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Extended Version

This paper builds upon and extends the ECRTS 2021 paper Schedulability
Analysis for Multi-core Systems Accounting for Resource Stress and
Sensitivity (Davis et al, 2021). Section 3.5 derives complexity results for the
various schedulability tests. Section 7 considers the issues involved in
allocating tasks to cores in a way that optimizes system schedulability and
robustness under the MRSS task model. The difficulties of task assignment
are highlighted via a worked example, based on data from the industrial case
study. Simulated Annealing is then proposed as a potential solution, and its
effectiveness demonstrated via experimental evaluation.

1 Introduction

1.1 Background

The survey published by Akesson et al (2020, 2021), shows that about 80%
of industry practitioners developing real-time systems are using multi-core
processors, about twice the number that are using single-cores. On a single-
core processor, when a task executes without interruption or pre-emption it
has exclusive access to the hardware resources that it needs. The execution
time of the task therefore depends only on its own behavior and the initial
state of the hardware. This is in marked contrast to what happens when a
task executes on one core of a multi-core processor. Multi-core processors are
typically designed to provide high average-case performance at low cost, with
hardware resources shared between cores. These shared hardware resources
typically include, the interconnect, caches, and main memory, as well as other
platform specific components. As a consequence, the execution time of a task
running on one core of a multi-core system can be extended by interference
due to contention for shared hardware resources emanating from co-running
tasks on the other cores.

This problem of cross-core contention and interference has led to timing
verification of multi-core systems becoming a hot topic of real-time systems
research in the decade to 2020. The survey published by Maiza et al (2019)
classifies approximately 120 research papers in this area. Much of this
research relies on detailed information about shared hardware resources and
the policies used to arbitrate access to them. This information is then used
to derive analytical bounds on the maximum interference possible due to
contending tasks running on the other cores. In practice, however, there can
be substantial difficulties in obtaining and using such detailed low-level
information, since it is not typically disclosed by hardware vendors. This is
because the complex resource arbitration policies and low-level hardware
design features employed comprise valuable intellectual property. Further,
even if such information is available, then the overall behavior can be so
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complex as to preclude a static analysis that provides meaningful bounds, as
opposed to substantial overestimates.

The predominant industry practice is to use measurement-based timing
analysis techniques to estimate worst-case execution times1 (WCETs).
However, the simple extension of measurement-based techniques to
multi-core systems cannot provide an adequate solution that bounds the
impact of cross-core interference. This is because cross-core interference is
highly dependent on the timing of accesses to shared hardware resources by
both the task under analysis and its co-runners. In practice, it is not possible
to choose the worst-case combination of behavior (inputs, paths, and timing)
for co-running tasks that will result in the maximum interference
occurring (Nowotsch and Paulitsch, 2012). A potential solution to this
problem, which is being taken up commercially (Rapita Systems, 2019), is to
employ a more nuanced measurement-based approach using
micro-benchmarks (Radojkovic et al, 2012; Fernández et al, 2012; Nowotsch
and Paulitsch, 2012; Iorga et al, 2020). These micro-benchmarks sustain a
high level of resource accesses, ameliorating the timing alignment issues
inherent in the naive approach discussed above. Micro-benchmarks can be
used to characterize tasks in terms of the interference that they can cause, or
be subject to, due to contention over a particular shared hardware resource.

The timing verification of single-core systems has traditionally been solved
via a two-step approach (Maiza et al, 2019). First context-independent WCET
estimates are obtained, either via static or measurement-based timing analysis.
Second, these estimates are used as parameter values in a task model, with
schedulability analysis employed to determine if all of the tasks can meet
their timing constraints when executed under a specific scheduling policy. This
separation of concerns between timing analysis and schedulability analysis
brings many benefits; however, its effectiveness is greatly diminished in multi-
core systems due to the fact that execution times heavily depend on co-runner
behavior and the cross-core interference that they bring. Inflating individual
task execution time estimates to account for the maximum amount of context-
independent interference that could potentially occur during the time interval
in which each task executes can result in gross over-estimates that are not
viable in practice (Kim et al, 2017). Rather, research (Altmeyer et al, 2015;
Davis et al, 2018) has shown that it is more effective to consider contention
over the longer time frame of task response times.

1.2 Contribution and Organization

In Section 2, we introduce the Multi-core Resource Stress and Sensitivity
(MRSS) task model that characterizes how much each task stresses shared
hardware resources and how much each task is sensitive to such resource

1 About 66% of the industry practitioners surveyed by Akesson et al (2020, 2021) used
some form of measurement-based timing analysis, whereas only about 33% used some form
of static timing analysis.
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stress. The MRSS task model provides a simple interface and a separation of
concerns between timing analysis and schedulability analysis, thus retaining
the advantages of the traditional two-step approach to overall timing
verification. The MRSS task model relies on timing analysis, either
measurement-based or static, to provide task parameter values characterizing
stand-alone (i.e. no contention) WCETs, resource stresses, and resource
sensitivities. Thus, it provides the information needed by schedulability
analysis to integrate cross-core interference into the computation of bounds
on task response times, and hence determine the schedulability of tasks
running on multi-core systems. The MRSS task model is generic and
versatile. It supports different types of interference that occur via cross-core
contention for shared hardware resources, as follows:

(i) Limited interference where contention for the resource is ameliorated by
parallelism in the hardware. Here, the interference is sub-additive, i.e. less
than the time that the co-running task on another core spends accessing
the resource.

(ii) Direct interference where the bandwidth of the resource is shared
between contending cores, for example with a Round-Robin bus. Here,
the interference is additive, directly matching the time that co-running
tasks spend accessing the resource.

(iii) Indirect interference where contention causes additional interference,
over and above the bandwidth consumed by co-running tasks (i.e. a
super-additive effect), due to changes in the state of the resource that
cause further delays to subsequent accesses. An example of indirect
interference occurs with main memory (DRAM) (Hassan, 2018) when
interleaved accesses target different rows, resulting in additional row
close and row open operations that increase memory access latency.

The MRSS task model is not however a panacea, it cannot support
unbounded interference where task execution is disproportionately impacted
by contending accesses. This includes cases where contenders can effectively
lock a resource for an extended or unbounded amount of time. Further, it
cannot support dependent interference where contention can change the
information stored in a resource in such a way that it needs to be obtained
from elsewhere, potentially creating additional (dependent) interference via
another shared resource. Problems of cache thrashing (Radojkovic et al,
2012), cache coherence (Fuchsen, 2010), and cache miss status handling
registers (Valsan et al, 2016) can all cause unbounded and/or dependent
interference. These issues need to be eliminated from systems aimed at
providing real-time predictability.

Section 3 introduces schedulability analysis for the MRSS task model,
considering task sets scheduled according to partitioned fixed priority
preemptive scheduling (pFPPS) and partitioned fixed priority
non-preemptive scheduling (pFPNS) policies2. Two types of schedulability

2 The most commonly used real-time scheduling polices in industry practice (Akesson
et al, 2020, 2021).
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test are derived: (i) context-dependent tests that make use of information
about the co-running tasks on the other cores, and (ii) context-independent
tests that use only information about the tasks running on the same core.
The latter are less precise, but fully composable, meaning that if the tasks on
one core are changed, then only those tasks need have their schedulability
re-assessed; task schedulability on the other cores is unaffected.
Composability is an important issue for industry, particularly when different
companies or departments are responsible for the sub-systems running on
different cores. The section ends by deriving the dominance relations between
the schedulability tests, and assessing their complexity.

In systems that use fixed priority scheduling, appropriate priority
assignment is a crucial aspect of achieving a schedulable system (Davis et al,
2016). Section 4 investigates optimal priority assignment, proving that
Deadline Monotonic (Leung and Whitehead, 1982) priority ordering is
optimal for both the context-independent and the simpler context-dependent
schedulability tests for pFPPS. Similarly, Audsley’s optimal priority
assignment algorithm (Audsley, 2001) is proven to be applicable and optimal
for the equivalent tests for pFPNS. The more complex and precise
context-dependent tests are proven incompatible with Audsley’s
algorithm (Audsley, 2001).

Section 5, provides a systematic evaluation of the effectiveness of the
schedulability tests derived in Section 3. The results of this evaluation follow
the dominance relationships demonstrated earlier, indicating the superiority
of the more complex context-dependent schedulability tests, while also
highlighting the additional contention that adding further cores brings.

Section 6 presents the findings from a case study examining 24 tasks from
a Rolls-Royce aero-engine control system. These tasks were assessed using
measurement-based timing analysis to obtain broad-brush estimates of their
stand-alone WCETs, as well as characterizing their resource stress and
resource sensitivity parameters. The purpose of the case study was not to try
to determine definitive values for these parameters, in itself a challenging
research problem, but rather to obtain proof-of-concept data to act as an
exemplar underpinning the MRSS task model and its analysis.

Section 7 considers the issues involved in allocating tasks to cores in a
way that optimizes system schedulability and robustness under the MRSS
task model. The difficulties of task assignment are highlighted via a worked
example, based on data from the industrial case study. This example shows
that overall interference can typically be reduced by partitioning tasks such
that those with high resource stress and sensitivity are assigned to a subset
of the available cores, while those with low resource stress and sensitivity
are assigned to the remaining cores. However, minimizing interference does
not necessarily optimize schedulability and robustness. Simulated Annealing
is proposed as a potential solution, and its effectiveness demonstrated via
experimental evaluation.

Section 8 concludes with a summary and directions for future work.
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1.3 Related work

Prior publications that relate to the research presented in this paper include
work on micro-benchmarks (Radojkovic et al, 2012; Fernández et al, 2012;
Nowotsch and Paulitsch, 2012; Iorga et al, 2020; Rapita Systems, 2019) that
can be used to stress resources in multi-core systems, and work on the
integration of interference effects into schedulability analysis. Many of the
latter papers are summarized in Section 4 of the survey by Maiza et al
(2019). Unlike the analysis presented in this paper, which uses a generic task
model that is applicable to many different types of interference and a variety
of different shared hardware resources, most of these prior works focus on the
details of one or more specific hardware resources. They require detailed
information about the resource arbitration policy used, the number of
resource accesses made by each task, and in some cases the timing of those
accesses. By contrast, this paper takes a more abstract, but nonetheless valid
view, that interference can be modeled in terms of its execution time impact
via resource sensitivity and resource stress parameters for each task. This
approach requires less detail about the resource behavior, and is more
amenable to practical use, since it can still be used when full details of
shared resource behavior are not available from the hardware vendor.

Early work on the integration of interference effects into schedulability
analysis by Schliecker and Ernst (2010) used arrival curves to model the
resource accesses of each task, and hence how resource access delays due to
contention impact upon task response times. Schliecker’s work focused on
contention over the memory bus. Further work in this area by Schranzhofer
et al (2010), Pellizzoni et al (2010), Giannopoulou et al (2012), and Lampka
et al (2014) used the superblock model that divides each task into a sequence
of blocks and uses information about the number of resource accesses within
different phases of these blocks.

Dasari et al (2011) used a request function to model the maximum number
of resource accesses from each task in a given time interval, and integrated this
request function into response time analysis. Kim et al (2016) and Yun et al
(2015) provided a detailed analysis of contention caused by DRAM accesses,
accounting for access scheduling and variations in latencies due to differing
states e.g. open and closed rows. The delays due to contention were then
integrated into response time analysis.

Altmeyer et al (2015); Davis et al (2018) introduced a multi-core response
time analysis framework, aimed at combining the demands that tasks place
on difference types of resources (e.g. CPU, memory bus, and DRAM) with the
resource supply provided by those hardware resources. The resulting explicit
interference was then integrated directly into response time analysis. Rihani
et al (2016) built on this framework, using it to analyze complex bus arbitration
policies on a many-core processor.

Huang et al (2016) and Cheng et al (2017) leveraged the symmetry between
processing and resource access, viewing tasks as executing and then suspending
execution while accessing a shared resource. Using this suspension model in the
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schedulability analysis, they obtained results that were broadly comparable to
those of Altmeyer et al (2015).

Paolieri et al (2011) proposed using a WCET-matrix and
WCET-sensitivity values to characterize the variation in task execution
times in different execution environments (e.g. with different numbers of
contending cores, and different cache partition sizes). This information was
then used to determine efficient task partitioning and task allocation
strategies.

Andersson et al (2018) presented a schedulability test where tasks have
different execution times dependent on their co-runners. Here, tasks are
represented by a sequence of segments, each of which has execution
requirements and co-runner slowdown factors with respect to sets of other
segments that could execute in parallel with it. The schedulability test
involves solving a linear program to bound the longest response time given
the possible ways in which different segments could execute in parallel and
the slowdown in execution that this would entail. The method has significant
scalability issues that effectively limit the total number of tasks it can handle
to approximately 32 tasks on a 4 core system (i.e. 8 tasks per core).

