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ABSTRACT

Audio-visual tracking of multiple speakers requires to esti-

mate the state (e.g. velocity and location) of each speaker by

leveraging the information of both audio and visual modali-

ties. Estimating the number of speakers and their states jointly

remains a challenging problem. We propose an Audio-Visual

Possion Multi-Bernoulli Mixture Filter (AV-PMBM) that can

not only predict the number of speakers but also give accu-

rate estimation of their states. We also propose a novel sound

source localization technique based on DOA information and

a deep learning based object detector to provide reliable audio

measurements for the AV tracker. To our knowledge, this repre-

sents the first attempt using PMBM for multi-speaker tracking

with audio visual modalities. Experiments on the AV16.3

dataset demonstrate that AV-PMBM achieves state-of-the-art

performance in optimal sub-pattern assignment (OSPA).

Index Terms— multiple-speaker tracking, audio-visual

fusion, PMBM filter

1. INTRODUCTION

Tracking multiple speakers simultaneously plays a key role

in many civilian applications such as speech recognition [1],

human-computer interaction [2], speaker diarization [3] and

monitoring [4].

Audio and visual signals, as two important modalities, can

provide complementary information to improve tracking ro-

bustness and accuracy. For example, if speakers are occluded

or disappear from the camera field of view, they can be tracked

using audio signals; if the audio information is corrupted by

background noise and room reverberation, visual data can be

used to locate and detect the speakers. Thus information of

multiple modalities can work jointly to improve the tracking

performance. There are, however, several challenges that need

to be addressed in audio-visual multi-speaker tracking, in-

cluding (1) fusion of the audio-visual measurements to obtain

optimal estimates of the states of the speakers, (2) dealing with

the unknown and time-varying number of speakers.

To tackle these problems and provide reliable tracking,

several algorithms have been proposed. Particle filter has been

used in audio-visual multi-speaker tracking [5]. However, it

cannot deal with the time-varying number of speakers. Audio-

visual SMC-PHD filter [6] has been proposed to estimate the

variable number of speakers and their states jointly. Gener-

alized Labeled Multi-Bernoulli (GLMB) filter has also been

applied in audio-visual multi-speaker tracking [7], by incorpo-

rating the label information in the posterior density.

Based on the conjugacy property that the predicted and

updated distribution follows the prior distribution, Possion

multi-Bernoulli mixture (PMBM) filter was proposed in [8]

[9], which uses a Possion process to represent the states of

undetected objects and uses a multi-Bernoulli mixture to repre-

sent detected objects. PMBM has shown superior performance

compared to other Bernoulli-based filters in terms of accuracy

and speed [10]. It has been applied to object tracking using vi-

sual information [11] or LiDAR data [12]. To our knowledge,

PMBM has not been exploited in the scenarios of audio-visual

speaker tracking.

In this paper, two new contributions are made. Firstly,

AV-PMBM is proposed. Secondly, we propose a deep learning

based detection method for multiple speakers and this tech-

nique can provide reliable audio measurements for the AV

tracker. Experiments on AV16.3 show that our tracker can

estimate the number of speakers and the state of each speaker

accurately. It also gives more robust performance when occlu-

sion happens, as compared with the baseline methods.

2. AUDIO-VISUAL MEASUREMENTS

2.1. Visual Measurements

Previous work [5] [6] employs color histogram as visual mea-

surements, by comparing the similarities of potential areas in

an image frame to a reference image. Using deep learning

techniques, face detectors can provide more efficient and ac-

curate detections. We use a face detector to provide visual

measurements. In [7] and [13], Mxnet [14] is employed to de-

tect human face. However, Mxnet often fails to give a detection

result when people are not facing towards the camera. Thus,

we use a more robust face detector DSFD [15], which can out-

put coordinates and confidence scores of the bounding boxes
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Fig. 1. The model diagram of the proposed AV-PMBM, con-

sisting of an audio-visual fusion module (left) and a tracking

module (right).

used to detect faces. More specifically, bk,i = [x, y, w, h]T

represents the i-th bounding box at time k, where [x, y] is the

top left coordinates of the bounding box and [w, h] is the width

and height of the bounding box, respectively. Bounding boxes

whose confident scores are above a predefined threshold are

treated as reliable measurements and are converted to mouth

position:

o
v
k,i = W · bk,i (1)

where ov
k,i is regarded as the i-th visual measurement at time k,

W = [I, diag(0.5, 0.75)] is the coordinates conversion matrix

from face bounding boxes to mouth positions, as defined in

[13].

