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Micro-scale foundation with error quantification
for the approximation of dynamics on networks
Jonathan A. Ward 1✉, Alice Tapper1, Péter L. Simon2 & Richard P. Mann1

Epidemics, voting behaviour and cascading failures in power grids are examples of natural,

social and technological phenomena that can be modelled as dynamical processes on net-

works. The study of such important complex systems requires approximation, but the

assumptions that underpin the standard mean-field approaches are routinely violated by

dynamics on real-world networks, leading to uncontrolled errors and even controversial

results. Consequently, determining the approximation precision has been recognised as a key

challenge. We present a micro-scale foundation for mean-field approximation of a wide range

of dynamics on networks that facilitates quantification of approximation error, elucidating its

connection to network structure and model dynamics. We show that our coarse-graining

approach minimises approximation error and we obtain an upper bound on this uncertainty.

We illustrate our approach using epidemic dynamics on real-world networks.

https://doi.org/10.1038/s42005-022-00834-1 OPEN

1 School of Mathematics, University of Leeds, Leeds LS2 9JT, UK. 2 Institute of Mathematics, Eötvös Loránd University Budapest, Pázmány Péter sétény 1/C,
H-1117 Budapest, Hungary. ✉email: j.a.ward@leeds.ac.uk

COMMUNICATIONS PHYSICS |            (2022) 5:71 | https://doi.org/10.1038/s42005-022-00834-1 | www.nature.com/commsphys 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-022-00834-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-022-00834-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-022-00834-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-022-00834-1&domain=pdf
http://orcid.org/0000-0002-2469-7768
http://orcid.org/0000-0002-2469-7768
http://orcid.org/0000-0002-2469-7768
http://orcid.org/0000-0002-2469-7768
http://orcid.org/0000-0002-2469-7768
mailto:j.a.ward@leeds.ac.uk
www.nature.com/commsphys
www.nature.com/commsphys


The study of natural, social and technological phenomena in
complex systems invariably requires approximations that
coarse-grain and simplify, so that insights can be obtained

about the causal mechanisms at work. A case in point, and our
focus, is the study of dynamical processes on complex networks1,
such as models of epidemics2,3, opinion dynamics4–6, the diffu-
sion of innovations7–10, the evolution of languages11–13 and
cultural polarisation14,15. The standard approach to analyse
dynamics on networks is via mean-field approximations, which
range in accuracy and complexity2,16–19. While such methods
have provided important insights, the assumptions that underpin
mean-field approximations—the absence of clustering (‘a friend
of a friend is my friend’), modularity (community structure) and
dynamical correlations (‘I’m similar to my neighbours’)—are
routinely violated by dynamical processes on real-world complex
networks and it is generally difficult to quantify how well a
particular approximation will do a priori, given the network or
dynamical process20. Mean-field approximation has also resulted
in controversy concerning the critical epidemic threshold in scale-
free networks17,21–23. Because of these issues, the quantification of
approximation error has been recognised as one of the key
challenges for network epidemic modellers24.

In this article we address these critical issues by presenting a
foundation for mean-field approximations of dynamics on net-
works, which builds from the micro-scale description of the
dynamics and facilitates the quantification of approximation
error. We use approximate lumping to derive low-dimensional
mean-field equations for a broad class of Markov chain dynamics
on networks which includes models of epidemics and opinion
dynamics. The coarse-grained states are based on the number of
each type of ‘vertex-state’, such as the number of susceptible and
infected vertices in the susceptible–infected–susceptible (SIS)
model of epidemics. In contrast to standard mean-field approx-
imations, the transition rates between these coarse-grained states
are derived directly from the exact evolution of the probability
distribution over states—known as the master equation or for-
ward Kolmogorov equation—and are shown to minimise
approximation error, in the sense that they are closest to an exact
lumping. This provides a theoretical underpinning that simplifies
and standardises the process of deriving mean-field approxima-
tions for practitioners: the microscopic formulation of a model
can be easily translated into a mean-field approximation using the
formulae we have obtained. Furthermore, this approach enables
us to derive a bound on the approximate lumping error and
compare this to errors computed from stochastic simulation of
epidemic dynamics on several benchmark real-world networks.

Results and discussion
We consider Markov chain dynamics on finite, connected net-
works with undirected, unweighted edges and no self-loops,
where each vertex in the network can be in one of a finite number
of “vertex-states”. For example, in models of epidemics the
vertex-states correspond to individuals’ disease status, which
could be susceptible to infection, infected, recovered, etc. In
models of voting behaviour, the vertex-states correspond to the
party that each person plans to vote for. If M is the number of
vertex-states and N is the number of vertices, then there are MN

possible states, i.e. configurations of vertex-states on the network.
Thus the size of the full state-space for Markov chain dynamics
on networks is extremely large, even for moderate N, and con-
sequently, unless the network contains significant symmetry25,26,
approximation is essential. Despite this, the state-space is finite so
we denote the probability distribution at time t over state-space
by XðtÞ ¼ ðX1ðtÞ;X2ðtÞ; ¼ ;XMN ðtÞÞT, where Xk(t) is the prob-
ability of being in the kth state. Variables related to the full state-

space will be upper-case Latin letters and the indices k and l
indicate that the index is over the full state-space. In continuous
time t, the evolution of X(t) is described by the forward Kol-
mogorov or master equation27,

_X ¼ QTX;

where Q is the infinitesimal generator, an MN by MN matrix in
which each off-diagonal component Qkl gives the transition rate
from state S[k] to state S[l], and the diagonal components ensure
that rows sum to zero. Bold variables indicate matrices. Our
approach can also be adapted to discrete time models.

