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RESEARCH ARTICLE Open Access

Personalised treatment for cognitive
impairment in dementia: development and
validation of an artificial intelligence model
Qiang Liu1* , Nemanja Vaci2, Ivan Koychev1, Andrey Kormilitzin1,3, Zhenpeng Li1, Andrea Cipriani1,4 and
Alejo Nevado-Holgado1,5,6

Abstract

Background: Donepezil, galantamine, rivastigmine and memantine are potentially effective interventions for
cognitive impairment in dementia, but the use of these drugs has not been personalised to individual patients yet.
We examined whether artificial intelligence-based recommendations can identify the best treatment using routinely
collected patient-level information.

Methods: Six thousand eight hundred four patients aged 59–102 years with a diagnosis of dementia from two
National Health Service (NHS) Foundation Trusts in the UK were used for model training/internal validation and
external validation, respectively. A personalised prescription model based on the Recurrent Neural Network machine
learning architecture was developed to predict the Mini-Mental State Examination (MMSE) and Montreal Cognitive
Assessment (MoCA) scores post-drug initiation. The drug that resulted in the smallest decline in cognitive scores
between prescription and the next visit was selected as the treatment of choice. Change of cognitive scores up to
2 years after treatment initiation was compared for model evaluation.

Results: Overall, 1343 patients with MMSE scores were identified for internal validation and 285 [21.22%] took the
drug recommended. After 2 years, the reduction of mean [standard deviation] MMSE score in this group was
significantly smaller than the remaining 1058 [78.78%] patients (0.60 [0.26] vs 2.80 [0.28]; P = 0.02). In the external
validation cohort (N = 1772), 222 [12.53%] patients took the drug recommended and reported a smaller MMSE
reduction compared to the 1550 [87.47%] patients who did not (1.01 [0.49] vs 4.23 [0.60]; P = 0.01). A similar
performance gap was seen when testing the model on patients prescribed with AChEIs only.

Conclusions: It was possible to identify the most effective drug for the real-world treatment of cognitive
impairment in dementia at an individual patient level. Routine care patients whose prescribed medications were
the best fit according to the model had better cognitive performance after 2 years.
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Background
Dementia is an age-related neurodegenerative syndrome

[1], currently affecting approximately 55 million people

worldwide, with just under 10 million new cases every

year [2]. Medications approved for the treatment of de-

mentia in the US, UK and Canada are the acetylcholin-

esterase inhibitors (AChEIs; donepezil, rivastigmine and

galantamine) and memantine [3]. The use of these medi-

cations has been indicated in several guidelines across

these countries [4–6]. Generally, AChEIs are recom-

mended for patients with mild to moderate dementia

and memantine for patients with moderate to severe de-

mentia [4]. The guidelines are informed by double-blind

placebo-controlled randomised trials showing that de-

cline in cognitive performance stabilises for a period of

3–6 months after treatment initiation and have been rep-

licated in a large real-world observational study [7].

However, previous studies that assessed the efficacy of

these medications on dementia focused on the average

effect of these interventions and did not investigate the

potential differences at the level of individual patients

[8]. There is a strong movement in clinical research ad-

vocating for a more personalised approach in medicine,

using more advanced analytical approaches so that non-

linear relationships among multiple factors can be ex-

plored together [9].

Recently, artificial intelligence (AI) has been widely ap-

plied to dementia research. Deep neural network, one of

the most sophisticated machine learning approaches, is

commonly used with neuroimaging [10–12] and genetic

data [13] as it can make predictions by discovering gen-

eralisable nonlinear latent patterns [14, 15] and detect

early onset of dementia. Other clinical parameters, such

as abnormal alterations in drawing [16], gait [17], and

speech [18], have also been informed by AI to effectively

monitor brain health and disease progression. In terms

of treatment for dementia, AI-driven technologies, such

as assistive robots [19] and smart sensors [20], have been

developed, but mainly to provide caregiving and man-

agement support [21]. Some studies have investigated

how to individualise non-pharmacological interventions,

e.g. physical exercise recommendation [22], tailored

interactive reminiscence session [23], etc., but little to

no research has been carried out so far about the per-

sonalisation of pharmacological treatment in patients

with dementia.