1.4 Inspiration

The research presented in this paper was inspired by the desire to combine a
practical approach to characterizing contention via micro-benchmarks and
measurement-based techniques with a generic form of schedulability analysis
that can be applied to a wide range of homogeneous multi-core systems with
different types of shared hardware resources. The aim being to provide an
effective form of timing verification that, while retaining the traditional
two-step approach, is able to avoid undue pessimism by accounting for
interference over long time intervals equating to task response times rather
than short time intervals equating to task execution times. With industry
practice in mind, the schedulability analysis derived includes
context-dependent (non-composable), context-independent (fully
composable), and partially composable schedulability tests. The overall
method enables task timing behavior on multi-cores to be assessed without
necessitating recourse to detailed information about the hardware behavior,
something that most chip vendors do not make publicly available.

2 System Model and Assumptions

We assume a multi-core system with m homogeneous cores that executes
tasks under either partitioned fixed priority preemptive (pFPPS) or
partitioned fixed priority non-preemptive (pFPNS) scheduling. With
partitioning, tasks are assigned to a specific core and do not migrate. The
tasks are assumed to be independent, but may access a set of shared
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hardware resources r ∈ H, thus causing interference on the execution of tasks
on other cores via cross-core contention. We omit from consideration the
effects of resource contention between tasks on the same core, since they are
executed sequentially rather than in parallel. We assume that appropriate
techniques are used to avoid substantial preemption effects when preemptive
scheduling is employed, for example cache partitioning can be used to
eliminate cache-related preemption delays. The costs of scheduling decisions
and any context switching are assumed to be subsumed into the task
execution times.

Each task τi is characterised by: the minimum inter-arrival time or period
between releases of its jobs, Ti, its relative deadline, Di, and its WCET, Ci,
when executing stand-alone, i.e. with no co-runners. All task deadlines are
assumed to be constrained i.e. Di ≤ Ti.

Further aspects of the model are based on the concept of resource
sensitive contenders and resource stressing contenders. A resource stressing
contender maximizes the stress on a resource r by repeatedly making
accesses to it that cause the most contention. Hence, running a resource
stressing contender in parallel with a task creates the maximum increase in
execution time for the task due to contention over resource r from any single
co-runner. A resource sensitive contender for a resource r, suffers the
maximum possible interference by repeatedly making accesses to the resource
that suffer from the most contention. Hence, running a resource sensitive
contender in parallel with a task creates the maximum increase in execution
time for any single co-running contender due to contention over resource r
from the task. Note, resource stressing and resource sensitive contenders for
a given resource are not necessarily one and the same.

Each task is further characterised by its resource sensitivity Xr
i and

resource stress Y r
i for each shared hardware resource r ∈ H. Xr

i captures the
increase in execution time of task τi (from Ci to Ci + Xr

i ) when it is
executed in parallel with a resource stressing contender for resource r. Thus
Xr

i models how much task τi behaves like a resource sensitive contender.
Similarly, Y r

i captures the increase in execution time of a resource sensitive
contender (from C to C + Y r

i ) for resource r, when it is executed in parallel
with task τi. Hence Y r

i models how much task τi behaves like a resource
stressing contender. With this model, the execution time of a task τi running
on one core, subject to interference via shared hardware resource r from task
τk running in parallel on another core, is increased by at most min(Xr

i , Y
r
k )

i.e. from Ci to Ci +min(Xr
i , Y

r
k ).

The notation Γx is used to denote the set of tasks that execute on the same
core (with index x) as the task of interest τi. Similarly, Γy is used to denote
the set of tasks that execute on some other core (with index y).

Each task τi is assumed to have a unique priority. hp(i) (resp. lp(i)) is
used to denote the set of tasks with higher (resp. lower) priority than task τi.
Similarly, hep(i) (resp. lep(i)) is used to denote the set of tasks with higher
(resp. lower) than or equal priority to task τi.
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The schedulability tests introduced in this paper are named using the
following convention: CpSched-m-X , where C indicates a contention-based
test for p partitioned scheduling, using scheduling policy Sched , which is
either FPPS or FPNS. The test is applicable to systems with m cores, and
makes use of information X , which is either D or R meaning the deadlines
or the response times of the tasks on other cores, or fc meaning fully
composable, i.e. the test does not rely on any information about the tasks
running on the other cores.

The MRSS task model assumes that the resource sensitivity Xr
i and

resource stress Y r
i parameters for each task τi are provided by timing

analysis. Obtaining precise bounds for these parameters is a challenging
timing analysis problem that is beyond the scope of this paper; nevertheless,
below we give a brief overview of how such values could be estimated using
either measurement-based or static timing analysis techniques.

Using measurement-based timing analysis techniques, the resource
sensitivity Xr

i can be obtained by capturing the maximum difference between
the execution time of task τi when it runs in parallel with a resource stressing
contender, and the corresponding execution time when it runs stand-alone,
assuming that the same inputs and initial state are used in each case.
Similarly, the resource stress Y r

i can be obtained by capturing the maximum
difference between the execution time of a resource sensitive contender when
it runs in parallel with task τi, and the corresponding execution time of the
contender when it runs stand-alone. As with measurement-based WCET
estimation, such an approach needs to explore a representative set of inputs
and initial states in order to obtain valid estimates. Further, resource
stressing and resource sensitive contenders need to be carefully designed to
meet their requirements in terms of creating/suffering the maximum amount
of interference via contention over the resource (Iorga et al, 2020).

Bounds on resource sensitivity and resource stress can also be obtained via
static timing analysis. Static analysis first needs to compute an upper bound on
the maximum number of accesses Ar

i that task τi can make to the resource. The
resource sensitivity Xr

i can then be computed by determining the maximum
increase in the execution time of task τi assuming that Ar

i accesses are made
in contention with an arbitrary number of accesses emanating from one other
core. Similarly, the resource stress Y r

i equates to the maximum increase in the
execution time of any arbitrary resource sensitive contender, due to contention
over the resource caused by Ar

i accesses emanating from one other core.
The schedulability analysis presented in Section 3 assumes that the total

interference occurring via multiple different resources can be upper bounded by
the sum of the interference occurring via each of those resources individually.
This assumption can reasonably be expected to hold provided that the resource
contention is independent. In other words, that contention over one resource
does not create additional contention over another resource. An example that
breaks this assumption occurs with a cache that is shared between cores. In
this case, cache thrashing (Radojkovic et al, 2012) can result in additional
accesses to main memory, and hence further contention and interference over
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that disparate resource. Cache partitioning (per core) would be an effective
way of addressing this issue (Altmeyer et al, 2014, 2016), thus improving timing
predictability.

The analysis also assumes that the total interference occurring due to
co-running tasks on multiple other cores can be upper bounded by the sum
of the interference occurring due to co-running tasks on each of those cores
individually. This assumption can reasonably be expected to hold provided
that there are no discontinuities in the amount of interference that can occur
that can be triggered by co-running tasks on multiple cores, but not by
co-runners on just one core. An example that breaks this assumption occurs
with cache miss status handling registers (MSHR) (Valsan et al, 2016). In
this case, contention from tasks on multiple cores can exhaust all of the
available MSHRs, resulting in substantial blocking delays. Depending on the
local memory level parallelism, utilizing all of the MSHRs is typically not
possible with just one contending core. Increasing the number of MSHRs, or
reducing the local memory level parallelism such that contention from all m
cores cannot exhaust the set of MSHRs, are effective ways of addressing this
problem (Valsan et al, 2016) and hence restoring timing predictability. To
validate the use of the analysis given in Section 3, each of the above
assumptions needs to be assessed for the hardware architecture considered.

3 Schedulability Analysis

In this section, we introduce schedulability tests for the MRSS task model,
assuming partitioned fixed priority preemptive scheduling (pFPPS) (Section
3.1), and partitioned fixed priority non-preemptive scheduling (pFPNS)
(Section 3.2). In Section 3.3 we consider composability and derive
context-independent schedulability tests for both pFPPS and pFPNS. The
dominance relationships between the various tests are derived in Section 3.4.

First, we give a simple example. Consider four tasks executing on two
cores under partitioned fixed priority preemptive scheduling, with all four tasks
accessing the same shared hardware resource r. Tasks τ1 and τ2 execute on core
1 and tasks τ3 and τ4 execute on core 2. The stand-alone worst-case execution
times Ci of the tasks are 100, 200, 150, and 150, their resource sensitivity values
Xr

i are 16, 12, 10, and 10, and their resource stress values Y r
i are 24, 12, 10,

and 5 respectively. Further, the periods and deadlines of the tasks are much
larger than their execution times. Considering the higher priority task τ1 on
core 1. During the response time of a single job of task τ1, it could be subject
to interference due to cross-core contention from one job of each of tasks τ3 and
τ4 executing on core 2. This interference is bounded by the minimum of the
resource sensitivity of the job of task τ1, X

r
1 = 16, and the total resource stress

due to one job of each of tasks τ3 and τ4, Y
r
3 + Y r

4 = 10 + 5 = 15. Hence the
worst-case response time of task τ1 is bounded by R1 = 100 + min(16, 15) =
115. Considering the lower priority task τ2 on core 1. During the response time
of a single job of task τ2, one job of τ1 and one job of τ2 can execute on core 1.
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These jobs could be subject to interference due to cross-core contention from
one job of each of tasks τ3 and τ4 executing on core 2. This interference is
bounded by the minimum of the total resource sensitivity of the jobs of tasks
τ1 and τ2, X

r
1+Xr

2 = 16+12 = 28, and the total resource stress due to the jobs
of tasks τ3 and τ4, Y

r
3 +Y r

4 = 10+5 = 15. Hence the worst-case response time
of task τ2 is bounded by R2 = 100+ 200+min(28, 15) = 315. Similar analysis
for tasks τ3 and τ4 on core 2 yields bounds on their worst-case response times
of R3 = 150 + min(10, 36) = 160 and R4 = 150 + 150 + min(20, 36) = 320.
Note that this instructive example, and the detailed schedulability analysis
given below, makes no assumptions about exactly when jobs execute within the
response times considered, nor any assumptions about when within those time
intervals cross-core resource contention can actually occur. Rather bounds on
worst-case response times are derived using only the task timing parameters:
stand-alone worst-case execution times, resource stress and sensitivity values,
periods and deadlines.

3.1 pFPPS Schedulability Analysis

In the absence of any interference via shared hardware resources, the worst-
case response time of task τi under pFPPS is given via standard response time
analysis (Joseph and Pandya, 1986; Audsley et al, 1993):

Ri = Ci +
∑

j∈Γx∧j∈hp(i)

⌈

Ri

Tj

⌉

Cj (1)

Adding cross-core interference considering each resource r ∈ H, we may
compute the worst-case response time as follows:

Ri = Ci +
∑

j∈Γx∧j∈hp(i)

⌈

Ri

Tj

⌉

Cj +
∑

r∈H

Iri (Ri) (2)

where Iri (Ri) is an upper bound on the interference that may occur within
the response time of task τi, via shared hardware resource r, due to tasks
executing on the other cores.

The interference term Iri (Ri) depends on: (i) the total resource sensitivity
for resource r, denoted by Sr

i (Ri, x), for the tasks executing on the same core
x as task τi within its response time Ri; and (ii) the total resource stress on
resource r, denoted by Er

i (Ri, y), that can be produced by tasks executing on
each of the other cores y within an interval of length Ri. The total resource
sensitivity Sr

i (Ri, x) is computed based on the jobs that may execute within
the worst-case response time of task τi, hence with reference to (1) we have:

Sr
i (Ri, x) = Xr

i +
∑

j∈Γx∧j∈hp(i)

⌈

Ri

Tj

⌉

Xr
j (3)
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The total resource stress Er
i (Ri, y) due to tasks that execute on another core

y in the interval Ri can be upper bounded as follows. Here, unlike in (3), the
worst-case does not occur when these tasks are released synchronously, but
rather when the resource contention occurs as late as possible for one job of a
task, and then as early as possible for subsequent jobs. Further, tasks of any
priority can cause interference when executing on other cores. Thus we have:

Er
i (Ri, y) =

∑

j∈Γy

⌈

Ri +Dj

Tj

⌉

Y r
j (4)

The analysis in (4) does not make any assumptions about how long task τj
needs to execute in order to cause an increase in execution time of up to Y r

j

in a task running on another core. In particular, there is no assumption that
task τj needs to run for at least Y r

j , since Y r
j is a measure of the maximum

increase in execution time of another task due to contention from task τj ,
not a measure of the time for which task τj needs to execute to cause that
contention.