In the “Methods” section we describe how the components of
the infinitesimal generator relate to the microscopic dynamics, i.e.
the transition rates of individual vertices between vertex-states.
We assume that the positive entries of the infinitesimal generator
are affine (i.e. constant plus linear) functions of the number of
neighbouring vertices in each vertex-state. For example, in epi-
demic models, a susceptible vertex typically becomes infected at a
rate proportional to the number of infected neighbours. We also
focus on ‘homogeneous’ models where the micro-scale transition
rates are identical for all vertices with the same number of
neighbours in each vertex-state. These features define a class of
network dynamics that we call ‘homogeneous single-vertex
transition models’ (homogeneous SVTs) with ‘affine vertex-state
transition matrices’ (affine VSTMs). Specifically, if a model has an
affine VSTM then a vertex in vertex-state A, with nm neighbours
in the mth vertex-state, transitions to vertex-state B with rate

fA;Bðn1; n2; ¼ ; nMÞ ¼ δA;B
0 þ ∑

M

m¼1
δA;B
m nm; ð1Þ

where the δA;B
m are arbitrary non-negative constants. This covers a

broad range of dynamical processes on networks28, but in Sup-
plementary Note 5 we also consider generalisations to hetero-
geneous and nonlinear network dynamics with quadratic VSTMs.

We coarse-grain such Markov chain network dynamics using a
method called approximate lumping, in which states are grouped
together (lumped) according to a pre-defined partition of state-
space29. We consider approximate lumping partitions based on
sets of states that have the same total number of vertices in each
vertex-state, i.e. the number of susceptible and infected vertices in
the SIS model. We refer to this type of approximate lumping as a
population model approximation30. To make this precise, let s 2
ZM

≥ 0 be a lumped state, which is a vector of length M whose mth
component, sm, denotes the number of vertices in the mth vertex-
state. Lumped variables will be lower-case Latin letters and m will

index vertex-states. It follows that there are r ¼ N þM � 1
N

� �
possible lumped states, since a lumped state is a combination of N
vertex-states drawn from M possibilities with repetition. Thus we
number the lumped states in the lumped state-space s[1],
s[2],…, s[r] and we use Π= {Π1,Π2,…,Πr} to denote the corre-
sponding lumping partition. Let xðtÞ ¼ ðx1ðtÞ; ¼ ; xrðtÞÞT denote
the time-dependent Markov chain probability distribution over
Π, where xi(t) is the probability of being in the lumped state s[i].
We use indices i and j to indicate that the index is over the
lumped state-space. The evolution of x(t) is then the solution to

_x ¼ qTx; ð2Þ
where q is the approximate lumping generator, which needs to be
determined.

The idea here is to use the coarse-grained generator q=DQC,
where C 2 f0; 1gMN ´ r is the collector matrix29, whose kjth com-
ponent is one if S[k]∈Πj and zero otherwise, and D 2 Rr ´MN

is
the distributor matrix, whose ilth component is 1/∣Πi∣ if S[l] ∈Πi

and zero otherwise. The effect of using q=DQC is to average the
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sum of rates out of states in one lumping partition cell and into
another. This approach has the following advantages. Firstly it
minimises error, in the sense that it is closest to an exact lumping
where QC= Cq (details in the Methods section), which is made
precise in the following theorem.

Theorem 2.1. The lumped infinitesimal generator q=DQC
minimises ∣∣QC− Cq∣∣F (Frobenius norm).

Secondly, the matrix q can be explicitly derived for affine
network dynamics, leading to the following theorem.

Theorem 2.2. Let Ω be the state-space of a homogeneous SVT with
affine VSTM on a network with mean degree z, and let q=DQC
be the lumped infinitesimal generator corresponding to the popu-
lation model approximation Π= {Π1,Π2,…,Πr} with lumped
states s[1], s[2],…, s[r]. If s[i] and s[j] correspond to a single vertex
changing from vertex-state A to B and s½i�1 is the number of vertices
in vertex-state A, then

qij ¼ δA;B
0 s½i�1 þ z

N � 1
s½i�1 δA;B

1 s½i�1 � 1
� �

þ ∑
M

m¼2
δA;B
m s½i�m

� �
: ð3Þ

These are the main theoretical results of the paper. Outlines of
the proofs are given in the “Methods” section and further details
are provided in the Supplementary Methods.

For concreteness, we illustrate the approximate lumping
approach in Fig. 1 using the SIS model of epidemic dynamics,
which has M= 2 and is an example of “binary-state dynamics”31.
The vertex-states of the SIS model are referred to as susceptible
(S) and infected (I ). A susceptible vertex with n1 infected
neighbours becomes infected with rate βn1 and an infected vertex
recovers with rate γ, where β, γ > 0 are model parameters. In
relation to our notation for affine VSTMs introduced in Eq. (1),
we have δS;I1 ¼ β, δI ;S0 ¼ γ and all other δA;B

m are zero. Our
approach partitions state-space into “levels”, so that the ith level,

Πi, contains all states that have i infected vertices, and this
reduces the size of state-space from 2N to N+ 1. For SIS
dynamics, we obtain a mean-field birth-death process with
infection rates given by

qi;iþ1 ¼ β
z

N � 1
iðN � iÞ;

and recovery rates

qi;i�1 ¼ γi:

These rates will be unsurprising to those familiar with mean-field
approximations of network dynamics, but note that here we have
derived these directly from the full Markov chain description
rather than via moment closures based on non-rigorous prob-
abilistic arguments, as is typical2. For the SIS model and other
binary-state dynamics, this approach gives rise to a birth–death
process; for network dynamics with M > 2, it yields a Markov
population model30.