In this study, we aimed to test whether AI-based rec-

ommendations based on patient-level information can

identify which is the best treatment for each patient and

improve their clinical outcome. We tested the specific

effect of the 4 recommended drugs for dementia (the

three AChEIs and memantine), utilising a large observa-

tional dataset of real-world patients. This allowed us to

investigate the differential effects of medications by

combining demographic data and longitudinal cognitive

measures and building a cognitive score prediction

model based on deep neural networks to identify the

most effective drug for cognitive impairment in demen-

tia at the individual patient level.

Methods
Study design and patients

We used de-identified electronic health record (EHR) data-

sets collected in two UK National Health Service (NHS)

Foundation Trusts, namely Oxford Health NHS Founda-

tion Trust (OHFT) and Southern Health NHS Foundation

Trust (SHFT). The data are held on the UK CRIS platform

[24]. All data used in this study were delivered via the

Akrivia Health (https://akriviahealth.com/, Oxford, UK)

Data Research Platform under a service agreement between

the NHS and Akrivia Health. We selected patients aged

59–102 years with a diagnosis of dementia through both

structured International Classification of Disease 10th revi-

sion (ICD-10) codes and mentions of dementia diagnosis in

the clinical notes by 10 June 2019. The AI model was devel-

oped and internally validated on the data from SHFT, while

OHFT data were used to externally validate the perform-

ance of the model. We identified 3905 individuals from

SHFT and another 2899 individuals from OHFT for exter-

nal validation. The SHFT and OHFT cohorts contributed

to a total number of 12,905 and 5296 observations, respect-

ively. In Table 1, we reported the descriptive statistics of

cognitive tests in the two cohorts using the Mini-Mental

State Examination (MMSE) [25] and the Montreal Cogni-

tive Assessment (MoCA) [26].

We assert that all procedures contributing to this work

comply with the ethical standards of the relevant na-

tional and institutional committees on human experi-

mentation and with the Helsinki Declaration of 1975, as

revised in 2008. All procedures involving human sub-

jects/patients were approved by the local CRIS oversight

committees and are covered by approval for the CRIS

database granted by the Oxfordshire and Southern

Health Research Ethics Committee. Individual patient

consent is not required for this use of anonymised, rou-

tine data.

Sample preparation

Data in UK CRIS consists of both structured fields, such

as clinical diagnoses represented by ICD-10 codes,

demographic factors and unstructured fields, i.e. clinical

notes [27]. We first used a natural language processing

(NLP) algorithm [28, 29] to decode the clinical notes

into structured data including date of visit, diagnosis,

medication and cognitive scale scores such as MMSE

and MoCA. Here, we only used NLP to extract cognitive

scores stated in the clinical notes as opposed to some-

how reconstructing proxy scores. Rule-based NLP was
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used because we aimed to identify and structure infor-

mation that often follows certain linguistic patterns in

clinical notes. In this situation, defining rules to extract

medication prescriptions and cognitive scores was parsi-

monious in comparison to using statistical learning NER

approaches. Moreover, it is more interpretable to clini-

cians [30]. The macro average F1 score of NLP extrac-

tions was 91.21%. Details can be found in Additional file

1: Tables S1 and S2. We then selected the patients who

have either a diagnosis of dementia or mentions of de-

mentia in the clinical notes. The selection criteria were

further narrowed down to those that had either MMSE

or MoCA score recorded. We kept clinical details of all

selected patients from their very first observations until

the last observations for our longitudinal analysis. The

interval for subsequent visits was kept up to 2 years

from the initial medication prescription. We excluded

patients taking more than one anti-dementia drugs. The

patients contributing to only one observation were also

excluded since no follow-up data could identify their

outcomes. We finally complemented the information of

patients with structured demographic factors.

Predictors and outcomes

Two psychiatrists pre-defined a set of 7 variables from

UK CRIS as predictors: age, sex, ethnicity, marital status,

duration (time between two continuous observations),

cognitive scores (MMSE or MoCA) and prescribed

medication, which was considered as a minimal collec-

tion for building a personalised prescription model. Age

[31] and cognitive score [7] were selected because,

among a wide range of clinical and demographic vari-

ables, they were found to be independently associated

with progression to dementia [32]. Duration can be dir-

ectly linked to cognitive decline [33], while sex [34], eth-

nicity [35] and marital status [36] were associated with

dementia progression in multiple studies [37–39]. Since

we aimed to investigate the specific response to different

drugs, prescribed medication was also included as a

predictor.