2.2. Audio Measurements

Audio information can be used to locate and track people

when visual measurements are unavailable or unreliable [7]

[13]. Global coherence field (GCF) can be used to locate

sound source obtained by summing up the value of General-

ized Cross Correlation with Phase Transform (GCC-PHAT)

among all microphone pairs. However, the estimated loca-

tion is not accurate if there are more than one speaker due to

the presence of spurious peaks in the GCF map. Although

GCC-PHAT deemphasis [16] can provide position estimation

in multi-speaker scenarios by re-calculating the GCF map after

locating the first speaker, its performance drops significantly

as the number of speakers increases. Therefore, we propose

a new method that can provide reliable locations for multiple

speakers using Direction of Arrival (DOA) lines, i.e. from the

center of the microphone array towards the direction of sound

sources.

The DOA line provides the angle of a sound source but

it can not decide its depth (i.e. the distance of the sound

source from the microphone array). Thus we employ an object

detector to help estimate the depth of the sound source. As

illustrated by Fig. 2, we use the Yolo-v3 object detector [17]

pretrained on the COCO dataset [18] to obtain the bounding

boxes ak,i = [x, y, w, h]T of the speakers, where the notations

are the same as those in bk,i. Detected bounding boxes for

other classes such as bowls and chairs are removed. First, we

estimate the bounding boxes corresponding to the upper part

Fig. 2. Mouth positions estimated by DOA combined with

object detector. Bounding boxes denoted by person are gen-

erated by Yolo-v3 detectors. Bounding boxes inside are areas

of speakers’ upper part of bodies. Lines starting from the mi-

crophone array are DOA lines. The ground truths of mouth

positions are denoted by white crosses while the estimated

mouth positions are marked by green and red crosses.

of the bodies (around the head) of the speakers empirically as

hk,i = [x, y, w, 0.3⇤h]T . Then we find the intersection points

s1 = [x1, y1], s2 = [x2, y2] between the head bounding boxes

and DOA lines. The position of speaker’s mouth o
a
k can be

estimated as the middle point between s1 and s2. The DOA

line is matched to the bounding box if the vertical distance

from the mass to this line is the shortest. The unmatched DOA

lines are discarded.

3. PROPOSED AV-PMBM

The aim of the proposed tracker is to estimate the number of

speakers and the state x = (x, vx, y, vy) of each speaker using

both audio and visual data, where (x, y) is the 2D coordinates

of the speaker’s mouth location and (vx, vy) is its correspond-

ing velocity. The overall diagram of the proposed AV-PMBM

is shown in Fig.1. In each time step, there are detected speak-

ers that have been associated to measurements, and undetected

speakers that exist but are not associated to any measurements.

The distribution of undetected speakers x
u are represented

by Poisson point process µ(·) and the detected speakers x
d

are represented by multiple Bernoulli mixture f(·), where x
u

and x
d are disjoint subsets of the set of existing speakers x

(xu ] x
d = x). The PMBM density pk(·) at time k represents

the information of speakers’ state, and is calculated as the

convolution of µ(·) and f(·):

pk(x) =
X

xu]xd=x

µk (x
u) fk

�

x
d
�

(2)

3.1. Prediction

The calculation of the predicted distribution pk+1|k (xk+1)
follows the Chapman Kolmogorov equation:

pk+1|k (xk+1) =

Z

π (xk+1 | xk) pk|k (xk) δxk (3)

where π (xk+1 | xk) is the transition density. In our experi-

ments, we suppose the transition process is velocity constant

[5]. Prediction of undetected speakers and detected speakers



are independent. The predicted density of undetected speakers

consists of the union of birth intensity and the predicted density

of surviving undetected speakers with surviving probability

P S. For detected speakers, the prediction can be achieved with

a Kalman filter.