In the lumped state-space, the error of our approximation is
y(t)=CTX(t)−x(t) and so

_y ¼ qTy þ QC� Cqð ÞTXðtÞ: ð4Þ
This is an inhomogeneous linear system of ODEs, thus applying
the variation of constants formula yields

yðtÞ ¼
Z t

0
exp qTs

� 	
QC� Cqð ÞTXðt � sÞ d s; ð5Þ

where we have assumed that y(0)= 0, i.e. the lumped initial state
CTX(0) is known. To simplify the error computation we assume
that the initial distribution of the full Markov chain is stationary
so that X(t)= X*. Quasi-stationary distributions can also be
handled in an analogous way and are discussed in Supplementary
Note 4. In the “Methods” section, we derive a bound on the

Fig. 1 Illustration of approximate lumping for a small four vertex ‘coat hanger’ network with SIS (susceptible–infected–susceptible) dynamics.
a Illustrates the matrix multiplication DQC= q that lumps the infinitesimal generator Q of the full Markov chain using the collector and distributor matrices,
C and D, respectively, to produce the tridiagonal approximate lumping infinitesimal generator q. Colour indicates the value of the corresponding matrix
entry for the infection rate β= 4 and recovery rate γ= 1; zero entries are white. The horizontal and vertical lines indicate the different groupings of states
by level; level 0 is in the left/top and level 4 is on the right/bottom. b Illustrates transitions from a state with two infected vertices that are accounted for by
the full Markov chain. Blue vertices indicate susceptible and red vertices indicate infected. The transition rates are given next to the corresponding arrows.
The vertical dots indicate that there are more states with two infected vertices. c Illustrates the corresponding transition rates for the approximate lumping
from level two, i.e. two infected vertices. In general the lumped recovery rate is γi and the lumped infection rate is βzi(N−i)/(N−1), where i is the level
(number of infected individuals); for the case illustrated N= 4, z= 2 and i= 2. d Illustrates the average number of infected vertices from solutions to the
master equation for the full Markov chain (exact) and the approximate lumping (approximate). Note the log scale on the horizontal time axis.
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stationary absolute mean error

j�y�j ¼ lim
t!1

∑
N

i¼0
iyiðtÞ





 



; ð6Þ

for binary-state dynamics. However, this involves terms that
depend on the full Markov chain, so we must resort to approx-
imations to make further progress.

We focus on the SISa model32, which is similar to the SIS model
but has an additional ‘ambient’ infection rate α, so a susceptible
vertex with n1 infected neighbours becomes infected with rate
α+ βn1. Recovery is the same as in the SIS model. Unlike the SIS
model, where the state with all susceptible vertices is absorbing,
the SISa model has a stationary distribution. In the “Methods”
section we obtain a bound on the stationary absolute mean error
of the SISa model that depends on aþi , which is a constant related
to the state that has the largest or smallest number of edges
between susceptible and infected vertices in the ith level. Unfor-
tunately, computing aþi is computationally difficult (an algorithm
that did so would provide a solution to the Max-Cut problem,
which is NP-complete33). Thus we settle for an estimate, eaþi > 0,
obtained from a tractable greedy algorithm, described in detail in
the “Methods” section, that sequentially picks susceptible vertices
to become infected which introduce the largest or smallest number
of edges between susceptible and infected vertices. Our numeri-
cally tractable bound depends on an assumption about eaþi x�i and
the full system, which is made precise in the “Methods” section. In
Supplementary Note 3 we show that while this assumption does
not always hold, we typically obtain an informative bound
regardless. We also propose an approximation a�i x

�
i based on

averaging the minimum and maximum number of edges between
susceptible and infected vertices at each level, although this
approximation does not have a rigorous foundation.

Application to real-world networks. To illustrate the application
of our results on a topical example, we use the SIR model of
epidemics on a real-world contact network derived from GPS
data. There are three vertex-states in the SIR model, namely
susceptible, infected and recovered, which we denote by S, I and
R respectively. A susceptible vertex with n1 infected neighbours
becomes infected at a rate βn1, and an infected vertex recovers at
a rate γ. There are 3N states in the full Markov chain and (N+ 2)
(N+ 1)/2 lumped states, corresponding to distinct numbers of
vertices in each of the vertex-states. The lumped transition rate qij
from the ith lumped state with s½i�S susceptible vertices and s½i�I
infected vertices, to the jth lumped state in which a susceptible
vertex has become infected is

qij ¼ β
z

N � 1
s½i�S s

½i�
I :

(Note that here it is convenient to use the vertex-states I and S
rather than an integer to index the lumped state s[i]). Similarly, if
an infected vertex recovers then the lumped transition rate is
qij ¼ γs½i�I : There are N+ 1 lumped absorbing states in which
there are no infected vertices and the number of recovered ver-
tices ranges from zero to N.

We used a real-world contact network derived from data
collected as part of the BBC documentary ‘Contagion! The BBC
Four Pandemic’34,35. This study collected GPS traces of people
who downloaded the ‘BBC Pandemic’ smart phone application.
Data made publicly available from this study consists of
timestamped anonymised pairwise distances within 50m between
469 participants around the town of Haselmere, UK. We
aggregated these data to create a static network between
participants that came within 1 m of each other. We used the

largest connected component of this network, which consists of
N= 369 people and has mean degree z= 5.53. We refer to this as
the ‘Haselmere 1m’ network. We used parameters γ= 1 and
β= γR0(N−1)/(zN), where R0= 3, since this would give a
reproduction number of R0 in the corresponding compartmental
model equations. Initially five vertices were selected uniformly at
random to be infected.