The primary outcome that our model predicted was

the cognitive scale score post-drug initiation. MMSE and

MoCA were adopted as they are the standard and most

often used screening tools for an overall measure of cog-

nitive impairment in both clinical and research settings

[40, 41]. Studies have concluded they are sufficiently ac-

curate to detect and monitor cognitive impairment [42,

43]. For both scales, a lower score indicates a more se-

vere cognitive impairment. The treatment that resulted

in the smallest decline in cognitive scores between pre-

scription and the next visit was selected as the neural

network treatment of choice (NNToC).

Data analysis

To develop a model capable of identifying best re-

sponders given patient’s clinical and demographic infor-

mation, we built our personalised prescription model

using a Recurrent Neural Network (RNN) machine

learning architecture (Long Short Term Memory

(LSTM) in particular), which has been widely applied in

various fields [44–46]. The choice was based on a previ-

ous research study [47], where authors showed the

Table 1 Descriptive statistics of patients from Oxford Health NHS Foundation Trust (OHFT) and Southern Health NHS Foundation
Trust (SHFT) based on the time when they received medication for the first time. The data for each Trust is presented separately
according to the cognitive scale reported (Mini-Mental State Examination (MMSE) or Montreal Cognitive Assessment (MoCA))

OHFT (MMSE) OHFT (MoCA) SHFT (MMSE) SHFT (MoCA)

Number of patients 1772 1127 3358 547

Number of observations 3575 1721 12,007 898

Male 37.81% 42.41% 39.70% 42.96%

Age, mean [SD] 81.93 [6.81] 81.72 [6.52] 80.48 [7.61] 80.22 [7.76]

Score, mean [SD] 21.01 [5.11] 17.25 [5.39] 21.10 [5.41] 17.95 [5.51]

Ethnicity (white) 81.66% 55.46% 79.51% 76.05%

Ethnicity (Asian) 0.28% 6.21% 0.33% 0.18%

Ethnicity (black) 0.45% 4.44% 0.21% 0.18%

Ethnicity (others) 0.90% 6.21% 0.27% NA

Ethnicity (not available) 16.70% 42.86% 19.68% 23.58%

Marital status (married) 40.86% 26.97% 44.16% 40.04%

Marital status (separated) 2.26% 1.77% 4.52% 3.47%

Marital status (single) 4.01% 1.24% 3.21% 3.47%

Marital status (widowed) 28.05% 17.13% 26.18% 21.02%

Marital status (not available) 24.83% 52.88% 21.92% 31.99%
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LSTM outperformed other traditional models when

handling longitudinal EHR data. (We have also con-

ducted analyses using ridge regression, random forest

and one-dimensional Convolutional Neural Network,

which are detailed in Additional file 1: Fig. S6, Tables S9

and S10.) The core of our model is a two-layer LSTM

neural network. We used patients’ cognitive scale change

to evaluate the performance of the model at an individ-

ual level as this is the outcome reported by the previous

studies reporting on the clinical response to these drugs

[33, 48, 49].

The front-end stack of fully connected layers can be

viewed as a feature extractor across the clinical and

demographic information, similar to the principal com-

ponent analysis, which identifies hidden correlations and

patterns and summarises them into a feature vector. The

rear-end RNN serves as a cognitive score predictor that

captures temporal trends using encoded feature vectors

and generates an estimated cognitive score for the four

available drugs. Full details of the LSTM model and data

pre-processing are reported in Additional file 1: Table

S3, Fig. S1 and S2.

We carried out our main analysis using both MMSE

and MoCA scores. For the subsequent subgroup ana-

lyses, we focused only on MMSE (5130 patients account-

ing for 15,582 observations from both sites) due to there

being considerably fewer instances of MoCA scores

(1674 patients with 2619 observations from both sites).

The clinical data from SHFT was used for model devel-

opment and internal validation, while the OHFT data

was used for external validation.