Assuming that the execution causing contention can occur instantaneously,
as is done in (4), is potentially pessimistic; however, it ensures that the analysis
is sound even when there is considerable asymmetry in the (small) execution
time required to stress a resource and the (large) increase in execution time
of another task, which is sensitive to that resource stress. Since Xr

k represents
the maximum sensitivity of a task τk when subject to continuous interference
via resource r from a maximally resource stressing contender on one single
other core, the maximum interference from other cores that can impact the
response time of task τi via resource r can be upper bounded by:

Iri (Ri) =
∑

∀y 6=x

min(Er
i (Ri, y), S

r
i (Ri, x)) (5)

This is the case, since the maximum interference due to contention from each
core y cannot exceed the total resource stress Er

i (Ri, y) emanating from that
core within a time Ri.

We refer to the schedulability test given by (2), (3), (4), and (5) as the
CpFPPS-m-D test, since this test uses information about the deadlines of
the tasks running on other cores.

A more precise analysis may be obtained by substituting Rj forDj in (4) as
follows, since a schedulable job of task τj cannot execute beyond its worst-case
response time.

Er
i (Ri, y) =

∑

j∈Γy

⌈

Ri +Rj

Tj

⌉

Y r
j (6)

Using this formulation, the response times of the tasks become interdependent.
This problem can be solved via fixed point iteration. Here, an outer iteration
starts with Ri = Ci, Rj = Cj etc. for all tasks in the system, and repeatedly
computes the response times for all tasks on all cores. This is done using the Rj

values in the right hand side of (6) from the previous round, until all response
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times either converge (i.e. are unchanged from the previous round) or one of
them exceeds the associated deadline. Since Er

i (Ri, y) in (6) is a monotonically
non-decreasing function of each Rj , then on each round, each Rj value can
only increase or remain the same, it cannot decrease. Thus, the outer fixed
point iteration is guaranteed to either converge giving the set of schedulable
Ri ≤ Di for all tasks in the system, or to result in some Ri > Di, in which
case that task and the system as a whole is unschedulable. We refer to the
schedulability test given by (2), (3), (5), and (6) as the CpFPPS-m-R test,
since it uses information about the response times of the tasks running on the
other cores.

3.2 pFPNS Schedulability Analysis

In the absence of any cross-core contention and interference via shared
hardware resources, the worst-case response time of task τi under pFPNS can
be upper bounded via a sufficient response time analysis (Davis et al, 2007):

Ri = max
k∈Γx∧k∈lep(i)

(Ck) +
∑

j∈Γx∧j∈hp(i)

(⌊

Ri − Ci

Tj

⌋

+ 1

)

Cj + Ci (7)

Here, we have reformulated the sufficient analysis for FPNS (Davis et al, 2007)
into a single equation. The changes involve compacting the blocking term
(max()), and bringing the execution time Ci of the task under analysis into
the equation. To compensate for the latter, the time interval in which higher
priority tasks can execute is changed to (Ri − Ci). This excludes the time at
the end of the interval when task τi is executing non-preemptively. We also
use a ⌊ ⌋+1 formulation rather than ⌈ ⌉ to avoid the need for a term equal to
the time unit granularity.

Similar to the case for pFPPS in (2), adding cross-core interference
considering each resource r ∈ H, we may compute an upper bound on the
worst-case response time as follows:

Ri = max
k∈Γx∧k∈lep(i)

(Ck) +
∑

j∈Γx∧j∈hp(i)

(⌊

Ri − Ci

Tj

⌋

+ 1

)

Cj+ Ci +
∑

r∈H

Iri (Ri)

(8)
where Iri (Ri) is an upper bound on the interference that may occur within
the response time of task τi, via shared hardware resource r, due to tasks
executing on other cores. Here, we make the sound, but potentially pessimistic,
assumption that even though the execution time of task τi may be increased
to more than Ci due to contention, only during the final Ci time units of
the task’s response time are other tasks on core x precluded from executing
(i.e. we continue to use (Ri − Ci) in the ⌊ ⌋ function). Further, we use Ri in
the final term, since cross-core contention still occurs during non-preemptive
execution.

The interference term Iri (Ri) depends on: (i) the total resource sensitivity
for resource r, denoted by Sr

i (Ri, x), for the tasks executing on the same core
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x as task τi within its response time Ri; and (ii) the total resource stress on
resource r, denoted by Er

i (Ri, y), that can be produced by tasks executing on
each of the other cores y within an interval of length Ri. The total resource
sensitivity Sr

i (Ri, x) is computed based on the jobs that may execute within
the worst-case response time of task τi, hence with reference to (7) we have:

Sr
i (Ri, x) = max

k∈Γx∧k∈lep(i)
(Xr

k) +
∑

j∈Γx∧j∈hp(i)

(⌊

Ri − Ci

Tj

⌋

+ 1

)

Xr
j + Xr

i

(9)
The two equations (4) and (6) for the total resource stress Er

i (Ri, y) due
to tasks that execute on another core y in the interval Ri depend only on the
tasks parameters and response times, but not the scheduling policy per se.
Thus by redefining Sr

i (Ri, x) according to (9) for the non-preemptive case, we
obtain the following pFPNS schedulability tests for the MRSS task model.

The CpFPNS-m-D test given by (8), (9), (4), and (5) makes use of the
deadlines of the tasks running on the other cores.

The CpFPNS-m-R test given by (8), (9), (6), and (5) makes use of the
response times of the tasks running on the other cores.

3.3 Composability

The schedulability analyses derived in Sections 3.1 and 3.2 make use of
information about the resource contention due to tasks executing on other
cores. In other words, these analyses requires that the resource stress (Y r

j )
values are known for all tasks executing on the other cores, as well as their
other parameters i.e. Tj , Dj , Rj . While this results in tighter response time
bounds, it also means that the analyses are not fully composable, since the
schedulability of the tasks running on one core depend on the parameters of
the tasks running on the other cores. A fully composable analysis can,
however, be obtained by redefining (5) as follows:

Iri (Ri) =
∑

∀y 6=x

Sr
i (Ri, x) = (m− 1) · Sr

i (Ri, x) (10)

This equates to assuming a worst-case scenario of resource stressing contenders
for each resource r running on every core. This may be pessimistic on two
counts: Firstly, the resource stressing contenders may cause significantly more
interference than the tasks actually running on the other cores, and secondly,
with more than one resource it may not be possible to maximally stress all
resources simultaneously.

Using (10) results in fully composable context-independent schedulability
tests. These tests are able to check the schedulability of task sets on each of
the m cores in a system, without needing to know any of the parameters of the
tasks on the other cores. We refer to the schedulability test given by (2), (3),
and (10) as the CpFPPS-m-fc test. Similarly, we refer to the schedulability
test given by (8), (9), and (10) as the CpFPNS-m-fc test.
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Finally, an intermediate partially composable analysis can be provided if
resource access regulation mechanisms (Yun et al, 2013) or budgets are
employed to limit the amount of contention emanating from each core. Let
F r
i (t, y) be the maximum increase in execution time of a resource sensitive

contender on another core that can occur due to contention over resource r
caused by a resource stressing contender running on core y for a time period
of t, subject to resource regulation. Partially composable analysis can be
obtained by redefining (5) as follows:

Iri (Ri) =
∑

∀y 6=x

min(F r
i (Ri, y), S

r
i (Ri, x)) (11)

Note, this analysis only holds if the resource regulation on each core y does
not actually limit the accesses to each resource r made by tasks on that core
over any time interval. Provided that is guaranteed, no actual runtime
enforcement is necessary, the budget function F r

i (t, y) simply acts as an
intermediate value that permits a separation of concerns and composition.
Stated otherwise, the budget function F r

i (t, y) becomes a requirement that
any set of tasks assigned to core y must guarantee not to exceed. This
guarantee is relied upon by the schedulability analysis for tasks executing on
the other cores. Hence, the analysis is partially composable, the tasks on core
y may be changed or modified provided that the rely-guarantee is respected.

3.4 Dominance Relations

A schedulability test S is said to dominate another test Z for a given task
model and scheduling algorithm, if every task set that is deemed schedulable
according to test Z is also deemed schedulable by test S, and there exists some
task sets that are schedulable according to test S, but not according to test
Z.

Comparing the definitions of Er
i (Ri, y) given by (6) for the CpFPPS-m-R

and CpFPNS-m-R tests and by (4) for the CpFPPS-m-D and CpFPNS-

m-D tests, it is evident that each of the former tests deems schedulable all
task sets that are schedulable according to the corresponding latter test. This
is the case, since in any schedulable system, the response time of a task is
no greater than its deadline (Rj ≤ Dj), and hence the Er

i (Ri, y) term for the
former tests, given by (6), is less then or equal to the equivalent term, given by
(4), for the latter tests. Further, it is easy to see that there exist task sets that
are schedulable according to each of the former tests, but not according to the
corresponding latter test due to a larger contention contribution emanating
from the larger Er

i (Ri, y) term. Hence the CpFPPS-m-R test dominates the
CpFPPS-m-D test, and the CpFPNS-m-R test dominates the CpFPNS-

m-D test.
Comparing the definitions of Iri (Ri) given by (5) for the CpFPPS-m-D

and CpFPNS-m-D tests and by (10) for the CpFPPS-m-fc and CpFPNS-

m-fc tests, it is evident that the former tests deems schedulable all task sets
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that are schedulable according to the corresponding latter test. Further, it
is easy to see that there exist task sets that are schedulable according to
the each of the former tests, but not according to the corresponding latter
test due to a larger contention contribution emanating from the larger Iri (Ri)
term. Hence the CpFPPS-m-D test dominates the CpFPPS-m-fc test, and
the CpFPNS-m-D test dominates the CpFPNS-m-fc test.

As dominance is transitive, we have:CpFPPS-m-R→CpFPPS-m-D→
CpFPPS-m-fc and CpFPNS-m-R → CpFPNS-m-D → CpFPNS-m-fc

where S → Z indicates that test S dominates test Z.
Finally, comparing a system of m cores to one with m + 1 cores, where

in each case the first m cores execute exactly the same sets of tasks, and the
m + 1 core system has extra tasks that execute on core m + 1, then there
is a dominance relationship between the systems as analysed by any of the
schedulability tests. In other words, adding a core and the contention that
it brings cannot improve schedulability for the tasks running on the existing
cores, but may make their schedulability worse. Schedulability for m cores
thus dominates that for m + 1 cores with added tasks: CpSched-m-X →
CpSched-(m+ 1)-X

3.5 Complexity

The standard response time analysis (Joseph and Pandya, 1986; Audsley et al,
1993) for FPPS on a single-core processor, given by (1), has pseudo-polynomial
complexity of O(n2Dmax), where n is the number of tasks and Dmax is the
longest deadline of any task in the system. This can be seen by observing that
there are n tasks for which response times need to be determined, and on
each fixed-point iteration there is a summation over at most n tasks. Further,
on each fixed-point iteration the response time can either increase by at least
1, or remain the same, in which case iteration terminates. Since iteration also
terminates when the deadline is exceeded, the maximum number of iterations is
bounded by Dmax. Hence the overall complexity of the test is O(n2Dmax). The
sufficient response time test for FPNS (Davis et al, 2007) similarly has pseudo-
polynomial complexity of O(n2Dmax). Considering partitioned scheduling on
multi-core systems, with m cores, at most n tasks per core, and no cross-core
contention or interference, these tests have O(mn2Dmax) complexity.

The schedulability tests for the MRSS task model are derived from the
above tests; however, they also consider cross-core contention and interference
over |H| shared hardware resources.

The CpFPPS-m-fc and CpFPNS-m-fc tests have pseudo-polynomial
complexity of O(m|H|n2Dmax). This can be seen by observing that there are
at most mn tasks for which response times need to be determined, and on
each fixed-point iteration of (2) or (8) the interference term involves a nested
summation over |H| resources, no summation over m cores – see (10), and
lastly summation over n tasks within the expression for Sr

i (Ri, x). Finally, the
maximum number of fixed point iterations is again bounded by Dmax.
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The CpFPPS-m-D and CpFPNS-m-D tests have pseudo-polynomial
complexity of O(m2|H|n2Dmax). This can be seen by observing that there
are at most mn tasks for which response times need to be determined, and
on each fixed-point iteration of (2) or (8) the interference term involves a
nested summation over |H| resources, m cores, and lastly over n tasks within
the expressions for Er

i (Ri, y) and Sr
i (Ri, x). Finally, the maximum number of

fixed point iterations is again bounded by Dmax.
The CpFPPS-m-R and CpFPNS-m-R tests were described in Sections

3.1 and 3.2 as requiring nested fixed point iterations to compute the
interdependent response times. The efficiency of these tests can however be
improved by considering the monotonicity of the expressions on the right
hand side of each of the equations with respect to the values of both Ri and
Rj . This means that the tests can be implemented via an outer loop that
performs fixed point iteration, combined with a simple inner loop that
iterates over all of the tasks in the system. Below, we describe this
implementation in more detail, followed by the complexity of the
CpFPPS-m-R and CpFPNS-m-R tests.