In Fig. 2a, b we compare stochastic simulations (red) of the SIR
model on the Haselmere 1m network with the corresponding
approximate lumping (blue). Figure 2a illustrates the mean number
of infected vertices over time (thick solid lines) and the
corresponding 90-percentile of the simulated and approximate
lumping distributions (shading). We also include, for comparison,
results from homogeneous, heterogeneous and individual-based
mean-field approximations (dashed, dot, and dash-dot lines
respectively—see Supplementary Note 1 and Kiss et al. 2 for
details), illustrating that the accuracy of our approach is compar-
able. However, our approach also produces a full probability
distribution over the lumped states, which we use to compute the
percentiles in Fig. 2a. This distribution could also be used for
Bayesian parameter estimation and even data assimilation.
Furthermore, with our approach we are able to compute absorption
statistics and in Fig. 2b we compare the absorption probability into
each absorbing state (i.e. the total number of infected individuals) of
stochastic simulations (grey) and our approximate lumping (blue).

Low dimensional mean-field approximations can perform
poorly on networks with heterogeneous structure (e.g. when
hubs, clustering or communities are present), and Fig. 2a, b
illustrate this. By way of contrast, we also present results for an
Erdős–Rényi graph where the accuracy of mean-field approxima-
tions is better. Specifically, we chose a network uniformly at
random from those with N= 369 vertices (the same size as the
Haselmere 1m network) and mean degree z= 20 (i.e. selecting
3690 random edges—note this is the less common type of Erdős
Rényi graph), and in Fig. 2c, d we illustrate results corresponding
to those in Fig. 2a, b, respectively. In this case, the accuracy is
significantly improved and our approach even appears marginally
better than the other comparable mean-field theories illustrated.
We obtain similar results if we average over many graphs sampled
at random.

In Fig. 3 we compare our error bound with the error produced
via stochastic simulations of the SISa model on four benchmark
real-world networks, including the Haselmere 1m network34,35, a
protein interaction network36–38, an autonomous-systems Inter-
net network39 and a US power grid network40. For each network
in Fig. 3, we compute stochastic simulations of SISa dynamics on
the network with ambient infection rate α= 0.01, infection
transmission rate β= 2(γ−α)(N−1)/(zN) and recovery rate γ= 1,
which would give a stationary infected fraction of 0.5 in the
corresponding SISa compartmental model. Half of the vertices are
chosen uniformly at random to be initially infected and the
number of infected vertices is computed after the process is
approximately stationary. For each network, we compute the
mean fraction of infected vertices from multiple realisations of
the stochastic simulations. We also numerically compute
solutions of the lumped system to find the lumped probability
distribution x(t) with initial condition corresponding to the
average number of infected vertices of the stationary stochastic
simulations. The stochastic simulation error (solid black lines in
Fig. 3) is the absolute magnitude of the difference between the
mean fraction of infected vertices in the stochastic simulations
and approximate lumping. We compare this with our bound on
the approximate lumping error (red dashed lines in Fig. 3) by
numerically integrating Eq. (5) using eaþi x�i . The long-term
behaviour of the bound is comparable, i.e. the over-estimate is
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a similar amount, for different sizes of network and error. The
results for these examples are representative of other real-world
networks. To illustrate this, in Fig. 4 we compare the errors
computed from stochastic simulations (horizontal axis) with the
corresponding errors computed using our approximation and
bound (vertical axis) for 18 real-world networks, including the
four used in Fig. 3. These networks constitute a standard
benchmark test-set, including networks with heterogeneous
topology on which mean-field approximations vary in accuracy20.
The circular and triangular markers correspond to the approx-
imation and bound, respectively. The SISa parameter values used
are the same as in Fig. 3, i.e. α= 0.01, β= 2(γ−α)(N−1)/(zN) and
γ= 1. The legend indicates which network has been used and
these are ordered from the smallest simulation error at the top
(furthest left in the figure) to the largest at the bottom (furthest
right in the figure). References for each network, as well as
information about size and mean degree, are included in
Supplementary Note 3. Figure 4 shows that for a range of
benchmark real-world networks our approximation gives a good
estimate of the magnitude of the mean error and our bound is
informative, i.e. these are correlated with the error (Pearson
correlation coefficient: 0.62, p-value < 0.01 [without karate: 0.86,
p-value≪ 0.01]) and in all cases give a value <1.

Conclusion
In summary, we have presented a mathematical foundation for
mean-field approximations of a wide class of dynamical processes on
networks that facilitates the quantification of approximation error.

We have used approximate lumping to derive low-dimensional sys-
tems of equations directly from the exact master equation descrip-
tion, whose approximation error is minimal, in the sense that it is
closest to an exact lumping, and can be quantified.

Our approximation results in a ‘density dependent’ system
from which even lower dimensional ODE approximations can be
rigorously derived in the large N limit41–43. Note that the lumped
transition rates which we have derived only characterise network
structure in terms of the mean degree, so do not account for
variations in topology that may affect the dynamics. However,
there is scope to extend our approach to more accurate degree-
based mean-field17 and high-accuracy approximate master
equations18,31 through more fined-grained lumpings by con-
sidering finer partitions of vertices and states30. There may also be
alternative methods to bound the error44, potentially making use
of theory developed for operator semi-groups43. While we extend
our approach to quadratic VSTMs in Supplementary Note 5,
further generalisations to arbitrary nonlinear VSTMs, e.g. via
their power series expansions, may be possible. For non-smooth
VSTMs, such as threshold models, consideration of the averaging
process of the infinitesimal generator may also facilitate the
derivation of approximations. The approach developed in this
paper could also be applied to other complex systems, e.g. a
natural generalisation is to multilayer network structures45,46 via
the supra-adjacency matrix representation. However, the details
of the specific application are likely to be crucial and will inevi-
tably influence the structure of the Markov chain state-space and
hence how much our approach needs to be adapted to deal with
these considerations.