Analysis using MMSE score

In the first step of the analysis, we identified 3358 pa-

tients from SHFT, all of whom had MMSE scores. We

randomly selected 2015 [60.01%] individuals for model

training and kept the rest for internal validation. For

each patient, we randomly selected 4 continuous obser-

vations. We did not impute missing values. Instead,

missing values were considered as categorical values and

incorporated into our model to increase stability and ro-

bustness. If a patient had fewer than 4 observations, zero

pre-padding (a common process in RNN where zeros

are added at the start of the sequence if the length of a

sample is shorter than the given standard length) was

deployed for null observations. In our case, if a patient

had only 1 observation, we padded the first 3 observa-

tions with zeros.

In the second step, we predicted the values of cogni-

tive scores for all four available medications. This way,

our model produced a contrafactual scenario, whereby

we predicted an MMSE score for each medication. We

then sorted the predicted scores and selected the medi-

cation that generated the highest score to derive the

NNToC. Consequently, the patients could be separated

into two groups depending on whether they were pre-

scribed NNToC or not. Finally, we evaluated our model

and plotted the average change of MMSE given medica-

tion prescription across the time of disease. Due to the

similar profile of AChEIs, we also conducted analysis

where we excluded patients prescribed with memantine

and tested our model using AChEIs only.

Analysis using MoCA score

Next, we tested our model on patient records with

MoCA scores. However, MoCA scores were highly

under-reported in SHFT. In this case, we retrained the

LSTM on all patients’ data from SHFT and externally

validated it on OHFT. On average, each patient contrib-

uted to 1.64 observations; thus, we selected 2 continuous

observations from each patient for model training.

Neural network performance analysis

Additional analyses were carried out to further explore

the model robustness and evaluate the recommendation

patterns suggested by the neural network. Firstly, we ex-

amined the model performance on a random observa-

tion rather than focusing on the cognitive score at

treatment initiation. Secondly, we tried to address the

question of whether the neural network was providing

personalised recommendations, or whether it was in-

stead giving better recommendations that generally

worked well. To do this, for each patient, we assigned

NNToC using the advice for another randomly selected

patient. Thirdly, we compared the LSTM model with

several other models, namely a more interpretable ridge

regression, a traditional random forest machine learning

model and a one-dimensional CNN. We pre-processed

the data using the same method in our main analysis.

For ridge regression and random forest, we flatten the

longitudinal features before training [47]. Grid search

was used to find the best combination of hyperpara-

meters for every model. Fourthly, due to the imbalance

in prescribed medications in the real world, we over-

sampled the samples in the minority classes by randomly

duplicating patients taking minority drugs until each mi-

nority class have the same number of patients (patients

taking donepezil). We then retrained the model and

evaluated the performance. Fifthly, we tried to retrain

the model using multitask learning [50], where we fed

both MMSE and MoCA scales into one single model.

The model then yielded both scores as outputs. Since no

patient had both MMSE and MoCA tested on the same

visit, i.e. one label was always missing, we included an-

other label indicating which score was missing and only

used the non-missing scores to calculate the model loss.

Sixthly, instead of using 4 as the sequence length, we

retrained the model using only 3 or 2 observations per
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patient to check the impact of a shorter sequence length.

Finally, we adopted permutation feature importance to

measure the importance of predictors [51]. Permutation

feature importance measures the decrease in a model’s

performance when a single predictor is randomly shuf-

fled. Implementations of the model performance ana-

lyses are detailed in Additional file 1: Tables S9, S11,

S13 and S15.

Data cleaning and data preparation were carried out in

R [52]. The neural network model was trained in Ten-

sorFlow [53]. The validation and other analyses were

carried out using Python [54].

Results
Our model predicted cognitive scores post-drug initi-

ation for each drug. The treatment that resulted in the

smallest decline in cognitive scores between prescription

and the next visit was selected as the NNToC. Note that

every patient in the study received one of the four pos-

sible drugs approved for cognitive symptoms in demen-

tia. Thus, the patients could be separated into two

groups depending on whether they were prescribed

NNToC or not. We then use patients’ mean cognitive

score decline to evaluate the performance of our model.