In an efficient implementation of theCpFPPS-m-R test (resp.CpFPNS-

m-R test), the outer loop iteration starts with Ri = Ci, Rj = Cj etc. for all
tasks. The inner loop iterates over all tasks, for each task it computes an
updated response time by evaluating (2) (resp. (8)) just once using the Ri

and Rj values from the previous outer loop iteration. Due to the right hand
sides of (2), (3), (5), and (6) (resp. (8), (9), (5), and (6)) being monotonically
non-decreasing functions of Ri and Rj , then on each outer loop iteration, the
response time value for each task can only increase or remain the same, it
cannot decrease. Hence, the outer loop fixed point iteration is guaranteed to
terminate, either due to convergence (i.e. all response times are unchanged
from the previous iteration) indicating a schedulable system, or because the
response time of at least one task has exceeded its deadline.

Observe that on each iteration of the outer loop, the response time of at
least one task must increase by at least 1, otherwise the response times have
converged and the test terminates. The maximum number of outer loop
iterations is therefore upper bounded by mnDmax. The inner loop evaluates
(2) (resp. (8)) once for each of at most mn tasks, with each such evaluation
requiring O(m|H|n) operations. It follows that the CpFPPS-m-R test and
the CpFPNS-m-R test have pseudo-polynomial complexity of
O(m3|H|n3Dmax).

Comparing the complexity of the tests for the MRSS task model to those
for partitioned fixed priority scheduling with no contention, we observe that:
(i) the complexity of the CpFPPS-m-fc and CpFPNS-m-fc tests is higher
by a factor of |H|, (ii) the complexity of the CpFPPS-m-D and
CpFPNS-m-D tests is higher by a factor of m|H|, and (iii) the complexity
of the CpFPPS-m-R and CpFPNS-m-R tests is higher by a factor of
m2|H|n. Given the high performance of the standard response time tests for
fixed priority scheduling (Davis et al, 2008), in practice, all of the tests for
the MRSS task model scale well to realistic system sizes.
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4 Priority Assignment

To maximize schedulability it is necessary to assign task priorities in an
optimal way (Davis et al, 2016). This section considers optimal priority
assignment for the schedulability tests introduced in Section 3.

4.1 pFPPS Priority Assignment

Leung and Whitehead (1982) showed that Deadline Monotonic Priority
Ordering (DMPO) is optimal for constrained-deadline task sets with
parameters (C,D, T ) under fixed priority preemptive scheduling. We observe
that this result also holds for constrained-deadline MRSS task sets compliant
with model described in Section 2 and analysed according to the
CpFPPS-m-fc test introduced in Section 3.3. This is because that
formulation can be re-arranged to match the basic response time analysis
(1), with the execution time of each task τk increased by

∑

r∈H(m− 1)Xr
k .

DMPO is also optimal for constrained-deadline MRSS task sets analysed
according to the CpFPPS-m-D test, introduced in Section 3.1. Proof is given
below using the standard apparatus for proving the optimality of such priority
orderings, as described in section IV of the review by Davis et al (2016). This
proof technique is applicable in cases where task priorities can be defined
directly from fixed task parameters, for example periods and deadlines. To
show that a priority assignment policy P (i.e. DMPO) is optimal, it suffices
to prove that any task set that is schedulable according to the schedulability
test considered using some priority assignment policy Q is also schedulable
using priority ordering P . Proof is obtained by transforming priority ordering
Q into priority ordering P , while ensuring that no tasks become unschedulable
during the transformation. The proof proceeds by induction.

Theorem 1 Deadline Monotonic Priority Ordering is optimal for
constrained-deadline MRSS task sets compliant with the model described in
Section 2 and analysed according to the CpFPPS-m-D test introduced in
Section 3.1.

Proof Base case: The task set is schedulable with priority order Q = Qk,
where k is the iteration count.

Inductive step: We select a pair of tasks that are at adjacent priorities i
and j where j = i+ 1 in priority ordering Qk, but out of Deadline Monotonic
relative priority order. Let these tasks be τA and τB , with τA having the higher
priority in Qk. Note that DA > DB as the tasks are out of Deadline Monotonic
relative order. Let i be the priority of task τA in Qk and j be the priority of
task τB . We need to prove that all of the tasks remain schedulable with priority
order Qk−1, which switches the priorities of these two tasks. There are four
groups of tasks to consider:

hp(i): tasks in this set have higher priorities than both τA and τB in both
Qk and Qk−1. Since the schedulability of these tasks is unaffected by the
relative priority ordering of τA and τB , they remain schedulable in Qk−1.
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τA: Let w = RB be the response time of task τB in priority order Qk. Since
task τB is schedulable in Qk, we have w = RB ≤ DB < DA ≤ TA, hence in
(2), the contribution from τA within the response time of τB is exactly one job
(i.e. CA), and there is also a contribution of CB from task τB itself. Considering
interference, the total resource sensitivity Sr

B(w, x) given by (3) depends only
on the value w and fixed parameters of the set of tasks with priorities higher
than or equal to task τB in Qk that is τA, τB , and hp(i). Further, the total
resource stress Er

B(w, y) due to tasks executing on some other core y depends
only on the value of w and the fixed parameters of the tasks executing on that
core. It follows that the interference term IrB(w) given by (5) and used in (2)
depends only on the value of w and the fixed parameters of the set of tasks
τA, τB , and hp(i), as well as the fixed parameters of the tasks executing on all
other cores. Now consider the response time of task τA under priority order
Qk+1. This response time is RA = w , as there is exactly the same contribution
from tasks τA, τB and all the higher priority tasks, and further the interference
due to resource contention is the same, in other words IrB(w) for Qk equates
to IrA(w) for Q

k+1, since the value of w is the same, and the set of tasks that
this term is dependent upon is unchanged (τA, τB , and hp(i) on core x, and all
of the tasks on the other cores). Since w < DA, task τA remains schedulable.

τB : as the priority of τB has increased its response time is no greater in
Qk+1 than in Qk. This is the case because the only change to the response
time calculation for τB is the removal of the contribution from task τA, and
also the removal of its contribution to the total resource sensitivity, and hence
from the interference term IrB(w). Thus τB remains schedulable.

lp(j) : tasks in this set have lower priorities than tasks τA and τB in bothQk

and Qk+1. Since the schedulability of these tasks is unaffected by the relative
priority ordering of tasks τA and τB , they remain schedulable.

All tasks therefore remain schedulable in Qk+1.
At most k = n(n − 1)/2 steps are required to transform priority ordering

Q into P without any loss of schedulability ⊓⊔

Next, we consider optimal priority assignment with respect to the
CpFPPS-m-R test introduced in Section 3.1. Davis and Burns (2011)
proved that it is both sufficient and necessary to show that a schedulability
test meets three simple conditions in order for Audsley’s Optimal Priority
Assignment (OPA) algorithm (Audsley, 2001) to be applicable.

Condition 1: The schedulability of a task according to the test must be
independent of the relative priority order of higher priority tasks.

Condition 2: The schedulability of a task according to the test must be
independent of the relative priority order of lower priority tasks.

Condition 3: The schedulability of a task according to the test must not get
worse if the task is moved up one place in the priority order (i.e. its priority
is swapped with that of the task immediately above it in the priority order).

Theorem 2 The CpFPPS-m-R test, given in Section 3.1, is not
compatible with Audsey’s Optimal Priority Assignment (OPA)
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algorithm (Audsley, 2001), and hence that algorithm cannot be used to obtain
an optimal priority assignment with respect to the test.

Proof To prove non-compatibility, it suffices to show that any one of the three
conditions set out by Davis and Burns (2011) and listed above is broken by
the test. In this case, we show that Condition 1 does not hold. According to
the CpFPPS-m-R test, the schedulability of a task τi on core x can depend
on the response time of task τj on a different core y via Er

j (Ri, y) given by
(6). In turn, the response time of task τj can depend on the response time
of some higher priority task τk on the same core x as task τi via Er

k(Rj , x)
also given by (6). Since the response time of task τk depends on its relative
priority order among those tasks with higher priority than task τi, Condition
1 does not hold and therefore the CpFPPS-m-R test is not compatible with
Audsley’s OPA algorithm ⊓⊔

Although the CpFPPS-m-R test is not compatible with Audsley’s OPA
algorithm, the form of the test, with its dependence on the response times of
other tasks, means that a back-tracking search, as proposed by Davis and
Burns (2010), could potentially be used to obtain a schedulable priority
assignment without having to explore all possible priority orderings. The
same applies to the CpFPNS-m-R test discussed in Section 4.2 below.

4.2 pFPNS Priority Assignment

George et al (1996) showed that Deadline Monotonic Priority Ordering
(DMPO) is not optimal for constrained-deadline task sets with parameters
(C,D, T ) under fixed priority non-preemptive scheduling, and proved that
Audsley’s algorithm (Audsley, 2001) is able to provide an optimal priority
ordering in this case. We observe that this result also holds for
constrained-deadline MRSS task sets compliant with the model described in
Section 2 and analysed according to the CpFPNS-m-fc test introduced in
Section 3.3. This is the case because the formulation can be re-arranged to
match the basic response time analysis (7), with the execution time of each
task τk increased by (m − 1)Xr

k . Audsley’s algorithm (Audsley, 2001) is also
optimal with respect to the CpFPNS-m-D test, as proved below.

Theorem 3 Audsley’s algorithm (Audsley, 2001) is optimal for constrained-
deadline MRSS task sets compliant with the model described in Section 2 and
analysed according to the CpFPNS-m-D test introduced in Section 3.2.

Proof It suffices to show that the schedulability test meets the three conditions,
given by Davis and Burns (2011) and set out in Section 4.1. With respect to
Condition 1 and Condition 2, inspection of (8) shows that the first two
terms are dependent on the set of lower and equal priority tasks lep(i) and
the set of higher priority tasks hp(i) respectively, but do not depend on the
relative priority order of the tasks within those sets. Considering the fourth
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term in (8), Iri (t) is given by (5). In the definition of Iri (t), the total resource
sensitivity Sr

i (t, x) is given by (9), which is dependent on the set of tasks lep(i)
and the set of tasks hp(i), but does not depend on the relative priority order
of the tasks within those sets. Finally, the total resource contention Er

i (t, y)
given by (4) has no dependence on the relative priority order of the tasks in
the sets hp(i) and lep(i) (or lp(i)), thus Condition 1 and Condition 2 hold.

With respect to Condition 3, moving task τi up one place in the priority
order is equivalent to moving another task τh that also executes on core x from
the set hp(i) to the set lep(i). Considering (8), such a change may increase the
first term by no more than Ch, but is guaranteed to also reduce the second
term by at least Ch. Further, with respect to the total resource sensitivity
Sr
i (t, x), given by (9), such a change may increase the first term by no more

than Xr
h, but is guaranteed to also reduce the second term by at least Xr

h.
There is no change to the total resource stress Er

i (t, y) given by (4). Hence the
schedulability of task τi cannot get worse if the task is moved up one place in
the priority order ⊓⊔

Finally, we note that the CpFPNS-m-R test is not compatible with
Audsley’s OPA algorithm, since it breaks Condition 1, as proven below.

Theorem 4 The CpFPNS-m-R test given in Section 3.1, is not
compatible with Audsey’s Optimal Priority Assignment (OPA)
algorithm (Audsley, 2001), and hence that algorithm cannot be used to obtain
an optimal priority assignment with respect to the test.

Proof Proof follows via exactly the same argument as given in the proof of
Theorem 2 in Section 4.1, by replacing the words “CpFPPS-m-R test” with
the words “CpFPNS-m-R test” ⊓⊔

5 Evaluation

In this section, we present an empirical evaluation of the schedulability tests
introduced in Section 3 for MRSS task sets executing on a multi-core system,
assuming a single hardware resource shared between all cores. (Note, multiple
shared hardware resources resulting in the same total interference would have
the same impact on schedulability, due to the summation terms in (2) and
(8)). Experiments were performed for 1, 2, 3, and 4 cores3, with the single
core case considered for comparison purposes.

5.1 Task Set Parameter Generation

The task set parameters used in our experiments were generated as follows:

3 The analysis scales to more than 4 cores; however, we limited consideration to this range,
since 4 cores represents a typical cluster size beyond which sharing hardware resources can
become a significant performance bottleneck.
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– Task utilizations (Ui = Ci/Ti) were generated using the Dirichlet-Rescale
(DRS) algorithm (Griffin et al, 2020b) (open source Python
software (Griffin et al, 2020a)) providing an unbiased distribution of
utilization values that sum to the total utilization U required.

– Task periods Ti were generated according to a log-uniform
distribution (Emberson et al, 2010) with a factor of 100 difference
between the minimum and maximum possible period. This represents a
spread of task periods from 10ms to 1 second, as found in many real-time
applications. (When considering non-preemptive scheduling, a factor of 10
difference was used, otherwise most task sets would not be schedulable).

