫ 1

0

| f (x)|2
x2(n−1)

dx. (93)

As the antiderivatives of absolutely integrable functions are precisely the absolutely contin-

uous functions, inequality (93) can be rephrased as the statement that for every h ∈ AC([0, 1])

obeying h(0) = 0, one has the inequality

∥∥∥∥x �→
h(x)

xn

∥∥∥∥
2

�
4

(2n− 1)2

∥∥∥∥x �→
h′(x)

x2(n−1)

∥∥∥∥
2

, (94)

where h plays the role of h(x) =
∫ x

0
f (t)dt in (93). Iterating, one finds

∥∥∥∥x �→
h(x)

xn

∥∥∥∥
2

�
4n

((2n− 1)!!)2
‖h(n)‖2 (95)

for all h ∈ AC([0, 1]) such that each h( j) ∈ AC([0, 1]) with h( j)(0) = 0 for 0 � j � n− 1.

Inequality (44) is now immediate by an elementary change of integration variable.

See e.g. [57] for more general (though less explicit) higher order Hardy inequalities.

A.5. Computation of Hm(T0, τ0, τ )

In section 5 we need to compute Hm(T0, τ 0, τ ) = ‖| f ‖|2, for the function f built from

incomplete beta functions

f (t) =

{
I(m,m; t/τ0) t ∈ [0, τ0)

I(m,m; (τ − t)/(τ − τ0)) t ∈ [τ0, τ ].
(96)

Elementary manipulations give
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Table 3. The values of the constants Am, j and Cm, j for m = 2.

j 0 1 2

A2, j 13/35 6/5 12

C2, j 12 12 13/3

‖χ f (m− j)‖2 = Am,m− j

τ 2(m− j)−1
0

, Am,k :=

∫ 1

0

I(k)(m,m; x)2 dx (97)

and

∥∥∥∥
(1− χ) f (m− j)

(τ − ·) j
∥∥∥∥
2

=
Cm, j

(τ − τ0)2m−1
, Cm, j =

∫ 1

0

x−2 jI(m− j)(m,m; x)2 dx. (98)

Here, conventions have been chosen so that Am,0 = Am and Cm,0 = Cm, in the notation used in

[15] and section 5. Substituting these results in (40) gives

Hm(T0, τ0, τ ) := 2

⎡
⎣

m∑

j=0

H j

(
m

j

)(√
Am,m− j

τ 2(m− j)−1
0 (2t2)2 j

+ c j

√
Cm, j

(τ − τ0)2m−1

)⎤
⎦
2

(99)

for the function f in (96). Here, the dependence on T0 enters via c and t2.

To make this bound quantitative, one needs to evaluate the constants Am, j and Cm, j. Our

main interest will be in the case m = 2, for which the relevant values are tabulated in table 3.

Using these values together with equation (99) gives

H2(T0, τ0, τ ) = 2

[
H0

(√
12

τ 30
+

√
12

(τ − τ0)3

)
+ 2H1

(√
3

10τ0t22
+ c

√
12

(τ − τ0)3

)

+ H2

(√
13τ0
560t42

+ c2

√
13

3(τ − τ0)3

)]2

. (100)

From equation (41) we have H0 = 1 and

H1 = sup θ′(x), H2 = sup θ′(x)2 + sup θ′′(x). (101)

Now θ′(x) = e−1/x e−1/(1/2−x) on [0, 1/2] and vanishes otherwise. Differentiating, θ′′(x) =
θ′(x)(1− 4x)/(1− 2x)2, so it is easily seen that the maximum of θ′ occurs at x = 1/4, giving
H1 = 10.87 (see figure 4). Differentiating further,

θ′′′(x) = θ′(x)
48 x4 − 48 x3 + 32 x2 − 10 x + 1

x4(−1+ 2 x)4
(102)

and one may determine that the maximum of θ′′ occurs at x = 1
4
−

√
6
√
13−21

12
. Consequently

H2 = 234.6.
More generally, closed forms for Am,0 = A0 and Cm,0 = C0 are known for all m ∈ N. For

general k � 1, we have
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Am,k =
1

B(m,m)2

∫ 1

0

(
dk−1

dxk−1
xm−1(1− x)m−1

)2

dx

=
Γ(2m)2

Γ(m)2(m− k)!2

∫ 1

0

(
m−1∑

r=0

(1− m)r(m)r

(m− k + 1)r

xm−k+r

r!