Fig. 2 Comparison of stochastic simulations and approximate lumping of the susceptible–infected–recovered (SIR) model of epidemics. a Illustrates the
evolution of the mean number of infected vertices from 3000 stochastic simulations (thick red line) and the approximate lumping (thick blue line) for the
SIR model on the Haselmere 1m network. The red and blue shading illustrate the 90-percentile of the corresponding distributions. The light blue dash,
yellow dot, and grey dash-dot lines indicate the mean number of infected vertices for homogeneous, heterogeneous and individual based mean-field
approximations respectively. b Illustrates the probability distribution of the total number of infections computed from 100,000 stochastic simulations, each
run until t= 1000 (grey shading). The corresponding probability distribution computed from the approximate lumping is illustrated in blue. c and d
Illustrate the same as a and b, respectively, but for an Erdős–Rényi graph with N= 369 vertices and mean degree z= 20.
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Fig. 3 Comparison of susceptible–infected–susceptible with ambient infections (SISa) mean-field approximation error with theoretical upper bound on
four real-world networks. Comparison of the evolution of the mean-field approximation error y(t) over time t for the SISa model (solid black line),
computed using stochastic simulations, with our theoretical bound (dashed red line) for four real-world networks. a Uses the Haselmere 1m network34,35, b
uses a protein interaction network36–38, c uses an autonomous-systems Internet network39 and d uses a US power grid network40.
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The COVID-19 pandemic has brought epidemic modelling
into the spotlight and variants of compartmental models have
influenced policy: for example, the UK’s Scientific Advisory
Group for Emergencies47 at the time of writing list stochastic
transmission models48–51 as modelling inputs. Such models
incorporate realistic features such as age structure and geography.
However, the underlying contact network is difficult to obtain
and we should consider the consequence of not accounting for
this in our models. For example, Fig. 2a shows that mean-field
approximations (which includes compartmental models) are a
poor representation of the true dynamics. Thus varying infection
rates to fit such models to data could distort their interpretation
and hence the consequences of policy interventions.

Methods
Mathematical formulation. Let G= (V, E) denote a network with vertex set V and
edge set E⊂V × V, where the number of vertices is N= ∣V∣. We consider dyna-
mical processes on finite connected simple networks (i.e. undirected, unweighted
and with no self-loops) described by continuous-time Markov chains where each
vertex can be in one of a finite number M of vertex-states and the set of possible
vertex-states is W ¼ fW1;W2; ¼ ;WMg. We use caligraphic variables to indicate
vertex-states. The state-space of the Markov chain is the set of all permutations of
N vertex-states chosen from W with repetition. This is equivalent to Ω ¼ WV , i.e.
the set of all functions from V toW, and so if the network is in state S∈Ω then the
vertex-state of vertex v∈V is S(v). Since the number of states in Ω is MN, we can
enumerate the states in state-space so that Ω ¼ fS½1�; S½2�; ¼ ; S½M

N �g.
We assume that the dynamics are governed by homogeneous SVT models,

which includes models of spin systems, epidemics, opinion dynamics, diffusion of
innovation and a variety of other social dynamics28,52. In a homogeneous SVT
model, a vertex changes vertex-state at a rate that is a function of only the number
of its neighbours in each vertex-state and the rate function is the same for all
vertices. Furthermore, transitions only occur between pairs of states that differ in at
most one vertex-state. We call such pairs of states transition pairs and use the

notation S½k� �v S½l� to indicate that the states S[k] and S[l] form a transition pair with

transition vertex v, i.e. if S½k� �v S½l� then S[k](v) ≠ S[l](v) and S[k](u)= S[l](u) for all
u ≠ v. For vertex v and state S[k] let n½k�ðvÞ ¼ ðn½k�1 ðvÞ; n½k�2 ðvÞ; ¼ ; n½k�M ðvÞÞ, where
n½k�m ðvÞ is the number of neighbours of v with vertex-state Wm . For k ≠ l, the
transition rate between states S[k] and S[l] in homogeneous single-vertex transition
models is then given by

Qkl ¼
f S½k� ðvÞ;S½l� ðvÞðn½k�ðvÞÞ if S½k� �v S½l�

0 otherwise

(
;

where f A;Bðn1; n2; ¼ ; nMÞ≥ 0 is the VSTM, i.e. the rate that a vertex in vertex-
state A changes to vertex-state B if it has n1 neighbours in vertex-state W1, n2
neighbours in vertex-state W2, etc. We focus on VSTMs that are affine functions of
n[k](v), given by (1). Most SVTs have VSTMs of this form28, although notable
exceptions include non-zero temperature Ising-Glauber dynamics53, the nonlinear
q-voter model54 and threshold models10. Nonlinear VSTMs are discussed further
in Supplementary Note 5, where we present results for the quadratic case.