– Task deadlines Di were set equal to their periods Ti.
– The stand-alone execution time of each task was given by: Ci = Ui · Ti.
– Task resource sensitivity values Xr

i were determined as follows. The DRS
algorithm was used to generate task resource sensitivity utilization values
V r
i , such that the total resource sensitivity utilization was SF (the

Sensitivity Factor, default SF = 0.25) times the total task utilization
(i.e.

∑

∀i V
r
i = U · SF ), and each individual task resource sensitivity

utilization was upper bounded by the corresponding task utilization
(i.e. V r

i ≤ Ui). Each task resource sensitivity value was then given by
Xr

i = V r
i · Ti.

– Task resource stress values Y r
i were set to a fixed proportion of the

corresponding resource sensitivity value Y r
i = Xr

i · RF , where RF is the
Stress Factor, default RF = 0.5.

The default value for the Sensitivity Factor (SF = 0.25) was set to
approximately twice the average value (13.6%) obtained for the tasks in the
proof of concept industry case study described in Section 6. This is justified
since the case study considers a single shared hardware resource, whereas in
practice contention would likely occur via multiple shared hardware
resources, resulting in higher levels of interference. The default value for the
Stress Factor (RF = 0.5) was set within the range found in the case study
(0.23 to 1.58). Further, specific experiments were also used to evaluate
performance over a wide range of values for these parameters.

5.2 Experiments

The experiments considered systems with 1, 2, 3, and 4 cores, with a different
task set (generated according to the same parameters) assigned to each core.
The per core task set utilization U (shown on x-axis of the graphs) was varied
from 0.05 to 0.95. For each utilization value examined, 1000 task sets were
generated for each core considered, (100 in the case of experiments using the
weighted schedulability measure (Bastoni et al, 2010)). The default cardinality
of the task sets on each core was n = 10.

In the experiments, a system was deemed schedulable if and only if the
different task sets assigned to each of its m cores were schedulable, i.e. if all
m · n tasks in the system were schedulable. With a single core, there is no
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cross-core resource contention and hence no interference, and so task set
schedulability can be determined via standard response time analysis. With
multiple cores, contention and the resulting interference was modelled as
described in Section 2. The experiments investigated the performance of the
following schedulability tests for partitioned fixed priority preemptive and
non-preemptive scheduling:

– No-CpFPPS-m: The exact analysis of pFPPS (Joseph and Pandya, 1986;
Audsley et al, 1993) with no contention, recapped in Section 3.1, and given
by (1).

– CpFPPS-m-R: The response time based analysis of pFPPS with
contention, introduced in Section 3.1, and given by (2), (3), (5), and (6).

– CpFPPS-m-D: The deadline based analysis of pFPPS with contention,
introduced in Section 3.1, and given by (2), (3), (4), and (5).

– CpFPPS-m-fc: The fully composable analysis of pFPPS with contention,
introduced in Section 3.3, and given by (2), (3), and (10).

– No-CpFPNS-m: The sufficient analysis of pFPNS (Davis et al, 2007)
with no contention, recapped in Section 3.2, and given by (7)).

– CpFPNS-m-R: The response time based analysis of pFPNS with
contention, introduced in Section 3.2, and given by (8), (9), (6), and (5).

– CpFPNS-m-D: The deadline based analysis of pFPNS with contention,
introduced in Section 3.2, and given by (8), (9), (4), and (5).

– CpFPNS-m-fc: The fully composable analysis of pFPNS with contention,
introduced in Section 3.3, and given by (8), (9), and (10).

For consistency of comparison, Deadline Monotonic Priority Ordering
(DMPO) (Leung and Whitehead, 1982) was used to assign priorities to tasks
on the individual cores. As shown in Section 4, DMPO is optimal with
respect to the No-CpFPPS-m, CpFPPS-m-fc, and CpFPPS-m-D tests,
but only a heuristic policy with respect to the CpFPPS-m-R test and the
tests for fixed priority non-preemptive scheduling.

Note, the results for the fully composable analyses (tests CpFPPS-m-

fc and CpFPNS-m-fc) equate to the performance obtained via the use of
resource sensitivity information only, as outlined in prior works (Radojkovic
et al, 2012; Fernández et al, 2012; Nowotsch and Paulitsch, 2012; Iorga et al,
2020).

5.3 Results

In the first experiment, we compared the performance of the various
schedulability tests, assuming 1, 2, 3, and 4 cores, using the default
parameters given in Section 5.1. The Success Ratio, i.e. the percentage of
systems generated that were deemed schedulable, is shown for each of the
pFPPS schedulability tests in Figure 1, and for the pFPNS schedulability
tests in Figure 2. The dominance relationships between the tests, discussed
in Section 3.4, are evidenced by the lines on the graphs. Note, schedulability
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depends on the number of cores even when contention is not taken into
account. This is because for an m-core system the task sets on all m cores
have to be schedulable for the system to be deemed schedulable.

Observe, that the performance advantage that the context-independent
tests have over their context-dependent counterparts is more pronounced with
pFPPS than with pFPNS. The reason for this is that the increased response
times due to the blocking factor with pFPNS mean that the critical task(s)
(those that become unschedulable as utilization is increased) are much more
likely to be medium or high priority tasks than is the case with pFPPS. For
higher priority tasks, the balance between total resource sensitivity Sr

i (Ri, x)
and total resource stress Er

i (Ri, y) tends towards the latter being larger, since
Er

i (Ri, y) includes a contribution from all of the tasks on core y, while Sr
i (Ri, x)

only includes a contribution from a single lower priority (blocking) task in the
case of pFPNS, and no lower priority tasks at all in the case of pFPPS. When
Er

i (Ri, y) exceeds S
r
i (Ri, x) then the performance of the context-independent

tests is reduced to that of their context-dependent counterparts.
In the second set of experiments, we used the weighted schedulability

measure (Bastoni et al, 2010) to assess schedulability test performance, while
varying an additional parameter. In these experiments, the other parameters
were set to their default values given in Section 5.1. In all of the weighted
schedulability experiments the relative performance of the different tests
follows the pattern illustrated in the first experiment, as dictated by the
dominance relationships.

The results of varying the Sensitivity Factor SF from 0.05 to 0.5 in steps of
0.05, are shown in Figure 3 for pFPPS, and Figure 4 for pFPNS. Recall that
the Sensitivity Factor determines the ratio of the total resource sensitivity
utilization to the total task utilization. As expected, increasing the Sensitivity
Factor and hence the amount of interference that tasks can be subject to due
to cross-core contention for resources results in a rapid decline in the weighted
schedulability measure for all of the tests that take into account contention.

The results of varying the Stress Factor RF from 0 to 1.2 in steps of 0.1 are
shown in Figure 5 for pFPPS, and Figure 6 for pFPNS. Recall that the Stress
Factor determines the ratio of the resource stress for each task to its resource
sensitivity. Here, it is interesting to note that interference effectively saturates
once the Stress Factor reaches 1.0. By then, the total resource stress Er

i (t, y),
given by (4) or (6), emanating from each additional core y in a time interval t
tends to exceed the total resource sensitivity Sr

i (t, x), given by (3), for core x in
that same time interval. Hence, for pFPPS theCpFPPS-m-R andCpFPPS-

m-D tests reduce to exactly the same performance as the CpFPPS-m-fc test.
Similarly, for pFPNS the CpFPNS-m-R and CpFPNS-m-D tests reduce to
exactly the same performance as the CpFPNS-m-fc test. This is because the
min(Er

i (t, y), S
r
i (t, x)) term in (5) ceases to reduce the value in the summation

below Sr
i (t, x). At the other extreme a Stress Factor RF of zero means that

Er
i (t, y) = 0 whether computed via (4) or (6).
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Fig. 1 pFPPS: Success Ratio: Varying task set utilization
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Fig. 3 pFPPS:Weighted Schedulability: Varying Sensitivity Factor (SF)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

W
e

ig
h

te
d

 S
c

h
e

d
u

la
b

il
it

y
 

Sensitivity Factor

No-CpFPNS-1
No-CpFPNS-2
No-CpFPNS-3
No-CpFPNS-4
CpFPNS-2-R
CpFPNS-2-D
CpFPNS-2-fc
CpFPNS-3-R
CpFPNS-3-D
CpFPNS-3-fc
CpFPNS-4-R
CpFPNS-4-D
CpFPNS-4-fc

Fig. 4 pFPNS: Weighted Schedulability: Varying Sensitivity Factor (SF)



Schedulability Analysis for Multi-core Systems 27

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

W
e

ig
h

te
d

 S
c

h
e

d
u

la
b

il
it

y
 

Stress Factor

No-CpFPPS-1
No-CpFPPS-2
No-CpFPPS-3
No-CpFPPS-4
CpFPPS-2-R
CpFPPS-2-D
CpFPPS-2-fc
CpFPPS-3-R
CpFPPS-3-D
CpFPPS-3-fc
CpFPPS-4-R
CpFPPS-4-D
CpFPPS-4-fc

Fig. 5 pFPPS: Weighted Schedulability: Varying Stress Factor (RF)
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Fig. 6 pFPNS: Weighted Schedulability: Varying Stress Factor (RF)
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Fig. 7 pFPPS: Weighted Schedulability: Varying number of tasks in each task set
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Fig. 8 pFPNS: Weighted Schedulability: Varying number of tasks in each task set
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Fig. 9 pFPPS: Weighted Schedulability: Varying range of task periods
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Fig. 10 pFPNS: Weighted Schedulability: Varying range of task periods
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Fig. 11 pFPPS: Weighted Schedulability: Varying ratio of deadlines to periods
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Fig. 12 pFPNS: Weighted Schedulability: Varying ratio of deadlines to periods
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For pFPPS, the CpFPPS-m-R and CpFPPS-m-D tests therefore have the
same performance as the no contention No-CpFPPS-m test, and similarly
for pFPNS the CpFPNS-m-R and CpFPNS-m-D tests have the same
performance as the No-CpFPNS-m test. Between the two extremes, the
smaller values of Er

i (t, y) given by (6) as opposed to (4) mean that the
CpFPPS-m-R test outperforms the CpFPPS-m-D test, and similarly the
CpFPNS-m-R test outperforms the CpFPNS-m-D test.

The results of varying the cardinality of task sets running on each core
from 2 to 32 in steps of 2 are shown in Figure 7 for pFPPS, and Figure 8 for
pFPNS. In the preemptive case, task set cardinality typically has only a limited
effect on schedulability test performance; however, in the non-preemptive case
(Figure 8), larger task sets equate to smaller execution times for each task and
hence smaller blocking factors. Thus schedulability improves with increasing
cardinality for all of the pFPNS schedulability tests. In the preemptive case
(Figure 7) the gap between the CpFPPS-m-R and CpFPPS-m-D tests
and the CpFPPS-m-fc test increases with larger numbers of tasks. This is
due to changes in the shape of the total resource stress function Er

i (t, y),
which typically consists of many small steps when there are a large number of
tasks, and fewer larger steps when there are a smaller number of tasks. As the
function Er

i (t, y) is above the same gradient line in both cases, this difference
acts to improve schedulability for the CpFPPS-m-R and CpFPPS-m-D

tests at higher task set cardinality. The same effect is also evident in Figure 7
for the pFPNS schedulability tests.

The effects of varying the range of task periods (ratio of the max/min
possible task period) from 100.5 ≈ 3 to 104 = 10, 000 are shown in Figure 9
for pFPPS, and Figure 10 for pFPNS. As expected, increasing the range of
task periods results in a gradual improvement in pFPPS schedulability test
performance, a well-known effect with fixed priority preemptive scheduling.
In contrast, with non-preemptive scheduling, once the range of task periods
exceeds 100 (i.e. r = 2), hardly any task sets are schedulable. This happens
because tasks with short periods (and deadlines) cannot tolerate being blocked
by tasks with long periods and commensurate large execution times.

Finally, the results of varying task deadlines from 25% to 100% of the
task’s period are shown in Figure 11 for pFPPS, and Figure 12 for pFPNS.
As expected, schedulability improves for all approaches as task deadlines are
increased. Further, the performance advantage of the CpFPPS-m-R test
over the CpFPPS-m-D test increases with increasing deadlines. This occurs
because larger deadlines provide a more pessimistic approximation of
response times for schedulable tasks, impacting the total resource stress as
assumed by the CpFPPS-m-D test.

6 Case Study

In this section, we present a preliminary case study that investigates the
resource stress and resource sensitivity of tasks from a real-time industrial
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application. The purpose of this case study is not to try to determine
definitive values for task WCETs, resource sensitivities and resource stresses,
in itself a challenging research problem that is beyond the scope of this work.
Rather our aim is to obtain proof-of-concept data to act as an exemplar
underpinning the MRSS task model and its accompanying schedulability
analysis.