Internal validation using MMSE score

The rest 1343 [39.99%] patients from SHFT, who were

not randomly selected for model training, were used for

internal validation. Overall, 285 [21.22%] patients were

prescribed NNToC, i.e. they received the medication

that generated the highest predicted MMSE scores

for their individual case, and 1058 [78.78%] did not

get NNToC. We finally plotted the change of MMSE

scores in relation to time, as shown in Fig. 1A. The

cognitive performance of patients who were not

prescribed NNToC declined significantly. In contrast,

the patients receiving NNToC declined at a slower

rate. Specifically, over the 2 years, their mean [SD]

MMSE score declined 0.60 [0.26] points, compared

to 2.80 [0.28] who did not receive NNToC (a mean

difference of 2.20), which is statistically significant

(P = 0.02).

External validation using MMSE score

In terms of external validation, we used the model to

evaluate the medication prescription patterns of the

OHFT data. We identified 1772 patients with MMSE

scores, among which 222 [12.53%] were prescribed

NNToC and 1550 [87.47%] were not. The demographics

of patients are summarised in Table 2. No significant

difference was found between these two cohorts in terms

of age, MMSE score and ethnicity; however, there were

fewer male (P = 0.003) and married patients (P = 0.04)

who were prescribed NNToC. We also reported the ra-

tio of medications among patients who received NNToC

in Additional file 1: Table S4 to show the model was not

always prescribing one drug that generally worked well,

e.g. memantine.

Fig. 1 Change of Mini-Mental State Examination (MMSE) score over time. Patients were grouped by whether they were prescribed neural
network treatment of choice (NNToC) according to the Long Short Term Memory (LSTM) model. The X-axis represents the duration of taking a
particular medication, where x = 0 means the treatment initiation time. Data shown are mean values, with error bars indicating standard
deviation. A Internal validation on Southern Health NHS Foundation Trust (SHFT). Two hundred eighty-five [21.22%] patients were prescribed
NNToC and reported a smaller MMSE reduction after 2 years compared to the 1058 [78.78%] patients who were not (0.60 [0.26] vs 2.80 [0.28],
respectively; P = 0.02). B External validation on Oxford Health NHS Foundation Trust (OHFT). Two hundred twenty-two [12.53%] patients were
prescribed NNToC and reported a smaller MMSE reduction after 2 years compared to the 1550 [87.47%] patients who were not (1.01 [0.49] vs 4.23
[0.60], respectively; P = 0.01). A detailed quantitative report of score changes is provided in Additional file 1: Table S5
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The change of MMSE score over time is shown in

Fig. 1B. We found the trajectories of the cognitive per-

formance of patients from OHFT and SHFT were

similar. At the point of initial prescription, all cogni-

tive trajectories had a period of stabilisation lasting

approximately 6 months, which indicated treatment ef-

fect. After 6 months, the results show that the cogni-

tive performance of patients who were not prescribed

NNToC started to decline significantly. The patients

not prescribed NNToC generally declined more than

the ones taking NNToC in terms of cognitive perform-

ance. Specifically, the MMSE score declines of patients

taking NNToC and non-NNToC were 0.70 [0.52] and

1.27 [0.59] after 1 year of treatment initiation (P =

0.28) and were 1.01 [0.49] and 4.23 [0.60] (a mean

difference of 3.22) after 2 years of treatment initiation

(P = 0.01). A detailed quantified report of MMSE

scores on OHFT at selected time points is presented

in Additional file 1: Table S5.

For further validation, we excluded patients prescribed

with memantine and tested our model on AChEIs only

due to the similar profile of these drugs. In this case, the

NNToC only include donepezil, rivastigmine and galan-

tamine. We identified 1660 patients who were prescribed

AChEIs among which 212 [12.77%] were prescribed

NNToC and 1448 [87.23%] were not. The MMSE score

declines of patients taking NNToC and non-NNToC

were 1.11 [0.47] and 4.29 [0.60] (a mean difference of

3.18) after 2 years of treatment initiation (P = 0.02). The

MMSE score change and detailed quantified report are

presented in Additional file 1: Fig. S3 and Table S6.

External validation using MoCA score

We identified 547 patients with MoCA scores in

SHFT for model training and externally validated our

model on 1127 patients from OHFT on the observa-

tions when a medication was prescribed for the first

time, among which 160 [14.20%] were prescribed

NNToC and 967 [85.80%] were not. The cognitive

performance represented by MoCA scores is shown

in Fig. 2. The MoCA score declines of patients who

were and were not prescribed NNToC were

1.03 [0.19] and 1.56 [0.21] (a mean difference of 0.53)

at 1.75 years (P = 0.09).