)2

dx

=
Γ(2m)2

Γ(m)2(m− k)!2(2(m− k)+ 1)

×
∞∑

r=0

∞∑

s=0

(1− m)r(m)r

(m− k+ 1)r

(1− m)s(m)s

(m− k + 1)s

(2(m− k)+ 1)r+s

(2(m− k + 1))r+s

1

r!s!

=
Γ(2m)2

Γ(m)2(m− k)!2(2(m− k)+ 1)

× F1:2;2
1:1;1

(
2(m− k)+ 1 : m, 1− m;m, 1− m

2(m− k+ 1) :m− k + 1;m− k + 1
; 1, 1

)
, (103)

(note that the series actually terminate after m terms) where the general Kampé de Fériet

function [58, 59] in 2 variables is given by

FA:C;FB:D;G

(
(a) : (c); ( f )

(b) : (d); (g)
; x, y

)
=

∞∑

m=0

∞∑

n=0

((a))m+n((c))m(( f ))n

((b))m+n((d))m((g))n

xmyn

m!n!
, (104)

in which (a), (c) etc are sequences of length A, C etc, and the notation ((c))m =
∏C

i=1(ci)m
denotes the product of Pochhammer symbols. A similar calculation yields

Cm, j =
Γ(2m)2

j!2Γ(m)2
F1:2;2
1:1;1

(
1 : m, 1− m;m, 1− m

2 : j+ 1; j+ 1
; 1, 1

)
. (105)

In certain cases, these expressions can be evaluated in terms of more familiar special functions.

For example, direct calculation gives

∫ 1

0

xλ−1I′(μ,μ′; x)2dx =
1

B(μ,μ′)2

∫ 1

0

xλ−1x2μ−2(1− x)2μ
′−2 dx (106)

=
B(λ+ 2μ− 2, 2μ′ − 1)

B(μ,μ′)2
(107)

so with μ′ = μ and λ = 3− 2μ,

∫ 1

0

x−2(μ−1)I′(μ,μ′; x)2dx =
B(1, 2μ− 1)

B(μ,μ)2
=

1

(2μ− 1)B(μ,μ)2
, (108)

giving Cm,m−1 in the case μ = m.

The coefficients Cm,m can also be obtained. In the notation of [47], one has

∫ 1

0

xλ−1I(μ,μ′, x)2dx = B(λ, 1)B(λ, 1,μ,μ′,μ,μ′) (109)

where

B(λ,λ′,μ,μ′, ν, ν ′) :=
1

B(λ,λ′)

∫ 1

0

tλ−1(1− t)λ
′−1I(μ,μ′; t)I(ν, ν ′; t)dt, (110)
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and one may read off from that reference a formula for the right-hand side in terms of a

generalized hypergeometric function:

∫ 1

0

xλ−1I(μ,μ′, x)2dx =
1

λ

(
1− 2B(λ+ 2μ,μ′)

μB(μ,μ′)2 3F2

(
1− μ′,μ,λ+ 2μ
1+ μ,λ+ 2μ+ μ′; 1

))
, (111)

which was proved for nonnegative parameters λ, μ and μ′. Setting μ′ = μ and analytically

continuing the above formula to λ = 1− 2μ one finds

∫ 1

0

x−2μI(μ,μ, x)2dx =
1

2μ− 1

(
2

μ2B(μ,μ)2 3
F2

(
1,μ, 1− μ
1+ μ, 1+ μ

; 1

)
− 1

)
, (112)

yielding a closed form for Cm,m on setting μ = m.
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