The case study focuses on a set of 24 tasks from a Rolls-Royce aero
engine control system or FADEC (Full Authority Digital Engine Controller).
The industrial software was developed in SPARK-Ada and has been verified
according to DO-178C standards (level A). The software was provided in an
anonymized object code format, derived from that used in the case studies
reported by Law and Bate (2016) and Lesage et al (2018). The tasks have
object code libraries ranging in size from 300 KBytes to 40 MBytes,
including compiled in data structures, but not including any framework or
Linux additions. The software was originally designed to run on a
Rolls-Royce specific packaged processor that integrates a single core,
memory, I/O, and tracing interfaces; however, for research purposes, it was
ported to run on a Raspberry Pi 3B+ (Lesage et al, 2018), along with a
framework that facilitates taking timing measurements (Bate et al, 2020).

The Raspberry Pi 3B+ uses a Broadcom BCM2837 System-on-Chip with
a quad-core ARM Cortex-A53 processor. It has a 16 KByte L1 data cache,
16 KByte L1 instruction cache, 512 KByte L2 shared cache, and 1 GByte of
DDR2-DRAM. The L2 cache was, as is the default, configured for use as
local memory for the GPU4, and so was not available to the four CPUs. The
experimental hardware set-up involved a cluster of Raspberry Pi 3B+s,
configured to run at a clock frequency of 600MHz, so as to eliminate any
possible disruption due to thermal throttling. The cluster was powered by
specialized power rails to ensure a stable supply voltage and frequency. The
Pi 3B+s used the Raspberry Pi OS Lite (updated on 01/25/2021) and the
Linux Kernel 5.10.11-v7+. The isolcpus Linux option was used to minimize
activity on the two cores used for the experiments. Timing measurements
were obtained using a nanosecond clock, and cross-referenced against a
600MHz cycle counter. Prior to each run of a task, the L1 data and L1
instruction caches were flushed. Given that the L2 cache was not accessible
to the CPUs, the case study focussed on the key shared hardware resource,
main memory (DDR2-DRAM).

6.1 Case Study Experiments

For each of the 24 tasks, we considered 10,000 randomly selected traces of
execution. When a task was called for a specific trace, each of its input
parameters was set to a random value based on the type (float, integer, or
boolean) and the range of values permitted. The inputs were thus

4 The case study software does not use the GPU.
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randomized, but nevertheless reproducible via the trace number, which
controlled the random seed used. In the following, for brevity we use trace to
mean a task with a specific set of input parameters corresponding to the
trace number.

In Experiment A.1, for each trace we obtained the stand-alone execution
time, the resource sensitivity, and the resource stress as measured against
each of the three contenders described below. These values were obtained by:
(i) running the trace stand alone, (ii) running the trace in parallel with the
contender, (iii) running the contender stand alone. In (i) and (ii) the execution
time of the trace was recorded. In addition, in (ii) the number of times L that
the contender looped while the trace was running was recorded, along with
the execution time of the contender for that number of loops. Finally, in (iii)
the stand-alone execution time of the contender was recorded for L loops. The
loop count L thus enabled comparable measurements to be made irrespective
of the trace execution times. The stand-alone execution time of the trace came
directly from (i), while the resource sensitivity (per contender) for the trace was
given by the difference between the trace execution times in (i) and (ii), and
the resource stress for the trace by the difference in the contender’s execution
times in (ii) and (iii).

We repeated the runs for each trace 9 times to ensure consistency. Post
processing of the raw timing data was used to eliminate anomalies caused by
the kernel scheduler tick and the clock synchronization interrupt, neither of
which could be disabled. The cycle counter was configured to pause when the
scheduler was running, and so we were able to detect and eliminate
anomalies due to the scheduler by comparing nanosecond clock and cycle
counter readings. Measurement noise caused by the clock synchronization
interrupt was more difficult to detect; however, we were able to filter out
these anomalies by taking the median value for the 9 repeated runs for each
trace, and by using the 95th percentile value (over the 10,000 traces) as the
reference “maximum” increase in execution time for each task and contender.

Three contenders were used that cause contention by repeatedly accessing
main memory. The contenders both stress the resource and are sensitive to
contention. The three contenders have a similar structure, they differ only
in the instruction patterns used: Read-Read (RR), Read-Write (RW), and
Write-Write (WW). The read and write operations both compile down to
a single instruction. Each contender loop body included 100 memory access
instructions, ensuring that the loop overhead, i.e. checking when the contender
should stop, was small in comparison to the loop body. Hence each contender
achieved close to the maximum possible load in terms of instructions that
access memory and cause contention. The addresses used were such that the
accesses had to go to memory, rather than being satisfied by the L1 cache.
A handshaking protocol was used between task and contender to ensure that
the contender started before and finished after the task. Further, dummy loops
with no memory accesses were added before and after each task, to ensure that
the experimental framework did not cause extra interference on the contender
when it was running but the task was not.
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Fig. 13 Estimated resource stress and resource sensitivity values for 24 tasks from a Rolls-
Royce aero-engine control systems normalized to the task’s estimated stand-alone WCET
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Fig. 14 Increase in execution time of a (victim) task co-running with its paired task.
Maximum observed value and computed bound derived from resource sensitivity and
resource stress values, normalized to the stand-alone execution time of the victim task.

Figure 13 shows the results of Experiment A.1, for 24 tasks from the
Rolls-Royce aero-engine application, giving their maximum resource
sensitivity and maximum resource stress normalized to the task’s maximum
stand-alone execution time. Note, the tasks appear in the figure ordered by
their maximum stand-alone execution time, largest first. The RW contender
was responsible for the maximum increase in task execution time (resource
sensitivity) in all 24 cases. However, in terms of which contender suffered the
maximum increase in execution time due to the task (i.e. resource stress),
this was the RR contender in 2 cases, the RW contender in 3 cases, and the
WW contender in 19 cases.

Running a contender in parallel with a task increased the task’s execution
time by between 3.8% and 15.0% compared to stand-alone execution, thus
characterizing the tasks’ resource sensitivity. Further, the contender’s
execution time increased by between 1.5% and 19.3% of the task’s
stand-alone execution time, thus characterizing the tasks’ resource stress.
The ratio of resource stress to resource sensitivity for each task varied from
0.23 to 1.58. Some negative correlation can be observed between the
stand-alone execution time and the percentage resource sensitivity and
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resource stress, with longer running tasks often having lower percentage
values for these metrics. This is to be expected, since longer tasks typically
spend more of their execution time in loops, running code that is cached, and
therefore causes less resource contention.

As well as running tasks (traces) in parallel with the synthetic contenders,
we also conducted Experiment A.2, running pairs of tasks in parallel on
different cores. For each pair of tasks, we ran 10,000 pairs of their traces in
parallel, with the inputs randomly selected as described previously. Figure 14
shows the maximum increase in execution time for each (victim) task due
to cross-core contention from the task it was paired with. (The tasks were
sorted by stand-alone execution time and then paired 1-2, 3-4, 5-6 and so on).
The values shown are the maximum over the 10,000 pairs of traces, and are
normalized to the stand-alone execution time of the victim task. Also shown is
the bound computed from the minimum of (i) the resource sensitivity for the
victim task and (ii) the resource stress for the task it was paired with, both
obtained via Experiment A.1 using the synthetic contenders. The maximum
measured increase in execution time is no greater than the computed bound.
On average it is approx. 69% of the bound, and varies between 26% and 99%.

This preliminary case study underpins the MRSS task model, illustrating
the relevance of using both resource sensitivity and resource stress to
characterize cross-core contention, and thus bound interference.

7 Task Allocation

Task allocation for partitioned scheduling on a multi-core processor is an
NP-hard problem that corresponds to bin-packing (Garey and Johnson,
1979). Practical approaches to task allocation can therefore be divided into
two main categories: (i) heuristic methods (Oh and Son, 1995; López et al,
2004; Fisher et al, 2006), and (ii) search-based techniques such as Simulated
Annealing (Kirkpatrick et al, 1983; Tindell et al, 1992; Natale and Stankovic,
1995), Genetic Algorithms (Monnier et al, 1998; Oh and Wu, 2004), and
Particle Swarm Optimization (Kennedy and Eberhart, 1995; Salman et al,
2002).

The heuristic methods operate according to a greedy algorithm. Each
heuristic consists of two policies. The first policy determines the order of
cores for trial allocation of a selected task to a core. For example, First-Fit
selects cores in index order, Best-Fit selects cores in order of their remaining
capacity5, smallest first, and Worst-Fit selects cores in order of their
remaining capacity, largest first. The second policy dictates how the tasks
are ordered for allocation to cores, for example by Decreasing Utilization,
Decreasing Density etc. The greedy algorithm iterates through the tasks once
in the predetermined order (e.g. Decreasing Utilization). For each task, a
trial allocation is checked for each core in turn in the order prescribed

5 Capacity is usually taken to mean utilization, but other measures are also possible.
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(e.g. First-Fit). If the trial allocation forms a schedulable system along with
the previously allocated tasks, then the allocation for that task is confirmed
and the process moves on to the next task, otherwise the trial allocation of
the task moves on to the next core. If all cores have been tried for a given
task and none of the trial allocations succeeded, then the overall allocation
fails; there is no back-tracking. Note, there is an assumption implicit in the
way in which the greedy algorithm directs the allocation. This assumption is
that the schedulability test used to analyse the tasks allocated to one core
does not depend on the sets of tasks allocated to other cores.

The context-independent schedulability tests (CpFPPS-m-fc and
CpFPNS-m-fc derived in Section 3.3) for the MRSS task model do not
depend on the sets of tasks on other cores. These tests reduce to the
standard response time analysis for fixed priority preemptive and
non-preemptive scheduling with the task execution times increased to take
account of the maximum interference due to contention (i.e. Ck is increased
by

∑

r∈H(m − 1)Xr
k). Hence, when these tests are used, prior heuristic

approaches to task allocation developed for partitioned fixed priority
scheduling are directly applicable.

The context-dependent schedulability tests (i.e. the CpFPPS-m-R and
CpFPPS-m-D tests derived in Section 3.1 for pFPPS, and the CpFPNS-

m-R and CpFPNS-m-D tests derived in Section 3.2 for pFPNS) depend on
the sets of tasks on the other cores. This challenges the use of simple heuristic
approaches to task allocation, since the performance of the greedy algorithm
breaks down when the assumption of no dependence is broken.

For example, consider a four core system where, according to the
schedulability test used, allocating tasks to the second and subsequent cores
impinges on the schedulability of the tasks previously allocated to the first
core. In this case, the First-Fit and Best-Fit heuristics will allocate tasks to
the first core, making use of nearly all of its capacity, then, as trial
allocations proceed to the second core, the tasks on the first core will likely
become unschedulable. This happens due to account being taken in the
schedulability test of the additional cross-core contention and interference
emanating from the second core, and hence the overall allocation will fail.
The Worst-Fit policy may perform somewhat better in this respect; however,
the allocation will still be misdirected, as an unchanging set of tasks on one
core can become unschedulable due to the allocation of tasks to another core.
In general, a partial allocation of tasks to one core can be obtained that is
not in itself viable under any possible allocation of the remaining tasks to the
other cores. Note, prior research has shown that Worst-Fit performs poorly
for the task allocation problem, with López et al (2004) showing that
Worst-Fit achieves the lowest overall utilization bound for any reasonable6

greedy allocation algorithm.

6 A reasonable allocation algorithm is one that only fails once there is no core on which
a task can be successful allocated.
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Further, the allocation difficulties caused by dependencies on the set of
tasks on other cores cannot be solved by assuming that all tasks that remain
unallocated will be allocated to some other core where they can cause
contention and interference, since this would reduce performance to that
obtained with the context-independent schedulability tests. For these
reasons, a greedy approach to allocation is not viable with the
context-dependent schedulability tests. More general search-based
optimization techniques such as Simulated Annealing, Genetic Algorithms,
Particle Swarm Optimization are required instead7.

7.1 Guidelines for Allocation

Notwithstanding the difficulties in applying existing heuristics, it is possible
to deduce some guidelines or rules-of-thumb for task allocation via thought
experiments. Assume that the task set to be allocated is made up of two
subsets of tasks V and W . Subset V comprises tasks that access shared
hardware resources and hence potentially suffer cross-core contention and
interference, while subset W comprises tasks that do not access shared
hardware resources. Recall that the interference term Iri (Ri) in the
context-dependent schedulability tests depends on: (i) the total resource
sensitivity for resource r, denoted by Sr

i (Ri, x), for the tasks executing on
the same core x as the task τi under analysis, within its response time Ri;
and (ii) the total resource stresses on resource r, denoted by Er

i (Ri, y), that
can be produced by tasks executing on each of the other cores y, within a
time interval of length Ri. The interference term is given by (5), repeated
below for convenience.