Approximate lumping. To coarse-grain the network dynamics, we consider
lumping of Markov chains55. An exact lumping Π= {Π1,Π2,…,Πr} is a partition
of state-space that preserves the Markov property, a necessary and sufficient
condition for which is that the sum of transition rates out of a state S[k]∈Πi into
the cell Πj is the same for all states in the cell Πi. In matrix notation, this is
equivalent to the existence of an r × r matrix q such that

QC ¼ Cq; ð7Þ
where C 2 f0; 1gMN ´ r is the collector matrix29 whose kjth component is

Ckj ¼
1 if S½k� 2 Πj;

0 otherwise

(
:

We call Eq. (7) the lumpability condition.
Note that q can be given explicitly by introducing the distributor

matrix29D 2 Rr ´MN

, whose ilth component is

Dil ¼
1

jΠi j if S½l� 2 Πi;

0 otherwise

(
:

Specifically, q=DQC satisfies the lumpability condition when Q commutes with
CD28.

A lumping that does not satisfy the lumpability condition, and hence does not
preserve the Markov property, is an approximate lumping29. Recall that we
consider approximate lumping partitions based on sets of states that have the same

number of vertices in each vertex-state and use the generator q=DQC even when
the lumpability condition is violated. Motivated by the condition for an exact
lumping (7), for a given matrix norm ∣∣ ⋅ ∣∣ we define the approximate lumping
discrepancy as ∣∣QC−Cq∣∣. Note that QC−Cq is a matrix of size MN × r, which in
the case of an exact lumping has all zero entries, thus the approximate lumping
discrepancy measures how far (in terms of the specific norm used) the approximate
lumping is from being an exact lumping. For this reason, we choose q to minimise
the approximate lumping discrepancy.

We now give an outline of the proof of Theorem 2.1, i.e. that q=DQC
minimises the approximate lumping discrepancy using the Frobenius norm. With
the Frobenious norm ∣∣ ⋅ ∣∣F we have

k QC� Cqk2F ¼ ∑
r

i¼1
∑

S½k�2Πi

∑
r

j¼1
½ðQCÞkj � qij�2:

Consequently k QC� Cqk2F can be minimised by choosing qij to be the average of
the sum of rates out of states in the ith level and into the jth level, i.e.

qij ¼
1
N
s½i�
� 	 ∑

S½k�2Πi

ðQCÞkj; ð8Þ

where N
s½i�
� 	

is short for the multinomial N
s½i�1 ;s

½i�
2 ;¼ ;s½i�M

� �
. This is exactly what is

obtained if one uses the definitions of the collector and distributor matrices to
compute (DQC)ij. A detailed proof of Theorem 2.1 is provided in the
Supplementary Methods. Note that the q that minimises the approximate lumping
discrepancy depends on the particular norm used; the Frobenius norm is
advantageous because it results in an intuitive averaging process that is also
analytically tractable.

For A 2 W, let νA be a vector of length M whose mth component is νAm ¼ 0 if
A≠Wm and νAm ¼ 1 if A ¼ Wm . Then for SVT models, the only possible non-
zero rates are between pairs of lumped states that satisfy s½j� ¼ s½i� þ νB � νA , with
A;B 2 W and A≠B, i.e. a vertex switches from vertex-state A to B. It follows that
the lumped states can also be ordered so that q is a quasi-birth–death process and
hence q is tridiagonal by blocks.

We now give an outline of the proof of Theorem 2.2 by illustrating how we
derive the elements of q from the full Markov chain description. Consider the case
where qij corresponds to a vertex changing from vertex-state A to B, so
s½j� ¼ s½i� þ νB � νA . In Eq. (8), for each state S[k] ∈Πi we sum the rates into Πj to
get (QC)kj. As assumed, these non-zero rates are associated with vertices in vertex-
state A changing to B. Thus we can go through each vertex in S[k] that is in vertex-
state A, count the number of its neighbours that are in each of the vertex-states to
compute the transition rate (1), and sum these up. Equation (8) then averages these
over all states in Πi. Our key insight is that rather than summing over states as
Eq. (8) suggests, we can achieve the same total by summing over vertices and the
possible states of neighbours.

For a vertex v with degree dv, the number of states in Πi where vertex v is in
vertex-state A and has n= (n1, n2,…, nM) neighbours in each of the vertex-states is

dv
n

� �
N � 1� dv
s½i� � νA � n

� �
;

where we have used our generalised multinomial notation, indicated by the

presence of vectors in the denominators, e.g. dv
n

� 	 ¼ dv
n1 ;n2 ;¼ ;nm

� �
. The transition

rate of a vertex from vertex-state A to B is given by Eq. (1). To compute qij we sum
these rates over all N vertices and all possible values of n, and divide by the number
of states to get

qi;j ¼
1
N
s½i�
� 	 ∑

v2V
∑
njdv

δA;B
0 þ ∑

M

m¼1
δA;B
m nm

� �
dv
n

� �
N � 1� dv
s½i� � νA � n

� �
; ð9Þ

where the sum over n∣dv denotes a sum over all possible values of n such that
n1+ n2+⋯+ nm= dv.

We deal with the δA;B
0 and δA;B

m nm terms separately. Using a generalisation of
the Vandermonde indentity (see the Supplementary Methods for details), the sum
with the constant term δA;B

0 is

1
N
s½i�
� 	 ∑

v2V
∑
njdv

δA;B
0

dv
n

� �
N � 1� dv
s½i� � νA � n

� �
¼ δA;B

0 s½i�1 ; ð10Þ

where we have assumed, without loss of generality, that the first index of the
lumped state, s½i�1 , corresponds to the vertex-state A. For the δA;B

m nm terms, again
using the generalised Vandermonde identity, we have

∑
v2V

∑
njdv

δA;B
m nm

dv
n

� �
N � 1� dv
s½i� � νA � n

� �
¼ N � 2

s½i� � νA � νm

� �
∑
v2V

dv : ð11Þ

Substituting Eqs. (10) and (11) into Eq. (9), after some cancellation, yields Eq. (3).
A detailed proof of Theorem 2.2 is included in the Supplementary Methods.