Neural network performance analysis

Firstly, the model was tested on a random observation

rather than the observation at treatment initiation, as

shown in Additional file 1: Fig. S4 and Table S7. After 2

years of treatment initiation, the MMSE score declines

of patients who did and did not receive NNToC were

1.92 [0.41] and 4.55 [0.49] (a mean difference of 2.63),

respectively (P = 0.04). Secondly, we assigned NNToC

using the advice for another randomly selected patient.

We then recalculated the MMSE scores and the cogni-

tive performance result is reported in Additional file 1:

Fig. S5 and Table S8. We observed that the MMSE score

change of patients following NNToC dropped signifi-

cantly 3.26 [0.65] points at 2 years. Thirdly, performance

comparison with other models is shown in Additional

file 1: Fig. S6 and Table S10. At 2 years, all other models

performed similarly, but all worse than the LSTM. How-

ever, in the first 6 months, patients who were prescribed

NNToC based on the ridge regression had a higher

MMSE drop than patients who were not. Fourthly, when

the model was trained on the oversampled data, the per-

formance remained almost the same (Additional file 1:

Fig. S7 and Table S12). Fifthly, if multitask learning was

applied (Additional file 1: Fig. S8 and Table S14), the

performance of the model became slightly better when

evaluated on MoCA (patients prescribed NNToC had a

smaller drop of 0.93 [0.21] points), but worse when eval-

uated on MMSE (patients prescribed NNToC had a big-

ger drop of 1.98 [0.70] points). Sixthly, as the sequence

length decreased, the difference between the NNToC

and non-NNToC groups became less sound at 2 years

(Additional file 1: Fig. S9 and Table S16). Particularly,

when the model was trained on only 2 observations per

patient, the MMSE score of patients who were pre-

scribed NNToC dropped 2.08 [0.65] points, but still

smaller than patients who were not at 3.03 [0.61] points

(P = 0.06).

Table 2 Demographics of patients who (i) were prescribed neural network treatment of choice (NNToC) and (ii) were not prescribed
NNToC and significance and external validation on Oxford Health NHS Foundation Trust (OHFT) at treatment initiation. SD standard
deviation, MMSE Mini-Mental State Examination, χ2 chi-square test, t Welch’s t-test; P P-value

Patients prescribed NNToC
(n = 222, 12.53%)

Patients prescribed non-NNToC
(n = 1550, 87.47%)

Significance

Gender (%male) 28.38% 39.10% χ
2(1) = 9.15, P = 0.003

Age, mean [SD] 81.12 [7.01] 82.05 [6.73] t(282.50) = − 1.86
P = 0.06

MMSE score, mean [SD] 20.84 [4.89] 21.06 [5.20] t(297.27) = − 0.62
P = 0.53

Ethnicity (%Caucasian) 81.08% 81.74% χ
2(1) = 0.02, P = 0.88

Marital status (%married) 34.23% 41.81% χ
2(1) = 4.30, P = 0.04
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Finally, we present the permutation feature importance

analysis of the LSTM model in Additional file 1: Fig. S10

and Table S17. For the MMSE model, the cognitive

score was the absolute dominant predictor (165.52% in-

crease in MAE, 3 times more important than the second

important predictor), followed by duration, medication

(around 60% increase) and age (36.65% increase). Sex

and marital status were much less important (around 5%

increase) and ethnicity was not an important predictor

(0.10% increase). In terms of the MoCA model, we saw a

similar ranking and pattern, but medication was slightly

more important than duration.

Discussion
This paper expands the existing knowledge base on de-

mentia treatment and demonstrates that some

individual-to-individual variability exists regarding how

patients react to each particular agent used, allowing the

identification of individualised treatments that can pro-

long the positive effects of medication prescription be-

yond the first 6 months. The model caught the

recommendations that were more effective beyond this

initial period and the weaker cognitive decline provided

by NNToC became more significant later in the disease.

Patients prescribed NNToC showed a significantly

slower rate of decline and outperformed controls (i.e.

patients prescribed a medication different from NNToC)

in terms of cognitive performance after 2 years of treat-

ment initiation. In the internal validation on the MMSE

cognitive score, the decline was slower by a magnitude

of 5 for NNToC relative to the controls. In the external

validation sample, we saw a similar, fourfold slower rate

of decline in the NNToC group relative to controls.