Iri (Ri) =
∑

∀y 6=x

min(Er
i (Ri, y), S

r
i (Ri, x)) (12)

The min(. . .) function in (12) implies that the interference considered due to
contention can be reduced by allocations that unbalance the values of Er

i (Ri, y)
and Sr

i (Ri, x). For example, allocating only tasks from subsetW to some core y
reduces Er

i (Ri, y) to zero, and hence the contribution to Iri (Ri) from that core
to zero. Further, allocating as many tasks as possible from subset V with high
resource sensitivity and high resource stress to the same core x will increase the
total resource sensitivity Sr

i (Ri, x) for that core, and reduce the total resource
stress for other cores, decreasing the value returned by the min(. . .) function.
A potentially useful guideline for task allocation is therefore to aim for an
allocation where tasks from the subset V are packed into a small number
of cores. In particular, it is useful to place those tasks with high resource
sensitivity and high resource stress (as compared to their execution times)
together on the same core. Taken to extremes, allocating all of the tasks in

7 Alternative techniques such as Mixed-Integer Linear Programming (MILP) may also be
viable, but are not explored further here.
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subset V to one core, and all of the tasks in subset W to other cores would
eliminate all cross-core contention and interference.

We illustrate the possibilities and difficulties of task allocation using a
practical example based on data for 6 tasks (listed in Table 1) from the
industrial case study described in Section 6. Note all times are given in
nanoseconds.

Table 1 Case study task parameters in nanoseconds.

Task ID Stand-alone Sensitivity Stress
1 224844 8646 11250
2 211406 12760 3308
4 127709 7917 10000
5 126927 9114 12787
6 122448 11094 3281
7 116511 8489 12475

For the purposes of this example, we assume a system with two cores,
and that all tasks are released at the same time, and must complete within a
deadline of 0.5ms (i.e. 500000ns). The periods of all tasks are assumed to be
much longer than this deadline, and thus the total resource sensitivity
Sr
i (Ri, x) and total resource stress Er

i (Ri, y) over the longest task response
times can be found by simply summing the resource sensitivity and resource
stress values for the tasks allocated to each of the cores. Table 2 gives these
values, along with the sum of the stand-alone execution times for the tasks
allocated to each core, for 7 possible allocations labelled A to G. These
allocations are the only plausible ones, i.e the only ones that could meet the
deadlines even if cross-core contention and interference were ignored.

Table 2 Basic parameters for various allocations.

Alloc. Core 1 Core 2

Tasks
Stand
-alone

Sensitivity Stress Tasks
Stand
-alone

Sensitivity Stress

A 1,2 436250 21406 14558 4,5,6,7 493595 36614 38543
B 1,4,5 479480 25677 34037 2,6,7 450365 32343 19064
C 1,4,6 475001 27657 24531 2,5,7 454844 30363 28570
D 1,4,7 469064 25052 33725 2,5,6 460781 32968 19376
E 1,5,6 474219 28854 27318 2,4,7 455626 29166 25783
F 1,5,7 468282 26249 36512 2,4,6 461563 31771 16589
G 1,6,7 463803 28229 27006 2,4,5 466042 29791 26095

Table 3 gives the results for the 7 different allocations, including the total
interference that the tasks on each core suffer as a result of cross-core
contention, the total execution time of the tasks allocated to each core
including interference (i.e. the response time of the lowest priority task), and
the sum of the interference on both cores. The results in Table 3 assume a
context-dependent analysis, using both resource sensitivity and resource
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Table 3 Computed results for various allocations (context-dependent analysis).

Alloc. Core 1 Core 2 Both Cores
Tasks Interference Total ET Tasks Interference Total ET Interference

A 1,2 21406 457656 4,5,6,7 14558 508153 35964
B 1,4,5 19064 498544 2,6,7 32343 482708 51407
C 1,4,6 27657 502658 2,5,7 24531 479375 52188
D 1,4,7 19376 488440 2,5,6 32968 493749 52344
E 1,5,6 25783 500002 2,4,7 27318 482944 53101
F 1,5,7 16589 484871 2,4,6 31771 493334 48360
G 1,6,7 26095 489898 2,4,5 27006 493048 53101

stress values. Allocation A is not schedulable despite minimizing the total
interference over both cores by keeping the resource sensitivity and resource
stress of the tasks on Core 1 low (see Table 2). This is because once
interference is taken into account the load on Core 2 becomes too large
(508153ns). Similarly, allocations C and E are also unschedulable, due to too
high a load on Core 1 once interference is taken into account. The most
promising allocations are F and G. Allocation F provides the lowest sum of
interference over both cores (48360ns) of all the schedulable allocations, by
minimizing the resource stress due to the tasks on Core 2 (see Table 2).
Allocation G has a substantially higher sum of interference over both cores
(53101ns), but balances the task load across the two cores better,
maximizing the headroom for any overruns, and is therefore arguably the
most robust task allocation. This simple example illustrates the difficulties of
the task allocation problem and the requirement, typical of real systems, to
consider multiple criteria such as both schedulability and robustness (Davis
and Burns, 2007).

Table 4 provides directly comparable results to Table 3, but this time using
context-independent analysis. Here, only resource sensitivity values are used,
and contention from the other core is not bounded by the resource stress
values. This means that the total interference for both cores is constant at
58020ns, almost 10000ns higher than allocation F in Table 3. Again, allocation
G is the most robust, allowing the greatest headroom for overruns; however,
this headroom is reduced by more than 2750ns, compared with the results of
context-dependent analysis, shown in Table 3.

Table 4 Computed results for various allocations (context-independent analysis).

Alloc. Core 1 Core 2 Both cores
Tasks Interference Total ET Tasks Interference Total ET Interference

A 1,2 21406 457656 4,5,6,7 36614 530209 58020
B 1,4,5 25677 505157 2,6,7 32343 482708 58020
C 1,4,6 27657 502658 2,5,7 30363 485207 58020
D 1,4,7 25052 494116 2,5,6 32968 493749 58020
E 1,5,6 28854 503073 2,4,7 29166 484792 58020
F 1,5,7 26249 494531 2,4,6 31771 493334 58020
G 1,6,7 28229 492032 2,4,5 29791 495833 58020
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The discussion and examples given above highlight the difficulties involved
in task allocation for partitioned multi-core systems under the MRSS task
model. In particular, when the schedulability of a task allocated to one core
is dependent on the tasks allocated to other cores (i.e. context-dependent
schedulability tests are used) then the use of a greedy algorithm and commonly
applied heuristics are no longer viable. In this case, it is clear that highly
effective solutions to the task allocation problem will only be possible via
search-based techniques, such as Simulated Annealing or Genetic Algorithms.

7.2 Task Allocation using Simulated Annealing

Given the lack of effective heuristics for task allocation for partitioned multi-
core systems when cross-core contention and interference is taken into account,
we developed an implementation of Simulated Annealing aimed at solving the
problem. Simulated Annealing (Kirkpatrick et al, 1983) is a general-purpose
probabilistic search-based technique that can be used to solve optimization
problems. Specifically, Simulated Annealing is a meta-heuristic search, which
seeks to approximate global optimization within a large search space for a given
optimization problem. It is typically used when the search space is discrete;
as is the case of task allocation considered here.

Pseudo code for the Simulated Annealing algorithm is shown in Listing
1. Simulated Annealing relies on two key functions, a Cost Function that
determines the quality of each possible solution, and a Modify Function that
makes a randomly chosen, but valid modification to the current solution, in
order to create a new solution that is close to it.

For Simulated Annealing to be effective, it is important that the
Cost Function provides a smooth and continuous metric, indicative of
solution quality, that can drive the search towards an optimal solution. In
the context of task allocation, we use the processor speed scaling factor F
(Punnekkat et al, 1997). For a given allocation of tasks to cores, the
Cost Function determines the smallest value of F such that the execution
times, resource sensitivities, and resource stresses of all tasks can be scaled
by a factor of 1/F (alternatively, the periods and deadlines can be scaled by
a factor of F ) and the system just remains schedulable. This metric
optimizes both schedulability and robustness, since F takes its smallest value
for the task allocation that can tolerate the processor running at the lowest
possible speed.

The processor speed scaling factor provides a continuous metric, that is
at or below 1.0 for schedulable task allocations, and above that value for
unschedulable allocations. The value of F is calculated via a binary search,
in conjunction with an appropriate schedulability test. As a starting point,
the binary search requires minimum and maximum bounds. These can be
determined as follows: (i) the minimum bound is such that the scaled deadline
for one of the tasks is reduced to its execution time, (ii) the maximum bound is
such that the execution times of all tasks (inflated due to resource sensitivities)
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fit within the smallest scaled deadline of any task. Any value of F smaller
than the minimum bound is guaranteed to result in an unschedulable system,
whereas a value of F equal to the maximum bound is guaranteed to result in
a schedulable system, given that the deadlines are constrained (Di ≤ Ti).

It is essential that the Modify Function is able to span the search space,
otherwise the algorithm may be unable to ever find the optimal solution. In
the case of the task allocation problem, it must be possible, via repeated
application of the Modify Function to move from any valid task allocation to
any other one. Our implementation of the Modify Function makes one of two
possible changes to an existing allocation: (i) it selects a task at random and
changes its allocated core to a randomly selected different core, (ii) it selects
two different tasks at random that are allocated to different cores, and swaps
their allocation around8. The single task modification is randomly selected
20% of the time, with swapping selected the remaining 80% of the time.

The Simulated Annealing algorithm (see Listing 1) operates via two
nested loops. The outer loop (lines 8-24) represents a series of reducing
temperatures, used in the choices that the algorithm makes. In the
experiments, the initial temperature was set to 1.0, and the final
min temperature to 0.01. Further, the cooling factor (line 23) was set to
0.95499, which results in 100 iterations of the outer loop. The inner loop
(lines 9-22) iterates 50 times at each temperature. Thus the algorithm
explores 5000 allocations in all, starting from an initial allocation of tasks to
cores. In the experiments, the initial allocation was taken directly from the
system generation, with an equal number of tasks, with equal total
utilization, assigned to each core.

Simulated Annealing explores the search space by making modifications
to an existing allocation via the Modify Function (line 10), and then
determining the quality of the new allocation formed via the Cost Function

(line 11). If the new allocation is an improvement on the best allocation seen
so far then it is saved (lines 12-15). The signature behavior of the algorithm
is embodied in lines 16-20. If the new allocation is an improvement on the
current one (line 16), then it becomes the current allocation, which the
algorithm will continue searching from (lines 18-19). If the new allocation
does not represent an improvement (line 17), then there is still a chance that
it will be accepted, and hence built upon. The probability of acceptance
depends on how much worse the allocation has become, and the current
temperature. Initially, when the temperature is high, new allocations can be
accepted that are substantially worst than the current allocation. This helps
to avoid the search becoming stuck in a local optimum. As the temperature
decreases, only smaller negative steps are likely to be accepted, until at very
low temperatures, the algorithm effectively behaves like a hill-climbing
search, only accepting improved allocations.

8 In the unlikely event that all tasks are allocated to the same core, then a null swap is
performed that does not modify the allocation.
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Listing 1 Simulated Annealing.

1 // input initial_allocation

2
3 current_allocation = initial_allocation;

4 best_allocation = initial_allocation;

5 last_cost = Cost_Function(current_allocation );

6 best_cost = last_cost;

7
8 do{

9 for(i = 0; i < max_iterations; i++){

10 new_allocation = Modify_Function(current_allocation );

11 new_cost = Cost_Function(new_allocation );

12 if (new_cost < best_cost ){

13 best_cost = new_cost;

14 best_allocation = new_allocation;

15 }

16 if (( new_cost < last_cost) ||

17 (Rand() < exp(( last_cost - new_cost) / temperature ))){

18 last_cost = new_cost;

19 current_allocation = new_allocation;

20 }

21 // otherwise discard new_allocation

22 }

23 temperature *= cooling_factor;

24 } while(temperature) > min_temperature)

25
26 // output best_allocation

7.3 Simulated Annealing Experiments

We explored the improvements in task allocation that can be achieved using
Simulated Annealing by revisiting the first experiment discussed in Section
5.3 (illustrated by Figures 1 and 2). Recall that in that experiment we
compared the performance of the various schedulability tests for partitioned
fixed priority preemptive and non-preemptive scheduling taking into account
cross-core contention and interference via the Success Ratio metric, i.e. the
percentage of systems generated that were deemed schedulable. We repeated
the experiment, this time comparing the performance of the default initial
assignment of tasks to cores, with that obtained via Simulated Annealing
starting from the initial assignment. Since Simulated Annealing involves
many trial allocations, we reduced the number of systems generated per
utilization level from 1000 to 100. This was done to ensure that the overall
runtime remained manageable9. Task sets were generated with parameters as
described in Section 5.1. Each system comprised nm tasks, with a different
set of n tasks, with total utilization U , initially allocated to each of the m

9 The Simulated Annealing algorithm was configured to iterate 5000 times. On each
iteration the schedulability test was run approximately 10 times to determine the processor
speed scaling factor via binary search. Hence, to analyse 100 systems requires approximately
5000000 schedulability tests.
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cores. By default n = 10, hence each 2 core system had 20 tasks in total, and
each 4 core system 40 tasks in total. Deadline Monotonic priority ordering
was used throughout, since this was shown, in Section 4.1, to be optimal for
the simpler schedulability tests used in the preemptive case, and is also an
effective heuristic in the non-preemptive case (Davis et al, 2016).