Error analysis of binary-state dynamics with a stationary distribution. We now
focus on binary-state dynamics where there are two vertex-states, hence M= 2.
Examples of binary-state dynamics include the SIS and voter models28 and in

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-00834-1 ARTICLE

COMMUNICATIONS PHYSICS |            (2022) 5:71 | https://doi.org/10.1038/s42005-022-00834-1 | www.nature.com/commsphys 7

www.nature.com/commsphys
www.nature.com/commsphys


Supplementary Note 2 we provide a classification of the different types of binary-
state dynamics. Consequently, we suppose that the set of vertex states is W ¼
fS; Ig and refer to vertex-state S as ‘susceptible’ and vertex-state I as ‘infected’; an
infection corresponds to a susceptible vertex becoming infected and a recovery
corresponds to an infected vertex becoming susceptible. We can partition the state-
space of binary-state dynamics into levels so that the ith level, Πi contains all states
that have i infected vertices, for i= 0, 1,…,N, i.e. Π= {Π0,Π1,…,ΠN}. It follows
that the approximate lumping generator q is tridiagonal and QC−Cq is tridiagonal
by blocks of column vectors of varying size. For 0 ≤ i <N, the column vectors of QC
−Cq just above the diagonal correspond to infections and we denote these by

AΠi
¼ ðQCÞk;iþ1 � qi;iþ1

� �T

S½k�2Πi

:

Thus AΠi
captures the difference between the sum of infection rates out of states in

level i into level i+ 1, and the mean qi,i+1. Note that we use the subscript Πi to
illustrate that the variable is a vector over the states in Πi. Similarly, for 0 < i ≤N,
the column vectors of QC−Cq just below the diagonal correspond to recoveries
and we denote these by

BΠi
¼ ðQCÞk;i�1 � qi;i�1

� �T

S½k�2Πi

;

so BΠi
captures the differences between the recovery rates out of level i into level i

−1, and the mean. We then have

QC� Cqð Þ ¼

�AΠ0
AΠ0

0 ¼ 0

BΠ1
�BΠ1

� AΠ1
AΠ1

0

..

. . .
. . .

. . .
. ..

.

0 ¼ BΠN�1
�BΠN�1

� AΠN�1
AΠN�1

0 ¼ 0 BΠN
�BΠN

0BBBBBBB@

1CCCCCCCA;

where the zero entries indicate appropriately sized vectors of zeroes.
To simplify the error computation we assume that the initial distribution of the

full Markov chain is stationary so that X(t)= X*, whose kth component is X�
k . We

also use X�T
Πi

¼ ðX�
k ÞS½k�2Πi

to denote the vector of stationary probabilities of states in

Πi. Hence we find that

QC� Cqð ÞTX� ¼

�σ0
σ0 � σ1

..

.

σN�2 � σN�1

σN�1

0BBBBBBB@

1CCCCCCCA;

where

σ i ¼ AT
Πi
X�
Πi

� BT
Πiþ1

X�
Πiþ1

:

The σi contain information about the full system and therefore cannot be directly
computed for typical systems of interest, i.e. when the size of the full state-space is
beyond what can be stored in computer memory.

We now consider the equilibrium solutions of Eqs. (2) and (4) in turn. For
binary-state dynamics, our lumped approximation is a birth–death process, where
a birth corresponds to an infection and a death corresponds to a recovery. Thus we
can write

q ¼

�λ0 λ0 0 � � � 0

μ1 �μ1 � λ1 λ1 0

..

. . .
. . .

. . .
. ..

.

0 � � � μN�1 �μN�1 � λN�1 λN�1

0 � � � 0 μN �μN

0BBBBBBB@

1CCCCCCCA
;

where the rates λi and μi are finite and positive. The analytical expression for the
stationary distribution x� ¼ ðx�0 ; x�1 ; ¼ ; x�N ÞT of such a birth–death process can be
found in standard texts, e.g. Kijima27, but we reproduce it here in order to
introduce notation that we will use when we derive the equilibrium of the error
ODEs (4). The stationary distribution x* solves the recursion relation

x�iþ1 ¼
λi
μiþ1

x�i ;

which has solution

x�i ¼ ϕi
Φ
; ð12Þ

where ϕ0= 1, for i > 0

ϕi ¼
λi�1λi�2 � � � λ0
μiμi�1 � � � μ1

;

and

Φ ¼ ∑
N

i¼0
ϕi:

Similar to the lumped dynamics, the equilibrium of the error ODEs (4),
y� ¼ ðy�0 ; y�1 ; ¼ ; y�N ÞT, satisfies the system of equations

0 ¼ �λ0y
�
0 þ μ1y

�
1 � σ0;

0 ¼ λi�1y
�
i�1 � ðλi þ μiÞy�i þ μiþ1y

�
iþ1 þ σ i�1 � σ i; and

0 ¼ λN�1y
�
N�1 � μNy

�
N þ σN�1;

where 0 < i <N. It follows that the solution solves the recursion

y�i ¼ 1
μi

λi�1y
�
i�1 þ σ i�1

� 	
:

Since both X* and x* are probability distributions, their elements sum to one and
thus the sum of y�i is zero. Consequently for i > 0 we find

y�i ¼ ϕiψi � x�i Ψ; ð13Þ
where ψ0= 0, for i > 0

ψi ¼ ∑
i�1

j¼0

σ j
ϕjþ1μjþ1

;

and

Ψ ¼ ∑
N

i¼0
ϕiψi:

By substituting Eq. (13) into the definition of the mean error �y� , given by Eq. (6),
we find