These results demonstrate the value offered by AI-based

recommendations in terms of personalised prescription.

Currently, the pharmacological treatment with AChEIs

is prescribed mainly on the custom of each particular

physician [4–6], as it was assumed by default that all

AChEIs would have comparable results. In this situation,

an informed personalised prescription of AChEIs only

has the potential to be more effective. The only ap-

proved cognitive drug whose prescription is guided by

the particulars of each patient is memantine, given it is

most effective in moderate to severe dementia [55], and

may better manage behavioural problems [56]. However,

our results also show that dementia-based prescription

continues having the same overall effect across patients

when memantine is taken into account.

Our results about non-personalised prescriptions are

consistent with previous studies that after the initial

Fig. 2 Change of Montreal Cognitive Assessment (MoCA) score over time. Patients were grouped by whether they were prescribed neural
network treatment of choice (NNToC) according to the Long Short Term Memory (LSTM) model. The X-axis represents the duration of taking a
particular medication, where x = 0 means the treatment initiation time. Data shown are mean values, with error bars indicating standard
deviation. External validation on Oxford Health NHS Foundation Trust (OHFT). One hundred sixty [14.20%] patients were prescribed NNToC and
reported a smaller MoCA reduction after 1.75 years compared to the 967 [85.80%] patients who were not (1.03 [0.19] vs 1.56 [0.21], respectively; P
= 0.09). A detailed quantitative report of score changes is provided in Additional file 1: Table S5
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positive effect (typically 3–6months in duration), pa-

tients continue to decline in their cognitive performance

[33, 48, 49, 57, 58]. This is important as there is still a

debate about whether or not to continue these drugs

over a long-term period, considering the marginal cogni-

tive benefit afforded by them when prescribed in a non-

personalised manner (0.91 MMSE points at 6 months for

Alzheimer’s disease/vascular dementia patients) [59].

These concerns have induced some regulators, e.g. in

France, to defund their prescription [60]. We hope that

a personalised approach to the prescription of medica-

tions in dementia may lead to a proper re-evaluation of

the cost-benefit ratio for these drugs.

The neural network was able to generate recommen-

dations even when patients had already been on at least

one other anti-dementia drug according to the neural

network performance analysis. Notably, the MoCA-

based external validation model pointed to a longer sta-

bilisation period of roughly 8 months and a gentler cog-

nitive decline relative to the MMSE-based dataset. This

might be because MoCA is capturing earlier cognitive

decline through its larger reliance on executive function

cognitive domains and it may be less sensitive than

MMSE in capturing posterior impairment [61].

In terms of the pattern of recommendations made by

the model (ratio of medications), we found that the

NNToC highly corresponded to the current guidelines

on the prescription of these drugs [4–6]. AChEIs were

generally selected as NNToC for patients with mild to

moderate severity, whereas memantine was suggested

for patients with moderate to severe disease. In the UK,

the NICE guidelines do not differentiate AChEIs and

only suggest treatment to be started with the drug with

the lowest acquisition cost if prescribing an AChEI,

which consequently makes donepezil being prescribed

more than the other drugs in the real world. However,

interestingly, the neural network further avoided sug-

gesting donepezil to men as well as those scoring low on

MMSE and tended to instead recommend galantamine,

rivastigmine and memantine for these patients. Across

disease severity, galantamine, rivastigmine and meman-

tine tended to be NNToC more often. These findings

warrant further analysis and validation, with the aim of

further refining the current guidelines.

Some potentially important differences between the

two clinical cohorts were evident. The patients from the

SHFT sample had a lower degree of cognitive decline

compared to the OHFT group. One possible explanation

is that only 24.38% (432/1772) patients from OHFT were

re-examined after a period of 5 months, whereas this

proportion for SHFT was 44.58% (1497/3358). Accord-

ing to our previous study [7], patients who were always

on one drug benefitted more than patients switching at

least once to a different drug. Thus, patients from OHFT

may have switched to alternative medications in a timely

manner on a follow-up visit, whereas patients from

SHFT were able to remain on an agent for a longer time.