The Simulated Annealing algorithm started from the initial allocation and
was able to re-allocate tasks to different cores in order to improve overall
system schedulability. For a system to be schedulable, the task set on each
of its cores had to be schedulable accounting for cross-core contention and
interference. While the initial allocation comprised task sets of equal utilization
on each core, this was not necessarily the case with the final allocation obtained
via Simulated Annealing.

We compared the effectiveness of the task allocations generated by
Simulated Annealing for three schedulability tests for each of pFPPS and
pFPNS:

– CpFPPS-m-R: The context-dependent response time based analysis of
pFPPS with contention, introduced in Section 3.1, and given by (2), (3),
(5), and (6).

– CpFPPS-m-D: The context-dependent deadline based analysis of pFPPS
with contention, introduced in Section 3.1, and given by (2), (3), (4), and
(5).

– CpFPPS-m-fc: The context-independent fully composable analysis of
pFPPS with contention, introduced in Section 3.3, and given by (2), (3),
and (10).

– CpFPNS-m-R: context-dependent response time based analysis of
pFPNS with contention, introduced in Section 3.2, and given by (8), (9),
(6), and (5).

– CpFPNS-m-D: The context-dependent deadline based analysis of pFPNS
with contention, introduced in Section 3.2, and given by (8), (9), (4), and
(5).

– CpFPNS-m-fc: The context-independent fully composable analysis of
pFPNS with contention, introduced in Section 3.3, and given by (8), (9),
and (10).

Figure 15 for pFPPS and Figure 16 for pFPNS illustrate the effectiveness of
the allocations produced by Simulated Annealing for 2 cores and for 4 cores,
respectively. (The results for 3 cores were similar and were omitted to avoid
cluttering the graphs). In the preemptive case, the results for Simulated
Annealing are labelled CpFPPS-m-SA-R, CpFPPS-m-SA-D, and
CpFPPS-m-SA-fc respectively, and are compared to the baseline
allocation, labelled CpFPPS-m-R, CpFPPS-m-D, and CpFPPS-m-fc.
Similarly, for the non-preemptive case, the results for Simulated Annealing
are labelled CpFPNS-m-SA-R, CpFPNS-m-SA-D, and
CpFPNS-m-SA-fc respectively, and are compared to the baseline
allocation, labelled CpFPNS-m-R, CpFPNS-m-D, and CpFPNS-m-fc.
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The different schedulability tests, number of cores, and baseline /
Simulated Annealing are coded into the line types and colors as follows: the
response time and deadline based context-dependent tests are shown as solid
and dashed lines respectively, with the fully composable context-independent
test shown as dotted lines. The results for 4 cores are in green for the
baseline and in turquoise for Simulated Annealing. Similarly, the results for 2
cores are in red for the baseline and in orange for Simulated Annealing.

Figure 15 for pFPPS and Figure 16 for pFPNS show that Simulated
Annealing is able to improve schedulability, compared to the baseline, for
each of the schedulability tests and numbers of cores considered. These
results are further highlighted in Figure 17 for pFPPS and Figure 18 for
pFPNS. These figures show the number of systems that were not schedulable
with the baseline allocation, but where Simulated Annealing was able to find
a schedulable allocation, as a percentage of all systems considered. Observe
that the improvement obtained is much larger for the context-dependent
schedulability tests (solid and dashed lines), than it is for the
context-independent schedulability tests (dotted lines). This is because the
context-dependent schedulability tests take account of both the resource
sensitivity of the tasks on the same core as the task under analysis, and the
resource stress due to the tasks on other cores. By doing so, these tests
provide an opportunity for the Simulated Annealing algorithm to allocate
the tasks in a way that reduces the amount of cross-core contention and
interference considered. This tends to results in allocations where the
resource sensitivity and resource stress is high on some cores and low on
others, subject of course to the system remaining schedulable.

Although there are dominance relations between the tests as described in
Section 3.4, the random process enacted by Simulated Annealing, and the
fact that it is not guaranteed to find the optimal solution means that
dominance between the allocations generated is not guaranteed. Thus, in
Figures 15 and 16, the results for CpFPPS-m-SA-D (e.g. dashed orange
lines) can sometimes slightly exceed those for CpFPPS-m-SA-R (e.g. solid
orange lines) due to statistical variation.

Table 5 Number of additional schedulable systems found using Simulated Annealing for
task allocation.

Test pFPPS pFPNS

2 cores
-fc 145 3.6% 662 16.6%
-D 422 10.6% 876 21.9%
-R 380 9.5% 845 21.1%

4 cores
-fc 106 2.7% 624 15.6%
-D 474 11.9% 946 23.7%
-R 448 11.2% 912 22.8%
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Fig. 15 pFPPS: Task allocation: Schedulable systems Simulated Annealing vs. baseline for
2 and 4 cores, context-independent and context-dependent schedulability tests.

Fig. 16 pFPNS: Task allocation: Schedulable systems Simulated Annealing vs. baseline for
2 and 4 cores, context-independent and context-dependent schedulability tests.
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Fig. 17 pFPPS: Task allocation: Increase in schedulable systems Simulated Annealing vs.
baseline for 2 and 4 cores, context-independent and context-dependent schedulability tests.

Fig. 18 pFPNS: Task allocation: Increase in schedulable systems Simulated Annealing vs.
baseline for 2 and 4 cores, context-independent and context-dependent schedulability tests.
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The number of additional systems that were found schedulable using the
allocations determined by Simulated Annealing are listed in Table 5, both as
a number out of 4000 systems in total, and as a percentage. Observe that the
gains obtained by using Simulated Annealing are larger for the
context-dependent tests for systems with 4 cores than for systems with 2
cores. This is because the larger systems present more opportunities for task
allocations that reduce the interference between the cores. Further, the
improvements are considerably higher for non-preemptive scheduling
(pFPNS), than for preemptive scheduling (pFPPS). This is because with
non-preemptive scheduling, schedulability is sensitive not only to cross-core
interference, but also to the distribution of the periods and deadlines of the
tasks allocated to each core. Allocating tasks that have similar deadlines to
the same core can greatly improve schedulability, since with non-preemptive
scheduling the execution time of each task must fit within the shortest
deadline of the other tasks on the same core. Appropriate allocation of tasks
to cores can thus be effective in addressing the blocking problem with
non-preemptive scheduling. In determining task allocations for pFPNS,
Simulated Annealing is effectively balancing two factors: (i) blocking effects,
and (ii) cross-core interference, with the combination leading to substantially
improved schedulability, as illustrated in Figures 16 and 18.

The effects of task allocation using Simulated Annealing can be observed
by examining the total resource sensitivity utilization (

∑

τi∈Γx
Xr

i /Ti) for
each core, in the case of two cores. Figures 19 and 20 show the total resource
sensitivity utilization for the task sets on each of the two cores, as a
frequency distribution for 1000 different systems. The task sets on each core
had an initial execution time utilization of 0.5. Since the default Sensitivity
Factor of SF = 0.25 was used, the baseline (red bar) indicates that both
cores had an initial total resource sensitivity utilization of 0.125. Note, the
red bar extends to 1.0, and is cut off in both Figures. Figure 19 shows the
results for pFPPS. The green and orange frequency distributions are for
Simulated Annealing combined with the context-dependent schedulability
tests, i.e. CpFPPS-2-SA-R and CpFPPS-2-SA-D respectively. Observe
that these distributions are bi-modal, with the vast majority of the best
allocations a substantial distance away from being balanced in terms of the
total resource sensitivity utilization on each core. Note, since the total
resource sensitivity utilization across both cores remains constant, each
distribution is symmetrical about the baseline. The blue frequency
distribution is for Simulated Annealing combined with the
context-independent schedulability test, i.e. CpFPPS-2-SA-fc. With this
test, the cross-core contention and interference that a task is assumed to be
subject to does not depend on the tasks allocated to other cores. As a
consequence, there is no selection pressure to place tasks with high resource
sensitivity and high resource stress on one core and others with low resource
sensitivity and low resource stress on the other core. Hence, this distribution
resembles a normal distribution, with the best allocations far more balanced
in terms of the total resource sensitivity utilization on each core.
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Fig. 19 pFPPS: Frequency distribution of the total resource sensitivity utilization on
2 cores: Simulated Annealing with context-independent and context-dependent tests vs.
baseline.
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Figure 20 shows similar results for pFPNS. The green and orange
frequency distributions are for Simulated Annealing combined with the
context-dependent schedulability tests, i.e. CpFPNS-2-SA-R and
CpFPNS-2-SA-D respectively. These distributions are again bi-modal,
with the majority of the best allocations a substantial distance away from
being balanced in terms of the total resource sensitivity utilization on each
core. Compared with the preemptive case, however, there is more variation
and the two modes are less well defined. The blue frequency distribution is
for Simulated Annealing combined with the context-independent
schedulability test, i.e. CpFNPS-2-SA-fc. With this test, the cross-core
contention and interference that a task is assumed to be subject to does not
depend on the tasks allocated to other cores. Thus, similar to the preemptive
case, this distribution resembles a normal distribution, with the best
allocations far more balanced in terms of the total resource sensitivity
utilization on each core.

7.4 Summary

In this section we argued that commonly applied heuristic methods of task
allocation based on a greedy assignment algorithm, for example First-Fit,
Decreasing Utilization, are not viable in the context of the MRSS task
model, since the schedulability of a task allocated to one core is typically
dependent on the tasks allocated to other cores. We showed that Simulated
Annealing is highly effective at finding schedulable task allocations when
used in conjunction with the context-independent and context-dependent
schedulability tests introduced for the MRSS task model. Further, the
improvement over a simple baseline allocation is substantially increased
when context-dependent schedulability tests are employed. This is because
such tests take into account both the resource sensitivity of the tasks on the
same core as the task under analysis, and the resource stress due to tasks on
other cores. By doing so, they provide an opportunity for the allocation
algorithm to assign tasks to cores in a way that reduces cross-core contention
and interference, and hence improves schedulability. This tends to result in
allocations where the resource sensitivity and resource stress of tasks is high
on some cores and low on others.

Our focus here has been on task allocation assuming a single shared
hardware resource; however, in practice the problem is further complicated
by different groups of tasks accessing different shared hardware resources,
with different resource sensitivities and different resource stresses. It is clear
that in general highly effective solutions to the task allocation problem will
only be possible via search-based techniques, such as Simulated Annealing or
Genetic Algorithms, with a carefully designed fitness function that optimizes
both schedulability and other important criteria such as robustness and
extensibility.
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8 Conclusions

The main contributions of this paper are (i) the Multi-core Resource Stress
and Sensitivity (MRSS) task model, underpinned by an industrial case-study;
(ii) schedulability analyses for the MRSS task model, and their evaluation;
and (iii) compatible task allocation strategies, based on Simulated Annealing.
The MRSS task model:

– Characterizes how much each task stresses shared hardware resources and
how much it is sensitive to such resource stress.

– Provides a simple yet effective interface between timing analysis and
schedulability analysis, facilitating a separation of concerns that retains
the advantages of the traditional two-step approach to timing verification.

– Caters for a variety of different shared hardware resources in a way that is
both generic and versatile.

The accompanying schedulability analyses:

– Provide efficient context-dependent and context independent schedulability
tests for both fixed priority preemptive and fixed priority non-preemptive
scheduling.

– Exhibit dominance relationships illustrating the trade-off between context
independence and schedulability test effectiveness, and complexity results
showing the opposite trade-off between context independence and
schedulability test efficiency.

– Were proven compatible or incompatible with efficient optimal priority
assignment algorithms.

– Were subject to a systematic evaluation illustrating their effectiveness
across a wide range of parameter values.

Further, a preliminary case study explores the resource stress and resource
sensitivity of 24 tasks from a Rolls-Royce aero-engine control system. This
industrial case study provides an underpinning proof-of-concept for the MRSS
task model. Finally, a consideration of task allocation shows that commonly
used heuristics and greedy assignment algorithms are no longer viable when
task schedulability depends on cross-core contention, and hence the allocation
of tasks to other cores. Instead, Simulated Annealing, with an appropriate
cost-function, can provide an effective method of task allocation that optimizes
both schedulability and robustness, under the MRSS task model.
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