3.2. Update

The distribution at time k + 1 can be calculated with the mea-

surement model g (zk+1 | xk+1):

pk+1|k+1 (xk+1) =
g (zk+1 | xk+1) pk+1|k (xk+1)

R

g
�

zk+1 | x0

k+1

�

pk+1|k

�

x0

k+1

�

δx0k
(4)

The states of speakers can be divided into four types. For

undetected speakers, they are detected for the first time or

remain undetected. For detected speakers, they are detected

again or they are not detected. We define that speakers are

detected if they are associated to a measurement.

For undetected speakers that are misdetected again, the

density is decreased by (1� PD), where PD is the detection

probability. For undetected speakers that are detected for

the first time, the states are represented by a new Bernoulli

distribution. For detected speakers that are detected again, a

Kalman filter is used to update the states of speakers for each

associated measurement. If detected speakers are misdetected,

their states remain unchanged.

The measurement likelihood at time k is denoted by

g (zk | xk). In audio-visual tracking scenarios, we assume the

audio and visual measurements are independent. The joint

measurement likelihood is defined as:

g (zk | xk) = g (oa
k | xk) · g (o

v
k | xk) (5)

Both audio and visual likelihood follow Gaussian distribu-

tion centered at the estimated position in Section 2:

g (oa
k | xk) / exp

h

� (oa
k � xk)

T
Σ

�1
a (oa

k � xk)
⌘i

(6)

and

g (ov
k | xk) / exp

h

� (ov
k � xk)

T
Σ

�1
v (ov

k � xk)
⌘i

(7)

where Σa and Σv represent the accuracy of audio and visual

measurements, respectively. If at some time steps, measure-

ment of one modality is absent, the corresponding likelihood

is set to uniform distribution. Audio and video streams can

work jointly to provide reliable measurements. Visual infor-

mation can provide more accurate measurement due to the

high-performance face detector, while audio information can

help locate speakers if the visual measurement is not available

(e.g. when the face detector fails due to speakers not facing

towards the cameras).

3.3. Data Association

In AV-PMBM, a multi-Bernoulli Random Finite Set (RFS)

represents all potential speakers and the multi-Bernoulli RFS

mixture represents estimation of all speakers using multiple

data associations. In a multi-Bernoulli RFS mixture, the multi-

Bernoulli RFS with the highest data association possibility is

selected to derive the states of the speakers.

4. EXPERIMENT

4.1. Dataset

The dataset we use is AV16.3 [19], which is recorded with two

8-microphone arrays with a sampling rate at 16 kHz and three

cameras with a sampling rate at 25 fps in an 8.2⇥3.6⇥2.4m3

meeting room. People in the room are sitting statically, or

standing statically, or walking back and forth while speaking

at the same time. Sequences are annotated with 2D ground

truth month position of the speakers and in our experiment, we

use sequence 18, 19, 24, 25 and 30 of all three cameras and

the first microphone array. These sequences are regarded as

challenging sequences as occlusions happen and speakers are

not facing towards the camera at some moments.

4.2. Evaluation Metric

The metric to evaluate the performance of trackers is Optimal

Sub-Pattern Assignment (OSPA) [20]. OSPA is defined on

two arbitrary finite sets M =
�

m1,m2, ...,m|M |

 

and N =
�

n1, n2, ..., n|N |

 

, where |·| is the cardinality of the set:

E(c)
ρ

(M,N) =
0

@

1

|N |

0

@ min
π2Π|N|

|M |
X

i=1

d(c)
�

mi, nπ(i)

�ρ

+ cρ (|N |� |M |)

1

A

1

A

1

ρ

(8)

where c > 0 is the cut-off parameter and ρ � 1 is the

order. Π|N | is the set of permutations on {1, 2, ..., |N |}.

d(c)
�

mi, nπ(i)

�

is defined as min(c, kmi � nπ(i)k2). OSPA

finds optimal point assignment of points in M and N and

calculates the Euclidean distance of the two matched points.

Unmatched points left in N will cause cardinality error.