Another reason might be that patients from OHFT were

on average 1.45 years older than those from SHFT. Pre-

vious reports have indicated that older age is associated

with a faster decline and therefore could account for the

larger MMSE score decline in OHFT patients [62, 63].

By comparing the decline of patient cognitive perform-

ance in the NNToC and non-NNToC groups, the big-

gest difference is seen by using the LSTM model trained

with 4 observations. Compared to other models, the

LSTM explored and captured a higher degree of nonlin-

earity both in the spatial (predictors) and temporal (ob-

servations) space. Although our explanatory analysis

using permutation feature shows medication is a strong

predictor for the LSTM model (more than 50% increase

in MAE), in this case as a general rule for feature im-

portance analysis, it has limited ability to identify the

predictor that is most decisive as the predictors cannot

be explained individually. It is also worth noting that

permutation feature importance only provides a reliable

interpretation of the specific model fitted on the training

data, but limited insights into the data itself. Therefore,

caution is needed when making clinical decisions based

on these feature importance results.

A limitation of the study is the defined set of predic-

tors used to build the recommender system. Current

predictors include selected demographic variables, cog-

nitive scale scores and medication information that were

available through the UK CRIS system. Despite ethnicity

being included as a predictor, the distribution was highly

skewed towards white-Caucasian (close to 80% in the

MMSE samples). Thus, the study may lack the power to

detect the potential effect of ethnicity. Although the pro-

posed model showed good performance, the inclusion of

a more comprehensive set of predictors (clinical, diag-

nostic, genetic, omics information) may further improve

the capabilities of personalised medication prescription.

Neuroimaging data also can contribute volumetric or

functional data that may further improve the accuracy of

the predictions [64]. Multimodal dataset linkage and big

data harmonisation may also offer novel ways to opti-

mise the symptomatic treatment of dementia [65].

Furthermore, it should be noted that widely used as-

sessments, such as MMSE and MoCA, are not necessar-

ily the most accurate. In some studies, MMSE has been

shown to be a weaker predictor of dementia severity as

compared to other cognitive and functional assessments

[66, 67]. Some research suggested that a battery of as-

sessments would be preferable instead of a stand-alone

single-administration assessment [68, 69] and this ap-

proach may improve the accuracy of our model in the

future.
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On the other hand, it is known that patients respond

differently to drugs depending on the aetiology of the cog-

nitive impairment and the type of dementia, e.g. there is

no evidence for efficacy in vascular dementia [70]. In our

study, we did not conduct subgroup analyses as 71.74% of

the included population were diagnosed with Alzheimer’s

disease and the other subtypes of dementia were not large

enough to draw meaningful conclusion: only 4.68% had

vascular dementia, 4.02% Parkinson’s disease dementia

and 0.62% dementia in other diseases (the remaining

18.94% had a diagnosis of unspecified dementia). As a po-

tential future development, we will aim to expand the set

of predictors and use individual patient data from rando-

mised control trials combined with observational data to

enrich the neural network further. In addition, an online

version of the model to be used as a clinical decision sup-

port making tool is currently under development.

Finally, in our data, the clinician’s choice of medication

was not randomised and may have been influenced by

comorbidities and other unknown factors [71]. The con-

clusion on the effect of a drug in a given person could

be compromised by reverse causation, i.e. a particular

drug was prescribed more often in subjects that had a

priori a worse or better prognosis. We plan to incorpor-

ate such factors as predictors to enrich our model in the

future. A randomised controlled trial will also be re-

quired to test prospectively the utility of the proposed

model to establish its real-world efficacy.

Despite the limitations, the findings from external val-

idation have proved the significance of our work and re-

vealed the potential of deep neural networks in the

medical science domain. To the best of our knowledge,

this is the first personalised prescription model for the

pharmacological treatment of cognitive deficits in de-

mentia. This finding suggests the proposed model, and

AI-based prescription recommendation in general has

the potential to benefit clinical outcomes and can be

used by clinical staff as a clinical decision support tool.

Conclusions
In conclusion, AI-based recommendations produced

personalised treatment in dementia, and it was possible

to identify at the individual patient level the most effect-

ive drug to reduce cognitive impairment over two years.

Real-world patients whose prescribed medications were

the best fit according to our model had better cognitive

performance after 2 years. These results should be repli-

cated in longer-term prospective studies.
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