�y� ¼ ∑
N�1

i¼0
ρiσ i; ð14Þ

where

ρi ¼
1

ϕiþ1μiþ1

∑
N

j¼iþ1
ðj� �x�Þϕj

and �x� ¼ ∑i¼0ix
�
i is the stationary mean number of infected vertices. Thus we have

split the calculation of �y� into terms σi, which depend on the full Markov chain
(and hence must be approximated), and terms ρi, which depend on the lumped
system (and hence can be computed). Moreover, using the definition of �x� and Φ,
it is straightforward to prove that ρi > 0 for all i, which suggests an intuitive bound
on the absolute value of the stationary mean error given by

j�y�j≤ ∑
N�1

i¼0
ρijσ ij: ð15Þ

Example: error approximation for the SISa model. We now consider results for
the SISa model32, where the VSTM has infection rate f S;I ðn1; n2Þ ¼ αþ βn1,
recovery rate f I ;Sðn1; n2Þ ¼ γ and f S;S ¼ f I ;I ¼ 0. We derive bounds on the ∣σi∣
terms for the SISa model, which with Eq. (15) allow us to bound j�y�j. We also
consider approximations of the σi terms, which with Eq. (14) allow us to
approximate �y� . Using Eq. (8), for the SISa model we find for S[k]∈Πi that

QCð Þk;iþ1 ¼ αðN � iÞ þ βn½k�SI;

where

n½k�SI ¼ ∑
v2V

1fS½k� ðvÞ¼SgðvÞn½k�1 ðvÞ:

Note that n½k�SI is the number edges that connect susceptible vertices with
infected vertices (hereon referred to as SI edges) in the state S[k]. Our formula for
QCð Þk;iþ1 above for the SISa model follows from the fact that there are N−i
susceptible vertices, and summing how many infected neighbours each has is
equivalent to counting the number of SI edges. It follows that

AΠi
¼ β n½k�SI �

z
N � 1

iðN � iÞ
� �T

S½k�2Πi

; ð16Þ

so the entry in AΠi
corresponding to the state S[k] is proportional to the difference

between the number of SI edges in state S[k] and the average of the number of SI
edges in states in the ith level. A similar calculation shows that (QC)k,i−1= γi and
hence BΠi

¼ 0 for all i, i.e. the total recovery rate of a state in the SISa model is the

same for all states in the same level. Thus for the SISa model σ i ¼ AT
Πi
X�
Πi
, hence if

aþi ¼ maxS½k�2Πi
jAΠi

j then
jσ ij≤ aþi ∑

S½k�2Πi

X�
k :

Determining aþi and the sum of probabilities in the ith level would allow us to
bound the absolute value of the mean error, but this may be intractable in practice
because it requires knowledge of the full Markov chain. Thus to obtain a bound on
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the stationary absolute mean error of the SISa model, we use an approximation for
aþi , denoted by eaþi , and then assume that eaþi x�i ≥ jAT

i X
�
Πi
j. In Supplementary Note 3

we show that while this assumption does not always hold, we typically obtain an
informative bound regardless.

We now describe how we obtain eaþi . Note that aþi arises from the state in level i
with either the largest or smallest number of SI edges. We refer to these states as the
max and min SI states respectively. Finding the max SI states is equivalent to the
Max-Cut problem, which is NP complete33. Finding the min SI states is also
difficult because one needs to identify maximal cliques, which is also NP
complete56. Because of this, we settle instead for estimates based on a greedy
algorithm that starts from the state with all susceptible vertices and sequentially
chooses a susceptible vertex to become infected that introduces the largest or
smallest number of SI edges.

The algorithm is as follows. For binary-state dynamics in which vertices are
either susceptible or infected, we iterate from level 0 to bN2c, picking a new vertex at
each level to switch from susceptible to infected. There is only one state in level 0,
in which all vertices are susceptible, so this is the state identified by the algorithm at
the 0th level. Suppose that at the ith level the state S[k] is identified by the
algorithm, then for each susceptible vertex v in S[k], we compute the number of
infected neighbours n½k�1 ðvÞ and the number of susceptible neighbours n½k�2 ðvÞ. We
then pick the vertex with the largest difference n½k�1 ðvÞ � n½k�2 ðvÞ (which may be
negative) to be infected, and this is the state that the algorithm identifies for the
i+ 1th level. If there are multiple such vertices then we pick the one with the lowest
index. This last step ensures our algorithm is deterministic, although to destroy
possible correlations between vertex degrees and their labels, it may be necessary
initially to randomise the vertex labelling. In binary-state dynamics there is a
symmetry about bN2c, by switching susceptible vertices to infected and infected to
susceptible, which preserves the number of SI edges. We apply this symmetry to the
states selected so far to determine the states in levels above bN2c. Clearly one could
perform a more extensive search, but our goal is to have an algorithm that scales
well with the number of vertices. A nearly identical process can be used to identify
a state in each level with a low number of SI edges by selecting the vertex with the
smallest difference n½k�1 ðvÞ � n½k�2 ðvÞ to become infected.

For level i, we use enþi and en�i to denote the maximum and minimum number of
SI edges found by this algorithm, respectively. We also attempt to approximate σi
with a�i x

�
i , where

a�i ¼ β
enþi þ en�i

2
� z

N � 1
iðN � iÞ

� �
:

This gives a measure of the skew of the distribution of the number of SI edges in
each state in the same level.

Data availability
The networks and derived data are available in the Research Data Leeds Repository57.

Code availability
The code used to produce the derived data and figures is available in the Research Data
Leeds Repository57.
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