4.3. Experimental Results

AV-PMBM is compared with audio-visual adaptive particle

filter [5] (AV-A-PF) and sparse mean-shift smc phd filter [6]

(MS-SMC-PHD) in terms of OSPA. Every tracker is tested 10

times and the average results are calculated. For OSPA, we

choose ρ = 2 and c = 5. The detection probability PD is set

to 0.9 and the surviving probability P S is set to 0.6. The birth

intensity is set as a Gaussian mixture. At the first frame, AV-

PMBM is initialized with the measurements. OSPA results and

tracking results are shown in Table 1 and Fig. 3, respectively.



Table 1. OSPA results ([5] and [6] are reproduced with the hyper-parameter c equal to 5).

Sequence Seq 18 Seq 19 Seq 24 Seq 25 Seq 30
AvgE AvgC

Camera 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

AV-A-PF [5] 4.91 4.85 5.00 4.75 4.94 4.97 4.87 4.86 4.81 4.97 4.76 4.80 4.90 4.82 4.89 4.87 -

MS-SMC-PHD [6] - - - - - - 4.92 4.89 4.94 5.00 4.77 4.98 4.93 4.97 4.98 4.93 0.80

Proposed 3.44 3.23 3.76 2.92 2.89 2.63 4.11 3.34 3.60 3.06 2.18 2.44 3.33 1.67 2.84 3.03 0.06
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Fig. 3. Tracking results of AV-PMBM, AV-A-PF and MS-

SMC-PHD on sequence 25, camera 2 of AV16.3 dataset.

For OSPA, we calculate cardinality error and localization error,

respectively. As AV-A-PF is aware of the number of speakers

as a prior, its cardinality error is not available. From Table 1,

it is clear that AV-PMBM has more accurate tracking perfor-

mance compared with other methods. In some sequences such

as seq25-cam2 and seq30-cam2, it has a lower error. Its overall

performance surpasses AV-A-PF though it does not have priors

of the numbers of speakers. Fig. 3 shows the visualization of

the trackers in an AV sequence. Estimation of AV-PMBM is

more close to the ground truth. From frame 30 to 50, speakers

are walking towards each other and occlusion happens. MS-

SMC-PHD does not work well under this condition (The blue

points at the y = 0 shows that the tracker fails to track the

speakers). AV-PMBM can deal with the occlusion as audio

and visual measurements are still reliable and the filter can

make correct data associations.

The average cardinality error (AvgC) and the average local-

ization error (AvgE) are shown at the last two columns of Table

1. We can see that AV-PMBM outperforms MS-SMC-PHD

by a large margin in terms of cardinality estimation owing to

more accurate measurements and reliable data association. We

also show the OSPA cardinality error of seq30-cam1 in Fig.

4. It is clear that the cardinality estimation of AV-PMBM is

correct at most times. From frame 78 to frame 92, occlusion
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Fig. 4. OSPA cardinality error of AV-PMBM and MS-SMC-

PHD on sequence 30, camera 1 of AV16.3 dataset.

happens in sequence. Cardinality estimation by MS-SMC-

PHD is erroneous in a large time interval even after occlusion

disappears (from frame 92 to frame 106). AV-PMBM shows

robust performance to occlusion with only one summit appears

at frame 92.

5. CONCLUSION

We presented the AV-PMBM tracker using both audio and vi-

sual data. We also proposed a novel sound source localization

algorithm by leveraging DOA information assisted by a deep

learning based object detector. Experimental results show that

AV-PMBM can give more accurate estimation of the number

of speakers and each speaker’s state than two recent baseline

methods, especially when occlusion happens. In our paper, the

fusion of audio-visual information is achieved on the decision

level. In the future, we will also examine audio-visual fusion

in the feature level.
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[6] V. Kılıç, M. Barnard, W. Wang, A. Hilton, and J. Kittler,

“Mean-shift and sparse sampling-based smc-phd filtering

for audio informed visual speaker tracking,” IEEE Trans-

actions on Multimedia, vol. 18, no. 12, pp. 2417–2431,

2016.

[7] S. Lin and X. Qian, “Audio-visual multi-speaker tracking

based on the glmb framework.” in INTERSPEECH, 2020,

pp. 3082–3086.

[8] J. L. Williams, “Marginal multi-bernoulli filters: Rfs

derivation of mht, jipda, and association-based member,”

IEEE Transactions on Aerospace and Electronic Systems,

vol. 51, no. 3, pp. 1664–1687, 2015.
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